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AbstratThe routing of vehiles on road transportation networks is an area of great im-portane to transportation planners within sienti� literature. This �eld inludeswell known and studied problems like traveling salesman problems or TSP or themore realisti asymmetri variant or ATSP, whose appliations extend to other areasof transport and operations researh. This work studies the e�et that the asymme-try of road transportation networks, geographial loation and territory have over
TSP and ATSP methods. We ondut omprehensive experiments in order to as-sess the e�ets that these fators have on some of the best known algorithms for the
TSP/ATSP . We demonstrate that all these fators have a signi�ant in�uene insolution time and quality. Furthermore, we show that the solutions obtained withEulidean matries and those obtained with real distane matries di�er signi�antly.Keywords: Asymmetry, Asymmetri Traveling Salesman Problem, Algorithms, Geographi In-formation Systems, road transportation networks
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1 IntrodutionThe Traveling Salesman Problem, or TSP for short, is one of the most well known and thoroughlystudied ombinatorial optimization problems (Lawler et al., 1985). The objetive is to �nd theminimum ost (usually minimum distane) route visiting a set of n loations, where eah loationis visited exatly one. The tour must start and �nish at the same loation. A solution to the
TSP problem is represented by a permutation of the n loations. The TSP is a well known
NP-Hard problem.In routing problems, and more preisely, in the TSP (symmetri and asymmetri), there is adistane or ost matrix. Eah element in the matrix ontains the travel distane, time, or anyother ost funtion between any two loations o, d, where o, d ∈ n, o 6= d. Usually, travel time,speeds and osts are a funtion of the distanes between loations or nodes.A wide range of the researh work on the TSP an be applied to other disrete optimizationproblems, and to appliations in several �elds suh as genome reonstrution, sheduling opera-tions, mahine movements for hole drilling in iruit boards or other objets, et. and of ourse,its appliation in the routing problems and transport like the routing of airrafts, ships, shoolbuses, et. (Gutin and Punnen, 2002). As is well known, the Asymmetri Traveling SalesmanProblem (ATSP ) where the distane matrix is not neessarily symmetri, is a more general asethan the Symmetri Traveling Salesman Problem (STSP ) where the ost or distane matrix isalways assumed to be symmetri. In related sienti� literature these two versions of the TSP areoften investigated independently, with a strong bias towards the seond. Apart from the list of nloations, the input data for the TSP is just the distane matrix. As a result, arefully estimatingdistanes between nodes is extremely important. The need for real matries and distanes hasbeen highlighted several times in the TSP literature (Flood, 1956), and also for Vehile RoutingProblems (CV RP ) (Clarke and Wright, 1964), or for other variants as well (Toth et al., 2001).Although in some forms of transportation by air, sea and train the Eulidean distanes (sym-metri TSP ) an be a reasonable approximation; in other ases, the Eulidean distanes mayonstitute a gross underestimation of reality, espeially in urban transportation, where distaneson road networks an be highly asymmetri.In this work we deal with the issue of asymmetry in the distane matrix from road transportationnetworks. The main objetive of this researh is to measure the e�et that the asymmetry of theroad network has in solving the TSP , both the symmetri as well as the asymmetri variant. Aswe will demonstrate and measure, symmetri solutions �those obtained with symmetri and Eu-lidean distane matries� have little in ommon with regard to sequene and total distane withreal solutions (those obtained with asymmetri and real distanes). There is usually a very signif-iant di�erene between the solution of an asymmetri instane and the solution of a symmetrione based on an approximation of the real distanes. Not only is the total distane signi�antlydi�erent, but so is the sequene of nodes in the solution. Furthermore, di�erent state-of-the-artmethods for the STSP and ATSP are shown to di�er in e�etiveness and in e�ay when tested2



against asymmetri real distanes, ompared against original performane in Eulidean settings.Some methods even no longer work when faed with asymmetri matries. However, it is not theintention of this paper to arry out a omparison about state-of-the-art methods. Some otherinteresting fators that also a�et the level of asymmetry and the performane of STSP and
ATSP methods, like territory, geographial loation and problem size are also studied. Morepreisely, this paper addresses the following researh questions: What is the e�et of the asym-metry over the e�etiveness and e�ieny of the main TSP/ATSP heuristis? Is it feasible toredue the Asymmetri Traveling Salesman Problem to a symmetri one? How do all the fatorsbehave for di�erent problem sizes? What is the most adequate heuristi in eah ase?The remainder of this paper is organized as follows; Setion 2 further substantiates the importaneof onsidering asymmetry in routing problems. Setion 3 elaborates on the researh questions andhypotheses, together with the studied fators and variables, experimental design and omputa-tional tests. Setion 4 presents a thorough analysis of the di�erent results from many perspetives,like CPU times, quality of the solutions and quantitative and qualitative omparisons. Finally,the onlusions of this work are presented in Setion 5.2 The real world is asymmetriGiven a TSP instane with n loations or nodes, the distane matrix between any possible pairof nodes o, d, where o, d ∈ n, o 6= d, is denoted by C[n×n] and is a square matrix where thediagonal is usually disregarded. This matrix has n × (n − 1) elements with all the distanes.In the vast majority of the routing literature, the loations or nodes are determined by theiroordinates in a 2D plane and the distanes between eah pair of nodes are alulated by thesimple Eulidean distane, given by the Pythagorean formula. In this ase, it is straightforwardto see that the distane between the nodes o and d is the same as the distane between dand o, i.e., cod = cdo,∀o, d ∈ n, o 6= d. In this ase, the matrix C an be summarized by anupper or lower triangular matrix with n×(n−1)

2 elements. A slightly more elaborated approahfor obtaining the matrix C is to alulate the orthodromi distane between the geoloations oftwo nodes. Basially, the orthodromi distane is the shortest distane between any two pointson the surfae of a sphere, measured along a straight path on the surfae of the sphere itself.This is often referred to as the great-irle distane. Orthodromi distanes are also symmetri innature. Note that orthodromi distanes are muh more aurate than Eulidean distanes whenmeasuring long distanes in Earth as Eulidean distanes would traverse the Earth nuleus, notonsidering the Earth's urvature.It has been known for many deades (Daganzo, 1984) that Eulidean or orthodromi distaneshave little resemblane to real distanes between nodes or loations that are linked throughtransportation networks or roads. As a matter of fat, the Eulidean or orthodromi distane isa very loose and weak lower bound of the shortest path that ommuniates any two nodes in a3



transportation network. Furthermore, when one onsiders the nature of tra�, one-way streetsand the intriate layout of most roads, it is straightforward to see that, to some degree or another,real distane matries are not symmetri. This degree of asymmetry annot be easily estimatedas it varies widely aording to di�erent fators. Long distanes are likely to be more symmetridue to two-way highroads. However, onneting loations in the historial enters of some bigities is likely to return asymmetri distanes.The usage of Eulidean or orthodromi distanes is simply motivated by the large ost anddi�ulty in obtaining the real distanes matrix C. Even nowadays, one needs to alulate n ×

(n− 1) shortest paths, eah one onstituting an enormous e�ort as real transportation networks,for example inside a ountry, typially ontain billions of nodes and ars. Geographi InformationSystems (GIS) and geo-spatial databases, along with their Advaned Programming Interfaes(API) failitate, to some extent, this herulean task. In any ase, this possibility is relativelyreent as rih GIS systems apable of doing suh alulations have only existed in the mainstreammarket sine the mid 1990s. Before this date, and sine the early 1970s, researhers have triedto alulate the real distane matrix indiretly from the Eulidean or orthodromi one. Forexample, some researhers tried to estimate real distanes after multiplying the orthodromimatrix by a given fator (Christo�des and Eilon, 1969). Other works developed some funtionsto estimate real distanes (Love and Morris, 1972). This idea was further exploited by otherauthors that developed distane estimation funtions depending not only on the zone wherenodes are loated, but also on total traveled distane (Daganzo, 1984). Many problems arisewhen using these funtions. The proposed funtions have to be adjusted mathematially andempirially (whih more or less implies some validation, that in turn needs some real distanematries). This adjustment proess is objetive funtion dependent and also depends on thepreision desired. Other authors demonstrated that this adjustment proess is also dependent onthe territory and other harateristis like geometry of the zone, type of transportation network,orographi aidents, natural obstales and the like (Love and Morris, 1988; Dubois and Semet,1995). Therefore, distane estimation annot be arried out over the basis of a single funtion orwithout a deep and areful study, inluding parameter adjustment. While we do not advoatethat suh funtions are not useful in any environment (some strategi deisions with aggregatedinformation might bene�t from suh funtions, where some degree of approximation is aepted),we support the idea given in Love and Morris (1988) that suh funtions are not aeptable inreal operational settings.The fat is that the existing literature has usually been onerned more with the symmetri TSPthan with its asymmetri ounterpart. It is lear that the �rst is a simpler, and more basi,problem. The best known polynomial-time heuristi with a known quality guarantee for theEulidean TSP , due to Arora, 1998, is able to guarantee a 1+ε approximation fator with respetto the optimal solution, for any �xed error fator ε > 0. In ontrast, the best known polynomial-time heuristi with a known quality guarantee for the ATSP (given in Asadpour et al., 2010)4



an only guarantee a log n/ log log n approximation fator, where n is the number of loations.It is evident that the ATSP is a muh more di�ult problem, and as ommented, a signi�antportion of the TSP literature onsiders Eulidean distanes without even raising the issue ofreal distanes. There is also a rih literature on the ATSP generalization and formulations,as for example, the papers of Gouveia and Pires (1999) and Fishetti et al. (2003), among manyothers like Arora (1998), Bontoux et al. (2010) and Germs et al. (2012). However, authors do notatually study, to the best of our knowledge, in its full omplexity, the e�et that di�erent degreesof asymmetry and fators a�eting asymmetry have over solution methodologies. In order to opewith all these omplexities, modern GIS systems must be employed (Goodhild and Kemp, 1990),together with a deep understanding of the e�et of the asymmetry and other interesting fatorsover the alulation of real distane matries and TSP resolution.3 Studying the e�et of asymmetryAs previously stated, we are interested in either on�rming or refuting the following hypothe-ses: 1) Asymmetry strongly e�ets the e�etiveness and e�ieny of the main TSP and ATSPheuristis. 2) The loation of the nodes in the real world generates di�erent levels of asymmetryand therefore also onditions TSP methods. 3) It is not always feasible to redue the ATSP tothe TSP (Jonker and Volgenant, 1983) for solving real ATSP problems with TSP heuristis. 4)The size of the problem interats with asymmetry and also a�ets TSP algorithms. In order toassess these hypotheses we arry out a omplete omparative study of the di�erent solutions pro-vided by TSP methods, with real harateristis and dimensions as ommented in Fishetti et al.(2003). A large set of TSP instanes is generated to this end.A full fatorial experimental design is employed (Montgomery, 2009), where eah generated prob-lem instane is de�ned by a series of fators that are further desribed in the following.3.1 Fators and instanes generatedTerritory: It is the geographial region where the instane is loated. This region is boundedby a quadrant de�ned by two pairs of opposed geographial oordinates (latitude and longitude).This is a qualitative ordinal fator that has been tested at three variants, of inreasing size, relatedwith the Iberian peninsula (our area of interest), as shown in the leftmost piture at Figure 1.The three regions are referred to as short, medium and large distane, respetively.In the short distane, loations are plaed in the geographial area of in�uene of a big ity. Asa result, the minimum distanes between pairs of nodes are onditioned by urban transportationnetworks (one-way streets, tra� irles, ity enter, et.). Medium distane inludes shortdistane plus larger distanes entailing regional transportation through paths, regional roads,ity ommuniation rings, et. Lastly, large distane territories are further onditioned by largedistane roads, highways and inter-ity ommuniations.5



Figure 1: Di�erent territories in the Iberian peninsula (left). Example of an instane withloations following a radial distribution in a large distane territory (right).Loation: It is the plaement of the nodes inside the territory. This an be random or mightfollow a given pattern. Three variants are de�ned for this nominal qualitative fator: random,grid and radial. Figure 2 shows some examples over a given territory. In the grid loationdistribution, the territory is divided into square zones. The node is plaed at the enter of eahzone, albeit slightly displaed by a random vetor. Radial distribution has a entral loationthat servies the remaining n−1 nodes, whih are radially distributed at an angular equidistaneequal to α = 2π/(n− 1). Figure 1 (right) shows a map with 500 radially distributed loations ina large territory.
Figure 2: Examples of loations in random (left), grid (middle) and radial (right) distri-butions.Number of nodes: This number n determines the size n × (n − 1) of the matrix or, 2n ×

2(n − 1) if it is transformed (the transformation proess is detailed next). It is a quantitativefator with 10 levels: n = {50, 100, 150, . . . , 500}.Symmetry: For eah generated instane, the distane matrix C is alulated in di�erentways. This qualitative nominal fator onsiders stritly symmetri or asymmetri matries withthe following studied variants: 6



• Orthodromi: It is the symmetri matrix with great-irle distanes.
• Asymmetri: Asymmetri matrix where the distanes have been alulated with the aid ofa GIS, i.e., distanes are atually the shortest distanes between loations as per the realnetwork of roads and streets.
• Minimum ar from eah pair: It is a symmetri matrix where distanes have been extratedfrom the asymmetri matrix in a speial way. Given any two distint nodes o and d,the distane for the matrix is the minimum of the two ways, i.e., the distane satis�es

min(cod, cdo). This results in a symmetri matrix.
• Maximum ar from eah pair. Similar to the previous one but taking the maximum of thetwo ways: max(cod, cdo).
• Transformed: A symmetri matrix is onstruted from the asymmetri one using a wellknown mathematial transformation due to Jonker and Volgenant (1983). This transfor-mation is orrelated with the number of nodes in the instane as the transformation mul-tiplies the size of the distane matrix by a fator of four. Eah loation or node is splitinto two nodes, one real, and a seond virtual node. The distane between a real nodeand its orresponding virtual sibling is set to a very small favorable ost (usually −∞).This results in real and virtual nodes to be onseutively plaed in the �nal TSP tour.The original asymmetri �from�-�to� ways are assigned to distanes between real nodes inthe transformed matrix whereas original asymmetri �to�-�from� distanes (i.e., the waybak distanes) are assigned to the virtual nodes. All other possible distanes are assigneda very unfavorable value (+∞). A simple 3 × 3 symmetri matrix and its orrespondingtransformation are given in expression (1) below:
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(1)
All four fators, together with their orresponding levels or variants are gathered in Table 1.As we an see, the last row of Table 1 ontains the total number of levels or variants foreah fator. Sine we employ a full fatorial experimental design, we have 3× 3 × 10 × 5 = 450treatments after ombining all levels or variants. For eah treatment, �ve di�erent instanes aregenerated, for a grand total of 2, 250 TSP/ATSP instanes. All these instanes are publilyavailable at http://soa.iti.es/problem-instanes.7

http://soa.iti.es/problem-instances


Territory (T) Loation (L) Number of nodes (n) Symmetry (M)Short distane Random 50 Orthodromi (O)Medium distane Grid 100 Asymmetri (A)Large distane Radial 150 Minimum ar (P)
. . . Maximum ar (G)500 Transformed (T)3 3 10 5Table 1: Fators for the instanes along with their levels and variants.3.2 Response variablesA we will detail later, several state-of-the-art TSP methods are used for solving the proposedinstanes. Using Design of Experiments allows to study the e�et that eah onsidered fator(inluding the di�erent algorithms) have over one or more response variables.Solutions obtained after solving eah instane are analyzed mainly at two levels: quantitative(mainly tour length) and qualitative (sequene of nodes or loations in the tour). As regardsthe last qualitative assessment, the literature is marred with papers that propose indiatorsfor measuring the di�erenes between solution objets, as for example Shiavinotto and Stützle(2007). In our ase, measuring the di�erenes between two TSP tours is ommonly arried out byounting the number of k− opt movements that are needed to transform one tour s into another

s′. This needs a non-polynomial CPU time as a funtion of n. Therefore, we employ simplermeasures of a distane d between two tours or d(s, s′):Relative perentage deviation from the best solution found ∆S∗
i : It is the relativedeviation (in perentage) of the tour length obtained after solving a given TSP instane i withalgorithm A (Si,A) from the lowest known tour length for that instane (S∗

i ). It is alulated asfollows:
∆S∗

i =
Si,A − S∗

i

S∗
i

· 100 (2)Hamming distane dH: It is a well known indiator that measures the di�erenes betweenvetors, proposed by Hamming (1950). Basially, it takes two tours s and s′ and adds 1 to theindiator ounter eah time a position in the tour is oupied by di�erent nodes at both tours.For example, given s = [2, 5, 3, 1, 4, 6] and s′ = [1, 2, 3, 4, 5, 6], the Hamming distane is 4. Thereis a problem as regards the TSP sine the relative order of nodes in the tour is as important astheir absolute positions. Take a seond example s = [6, 1, 2, 3, 4, 5] and s′ = [1, 2, 3, 4, 5, 6]. In thisase, the Hamming distane is 6, even though the route is almost the same (the only di�erenebeing the starting/ending node. However, this indiator is simple to alulate (it just requires
O(n) steps) it is easy to understand and to interpret.Adjaeny distane dA: Together with the Hamming distane, it makes sense to measurealso the number of equal adjaent nodes between two routes s and s′, where the nodes need not8



be loated in the same absolute positions at the two tours. More spei�ally, this is ahieved byheking if the ar between nodes e and e + 1 at solution s �s(e, e + 1)� exists in any plae ofsequene s′. As a result, the adjaeny distane ounts the number of distint ars between twotours, with the maximum possible distane being n + 1. For example, given s = [1, 2, 3, 4, 5, 6]and s′ = [1, 6, 2, 3, 4, 5], dA = 3, sine ars (1, 6) (6, 2) (5, 1) of s′ are not present at s. Usinge�ient data strutures, dA an be alulated in O(n) steps.Note that in our measurements, both sequenes are shifted so that vertex 1 is the �rst vertex inthe sequene, in order to have a more preise measure of the distanes (Hamming and Adjaeny).CPU time: It is the real elapsed CPU time that was needed when solving a given instanewith an algorithm. This exludes input/output operations as well as all other system overheads,as detailed in Alba (2006).Asymmetry in distane matries: We are partiularly interested in measuring the asym-metry degree of matries. Stritly speaking, a matrix is asymmetri if it exists at least one pair o,
d suh that cod 6= cdo, where o, d ∈ n, o 6= d. Furthermore, this is even true if cod = cdo+ε, for anyarbitrarily low value of ε. Obviously, this binary asymmetry indiator is not very informative andmore preise indiators are needed. We employ the following alternatives: Alfa (α): It indiatesthe asymmetry degree by ounting the number of asymmetri pairs of distanes (pairs o, d thatsatisfy cod 6= cdo, o, d ∈ n, o 6= d) over the total number of pairs n, using the xa(o, d) de�nition andexpression (3) below, where a is a pair of ars (od, do). α takes values in the [0%, 100%] interval.Delta (δ): It measures the asymmetry degree in more detail by atually looking at how di�erentare asymmetri pairs (in distane). It is alulated with expression (4) below. Weight: It justsums all the distanes of the C matrix, i.e., ∑n

o=1

∑n
d=1,o6=d cod. Average weight (Weight): Itrelates the weight with the number of ars.

xa(o, d) =

{

0 if cod = cdo

1 if cod 6= cdo

α =
2
∑n

a=1(xa)

n2 − n
· 100 (3)

δa =
| cod − cdo |

min(cod, cdo)
· 100 ∀o, d ∈ n, o 6= d (4)3.3 Solution proessFor solving all instanes, we employ a high performane omputing luster with 30 blades, eahone ontaining 16 GBytes of RAM memory and two Intel XEON E5420 proessors running at 2.5GHz. Note that eah proessor has 4 physial omputing ores (8 per blade). At this stage, it isworth mentioning the sheer omputation e�ort needed for alulating real distane matries (allinstanes where M=A as per Table 1), espeially when ompared against orthodromi matries.

450 instanes in the set of 2, 250 ontain real distanes. These have been alulated by doing a9



humongous number of shortest route requests between pairs of nodes to Google Maps. This took
196.5 single blade equivalent CPU days. This is in stark ontrast with the 21 seonds needed foralulating the same matries but with orthodromi distanes.A diret outome of this omputational e�ort is a large set of 450 ATSP instanes where distanesare atually real, orresponding to urrent transportation networks in Spain, following all previousfators already mentioned in earlier setions. This set is omplementary to the well knownTSPLIB95 dataset where only 19 syntheti ATSP instanes an be found. These ATSP instaneshave random integer distanes at eah ar with n sizes between 17 and 443. As indiated, theseinstanes are publily available. Eah instane is solved with a wide range of TSP heuristis:

• Nearest neighbor algorithm (A=NN) as desribed in Flood (1956). A simple heuristi, yetwith reasonable performane.
• 2-Opt heuristi (Croes, 1958) (A=2O). A well known simple loal searh method.
• Conorde TSP solver1 (A=CO). A very powerful state-of-the-art exat branh-and-utalgorithm for the TSP . It is desribed in Applegate et al. (2002). Parameters: defaultoptions.
• Lin-Kernighan heuristi of Lin and Kernighan (1973) (A=LK). One of the most well knownpowerful and well-known heuristis.
• Improved Lin-Kernighan of Helsgaun (2000) (A=HE). This is urrently onsidered as one ofthe state-of-the-art methods for solving the TSP . Parameters: author's reommendations.
• Memeti algorithm of Nagata and Kobayashi (1997) and Nagata (2006) (A=NA). Alsoone of the most important and adaptive heuristis. Parameters: 10 trials, population size

= 100, 30 hildren, 2 parents.
• Branh-and-ut method of Fishetti et al. (2003) (A=FI). In our experiments, only forproblem size n = 50. Parameters: optimized ompilation, internal limit of 150, 000 branh-ing nodes.
• Improved GKS/TBCOP heuristis of Goldengorin et al. (2006) (A=GO), based on theHelsgaun ode. Parameters: author's reommendations.As we an see, the seletion of TSP heuristis is motivated either by simpliity, asymme-try adaptation or by urrent state-of-the-art performane. Note that not all studied heuristisare apable of working over asymmetri matries. For example, the LK and CO methods arespei�ally designed for the TSP and not for the ATSP (Applegate et al., 2006). In these ases,the transformed matrix (M=T) is employed instead of the real asymmetri one. This results in

2, 250 instanes ×8 algorithms −450 asymmetri matries ×2 non-ATSP heuristis (LK and CO)1http://www.tsp.gateh.edu/onorde.html 10
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−450 (M=T unsupported on GO) −2, 025 (instanes n > 50 size on FI) = 14, 625 omputationalexperiments. All these experiments needed 830 single blade equivalent CPU hours. No CPUtime limit was imposed to any algorithm. The algorithms were implemented and ran followingthe instrutions of their respetive authors.4 Analysis of resultsAll results are supported by statistial analyses. We mainly use the multifator Analysis ofVariane (ANOVA) tehnique where we ontrol all studied fators. Three di�erent groups ofresponse variables are onsidered: CPU times needed by the algorithms, quantitative and quali-tative omparison of symmetri (TSP ) and asymmetri (ATSP ) tours. All results are detailed inthe following setions. Sine the ANOVA is a parametri tehnique, one needs to hek the threemain hypotheses whih are normality, homosedastiity and independene of the residuals. Theresiduals resulting from the experiment were analyzed and no serious deviations were observed.4.1 CPU timesSome of the most interesting results are observed when analyzing the CPU times needed by thealgorithms apable of solving ATSP problems. The resulting ANOVA table is given in Table 2.Soure Sum Degrees Mean F -Ratio p-Valueof squares of freedom squareMain E�etsA:Territory 2900.6 2 1450.3 17.7 0.0000B:Loation 1028.8 2 514.4 6.3 0.0019C:Symmetry 2502.2 3 834.1 10.2 0.0000D:n 753030 8 94128.8 1148.7 0.0000E:Algorithm 1.546E6 6 257723 3145.2 0.0000InterationsAB 351.6 4 87.9 1.1 0.3681AC 1221.9 6 203.7 2.5 0.0210AD 2664.9 16 166.6 2.1 0.0086AE 11786.4 12 982.2 12 0.0000BC 236.5 6 39.4 0.5 0.8229BD 1788.7 16 111.8 1.4 0.1491BE 4835 12 402.9 4.9 0.0000CD 3348.8 24 139.5 1.7 0.0174DE 1.038E6 48 21638.7 264.1 0.0000Residual 849253 10364 81.9Total (orreted) 4.269E6 10529Table 2: Analisys of Variane (ANOVA) for CPU time response variable and ATSPalgorithms (M 6=T, A 6=CO and A6=LK).11



At a 95% on�dene level (α = 0.05), all single fators and 6 double fator interations arestatistially signi�ant. Among signi�ant fators, importane is observed by the magnitude ofthe F -Ratio. For example, the F -Ratio of the fator �Algorithm� is no less than 3, 145.2. Thismeans that the di�erenes among the di�erent algorithms generate 3, 145.2 more variane thanthe variane obtained within eah algorithm. Therefore, the type of algorithm has a very strongand statistially signi�ant in�uene over the CPU time.The ANOVA tehnique mainly points out statistial signi�ane. For a further understanding ofthe behavior of any studied fator, we need desriptive plots. We have inluded plots with pointsand smoothed lines for omparing the CPU time as a funtion of the size of the matries for allombinations of Symmetry (types of matries) and Algorithms fators. All these plots are shownin Figure 3 where the X-axis gives the size of the matrix (n) and the Y-axis the CPU time inseonds, with a logarithmi sale. Eah row in the plot orresponds to a type of matrix and eaholumn to an algorithm. Note that there are no plots for algorithms LK and CO for asymmetrimatries, and GO for transformed matries (M=T).
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Figure 3: CPU time behavior for algorithms (CO, LK, HE, NA, FI, GO), types and sizesof matries.We on�rm that the type of algorithm has a strong in�uene over CPU time. As expeted,the improved Lin-Kernighan method of Helsgaun (HE) and Conorde (CO) are the most om-putationally demanding algorithms. The size of the matrix also a�ets CPU time diretly andexponentially and this is the ase for all types of matries, symmetri and asymmetri and for allalgorithms. Also expeted is the matrix transformation proess of matries (M=T), whih results12



in enormous CPU time inreases. This is a logial result that validates the whole experiment,as the size of the original asymmetri matrix is multiplied by two in the transformation proess.However, and as shown in Figure 3 with symmetri matries, HE is atually slower than CO(about three times slower). This is an unexpeted result as CO is an exat proedure and HE, al-beit extremely e�etive, annot guarantee optimality. The matrix transformation (M=T) a�etsmuh more CO than HE as the CPU time inreases approximately by a fator of 7. The problemis that CO only works with symmetri matries and the transformation is the only possible wayof dealing with asymmetri problems. The orollary is that CO is far more sensible to the size ofthe TSP to solve.As regards the other studied fators, the loation a�ets the CPU time for all methods. Themeans plot of Figure 4 ontains the interation between Algorithm and Loation fators forasymmetri matries only. The means are plotted in the middle of Tukey's Honest Signi�antDi�erene (HSD) 95% on�dene intervals. Overlapping intervals denote that the means on-tained within them are not statistially di�erent. Grid loations result in slightly higher CPUtimes for all methods ompared to the Random and Radial loations; exept for the FI algorithmas it onsumes more CPU time for Random loation (n = 50). In the ase of symmetri matries(not shown in the �gure), CPU times inrease sharply (20%) for the CO method for Grid loa-tions and this di�erene is statistially signi�ant. To the best of our knowledge, there are noreported studies that analyze how the distribution of the nodes or lients and road transportationnetworks a�et the CPU times of state-of-the-art methods.
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time inreases up to 37% for CO in ases of long and medium distanes ompared with the shortdistanes territories. A ontribution of this work is to demonstrate that the di�erent degree ofasymmetry (and di�erenes between distanes) of the road transportation network a�et studiedmethods aordingly.
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Figure 5: Means plot with Tukey's Honest Signi�ant Di�erene (HSD) 95% on�deneintervals for the interation between Territory and Algorithm fators, where the responsevariable is CPU time (M=A).Finally, CPU time is a�eted, on average, by the Symmetry fator (type of distane matrix).If we remove the transformed matrix (M=T) whih we have already seen inreases CPU times byorders of magnitude, the result obtained is shown at Figure 6. We see that there are no statis-tially signi�ant di�erenes between the M=P and M=G matries. Reall that these representsymmetri matries where the distanes are the minimum and maximum distanes, respetively,between the from-to and to-from asymmetri distanes in the matrix. This means that the dif-ferenes in CPU time annot be attributed to the magnitude of the distanes, but rather to thedi�erenes in the distanes themselves. We also observe how asymmetri matries (M=A) needsigni�antly more CPU time than regular orthodromi matries (M=O).4.2 Quality of solutionsIt has to be reminded that the objetive at this step is not to measure whih algorithm, amongthe tested ones, is the best. The fous is rather on studying how the onsidered fators a�etthe quality of the solutions provided by the algorithms. Table 3 provides the number of timesthat eah algorithm provides the best solution (N. S∗), and the orresponding rate (% S∗) underthree di�erent settings. The seond and third olumns indiate matries M=(O, P, G) (1, 350experiments per algorithm). The fourth, �fth, sixth and seventh olumns indiate asymmetri(M=A) and transformed (M=T) ases, respetively, with 450 experiments per algorithm. Notethat in the ase of A=GO there is no data for M=T, and for A=FI there is only data for n = 50problem size. 14
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M=(O,P,G) M=A M=TAlgorithm N. S∗ % S∗ N. S∗ % S∗ N. S∗ % S∗NN 0 0.0% 0 0.0% 0 0.0%2O 3 0.2% 0 0.0% 0 0.0%LK 627 46.4% - - 70 15.6%CO 1350 100% - - 391 86.9%HE 930 68.9% 414 92.0% 33 7.3%NA 463 34.3% 155 34.4% 30 6.7%FI 83 61.5% 45 100% 0 0.0%GO 252 18.7% 66 14.7% - -Table 3: Number of best solutions and suess rates for the studied algorithms and typesof matries.
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As expeted, CO always produes the optimum solution for the 1, 350 symmetri instanes.Expetedly, HE's suess rate is high at almost a 69% and muh better han LK's at 46%. Thesimple heuristis NN and 2O are rarely suessful. For asymmetri matries (M=A), FI is learlydominant on small sized problems (n = 50). For other asymmetri ases, HE is learly dominantand no further results an be drawn from our omparison sine LK and CO do not aeptasymmetri matries. Most surprisingly, CO does not obtain the optimum solutions in all asesfor M=T. An obvious explanation is that in the transformation proess, some values in thematrix are −∞ or +∞ and this reates numerial instability problems inside CO that result insmall deviations from the true optimum solution. These ∞ values were also the reason for notexperimenting with M=T for the GO method. With these results, we an now onlude that notonly CO needs an exponentially greater CPU time for transformed matries, but also that theresults annot be trusted. Naturally, with modi�ations inside the CO ode, there is the possibilitythat transformed matries ould be onsidered without glithes. Another interesting outome isthat for transformed matries, NA and LK outperform HE. However, the transformation proessis atually not needed for HE or NA and we annot onlude that LK or NA are preferred overHE for transformed matries.Numerous statistial analyses were performed in order to hek the in�uene of the studied fatorsover the quality of the solutions. Multiple ANOVA experiments were performed, whih are notfully detailed due to spae restritions. It has to be noted that sine no maximum CPU timewas given to all tested algorithms, the e�et of the di�erent studied fators over solution qualityis about 1% or less (ontrary to the previous observed e�ets on CPU time). While this mightbe seen as a marginal e�et, it has to be reminded that in the TSP state-of-the-art literature,publiations and new results are often disputed with improvements of less than 2% in solutionquality (Helsgaun, 2000). However, almost all fators resulted statistially signi�ant in all testsarried out. Table 4 shows average ∆S∗
i values, de�ned by expression (2) in previous setions, forthe di�erent tested algorithms as a funtion of the type of matrix (symmetry fator). Again, wesee the large deterioration in FI, HE, NA and CO with transformed matries (M=T). For largeasymmetri matries, HE, NA and GO are good hoies. Whereas for all other matries, eitherCO or HE learly dominate. One again we see that for transformed matries, it is even betterto use LK than HE.After studying the di�erent matries' asymmetry degree and all other studied fators, wefound that the asymmetry degree of a matrix (δ) and the Territory fator are strongly related.In our experiments we have observed and demonstrated that the asymmetry of the ars on shortdistanes territories is muh higher than medium or large distanes territories, whih is relevantand interesting for the ase of ity logistis problems. It is logial to think that these di�erenesin the degree of asymmetry a�et the behavior of algorithms, as shown at Table 5.It is relevant and interesting to observe how depending on the type of algorithm, there arepreferenes for more symmetrial or asymmetrial environments, or what is equivalent: long16



O A T P G AverageNN 23.78 23.63 22.88 22.12 21.10 22.702O 8.34 17.11 631.33 6.49 5.93 133.84LK 0.04 − 1.56 0.05 0.05 0.42CO 0.00 − 1.19 0.00 0.00 0.30HE 0.02 0.01 9.10 0.02 0.02 1.83NA 0.04 0.01 7.07 0.04 0.04 1.45FI 0.18 0.00 25.84 0.07 0.03 5.23GO 0.45 0.26 − 0.38 0.36 0.36Average 4.11 6.84 99.85 3.64 3.44Table 4: Average ∆S∗
i values aording to Algorithm and Symmetry (type of matrix)fators.

Short Medium Large AverageNN 24.28 21.88 21.95 22.702O 119.02 136.98 145.51 133.84LK 0.42 0.41 0.44 0.42CO 0.41 0.30 0.18 0.30HE 3.40 1.09 1.00 1.83NA 2.92 0.76 0.65 1.45FI 4.79 5.50 5.39 5.23GO 0.31 0.38 0.40 0.36Average 19.44 20.91 21.93Table 5: Average ∆S
∗
i values aording to Algorithm and Territory fators.
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distanes (CO, HE, NA) and medium distanes (LK) versus short distanes (FI, GO, NN, 2O).Furthermore, an although not shown, this e�et is observed for all matrix sizes and speiallyfor transformed matries. We now analyze the behavior of the di�erent algorithms against theLoation fator in Table 6. As shown, no overly strong e�ets are observed (albeit all di�erenesare statistially signi�ant for Loation fator). It is interesting to note that although the roadnetwork in the Iberian Peninsula is haraterized by a radial struture entered in the apitalMadrid, the degree of asymmetry inreases slightly in suh loations. Other road networks inother ountries ould be an important relationship between loation and asymmetry of the arsthat onditions more the behavior of algorithms.Random Grid Radial AverageNN 23.49 22.52 22.10 22.702O 150.47 124.90 126.14 133.84LK 0.45 0.31 0.50 0.42CO 0.25 0.53 0.12 0.30HE 1.98 1.52 1.99 1.83NA 1.54 1.06 1.73 1.45FI 5.56 6.73 3.38 5.23GO 0.44 0.27 0.39 0.36Average 23.02 19.73 19.54Table 6: Average ∆S∗
i values aording to Algorithm and Loation fators.Lastly, it is worth mentioning that matrix size has a very small impat on ∆S∗

i values. Thee�et is less than 0.06% in the worst ase. Figure 7 shows the averages of the Symmetry andAlgorithms fators (exluding M=T). The horizontal axis shows the size of the matrix n and thevertial axis (di�erent sale for eah symmetry fator) shows the perentage deviation ∆S∗
i overthe best solution. Note the vertial sale and values for M=T matries, where the e�et of thistype of matrix and size n on ∆S∗

i is higher.4.3 Quantitative and qualitative assessmentAfter studying the di�erent matries' asymmetry degree and all other studied fators, we foundthat the asymmetry degree of a matrix (δ) and the average weight (Weight) of the di�erent dis-tanes in the matrix are strongly related. If there is a relation between symmetri and asymmetrimatries in the form of an inreased average weight, it is logial to think that the symmetri so-lution of the TSP ould be �augmented� in order to arefully estimate the real ATSP solution(as regards the total tour length). This is needed sine, as we have already stated, the TSP tourlength is a loose lower bound of the real ATSP tour length. Similarly, it is important to hekthe tour length of the TSP solution, when alulated with the ATSP matrix and vieversa. Inorder to hek all these questions we use the following indiators, whih are strongly based onthe previously de�ned response variables. 18
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Figure 7: Average ∆S∗
i values aording to the size of the matrix n, algorithms (CO, LK,HE, NA, FI, GO) and Symmetry fators.

∆ATSP : It is the perentage inrease of the tour length of the ATSP solution as regards the
TSP solution:

∆ATSP =
ATSP − TSP

TSP
· 100 (5)

TSP is the tour length of the symmetri problem, alulated with symmetri orthodromimatries. ATSP is the asymmetri problem tour length, alulated with real distanematries (M=A). Note that algorithms LK and CO annot solve the ATSP . In these asesthe transformed matrix (M=T) is used instead.
TSPA: The TSP solution is alulated with asymmetri matries. i.e., we take the solution ofa TSP problem and realulate it with the real distanes. Obviously, the tour length willinrease (TSPA ≥ TSP ).
ATSPO: It is the opposite ase as TSPA. The ATSP solution is alulated with the symmetrimatrix.
∆TSPA: It is the perentage inrease of TSPA against ATSP . It ould be positive or negative.
∆ATSPO: It is the perentage inrease or derease of ATSPO against TSP .
∆dH: It is the perentage of di�erenes in the TSP solution against ATSP . Values lose to100% qualitatively indiate that the TSP solution is very di�erent from the ATSP . It is19



based on the previously de�ned Hamming distane dH :
∆dH =

dH

n
· 100 (6)

∆dA: It is the perentage of di�erent ars, over the total ars, that the TSP sequene has overthe ATSP solution. It is based on the previous adjaeny distane dA:
∆dA =

dA

n+ 1
· 100 (7)We alulate all previous indiators for all experiments, namely 3 territories ×3 loations

×10 di�erent matrix sizes ×8 di�erent algorithms ×5 repliates whih results in 3, 195 data. Theresults are good. The average ∆ATSP indiator reahes a value of 80.1%. This indiates a hugedi�erene between the ATSP and TSP solutions. Note that the minimum observed value for thisindiator is an already large 32.9% (the maximum being an impressive 196.9%). The frequenydistributions of the ∆ATSP values are given as an histogram in Figure 8 (left). It is observedthat in a large perentage of the ases, the inrease is between 50% and 100%. Figure 8 (right)shows a seond histogram, this time for ∆TSPA. The distribution is learly skewed towardspositive values, with an average of 13.6%. Exatly, 39.8% of the ases show di�erenes equal orlarger than 10%.
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large for TSP problems where algorithms �ght in the state-of-the-art segment for less than 2%improvements. As regards ∆ATSPO, the distribution (not shown) is again positive, with anaverage of 14.3%. In a 50.02% of the ases, the di�erenes are equal or greater than 10%. Oneagain, it is shown that it is not the same solving an asymmetri ATSP and measuring the tourlength of the sequene with symmetri distanes.In our opinion, this is the main ontribution of this researh work. From our perspetive, theommonly aepted assumption of onsidering Eulidean distanes does not hold when solutionsare alulated with real asymmetri distanes. The TSP solutions deteriorate enormously whenalulated with real matries. Furthermore, there is little guarantee that good algorithms forthe TSP will work equally good for the ATSP . Often, the degradation in performane willbe signi�antly greater than the observed di�erenes between ompeting methods. Anothersigni�ant result is to qualitatively observe the big di�erenes between the sequenes obtainedwith symmetri TSP and asymmetri ATSP problems. The average ∆dA, with a value of 71.0%indiates that the symmetri sequenes are almost entirely di�erent from the asymmetri ones.Values are even greater if one uses the Hamming distane ∆dH. The minimum value for the ∆dAvalue is as high as 6%. This means that, in the best ase, a full 6% of the sequene is di�erent.Figure 9 (left) shows the frequeny distribution of ∆dH. Note how it is heavily skewed towardsvalues very lose to 100%. Figure 9 (right) shows the orresponding histogram for ∆dA.
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Figure 9: Histograms with the ∆dH (left) and ∆dA (right) frequeny distributions.4.4 Some examplesIn this setion we depit two examples. The purpose is to graphially show the large di�erenesbetween symmetri and asymmetri solutions. Only two examples have been randomly seleteddue to obvious spae onstraints. 21



CC-0503HE. The �rst example orresponds to instane CC-0503. A total of 50 nodes are gridloated in a short distane territory. We ompare the best solution obtained with algorithmHE. There are huge di�erenes between the symmetri optimal tour length of 244.2 km. versusthe 423.3 km. of the di�erent optimal tour length alulated with the asymmetri distanes.Therefore, ∆ATSP = 73.32%. Additionally, we have that ∆dA = 90.20%. Figure 10 (left) hasthe two optimum solutions superimposed. The symmetri in blue and the real one in red.MR-0504CO. In this seond example we show the results of the instane MR-0504 solved withCO algorithm. We have again 50 nodes radially distributed in a medium distane territory. Thetotal tour length in the symmetri tour is 1, 369.7 km. versus 2, 097.9 km. for the asymmetritour length. This results in a ∆ATSP of 53.17%, with a ∆dA of 98.04%. Figure 10 (right) showsthe details.

Figure 10: TSP (blue) and ATSP (red) solutions for A=HE on instane CC-0503 (left)and A=CO on instane MR-0504 (right) .
5 Conlusions and further workIn this work we have studied the e�et that the asymmetry has over the solution proess of the
TSP/ATSP . We have shown that solving the TSP di�ers muh from solving the ATSP at somany levels: tour length, adjaeny of nodes, hamming distane and CPU time. Furthermore,all these di�erenes are strongly a�eted by other and new studied fators: degree of symmetry,territory and loation of the nodes in the road transportation network. During the researh,thousands of instanes have been solved with some of the best well known (inluding some state-of-the-art) algorithms for the TSP and ATSP .We have been able to on�rm, as expeted, that the algorithm used strongly a�ets the CPUtime. HE and CO are the most omputationally demanding methods, muh more than the othersimplisti heuristis or modern meta-heuristis. We have also shown that the Territory, Loation22



and size of the problem fators all a�et the di�erent methods in a sound and statistially signif-iant way. As is known, the problem size inreases the CPU time exponentially. An interestingand novel ontribution of this paper is the study of the e�et on CPU time and quality of solu-tions due to the fators of territory, loation and their relationship with the asymmetry degreeof the road transportation network. Partiularly for symmetri matries, loations in grid havea signi�ant e�et on CPU times, resulting in harder to solve problems. This e�et is ampli�edwith transformed matries. It has been demonstrated that the Territory has an impat on CPUtime, espeially for short distane territories. For symmetri transformed matries, the Territoryfator is relevant as regards the quality of the solution. This e�et is observed for all matrixsizes. Another onlusion of this study is that the transformation proess has a profound e�etover CPU times. Furthermore, this transformation proess has shown not to be entirely feasiblefor algorithms HE and, espeially, for CO. If one losely ompares HE and CO for symmetrimatries, we observe that HE is about three times slower than CO. This is unexpeted, sine COis an exat branh-and-ut method and HE a (powerful) heuristi. However, the transformationproess inreases the omputation time more than sevenfold, and a�ets CO muh more. Theresult is that asymmetry has a deep impat over algorithms, either from the quality of the solu-tions standpoint, or from the CPU time whenever matrix transformation is needed.Comprehensive statistial experiments further demonstrate that there is an inverse relation be-tween the Territory fator and the average ∆ATSP indiator value. This on�rms that there arequantitative di�erenes between the TSP and ATSP solutions. The di�erenes between the twosolutions are smaller for large distanes than for short distanes. Furthermore, we found relationsbetween the Loation fator and the ∆ATSP indiator. In this ase, the existing di�erenes aregreater as the size of the problems grows and they are greater for radially and randomly plaedloations than for grid ones. The size of the matrix also onditions the di�erenes between the
TSP and ATSP solutions. In any ase, solving a TSP and later alulating the real tour lengthwith real distanes is not a viable solution proess.The asymmetry is not just a binary ondition of the problem. There are di�erent degrees ofasymmetry as the territory and the loation of the nodes in the road transportation network.This results in di�erent degrees of omplexity, and the e�et on CPU time and solution quality.Some algorithms (HE, FI, NA, GO) are better equipped to solve problems with a high degreeof asymmetry or short distanes, and in ertain loation patterns. Others (LK, CO, HE, NA)provide better performane in symmetrial environments or long distanes. This paper hopes toinspire future researh on the development and testing of new and improved algorithms, not onlytaking into aount the asymmetry ondition, but also new fators studied here. New instaneshave been made available to the sienti� ommunity. Further work stems from the possibilityof providing e�etive methods for alulating real asymmetri travel matries, as this imposestoday a lear entry barrier for those researhers not willing to use the typial Eulidean matri-es. Extending this study to more omplex problems, like for the Capaitated Vehile Routing23
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