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SOME PROPERTIES OF BORNOLOGICAL CONVERGENCES

JESÚS RODRÍGUEZ-LÓPEZ AND M. A. SÁNCHEZ-GRANERO

Abstract. We study some basic properties of the so-called bornological con-
vergences in the realm of quasi-uniform spaces. In particular, we revisit the
results about when these convergences are topological by means of the use

of pretopologies. This yields a presentation of the bornological convergences
as a certain kind of hit-and-miss pretopologies. Furthermore, we characterize
the precompactness and total boundedness of the natural quasi-uniformities

associated to these convergences. We also obtain an extension of the classical
result of Künzi and Ryser about the compactness of the topology generated
by the Hausdorff quasi-uniformity to this framework.

1. Introduction

Through all the paper, we will mainly deal with quasi-uniform spaces due to its
generality and the applications of the asymmetric topology to topological algebra,
functional analysis and Computer Science [25, 44]. Recall that a quasi-uniformity
on a nonempty set X [24, 26] is a filter U of reflexive relations such that if U ∈ U
there exists V ∈ U such that V 2 ⊆ U where V 2 = {(x, z) ∈ X×X : there exists y ∈
X with (x, y), (y, z) ∈ V }. By U∗ we denote the uniformity which has as a base the
elements of the form U∗ = U ∩ U−1 where U−1 = {(x, y) ∈ X ×X : (y, x) ∈ U}.

Every quasi-uniformity U on X generates a quasi-proximity δU on X such that
AδUB if U(A) ∩B ̸= ∅ for all U ∈ U .

In a quasi-uniform space (X,U) we will denote by P0(X) (resp. CL0(X), K0(X),
F0(X)) the family of all nonempty (resp. nonempty closed, nonempty compact,
nonempty finite) subsets of (X,U). Our basic references for quasi-uniform spaces
are [24, 26].

Recall that a hypertopology is a topology defined over a certain family of sets.
Our basic references for hypertopologies are [1, 38].

Vietoris [46, 37] defined the so-called finite topology on a topological space (X, τ)
which is usually known as the Vietoris topology. On the family P0(X) of all
nonempty subsets of X, this topology τV has as a base all sets of the form

G+ ∩ V −
1 ∩ . . . ∩ V −

n

where G,V1, . . . , Vn are open sets and

G+ ={A ∈ P0(X) : A ⊆ G}
V −
i ={A ∈ P0(X) : A ∩ Vi ̸= ∅}
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for all i ∈ {1, . . . , n}. Fell [23] considered a slight although very important modi-
fication of the above topology. In this way, the Fell topology τF has as a base all
sets of the form G+ ∩ V −

1 ∩ . . . ∩ V −
n where G,V1, . . . , Vn are open sets and Gc is

compact.
Notice that the only difference between τV and τF relies on the family to which

the complement of G belongs: the closed sets in the case of the Vietoris topology
and the closed and compact sets in the case of the Fell topology.

These two topologies follow a general pattern which was studied by Poppe [40].
Let ∆ be a cobase, i. e. a family of closed sets containing the empty set, the
singletons and closed under finite unions. Then the ∆-hit-and-miss topology has as
a base all sets of the form G+ ∩ V −

1 ∩ . . . ∩ V −
n where V1, . . . , Vn are open sets and

Gc ∈ ∆.
In the literature about hypertopologies (see [1, 38]), the most well-known is

the so-called topology of the Hausdorff distance. Although this topology was first
defined on a metric space, it was subsequently extended to a uniform space [14]
and to a quasi-uniform space [13, 31]. Given a quasi-uniform space (X,U), for each
U ∈ U define

U+
H ={(A,B) ∈ P0(X)× P0(X) : B ⊆ U(A)},

U−
H ={(A,B) ∈ P0(X)× P0(X) : A ⊆ U−1(B)}.

Then {U+
H : U ∈ U} is a base for the upper Hausdorff quasi-uniformity U+

H on

P0(X) and {U−
H : U ∈ U} is a base for the lower Hausdorff quasi-uniformity U−

H

on P0(X). The quasi-uniformity UH = U+
H ∨ U−

H is the so-called Hausdorff (or
Bourbaki) quasi-uniformity of (X,U) on P0(X).

We observe that a net (Aλ)λ∈Λ is convergent to A in the topology τ(UH) gener-
ated by the Hausdorff quasi-uniformity if and only if for all U ∈ U

Aλ ⊆ U(A) and A ⊆ U−1(Aλ) residually.

The topology of the Hausdorff quasi-uniformity is also related to other hyper-
topology called the CL0(X)-proximal miss topology (or simply the upper proximal
topology) and denoted by τ++

CL0(X) [1]. This topology has as a base all the sets of

the form G++ = {A ∈ P0(X) : U(A) ⊆ G for some U ∈ U} where G is an open set.
Then it is easy to prove [1, 43] that τ++

CL0(X) = τ(U+
H).

Nevertheless, in general, the topology generated by the Hausdorff quasi-uniformity
is considered to be too strong. For example, let us consider R2 endowed with the
usual uniformity. Then the graphs of the lines of slope 1/n passing through the
origin form a sequence which is not convergent to the horizontal axis in the topol-
ogy of the Hausdorff uniformity. This is due to the fact that this topology has not
a good behavior with respect to unbounded sets.

A coarser topology is the so-called Attouch-Wets topology (see [2] for a survey).
Traditionally, this topology is introduced as a topological convergence in a metric
space[1]: given a metric space (X, d), a net (Aλ)λ∈Λ in P0(X) is said to be Attouch-
Wets convergent to the nonempty set A if for every nonempty bounded subset
B ⊆ X and every ε > 0

A ∩B ⊆ Bd(Aλ, ε) and Aλ ∩B ⊆ Bd(A, ε) residually.

The Attouch-Wets topology has been preferred for working in convex and set-
valued analysis because it has a better behavior ([1, 32, 42]).
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A uniform version of the Attouch-Wets topology was considered in [34, Section
6] by means of totally bounded sets, from where a quasi-uniform version can be
naturally defined.

The two above topologies follow a pattern that can be generalized. Notice that
if we consider the family P0(X), then convergence of a net (Aλ)λ∈Λ to A in the
topology of the Hausdorff quasi-uniformity is equivalent to ask that Aλ∩B ⊆ U(A)
and A ∩ B ⊆ U(Aλ) residually for all U ∈ U and B ∈ P0(X). So in both cases,
the convergence is constructed by means of the truncation with a certain family of
sets: the nonempty subsets in the case of the topology of the Hausdorff distance
and the nonempty bounded subsets in the case of the Attouch-Wets topology.

Consequently, it is natural to study other convergences expressed in terms of
truncations and enlargements with respect to an arbitrary family S of nonempty
subsets of X. The filters which generate these convergences were perhaps first
considered by Di Maio, Meccariello and Naimpally in [34, 35, 33] although the first
deep study was made by Lechicki, Levi and Spakowski [30] (see [4] for a survey).
We present here an asymmetric version of the so-called bornological convergences.

Definition 1.1. Let (X,U) be a quasi-uniform space and S a family of nonempty
subsets of X. We say that a net (Aλ)λ∈Λ of nonempty subsets:

(1) S+U -converges to A if Aλ ∩ S ⊆ U(A) residually for each S ∈ S and U ∈ U ;
(2) S−U -converges to A if A∩S ⊆ U−1(Aλ) residually for each S ∈ S and U ∈ U ;
(3) SU -converges to A if S−U -converges to A and S+U -converges to A.

In the sequel, we will omit the subscript U if no confusion arises.
It is very easy to see that no different convergence appears if we replace S by

the family of all subsets of finite unions of members of S. Consequently, we will
only consider ideals, i. e. families of nonempty subsets which are closed under
nonempty subsets and finite unions. When an ideal S is also a cover then it is
called a bornology. Since bornologies are more usual in applications, this kind of
convergences is known as bornological convergences, whether or not the ideal is a
bornology.

We will say that an ideal S has a base B if for all S ∈ S we can find B ∈ B such
that S ⊆ B. If the elements of the base are closed, we say that B is a closed base
for S.

We will denote by ∪S the union of all the elements of the ideal S.
Observe that if S is an ideal such that X ∈ S (like P0(X) or CL0(X)) then

S-convergence is equivalent to convergence in the topology of the Hausdorff quasi-
uniformity meanwhile the Attouch-Wets topology is obtained by means of the
bornology of nonempty bounded subsets Bd(X).

Since the publication of [30], several papers have appeared studying this kind of
convergences and bornologies [3, 4, 5, 6, 8, 9, 10, 11, 12, 47, 48, 49].

One of the main problems related to bornological convergences is to characterize
when these convergences are topological [6, 30]. The characterizations that have
been already obtained are mainly based on constructing a (quasi-)uniformity com-
patible with the bornological convergence. In Section 2, we present a new approach
to this problem by means of pretopological structures different of those considered
in [30]. This allows us to present a pretopological structure whose aspect is similar
to the base of a hit-and-far-miss topology [36]. From this presentation, we present
new proofs about when bornological convergence is topological.
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In Section 3, we characterize precompactness, total boundedness and compact-
ness for bornological convergences. Our results extend well-known results in the
asymmetric setting due to Künzi and Ryser [29].

We finish the paper showing a characterization of right K-completeness of the
bornological convergence.

2. Topologicity of bornological convergences

In this section, we revisit some results about when bornological convergence is
topological [6, 30] by using certain pretopological structures which allow to show
that bornological convergences are also, to some extent, hit-and-miss topologies.

Recall that a pretopology N on X is a collection of families of subsets of X
{N (x) : x ∈ X} such that N (x) is a filter for all x ∈ X and x ∈ N for all
N ∈ N (x). The pretopologies are nothing else but the neighborhood system of a
closure space as defined by Čech [18].
A pretopology N which also verifies:

given N ∈ N (x) there exists Q ∈ N (x) such that Q ⊆ N and Q ∈ N (y)
for all y ∈ Q,

is a neighborhood system for a topology. In this case we say that N is a topology.
Every pretopology N generates a topology τ(N ) by considering a set G open if

G ∈ N (x) for all x ∈ G.

2.1. Upper half. In [30], the authors introduce a natural pretopology to study
S+-convergence. Here, we study a different one whose aspect is very similar to
an (upper) miss topology. Recall [38] that given a topological space (X, τ) and
∆ a cobase in X (a family containing the empty set, the singletons and closed
under finite unions), the upper miss topology τ+S has as a base all sets of the form
(Dc)+ = {A ∈ P0(X) : A ⊆ Dc} where D ∈ ∆.

Let S be an ideal in a quasi-uniform space (X,U). For each A ∈ P0(X) define
B+
S,U (A) = {(Sc)+ : A ∈ (Sc)++, S ∈ S}. It is obvious that B+

S,U = {B+
S,U (A) : A ∈

P0(X)} is a base for a pretopology N+
S,U = {N+

S,U (A) : A ∈ P0(X)} on P0(X).

A particular case of these pretopological structures was first studied in [39] in
relation with the problem of obtaining a hit-and-miss topology equivalent to the
Wijsman topology. The smallest topology which contains the pretopology N+

S,U
was called the upper Wijsman S-topology in [36]. This is due to the fact that when
we consider a metric space (X, d) and the family Bd(X) of all closed balls, then
the (pre)topology N+

Bd(X),U coincides with the upper Wijsman topology [39]. We

also observe that the above pretopology can also be obtained as an upper Bombay
pretopology σ(γ1, γ2; S)

+ when γ1 = δU and γ2 is the Wallman proximity [33].
The following example shows that N+

S,U is not always a topology.

Example 2.1. Let us consider in the real line R the usual uniformity U and the
bornology S generated by the family P0([0, 1]) ∪ F0([0, 1]

c). Then ([0, 1]c)+ ∈
N+

S,U ({−1}). However, given S ∈ S such that {−1} ∈ (Sc)++ and (Sc)+ ⊆ ([0, 1]c)+

then S = [0, 1] ∪ F where F is a finite subset verifying F ∩ [0, 1] = ∅. There-
fore, Sc ∈ (Sc)+ but Sc ̸∈ ([0, 1]c)++. This means that for every basic N+

S,U -

neighborhood (Sc)+ of {−1} contained in ([0, 1]c)+ we can find A ∈ (Sc)+ such
that (Sc)+ ̸∈ N+

S,U (A). Therefore, N
+
S,U is not a topology.
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It is also known that every pretopology is equivalent to a convergence satisfying
certain conditions. The next result proves that the convergence associated to N+

S,U
is exactly the S+-convergence. This means that the upper half of a bornological
convergence can be obtained as a generalization of a(n upper) miss topology.

Lemma 2.2. Let S be an ideal in a quasi-uniform space (X,U). Then the pretopol-
ogy N+

S,U is compatible with S+-convergence.

Proof. Suppose that (Aλ)λ∈Λ is S+-convergent to A. Let S ∈ S such that A ∈
(Sc)++. Therefore, we can find U ∈ U such that U(A) ⊆ Sc. Suppose, to obtain a
contradiction, that Aλ ̸∈ (Sc)+ cofinally, i. e. Aλ∩S ̸= ∅ cofinally. By assumption
Aλ ∩S ⊆ U(A) residually and since U(A) ⊆ Sc this implies that S ∩Sc ̸= ∅ which
is not possible.

Now, suppose that (Aλ)λ∈Λ converges in the pretopology N+
S,U to A. Let S ∈ S

and U ∈ U . Suppose that S ̸⊆ U(A) (otherwise, the proof is finished). Then
S0 = S\U(A) ∈ S and A ∈ (Sc

0)
++ so Aλ ∈ (Sc

0)
+ residually, i. e. Aλ ∩ S0 = ∅

residually. Therefore, Aλ ∩ S ⊆ U(A) residually. �
Recall [19, 21] that if N is a pretopology on a nonempty set X then the interior

of a set A with respect to N is

intN (A) = {x ∈ X : A ∈ N (x)}.
Furthermore, we say that a set O is open if O = intN (O). The topology τ(N )
generated by the open sets of the pretopology N is called the topologization
of N . Furthermore, a pretopology N is a topology if for every N ∈ N (x) then
intN (N) ∈ N (x) [21].

Lemma 2.3. Let S be an ideal in a quasi-uniform space (X,U). Given S ∈ S then
intN+

S,U
(Sc)+ = (Sc)++.

Proof. Let B ∈ intN+
S,U

(Sc)+. Since (Sc)+ ∈ N+
S,U (B) then there exists S0 ∈ S

such that B ∈ (Sc
0)

++ and (Sc
0)

+ ⊆ (Sc)+. From this we deduce that Sc
0 ⊆ Sc so

B ∈ (Sc)++.
On the other hand, if B ∈ (Sc)++ then (Sc)+ ∈ N+

S,U (B) so B ∈ intN+
S,U

(Sc)+.

�
The following concept was introduced in [6] in order to characterize when S+-

convergence is topological on CL0(X).

Definition 2.4 ([6, Definition 5.1]). Let S be an ideal in a quasi-uniform space
(X,U) and M ⊆ P0(X). We say that S ∈ S is shielded from the family M by
S if there exists S0 ∈ S such that if A ∈ M and A ∩ S0 = ∅ then A ̸ δUS. In this
case, we say that S0 is a shield for S.

Definition 2.5. Let S be an ideal in a quasi-uniform space. The upper S-proximal
topology τ++

S on P0(X) is generated by all sets of the form (Sc)++ = {A ∈ P0(X) :
U(A) ⊆ Sc for some U ∈ U} = {A ∈ P0(X) : A ̸ δUS} where S ∈ S.

The following result characterizes when the pretopology N+
S,U is a topology. Of

course, this yields the characterization of when S+-convergence is topological. Fur-
thermore, in this case, the topology compatible with S+-convergence is nothing else
but the upper S-proximal topology τ++

S as was first observed in [11] (compare also
with [33, Theorem 2.1] and [36, Theorem 3.5]).
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Theorem 2.6. Let S be an ideal in a quasi-uniform space (X,U) and F0(X) ⊆
M ⊆ P0(X). The following statements are equivalent:

(1) S+-convergence is topological on M;
(2) N+

S,U is a topology on M;

(3) (Sc)++ is τ(N+
S,U )-open for all S ∈ S so that S+ = τ++

S ;

(4) S is shielded from the family M by S for all non-dense S ∈ S.

Proof. (1) ⇔ (2). This is obvious since by Lemma 2.2, S+-convergence is compatible
with N+

S,U .

(2) ⇒ (3). By Lemma 2.3, we know that intN+
S,U

(Sc)+ = (Sc)++. Further-

more, it is well-known [21] that a pretopology is a topology if the interior of the
neighborhoods are open sets. This implies that (Sc)++ is τ(N+

S,U )-open.

It is clear that it is always true that τ(N+
S,U ) ≤ S+ ≤ τ++

S . To show the last

inequality, let (Aλ)λ∈Λ be a net τ++
S -convergent to A and let S ∈ S, U ∈ U . Suppose

that S0 = S\U(A) ̸= ∅ (otherwise, the proof is finished). Then Aλ ∈ (Sc
0)

++

residually, so Aλ∩S0 = ∅ residually. Hence Aλ∩S ⊆ Aλ∩U(A) ⊆ U(A) residually.
Since (Sc)++ is τ(N+

S,U )-open then τ(N+
S,U ) = S+ = τ++

S .

(3) ⇒ (4). Let S ∈ S which is not τ(U)-dense. Then we can find A ∈ (Sc)++.
By hypothesis, (Sc)++ ∈ N+

S,U (A) so there exists S0 ∈ S such that A ∈ (Sc
0)

++ and

(Sc
0)

+ ⊆ (Sc)++. Therefore, if B ∩ S0 = ∅ then B ̸ δUS.
(4) ⇒ (3). Let S ∈ S be non-dense and let S0 ∈ S be a shield for S. Since

F0(X) ⊆ M, then S ⊆ S0. Let A ∈ (Sc)++. If A ∈ (Sc
0)

++ then (Sc)++ ∈ N+
S,U (A)

since (Sc
0)

+ ⊆ (Sc)++.
Otherwise, U(A) ∩ S0 ̸= ∅ for all U ∈ U . Let V ∈ U such that V 2(A) ∩ S = ∅.

Then S1 = S0\V (A) ∈ S. It is clear that A ∈ (Sc
1)

++. Furthermore, S ⊆ S1 since
V (A) ∩ S = ∅ and S ⊆ S0. Now we prove that (Sc

1)
+ ⊆ (Sc)++. Let B ∈ (Sc

1)
+

where B ∈ M. If B ∩ S0 = ∅ there is nothing to prove because since S0 is a shield
for S then B ̸ δUS. If B ∩ S0 ̸= ∅ then B ∩ S0 ⊆ V (A) ∩ S0 since B ∩ S1 = ∅.
Furthermore V (V (A) ∩ S0) ⊆ V 2(A) and V 2(A) ∩ S = ∅ so V (B ∩ S0) ∩ S = ∅,
i.e. B ∩ S0 ̸ δUS. Furthermore B\S0 ̸ δUS since B\S0 ∈ (Sc

0)
+ ⊆ (Sc)++. Hence

[(B ∩S0)∪ (B\S0)] ̸ δUS, i. e. B ̸ δUS so we have proved that (Sc
1)

+ ⊆ (Sc)++ and
since A ∈ (Sc

1)
+ this means that (Sc)++ ∈ N+

S,U (A).

Therefore, (Sc)++ ∈ N+
S,U (A) for all A ∈ (Sc)++ so (Sc)++ is τ(N+

S,U )-open.

If S is dense then (Sc)++ = ∅ ∈ τ(N+
S,U ).

(3) ⇒ (2) is obvious. �

In a quasi-pseudometric space, let us denote by Bd−1(X) the set of all d−1-
bounded sets. Then we consider the asymmetric version τ+AW of the upper Attouch-

Wets topology generated by the quasi-uniformity U+
d,Bd−1 (X) whose basic entourages

are of the form U+
ε,S = {(A,B) ∈ P0(X) × P0(X) : S ∩ B ⊆ Bd(A, ε)} where S is

d−1-bounded and ε > 0.

Corollary 2.7. Let (X, d) be a quasi-pseudometric space and let F0(X) ⊆ M ⊆
P0(X). Then τ+AW = τ++

Bd−1 (X) on M.

Proof. This is obvious since every d−1-bounded set is shielded from M by Bd−1(X).
�
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The next example shows that, in general, condition (4) of the above theorem is
not true for dense sets.

Example 2.8. Let us consider the following quasi-metric defined on N:

d(n,m) =


1
m if n < m

1 if n > m

0 if n = m

.

Let S = P0({4, 5, 6, . . .}) and let us consider the pretopology N+
Ud,S

on P0(N). If
S ∈ S is τ(d)-dense then (Sc)++ = ∅ so (Sc)++ ∈ τ(N+

Ud,S
). If S is not τ(d)-dense

then S is finite so it is easy to see that (Sc)++ = (Sc)+ ∈ τ(N+
Ud,S

). This shows

that N+
Ud,S

is a topology.

However, taking S = {4, 5, 6, . . .} ∈ S, if A ∩ S = ∅ then d(A,S) = 0.

We observe that the above example is T1 but not Hausdorff. Under this assump-
tion, we can prove the following.

Lemma 2.9 (cf. [6, Lemma 4.1]). Let S be an ideal in a Hausdorff quasi-uniform
space (X,U) which contains a dense set. Let F0(X) ⊆ M ⊆ P0(X).Then N+

U,S is

a topology on M if and only if S = P0(X).

Proof. Suppose that N+
U,S is a topology on M so by Theorem 2.6 every non-dense

S ∈ S is shielded from M by S. Let S ∈ S be a dense set. If S is a singleton
then X = S since the space is Hausdorff so S = P0(X) trivially. Suppose that
we can find two different points s1, s2 in S. Since (X,U) is Hausdorff there exists
U ∈ U such that U(s1) ∩ U(s2) = ∅. Then S = S1 ∪ S2 where S1 = (S\U(s1)) ∈ S

and S2 = (S\U(s2)) ∈ S. Furthermore, neither S1 nor S2 are dense sets so by
assumption they are shielded from M by S. This immediately implies that S is
shielded from M by S. Let S0 ∈ S such that if A ∩ S0 = ∅ then A ̸ δUS, where
A ∈ M. Since S is dense the only possibility is that S0 = X.

The converse is obvious because we obtain a pretopology compatible with the
Hausdorff quasi-uniform topology. �
Definition 2.10. Let S be an ideal in a quasi-uniform space (X,U). We say that:

• S is (almost) closed under U−1-small enlargements if for each (non-
dense) S ∈ S there exists U ∈ U such that U−1(S) ∈ S;

• S is (almost) closed under U-small enlargements if for each (non-
dense) S ∈ S there exists U ∈ U such that U(S) ∈ S;

• S is an E-ideal if S is closed under U-small enlargements and under U−1-
small enlargements.

Note that if S is an E-ideal, then S ∈ S for each S ∈ S (where the closure can
be taken with respect to τ(U) and also with respect to τ(U−1)).

Corollary 2.11. Let S be an ideal in a quasi-uniform space (X,U). Then S+-
convergence is topological on P0(X) if and only if S is almost closed under U−1-
small enlargements.

Proof. It is obvious that if S is almost closed under U−1-small enlargements the
condition (4) of Theorem 2.6 holds.

Now, suppose that condition (4) is true. Let S ∈ S non-dense, then there exists
U ∈ U such that X\U−1(S) ̸= ∅. Let A ⊆ X\U−1(S). Then A ∈ (Sc)++ and since
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N+
S,U is a topology there exists S0 ∈ S such that A ∈ (Sc

0)
++, (Sc

0)
+ ⊆ (Sc)+ and

(Sc
0)

+ ∈ N+
S,U (B) for all B ⊆ Sc

0. If V
−1(S) ̸⊆ S0 for all V ∈ U let xV ∈ V −1(S)∩Sc

0.

Then C = {xV : V ∈ U} ⊆ Sc
0 so (Sc

0)
+ ∈ N+

S,U (C). Hence C ∈ (Sc
0)

++ so

W (C) ∩ S0 = ∅ for some W ∈ U . However, W (xW ) ∩ S ̸= ∅ so W (xW ) ∩ S0 ̸= ∅
since S ⊆ S0. Of course this is a contradiction, hence we can find V ∈ U with
V −1(S) ⊆ S0 so V −1(S) ∈ S. �

Corollary 2.12. Let S be an ideal with a closed base in a quasi-uniform space
(X,U). Then S+-convergence is topological on K0(X), so on F0(X).

Proof. Given S ∈ S, choose a closed set S0 ∈ S such that S ⊆ S0. Pick up A ∈
K0(X) verifying A∩S0 = ∅ and for each a ∈ A let Ua ∈ U such that Ua(a)∩S0 = ∅.
Since A is compact then A ⊆ ∪n

i=1Uai(ai) for a finite subset {a1, . . . , an} ⊆ A. It is
obvious that A ̸ δUS0 so A ̸ δUS. The proof follows from Theorem 2.6. �

Corollary 2.13 (cf. [6, Theorem 5.9]). Let S be an ideal in a quasi-uniform space
(X,U). Then S+-convergence is topological on CL0(X) if and only if S is shielded
from closed sets by S for every non-dense S ∈ S.

Corollary 2.14. Let (X,U) be a uniform space. Then the upper Fell topology co-
incides with R0(X)+-convergence on CL0(X), where R0(X) denotes the bornology
of all the relatively compact sets.

Corollary 2.15. Let (X,U) be a quasi-uniform space. Then F0(X)+-convergence
is topological on CL−1

0 (X), the family of all nonempty τ(U−1)-closed subsets.

2.2. Lower half. Let S be an ideal in a quasi-uniform space (X,U). For each A ∈
P0(X) define B−

S,U (A) = {∩x∈SU(x)− : S ∈ S, S ⊆ A and U ∈ U} where U(x)− =

{A ∈ P0(X) : A ∩ U(x) ̸= ∅}. It is obvious that B−
S,U = {B−

S,U (A) : A ∈ P0(X)} is

a base for a pretopology (see [30, Theorem 2.11]) N−
S,U = {N−

S,U (A) : A ∈ P0(X)}
on P0(X).

Observe that ∩x∈A∩SU(x)− = {B ∈ P0(X) : A ∩ S ⊆ U−1(B)} whenever
A ∩ S ̸= ∅. Consequently, this is a different presentation of the neighborhood
system of the pretopology λ(S−) introduced in [30]. We have chosen this aspect
of the neighborhoods in order to present S−-convergence as a certain kind of hit
topology [1, 38]. In fact, when S = F0(X) then N−

S,U is nothing else but the
neighborhood system for the lower Vietoris topology.

We also remark that the above pretopology is a generalization of the lower locally
finite topology as defined in [34, 39].

The following result, whose easy proof is omitted, reconciles the pretopology
N−

S,U with S−-convergence.

Lemma 2.16 (cf. [30, Lemma 2.10]). Let S be an ideal in a quasi-uniform space
(X,U) and F0(X) ⊆ M ⊆ P0(X). Then the pretopology N−

S,U is compatible with

S−-convergence on M.

Lemma 2.17. Let S be an ideal in a quasi-uniform space (X,U). Given U ∈ U
and S ∈ S

intN−
S,U

(∩x∈SU(x)−) ={B ∈ P0(X) : there exist S0 ∈ S contained in B and V ∈ U

such that if S0 ⊆ V −1(A) then S ⊆ U−1(A)}.
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Proof. Let B ∈ intN−
S,U

(∩x∈SU(x)−). Therefore, ∩x∈SU(x)− ∈ N−
S,U (B) so there

exists V ∈ U and S0 ∈ S such that S0 ⊆ B and B ∈ ∩x∈S0V (x)− ⊆ ∩x∈SU(x)−.
Suppose that S0 ⊆ V −1(A). Then A ∈ ∩x∈S0V (x)− so A ∈ ∩x∈SU(x)−, i. e.
S ⊆ U−1(A).

Conversely, let B ∈ P0(X) such that there exits S0 ∈ S and V ∈ U verifying
that S0 ⊆ B and if S0 ⊆ V −1(A) then S ⊆ U−1(A). Hence B ∈ ∩x∈S0V (x)− ⊆
∩x∈SU(x)−. Therefore, B ∈ intN−

S,U
(∩x∈SU(x)−). �

Definition 2.18 (cf. [11, Definition 25]). Let (X,U) be a quasi-uniform space and
A ⊆ X. Given U ∈ U , the U -approximate projection of A is the multifunction
U − ProjA : X ⇒ P(X) given by

U − ProjA(x) = U(x) ∩A.

In the next theorem, we will also use the following notation:

∩x∈SU(x)−S = {B ∈ P0(X) : there exists S0 ∈ S such that S0 ⊆ B and S ⊆ U−1(S0)}.

Theorem 2.19 (cf. [6, Theorem 3.3],[30, Corollary 2.12]). Let S be an ideal in a
quasi-uniform space (X,U) and F0(X) ⊆ M ⊆ P0(X). Suppose that S ⊆ M. The
following statements are equivalent:

(1) S−-convergence is topological on M;
(2) N−

S,U is a topology on M;

(3) intN−
S,U

(∩x∈SU(x)−) is τ(N−
S,U )-open whenever S ∈ S and U ∈ U ;

(4) given S ∈ S and U ∈ U there exists V ∈ U such that, if A ∈ M and
S ⊆ V −1(A), there exists S0 ∈ S with S0 ⊆ A and S ⊆ U−1(S0);

(5) given S ∈ S and U ∈ U there exists V ∈ U such that if V − ProjA(s) is
nonempty for every s ∈ S where A ∈ M then U − ProjA has a selection f
such that f(S) ∈ S;

(6) N−
S,U (A) is generated by {∩x∈SU(x)−S : S ∈ S, S ⊆ A,U ∈ U}.

Proof. (1) ⇔ (2). This is obvious since by Lemma 2.16, S−-convergence is compat-
ible with N−

S,U .

(2) ⇔ (3). As we have commented before, a pretopology forms a neighborhood
system for a topology if the interior of the neighborhoods are open sets. Therefore
intN−

S,U
(∩x∈SU(x)−) is τ(N−

S,U )-open.

(3) ⇒ (4). Given U ∈ U and S ∈ S, it is clear that S ∈ intN−
S,U

(∩x∈SU(x)−).

Since this set is τ(N−
S,U )-open we can find V ∈ U and S′ ∈ S such that S′ ⊆ S

and ∩x∈S′V (x)− ⊆ intN−
S,U

(∩x∈SU(x)−). If A ∈ M and S′ ⊆ S ⊆ V −1(A) then

A ∈ ∩x∈S′V (x)− ⊆ intN−
S,U

(∩x∈SU(x)−) so by Lemma 2.17 there exists S0 ∈ S

with S0 ⊆ A and S ⊆ U−1(S0).
(4) ⇒ (3). Let B ∈ intN−

S,U
(∩x∈SU(x)−). Then there exists S0 ∈ S and V ∈ U

such that S0 ⊆ B and ∩x∈S0V (x)− ⊆ ∩x∈SU(x)−. Let W ′ ∈ U such that W ′2 ⊆ V.
By assumption we can find W ∈ U such that W ⊆ W ′ and if S0 ⊆ W−1(A) there
exists S′ ∈ S with S′ ⊆ A and S0 ⊆ W ′−1(S′).

We show that ∩x∈S0W (x)− ⊆ intN−
S,U

(∩x∈SU(x)−) which implies that

intN−
S,U

(∩x∈SU(x)−) ∈ N−
S,U (B).
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Let A ∈ ∩x∈S0W (x)−. Then S0 ⊆ W−1(A) so there exists S′ ∈ S with S′ ⊆ A
and S0 ⊆ W ′−1(S′). If B ∈ ∩x∈S′W (x)− then S′ ⊆ W−1(B) so S0 ⊆ W ′−1(S′) ⊆
(W ′ ◦ W )−1(B) ⊆ V −1(B), i. e. B ∈ ∩x∈S0V (x)− ⊆ ∩x∈SU(x)−. Consequently
∩x∈S′W (x)− ⊆ ∩x∈SU(x)− so ∩x∈SU(x)− ∈ N−

S,U (A), which finishes the proof.

(4) ⇔ (5). This equivalence follows from the following facts: S ⊆ V −1(A) is
equivalent to assert that V − ProjA(s) is nonempty for every s ∈ S; the existence
of S0 ∈ S verifying S0 ⊆ A and S ⊆ U−1(S0) is equivalent to the existence of a
selection f of U − ProjA such that f(S) ∈ S.

(4) ⇔ (6). It is clear that given A ∈ M, U ∈ U and S ∈ S with S ⊆ A then
∩x∈SU(x)−S ⊆ ∩x∈SU(x)−. On the other hand, by assumption, there exists V ∈ U
such that if B ∈ M and S ⊆ V −1(B) there exists S0 ∈ S verifying S0 ⊆ B and
S ⊆ U−1(S0). Therefore, ∩x∈SV (x)− ⊆ ∩x∈SU(x)−S.

The converse follows also easily. �

Remark 2.20. We observe that the fact that S ⊆ M is only used in the implication
(3) ⇒ (4). This implication is also valid if S ∈ M for all S ∈ S.

Example 2.21. Let (X,U) be a quasi-uniform space. A subset A of X is called U−1-
separated [16] if there exists U ∈ U and an ordinal γ such that A = {aα : α < γ}
and aβ ̸∈ U−1(aα) whenever α < β < γ. Let D be the family of finite unions of
U−1-separated sets. It is easy to see that D is a bornology.

Let U ∈ U and D ∈ D. Let V ∈ U verifying that V 2 ⊆ U and suppose that
D ⊆ V −1(A). Suppose that A = {xα : α < γ} where γ is an ordinal. Then
define y1 = x1 and for each β < γ define by transfinite recursion yβ = xβ0 where
β0 = min{α < γ : xα ∈ A\ ∪λ<β V −1(yλ)}. Then it is easy to see that D0 = {yβ :
β < γ} is a V −1-separated subset of A (so D0 ∈ D) and that A ⊆ V −1(D0). Then
D ⊆ V −1(A) ⊆ V −2(D0) ⊆ U−1(D0).

We have shown that D verifies condition (4) of the above theorem so N−
D,U is

the neighborhood system for a topology.
In the following, we prove that τ(N−

D,U ) = τ(U−
H ). Naimpally [39, Lemma 3.4]

was the first to prove this equality for uniformities. Let U ∈ U and A ∈ P0(X).
Let V ∈ U with V 2 ⊆ U and let D be a maximal V −1-separated subset of A.
Then A ∈ ∩x∈DV (x)− ⊆ U−

H (A). In fact, if B ∈ ∩x∈DV (x)− then D ⊆ V −1(B).
Furthermore, A ⊆ V −1(D) so A ⊆ V −2(B) ⊆ U−1(B).

Now, let D be a V -separated subset of A and U ∈ U . Then if A ⊆ U−1(B) we
deduce that D ⊆ U−1(B), i. e. B ∈ ∩x∈DU(x)−. Therefore, U−

H (A) ⊆ ∩x∈DU(x)−.

Corollary 2.22. Let (X,U) be a quasi-uniform space and F0(X) ⊆ M ⊆ P0(X).
Then F0(X)−-convergence is topological on M and coincides with the lower Vietoris
topology.

Corollary 2.23. Let S be an ideal in a quasi-uniform space (X,U) closed under
U-enlargements. Then S−-convergence is topological on P0(X).

Proof. Let U ∈ U and S ∈ S. By assumption, there exists V ∈ U such that V ⊆ U
and V (S) ∈ S. Then if S ⊆ V −1(A), the set S0 = V (S) ∩ A belongs to S and it is
obvious that S ⊆ V −1(S0) ⊆ U−1(S0). Therefore, condition (4) of Theorem 2.19
holds so S−-convergence is topological. �

Observe that, in general, the reverse implication is not true. It is enough to
consider the real line endowed with the usual metric and with the bornology of all
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finite subsets. Then by Corollary 2.22, S−-convergence is topological on P0(R) but
the bornology is not closed under small enlargements.

Corollary 2.24. Let S be an ideal in a quasi-uniform space (X,U) which contains
the singletons. Then S−-convergence is topological on K∗

0(X), the family of all
nonempty compact subsets of (X, τ(U∗)).

Proof. Let S ∈ S and U ∈ U . Let V ∈ U such that V 2 ⊆ U and suppose that
S ⊆ V −1(A) where A is compact. Let F = {a1, . . . , an} ⊆ A such that A ⊆ V s(F ).
Then S ⊆ V −2(F ) ⊆ U−1(F ). This implies that condition (4) of Theorem 2.19 is
verified so the convergence is topological. �

Corollary 2.25. Let S be an ideal in a quasi-uniform space (X,U) such that
F0(X) ⊆ S. Then S−-convergence is topological on F0(X) and coincides with the
lower Vietoris topology.

2.3. Bilateral results. Let S be an ideal in a quasi-uniform space (X,U). For
each A ∈ P0(X) define BS,U (A) = {(Sc)+

∩
∩x∈S′U(x)− : A ∈ (Sc)++, S′ ⊆

A and S, S′ ∈ S}. It is obvious that BS,U = {BS,U (A) : A ∈ P0(X)} is a base for a
pretopology NS,U = {NS,U (A) : A ∈ P0(X)} on P0(X).

Putting together Lemmas 2.2 and 2.16 we obtain the following.

Lemma 2.26. Let S be an ideal in a quasi-uniform space (X,U). Then the pre-
topology NS,U is compatible with S-convergence.

Theorem 2.27 (cf. [6, Theorem 5.16]). Let S be an ideal in a quasi-uniform space
(X,U) and F0(X) ⊆ M ⊆ P0(X). The following statements are equivalent:

(1) S-convergence is topological on M;
(2) NS,U is a topology on M;
(3) • S is shielded from the family M by S for all non-dense S ∈ S;

• given S ∈ S and U ∈ U there exists V ∈ U such that if A ∈ M and
S ⊆ V −1(A) there exists S0 ∈ S with S0 ⊆ A and S ⊆ U−1(S0).

From the above results, we can obtain a lot of consequences. We only present
here two of them.

Corollary 2.28. Let S be an E-ideal in a quasi-uniform space (X,U). Then S-
convergence is topological on P0(X).

Corollary 2.29. Let (X,U) be a quasi-uniform space. Then F0(X)-convergence
is topological on CL−1

0 (X), the family of all nonempty τ(U−1)-closed subsets.

2.4. Quasi-uniformities compatible with bornological convergences. In [30],
the authors introduce a natural family of sets which under some assumptions is the
base for a uniform structure compatible with the bornological convergence. We
provide an asymmetric version of those results.

Let S be an ideal in a quasi-uniform space. For each U ∈ U and for each S ∈ S

let us define:

U+
S ={(A,B) ∈ P0(X)×P0(X) : B ∩ S ⊆ U(A)};

U−
S ={(A,B) ∈ P0(X)×P0(X) : A ∩ S ⊆ U−1(B)};
US =U+

S ∩ U−
S .
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We set U+
S = {U+

S : U ∈ U , S ∈ S}, U−
S = {U−

S : U ∈ U , S ∈ S} and US = {US :
U ∈ U , S ∈ S}.

In the following, we characterize when the three above structures are quasi-
uniformities.

Proposition 2.30. Let S be an ideal and (X,U) a quasi-uniform space. Sup-
pose that for each S ∈ S there exists U ∈ U and S′ ∈ S with S ⊆ S′ such that∩

x∈S′ U(x) = ∅.

(1) If U+
S is a quasi-uniformity then S is closed under U−1-small enlargements.

(2) If U−
S is a quasi-uniformity then S is closed under U-small enlargements.

(3) If US is a quasi-uniformity then S is an E-ideal.

Proof. Suppose that U+
S is a quasi-uniformity and that there exists S0 ∈ S with

U−1(S0) ̸∈ S for each U ∈ U . Let U ∈ U and S ∈ S with S0 ⊆ S and such that∩
x∈S U(x) = ∅. Since U+

S is a quasi-uniformity, there exist W ∈ U and S1 ∈ S

such that (W+
S1
)2 ⊆ U+

S . Since W−1(S) * S1, there exists z ∈ W−1(S) \ S1, so we
can find x ∈ S such that x ∈ W (z). By hypothesis, there exists y ∈ S such that
x ̸∈ U(y). Let A = {x}, B = {z} and C = {y}. Then A ∩ S1 ⊆ {x} ⊆ W (B) and
B∩S1 = ∅ ⊆ W (C). It follows that (C,A) ∈ (W+

S1
)2 ⊆ U+

S and hence A ∈ U+
S (C),

that is, x ∈ U(y), a contradiction. Therefore there exists U ∈ U with U−1(S0) ∈ S

whence S is closed under U−1-small enlargements.
The second item follows similarly and the third item is a consequence of the first

and second ones. �

Proposition 2.31 (cf. [30]). Let S be an ideal and (X,U) a quasi-uniform space.

(1) If S is closed under U-small enlargements then U−
S is a quasi-uniformity.

(2) If S is closed under U−1-small enlargements then U+
S is a quasi-uniformity.

(3) If S is an E-ideal then US is a quasi-uniformity.
(4) If (X,U) is Hausdorff and U−

S is a quasi-uniformity then S is closed under
U-small enlargements.

(5) If (X,U) is Hausdorff and U+
S is a quasi-uniformity then S is closed under

U−1-small enlargements.
(6) If (X,U) is Hausdorff and US is a quasi-uniformity then S is an E-ideal.

Proof. Suppose that S is closed under U-small enlargements.
Let U ∈ U and S ∈ S. Take V ∈ U with V 2 ⊆ U and V (S) ∈ S. Let us prove

that (V −
V (S))

2 ⊆ U−
S . Let A,B,C ⊆ X with C ∈ V −

V (S)(B) and B ∈ V −
V (S)(A). Then

B ∩ V (S) ⊆ V −1(C) and A∩ V (S) ⊆ V −1(B). Let x ∈ A∩S, then x ∈ V −1(B) so
there exists b ∈ B with x ∈ V −1(b). Now b ∈ V (x)∩B ⊆ V (S)∩B ⊆ V −1(C), and
hence x ∈ V −2(C) ⊆ U−1(C). It follows that A∩S ⊆ U−1(C), that is, C ∈ U−

S (A).

Therefore U−
S is a quasi-uniformity.

The second item follows similarly and the third item is a consequence of the first
and second ones.

The rest of the items follows from the previous proposition.
�
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3. Precompactness, total boundedness and compactness of
bornological structures

This section is devoted to study precompactness and total boundedness of the
filter US. Although this filter is not always a quasi-uniformity, the aforementioned
notions can be extended to this setting.

Definition 3.1. Let (X,U) be a quasi-uniform space and B ⊆ P0(X). We say that
A ⊆ X is B-weakly precompact if for every U ∈ U we can find {B1, . . . , Bn} ⊆ B
such that A ⊆ ∪n

i=1U(Bi).

Definition 3.2. Let (X,U) be a quasi-uniform space and B ⊆ X. We say that
A ⊆ X is B-precompact if for every U ∈ U we can find {b1, . . . , bn} ⊆ B such
that A ⊆ ∪n

i=1U(bi).

Proposition 3.3. Let S be an ideal in a quasi-uniform space (X,U) and M a
nonempty subset of P0(X) which covers every element of S. Let B ⊆ M be closed
under finite unions. Then (M,U+

S ) is B-precompact if and only if S is B-weakly
precompact for all S ∈ S.

Proof. Let S ∈ S and U ∈ U . Then there exists {B1, . . . , Bn} ⊆ B such that
M = ∪n

i=1U
+
S (Bi). Since S can be covered by elements of M given s ∈ S there

exists As ∈ M such that s ∈ As ∈ U+
S (Bj) for some j ∈ {1, . . . , n}. Therefore,

s ∈ As ∩ S ⊆ U(Bj) so S ⊆ ∪n
i=1U(Bj).

Conversely, if S ⊆ B, given U ∈ U and S ∈ S then M = U+
S (S). Otherwise,

suppose that there exists S ∈ S\B. Then S ⊆ ∪n
i=1U(Bi) where Bi ∈ B for all

i ∈ {1, . . . , n}. It is easy to see that M = U+
S (∪n

i=1Bi). �

Corollary 3.4. Let S be an ideal in a quasi-uniform space (X,U). Then (P0(X),U+
S )

is S-precompact so precompact.

Corollary 3.5. Let S be an ideal in a quasi-uniform space (X,U). Then (P0(X),U+
S )

is F0(X)-precompact if and only if S is X-precompact for all S ∈ S.

Recall that given a family F of subsets of X, the grill of F is F ♯ = {A ⊆ X :
A ∩ F ̸= ∅ for all F ∈ F}.

Proposition 3.6. Let S be an ideal in a quasi-uniform space (X,U) and M a
nonempty subset of P0(X) such that S ⊆ M. Let F0(X) ⊆ B ⊆ M. Then (M,U−

S )

is B-precompact if and only if S is precompact for every S ∈ S ∩M♯.

Proof. Suppose that (M,U−
S ) is B-precompact. Let S ∈ S such that A ∩ S ̸= ∅

for all A ∈ M. Given U ∈ U there exists {B1, . . . , Bn} ⊆ B such that M ⊆
∪n
i=1U

−
S (Bi). Since B ⊆ M then Bi∩S ̸= ∅ so let bi ∈ Bi∩S for all i ∈ {1, . . . , n}.

Given s ∈ S, since {s} ∈ M, there exists j ∈ {1, . . . , n} with {s} ∈ U−
S (Bj), i. e.

Bj ∩ S ⊆ U−1({s}). In particular bj ∈ U−1(s) so S ⊆ ∪n
i=1U(bi).

Conversely, let S ∈ S and U ∈ U . If there exists A ∈ M such that A ∩ S = ∅
then M = U−

S (A). Otherwise, S ∩ A ̸= ∅ for all A ∈ M. Since S is precompact
we can find a finite subset S0 of S such that S ⊆ ∪s∈S0U(s). We show that
M = ∪F∈P0(S0)U

−
S (F ). Given A ∈ M then A ∩ S ̸= ∅. Since A ∩ S ⊆ S there

exists F ∈ P0(S0) such that U(x) ∩ (A ∩ S) ̸= ∅ for all x ∈ F , i. e. F ∩ S ⊆
U−1(A ∩ S) ⊆ U−1(A) so A ∈ U−

S (F ). �
Corollary 3.7. Let S be an ideal in a quasi-uniform space (X,U).
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(1) If X ̸∈ S then (P0(X),U−
S ) is precompact;

(2) If X ∈ S then (P0(X),U−
S ) = (P0(X),U−

H ) is precompact if and only if X
is precompact.

In the following, we prove some bilateral results.

Theorem 3.8. Let S be an ideal in a quasi-uniform space (X,U). Then (P0(X),US)
is precompact if and only if for every S ∈ S and U ∈ U there exists a finite set
S0 ⊆ S such that S ⊆ U(S0) ∪ U(X\S).

If S is closed under U−1-small enlargements, the above condition reduces to S is
X-precompact for all S ∈ S.

Proof. Suppose that (P0(X),US) is precompact and let S ∈ S and U ∈ U . Then,
there exists {A1, . . . , An} ⊆ P0(X) such that P0(X) = ∪n

i=1US(Ai). Let J ⊆
{1, . . . , n} such that there exists sj ∈ Aj∩S if and only if j ∈ J. Define S0 = ∪j∈Jsj .
We see that S ⊆ U(S0)∪U(X\S). Given s ∈ S we can find j ∈ {1, . . . , n} such that
{s} ∈ US(Aj). If j ∈ J then s ∈ U(sj) and if j ̸∈ J then s ∈ U(Aj) ⊆ U(X\S).

Conversely, let S ∈ S and U ∈ U . By assumption, there exists a finite subset S0

of S such that S ⊆ U(S0) ∪ U(X\S). Let F = {B ∪ (X\S) : B ∈ P0(S0)}. We
show that P0(X) = ∪F∈FUS(F ). In fact, given A ∈ P0(X) we can find B ∈ F0(S0)
(maybe empty) such that A ∩ S ⊆ U(B) ∪ U(X\S) and U(b) ∩ A ∩ S ̸= ∅ for all
b ∈ B. Then A ∈ US(B ∪ (X\S)).

Now suppose that S is closed under U−1-small enlargements. It is clear that if
S is X-precompact for all S ∈ S then the above condition holds. Given S ∈ S and
U ∈ U we can find V ∈ U with V ⊆ U and V −1(S) ∈ S. By assumption, there
exits a finite subset S0 of V −1(S) such that S ⊆ V −1(S) ⊆ V (S0)∪V (X\V −1(S)).
Since S ∩ V (X\V −1(S)) = ∅ then S ⊆ V (S0) ⊆ U(S0). �

Our next example shows that, without the assumption of S been closed under
U−1-small enlargements, the above condition is not equivalent toX-precompactness.

Example 3.9. Let us consider the real line with the usual uniformity U . Let S =
P0(Q). It is easy to see that for each S ∈ S and U ∈ U , P0(R) = US(R\Q).
Therefore (P0(R),US) is precompact. Nevertheless, Q is not R-precompact.

Definition 3.10 ([22, 24]). Let (X,U) be a quasi-uniform space.

• We say that (X,U) is point-symmetric if for each x ∈ X and U ∈ U there
exists V ∈ U such that V −1(x) ⊆ U(x).

• If S is an E-ideal in (X,U), we say that (X,U) is closed-symmetric for S if
for each closed subset A of X, S ∈ S and U ∈ U , there exists V ∈ U with
V −1(A) ∩ S ⊆ U(A).
When S = P0(X), we simply say that (X,U) is closed-symmetric.

We observe that every uniform space is point-symmetric and closed-symmetric.

Proposition 3.11. Let S be an E-ideal and (X,U) a quasi-uniform space. (1)
implies (2) and (2) and (3) are equivalent.

(1) (C0(X),US) is point-symmetric.
(2) (X,U) is closed-symmetric for S.
(3) For each closed S ∈ S and each U ∈ U , there exists V ∈ U with V −1(S) ⊆

U(S).
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Proof. (1) ⇒ (2). Let A ∈ C0(X), S ∈ S, U ∈ U . By (1) there exists V ∈ U and

S1 ∈ S with V −1
S1

(A) ⊆ US(A). Let W ∈ U with W 2 ⊆ V. Then W−1(A) ⊆ V −1(A)

so W−1(A) ∈ V −1
S1

(A) ⊆ US(A) and hence W−1(A) ∩ S ⊆ U(A).

(2) ⇒ (3). Let S ∈ C0(X) ∩ S, U ∈ U and V ∈ U with V −1(S) ∈ S. By (2),
there exists W ∈ U with W ⊆ V and W−1(S) ∩ V −1(S) ⊆ U(S). It follows that
W−1(S) ⊆ U(S).

(3) ⇒ (2). Let A ∈ C0(X), S ∈ S, U ∈ U and V ∈ U with V ⊆ U and V (S) ∈ S.

By (3) there exists W ∈ U with W ⊆ V and such that W−1(A ∩ V (S)) ⊆ U(A ∩
V (S)) (note that V (S) ∈ S and hence A∩V (S) ∈ S). ThenW−1(A∩V (S)) ⊆ U(A).

Let x ∈ W−1(A) ∩ S, then there exists a ∈ A with x ∈ W−1(a) and hence
a ∈ W (x) ⊆ V (S). It follows that x ∈ W−1(A ∩ V (S)) ⊆ U(A). Therefore
W−1(A) ∩ S ⊆ U(A). �

Corollary 3.12. Let S be an ideal closed under U−1-small enlargements in a closed-
symmetric quasi-uniform space (X,U). Then (P0(X),US) is precompact if and only
if S is precompact for all S ∈ S.

Proof. Suppose that (P0(X),US) is precompact. Let S ∈ S and U, V ∈ U with
V 2 ⊆ U . Then S ∈ S and by assumption we can find W ∈ U such that W ⊆ V and
W−1(S) ⊆ V (S). Also, by the above corollary, there exists a finite subset S0 of X
such that S ⊆ W (S0). Then S0 ⊆ W−1(S) ⊆ V (S) so there exists a finite subset
S′
0 of S such that S0 ⊆ V (S′

0). Consequently, S ⊆ W (S0) ⊆ V (V (S′
0)) ⊆ U(S′

0).
The converse follows from the above results. �

The following example shows that if the space is not closed-symmetric, the above
result could fail.

Example 3.13. Let us consider two countable families {An : n ∈ N} and {Bm : m ∈
N} of countable disjoint sets where An = {ank : k ∈ N} and Bm = {bmq : q ∈ N}
for all n,m ∈ N. Let X = ∪n∈N(An ∪ Bn) and endow this set with the following
quasi-metric

d(akn, a
q
m) = d(akn, b

q
m) = 1 if k ≤ q and n ̸= m

d(akn, a
q
m) = d(akn, b

q
m) = d(bkn, b

q
m) = k − q if k > q

d(bkn, a
q
m) = d(bkn, b

q
m) = 1 if k < q

d(bkn, b
k
m) = 1

n if n ̸= m

d(bkn, a
q
m) = 1

n + k − q if k ≥ q

d(x, y) = 0 if x = y

where m,n, k, q ∈ N. Then A1 is a closed set and for all ε > 0, Bd−1(A1, ε) ̸⊆
Bd(A1, 1/2) = A since if 1/n < ε then b1n ∈ Bd−1(A1, ε). Therefore, Ud is not
closed-symmetric.

Now, let us define S = {A ⊆ X : A only intersects finitely many A′
ns and B′

ns}
which is an ideal closed under d−1-small enlargements. It is easy to see that every
S ∈ S is precompact so (P0(X),US) is precompact by Theorem 3.8. However, An

is not precompact for all n ∈ N.

Corollary 3.14. Let (X,U) be a uniform space and S an ideal closed under U-
small enlargements. Then (P0(X),US) is precompact if and only if S is precompact
for all S ∈ S.
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The following result characterizes total boundedness of US.

Theorem 3.15. Let S be an ideal in a quasi-uniform space (X,U). The following
statements are equivalent:

(1) (P0(X),US) is totally bounded;
(2) (P0(X),U+

S ) is totally bounded;

(3) (P0(X),U−
S ) is totally bounded;

(4) S is totally bounded for all S ∈ S.

Proof. (1) ⇒ (4) Suppose that (P0(X),US) is totally bounded and let S ∈ S and
U ∈ U . Then we can find a finite number {A1, . . . ,An} of families of subsets of
X such that P0(X) = ∪n

i=1Ai and Ai × Ai ⊆ US for all i ∈ {1, . . . , n}. Let us
define Si = {s ∈ S : {s} ∈ Ai}. It is clear that S = ∪n

i=1Si and Si × Si ⊆ U since
given x, y ∈ Si then ({x}, {y}) ∈ Ai × Ai ⊆ US so {y} ∩ S = {y} ⊆ U({x}), i. e.
(x, y) ∈ U.

The implications (2) ⇒ (4) and (3) ⇒ (4) follow similarly.
(4) ⇒ (1) Let U ∈ U and S ∈ S. Since S is totally bounded we can find a finite

number S1, . . . , Sn of subsets of S such that S = ∪n
i=1Si and Si × Si ⊆ U. Let

F = F0({1, . . . , n}) and AF = {A ∈ P0(X) : A ∩ Sj ̸= ∅ ⇔ j ∈ F} for all F ∈ F .
Then it is straightforward to see that P0(X) = ∪F∈FAF ∪P0(X\S). Furthermore,
given (A,B) ∈ AF × AF for some F ∈ F then if b ∈ B ∩ S there exists j ∈ F
such that b ∈ B ∩ Sj . Since A ∈ AF we can find a ∈ A ∩ Sj . From Sj × Sj ⊆ U
we obtain (a, b) ∈ U so b ∈ U(A) which proves (A,B) ∈ U+

S . A similar reasoning

shows (A,B) ∈ U−
S so (A,B) ∈ US .

On the other hand, if (A,B) ∈ P0(X\S) × P0(X\S) then A ∩ S = ∅ and
B ∩ S = ∅ which trivially implies that (A,B) ∈ US . �
Remark 3.16. We observe that the above result is also true if we substitute P0(X)
for an arbitrary subset of P0(X) which contains the singletons.

In the following, we study the compactness of S-convergence beginning with the
case when S is a bornology.

Proposition 3.17. Let (X,U) be a compact quasi-uniform space and S an E-
bornology. Then S = P0(X).

Proof. Since S is an E-bornology, for each S ∈ S there exists US ∈ U such that
US(S) ∈ S and US(S) is open. Then X =

∪
{US(S) : S ∈ S}, and since X is

compact there exists a finite subcovering. Since S is an ideal, X ∈ S and hence
S = P0(X). �
Corollary 3.18. Let S be an E-bornology in a quasi-uniform space (X,U). If
(P0(X),US) is compact then S = P0(X).

Proof. By the previous proposition, it is enough to prove that X is compact. Let
(xα)α∈Λ be a net in X, then ({xλ})λ∈Λ is a net in P0(X) so it clusters to some
A ∈ P0(X). Since S is a bornology, let a ∈ A ∩ S for some S ∈ S. It easily follows
that a is a cluster point of (xλ)λ∈Λ in X, and hence X is compact. �

The following corollary follows from the previous ones and the corresponding
result for the Hausdorff quasi-uniformity ([27, Corollary 2]).

Corollary 3.19. Let S be an E-bornology and (X,U) a T1 quasi-uniform space.
The following statements are equivalent:
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(1) (P0(X),US) is compact;
(2) (X,U) is compact and U−1 is hereditarily precompact;
(3) (X,U) is compact, U−1 is hereditarily precompact and S = P0(X) (and

hence US is the Hausdorff quasi-uniformity UH).

Next, we study the compactness of S-convergence for ideals. We also note that
if S1, S2 ∈ S and S1 ⊆ S2, then US2 ⊆ US1 for each U ∈ U .

Lemma 3.20. Let S be an E-ideal in a quasi-uniform space (X,U) and let F0(X) ⊆
M ⊆ P0(X). If (M,US) is compact then S is compact for each S ∈ S.

Proof. Let S ∈ S and suppose that S is closed. Let (xλ)λ∈Λ be a net in S. Then
({xλ})λ∈Λ is a net in M so there exists A ∈ M such that ({xλ})λ∈Λ clusters to
A. Let U ∈ U such that U−1(S) ∈ S. For each λ0 there exists λ ≥ λ0 such that
{xλ} ∈ US(A). It follows that xλ ∈ U(A) ∩ S and hence U−1(S) ∩ A ̸= ∅. Let
a ∈ U−1(S) ∩A.

Let us prove that a is a cluster point of (xλ)λ∈Λ. Given V ∈ U and β0, there
exists β ≥ β0 such that {xβ} ∈ VU−1(S)(A). Then a ∈ A ∩ U−1(S) ⊆ V −1(xβ), so
xβ ∈ V (a). Therefore a is a cluster point of (xλ)λ∈Λ and hence S is compact. �

Lemma 3.21. Let S be an E-ideal in a T1 quasi-uniform space (X,U) and let
F0(X) ⊆ M ⊆ P0(X). If (M,US) is compact then (S,U−1) is precompact for each
S ∈ S.

Proof. Suppose that there exist S ∈ S, U0 ∈ U and points an ∈ S such that
an+1 ̸∈ U−1

0 ({a1, . . . , an}) for each n ∈ N. Let An = {ai : i ≤ n}. Since An ∈ M
and M is compact, the sequence (An)n∈N clusters to some A ∈ M.

Let U ∈ U with U2 ⊆ U0 and U−1(S) ∈ S. Let k ∈ N be such that Ak ∈
UU−1(S)(A). By Lemma 3.20, U−1(S) is compact and hence point-symmetric, so

there exists W ∈ U with W ⊆ U and such that W−1(ak+1) ∩ U−1(S) ⊆ U(ak+1).
Since W−1(ak+1) ⊆ U−1(S), then W−1(ak+1) ⊆ U(ak+1). Let n ≥ k + 1 be such
that An ∈ WU−1(S)(A). Then ak+1 ∈ An ∩ S ⊆ W (A), so there exists a ∈ A such

that ak+1 ∈ W (a). Then a ∈ W−1(ak+1) ⊆ U(ak+1), that is, ak+1 ∈ U−1(a). On
the other hand, a ∈ A ∩ W−1(ak+1) ⊆ A ∩ U−1(S) ⊆ U−1(Ak). It follows that
ak+1 ∈ U−2(Ak) ⊆ U−1

0 (Ak), a contradiction. Therefore (S,U−1) is precompact
for each S ∈ S. �

To prove the following results, we will make use of the following concepts.

Definition 3.22 ([41, 45]). A net (xλ)λ∈Λ is said to be left K-Cauchy if for each
U ∈ U there exists λ0 ∈ Λ such that xλ2 ∈ U(xλ1) whenever λ2 ≥ λ1 ≥ λ.

The quasi-uniformity U is called left K-complete provided that each left K-
Cauchy net converges.

Lemma 3.23. Let S be an E-ideal which is not a bornology in a quasi-uniform
space (X,U). Suppose that S is compact and (S,U−1) is precompact for each S ∈ S.
Then (P0(X),US) is compact.

Proof. Recall that a quasi-uniform space is compact if and only if it is precompact
and left K-complete [26, Remark 2.6.16].

First, note that (P0(X),US) is precompact by Theorem 3.8.
Let (Aλ)λ∈Λ be a left K-Cauchy net in P0(X). We consider two cases:
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(1) For each closed S ∈ S and λ0 there exists λ ≥ λ0 with Aλ ∩ S = ∅.
Since S is not a bornology, there exists x ̸∈ ∪S. Let C = {x}, then

(Aλ)λ∈Λ S-converges to C. Indeed, let U ∈ U , S ∈ S, λ0 and λ ≥ λ0 such
that Aλ ∩ S = ∅. Since C ∩ S = ∅, it follows that Aλ ∈ US(C). Since
(Aλ)λ∈Λ is left K-Cauchy, let λ0 such that Aλ2 ∈ US(Aλ1) for λ2 ≥ λ1 ≥ λ0.
Let λ ≥ λ0 with Aλ ∈ US(C). If β ≥ λ, Aβ ∈ US(Aλ) ⊆ U2

S(C). It follows
that (Aλ)λ∈Λ converges to C.

(2) S1 ̸= ∅, with S1 = {S ∈ S : S is closed and there exists λ0 with Aλ∩S ̸= ∅
for each λ ≥ λ0}.

Claim. Let S ∈ S be such that for each λ0 there exists λ ≥ λ0 with
Aλ ∩ S ̸= ∅. Then there exists S′ ∈ S1 such that S ⊆ S′.

In order to prove that claim, let S ∈ S be such that for each λ0 there
exists λ ≥ λ0 with Aλ ∩ S ̸= ∅. Let U ∈ U with U−1(S) ∈ S. Since
(Aλ)λ∈Λ is left K-Cauchy, there exists λ0 such that Aλ2 ∈ US(Aλ1) for
each λ2 ≥ λ1 ≥ λ0. Let λ ≥ λ0 and let λ1 ≥ λ with Aλ1

∩ S ̸= ∅, then
Aλ1 ∩ S ⊆ U(Aλ) and hence Aλ ∩ U−1(S) ̸= ∅ and this proves the claim
with S′ = U−1(S).

Now, let S ∈ S1, then (Aλ∩S)λ∈Λ is a net in the compact quasi-uniform
space (P0(S),UH) (note that it is compact by Corollary 3.19). Let CS ∈
P0(S) be its cluster point. Let C =

∪
S∈S1

CS , and let us prove that C is
a cluster point of (Aλ)λ∈Λ.

Let U ∈ U , S ∈ S and λ0 ∈ Λ. We consider two cases:
(a) S ̸∈ S1.

(i) C ∩ S = ∅. Since S ̸∈ S1, then Aλ ∩ S = ∅ cofinally so Aλ ∈
US(C) cofinally.

(ii) C ∩ S ̸= ∅. Let x ∈ C ∩ S, and let S1 ∈ S1 with x ∈ CS1 ∩ S.
Let V ∈ U be such that V (S) ∈ S. Given λ1, since CS1

is a
τ(UH)-cluster point of (Aλ ∩ S1)λ∈Λ, there exists λ ≥ λ1 such
that x ∈ CS1 ⊆ V −1(Aλ ∩S1). Since x ∈ S, Aλ ∩V (S) ̸= ∅. By
the claim, there exists S′ ∈ S1 with S ⊆ S′.

(b) S ∈ S1 (if S ̸∈ S1 and C∩S ̸= ∅, we work with any S′ ∈ S1 containing
S instead of S).
Let x ∈ C ∩ S and V ∈ U with V 3 ⊆ U . Since C ∩ S ∈ S, it is
precompact with respect to U−1, so there exist c1, . . . , cn ∈ C ∩S such
that C ∩ S ⊆ V −1({c1, . . . , cn}). Let Si ∈ S1 with ci ∈ CSi and let
S′ =

∪n
i=1 Si. Since (Aλ)λ∈Λ is left K-Cauchy, let β0 ≥ λ0 be such

that Aβ2 ∈ VS′(Aβ1) for each β2 ≥ β1 ≥ β0.
Since CSi is a cluster point of (Aλ ∩ Si)λ∈Λ, for each i ∈ {1, . . . , n}
there exists λi ≥ β0 with CSi ⊆ V −1(Aλi ∩ Si). Let β1 ≥ λi for i ∈
{1, . . . , n}. If β ≥ β1, C ∩ S ⊆ V −1({c1, . . . , cn}) ⊆

∪n
i=1 V

−1(CSi) ⊆∪n
i=1 V

−2(Aλi ∩ Si) ⊆ V −3(Aβ) ⊆ U−1(Aβ).
On the other hand, since CS is a cluster point of (Aλ ∩ S)λ∈Λ, there
exists λ ≥ β1 with Aλ ∩ S ⊆ V (CS) ⊆ V (C). It follows that Aλ ∈
US(C).
We conclude that C is a cluster point of (Aλ)λ∈Λ and hence a limit
point (a cluster point of a left K-Cauchy net is a limit point). Therefore
P0(X) is left K-complete, and since it is precompact, it is compact.

�
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Theorem 3.24. Let S be an E-ideal in a T1 quasi-uniform space (X,U). Then:
• If S is not a bornology: (P0(X),US) is compact if and only if S is compact
and (S,U−1) is precompact for each S ∈ S.

• If S is a bornology: (P0(X),US) is compact if and only if (X,U) is com-
pact, U−1 is hereditarily precompact and S = P0(X) (and hence US is the
Hausdorff quasi-uniformity UH).

Proof. It follows from the previous results. �
Corollary 3.25. Let S be an E-ideal in a Haudorff uniform space (X,U). Then
(P0(X),US) is compact if and only if S is compact for each S ∈ S.

Note that if S is a bornology the latter condition is equivalent to X being compact
(and US being the Hausdorff uniformity UH).

Now, we look for a characterization of the compactness of (K0(X),US).

Corollary 3.26. Let S be an E-ideal in a T1 quasi-uniform space (X,U). If
(K0(X),US) is compact then (P0(X),US) is compact.

Proof. It follows from Lemmas 3.20 and 3.21 and Theorem 3.24. �
Lemma 3.27. Let (X,U) be a quasi-uniform space, and let K be a compact sub-
space of (X,U). Then clτ(U−1)(K) is compact in (X,U).

Proof. Let {Oi : i ∈ I} be an open covering of clτ(U−1)(K). Since K is compact,

there exist {Oi1 , . . . , Oin} with K ⊆
∪n

k=1 Oik . Since K is compact, there ex-
ists U ∈ U with K ⊆ U(K) ⊆

∪n
k=1 Oik , and hence, since clτ(U−1)(K) ⊆ U(K),

{Oi1 , . . . , Oin} is a finite subcovering of clτ(U−1)(K). �
Proposition 3.28. Let S be an E-ideal and (X,U) a quasi-uniform space. If
(K0(X),US) is compact then there exists a compact subspace K of X such that
∪S ⊆ K.

Proof. By Lemma 3.20, S is compact for each S ∈ S, and hence (S)S∈S is a net in
(K0(X),US). Since (K0(X),US) is compact, the net has a cluster point K ∈ K0(X).
For each U ∈ U and S0 ∈ S there exists S ∈ S with S ⊇ S0 and such that
S ∈ US0(K). It follows that S0 = S ∩ S0 ⊆ U(K) and hence ∪S ⊆ U(K) for
each U ∈ U , so ∪S ⊆ clτ(U−1)(K). This completes the proof, since clτ(U−1)(K) is
compact by Lemma 3.27. �
Proposition 3.29. Let S be an E-ideal in a quasi-uniform space (X,U). If (P0(X),US)
is compact and there exists K ∈ K0(X) with ∪S ⊆ K then (K0(X),US) is compact.

Proof. Let (Kλ)λ∈Λ be a net in (K0(X),US). Since (P0(X),US) is compact, let
A ∈ P0(X) be a cluster point of the net. It easily follows that A is also a cluster
point of the net, so we can assume that A is closed.

Let us prove that A ∩K is a cluster point of (Kλ)λ∈Λ in (K0(X),US).
First, note that A ∩ K is a closed subset of K, so it is compact. Let U0 ∈ U ,

S ∈ S, λ0 ∈ Λ and U ∈ U with U ⊆ U0 and U−1(S) ∈ S. Then there exists λ ≥ λ0

such that Kλ ∈ US(A), that is, Kλ ∩ S ⊆ U(A) and A ∩ S ⊆ U−1(Kλ). It is clear
that A ∩K ∩ S ⊆ U−1(Kλ).

In order to prove that Kλ ∩ S ⊆ U(A ∩K), let x ∈ Kλ ∩ S. There exists a ∈ A
with x ∈ U(a). Then a ∈ U−1(x) ⊆ U−1(S) ⊆ ∪S ⊆ K, so x ∈ U(A ∩ K).
Therefore Kλ ∩ S ⊆ U(A ∩K) and hence A ∩K is a cluster point of (Kλ)λ∈Λ.
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Finally, note that if A∩K = ∅, by the previous reasoning it follows thatKλ∩S =
∅. Then we can take a ∈ A and {a} is a cluster point of (Kλ)λ∈Λ. �
Theorem 3.30. Let S be an E-ideal in a T1 quasi-uniform space (X,U). Then
(K0(X),US) is compact if and only if (P0(X),US) is compact and there exists K ∈
K0(X) with ∪S ⊆ K.

Corollary 3.31. Let S be an E-ideal in a Hausdorff quasi-uniform space (X,U).
The following statements are equivalent:

(1) (K0(X),US) is compact;

(2) (P0(X),US) is compact and ∪S is compact;

(3) ∪S is compact and (S,U−1) is precompact for each S ∈ S.

Corollary 3.32. Let S be an E-ideal in a Hausdorff uniform space (X,U). Then
(K0(X),US) is compact if and only if ∪S is compact.

The proof of the following result is straightforward (note that A ∈ US(A) for
each U ∈ U and S ∈ S).

Proposition 3.33. Let S be an E-ideal in a quasi-uniform space (X,U). Then
(C0(X),US) is compact if and only if so is (P0(X),US).

4. Right K-completeness of bornological convergences

In this section, we study a certain notion of completeness for the quasi-uniformity
compatible with a bornological convergence. For quasi-uniform spaces, there exist
many notions for completeness [26]. It has been proved [29, 28] that the notion
which has a good behavior for hyperspaces is right K-completeness.

Definition 4.1 ([41, 45]). A net (xλ)λ∈Λ is said to be right K-Cauchy if for each
U ∈ U there exists λ0 ∈ Λ such that xλ1 ∈ U(xλ2) whenever λ2 ≥ λ1 ≥ λ.

The quasi-uniformity U is called right K-complete provided that each right K-
Cauchy net converges.

This concept allows to obtain an elegant extension of the characterization due
to Burdick [15] of those uniform spaces which have a complete Hausdorff unifor-
mity to the quasi-uniform setting [29] (see also [7] for a characterization of cofinal
completeness of the Hausdorff metric). Here, we obtain a similar characterization
of the quasi-uniformity US associated with an E-ideal S.

We also recall some other concepts that will be useful.

Definition 4.2. Let (X,U) be a quasi-uniform space.

• A net (xλ)λ∈Λ on (X,U) is said to be U∗-Cauchy if for each U ∈ U there
exists λ0 ∈ Λ such that xλ1 ∈ U∗(xλ2) for all λ2, λ1 ≥ λ0;

• (X,U) is said to be half complete if every U∗-Cauchy net converges in
(X,U).

Lemma 4.3. Let S be an E-bornology with X ̸∈ S in a quasi-uniform space (X,U).
Then there exists a U∗

S-Cauchy net in F0(X) without a cluster point in P0(X).

Proof. For each S ∈ S, let xS ∈ X \ S. If S ⊆ S1 then xS1 ∈ U∗
S(xS). It follows

that ({xS})S∈S is a U∗
S-Cauchy net in F0(X).

Suppose that A ∈ P0(X) is a cluster point of ({xS})S∈S, and let a ∈ A. Since
S is a bornology, there exists S ∈ S with a ∈ S. Let U ∈ U with U(S) ∈ S, then
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there exists S0 ⊇ U(S) with xS0 ∈ US(A). Therefore a ∈ A ∩ S ⊆ U−1(xS0) and
hence xS0 ∈ U(a) ⊆ U(S) ⊆ S0, a contradiction. �

Proposition 4.4. Let S be an E-bornology in a quasi-uniform space (X,U) and
F0(X) ⊆ M ⊆ P0(X). If (M,US) is half complete then S = P0(X).

Corollary 4.5. Let S be an E-bornology in a quasi-uniform space (X,U) and
F0(X) ⊆ M ⊆ P0(X). If (M,US) is complete then S = P0(X).

Corollary 4.6. Let S be an E-bornology in a quasi-uniform space (X,U) and
F0(X) ⊆ M ⊆ P0(X). If (M,US) is compact then S = P0(X).

Definition 4.7. We say that a filter F is stable in an ideal S of a quasi-uniform
space (X,U) if:

• there exists S′ ∈ S with S′ ∩ F ̸= ∅ for each F ∈ F and,
• for each U ∈ U and S ∈ S there exists F0 ∈ F such that F0 ∩S ⊆ U(F ) for
each F ∈ F .

The following two results and their proofs are based on [29, Lemma 6 and Propo-
sition 6].

Lemma 4.8. Suppose that (X,U) is a quasi-uniform space in which each stable
filter in S has a cluster point. Let F be a stable filter in S and C its set of cluster
points. Then for each U ∈ U and S ∈ S there exists F ∈ F with F ∩ S ⊆ U(C).

Proof. Suppose that there exist U0 ∈ U and S ∈ S such that E ∩ S \ U2
0 (C) ̸= ∅

for each E ∈ F . In particular, note that E ∩ S ̸= ∅ for each E ∈ F .
Let HUE = {a ∈ X : there is V ∈ U such that V 2 ⊆ U , V −2(a) ∩ U0(C) = ∅

and a ∈ E ∩
∩

F∈F V (F )} for each E ∈ F and U ∈ U .
First note that HUE ̸= ∅. To check this, let V ∈ U with V 2 ⊆ U ∩U0. Since F is

stable in S, there exists F0 ∈ F with F0∩S ⊆
∩

F∈F V (F ). Then FV = F0∩E ∈ F ,

so there exists a ∈ S ∩ FV \ U2
0 (C). It follows that a ∈ HUE ∩ S.

On the other hand, it is clear that HU1E1 ⊆ HU2E2 whenever U1, U2 ∈ U with
U1 ⊆ U2 and E1, E2 ∈ F with E1 ⊆ E2.

Thus {HUE : U ∈ U , E ∈ F} is a base for a filter H on X. Let us prove that H
is stable in S. First, note that we have already proved that HUE ∩ S ̸= ∅ for each
U ∈ U and E ∈ F . Let U, V ∈ U , E ∈ F and S′ ∈ S.

Let us prove that HUX ∩S′ ⊆ U(HV E). Let a ∈ HUX ∩S′, then there is W ∈ U
such that W−1(S′) ∈ S, W 2 ⊆ U , W−2(a) ∩ U0(C) = ∅ and a ∈

∩
F∈F W (F ).

Let Z ∈ U with Z2 ⊆ V ∩ W. Since F is stable in S, there exists F0 ∈ F with
F0 ∩ W−1(S′) ⊆

∩
F∈F Z(F ). Define FZ = F0 ∩ E ∈ F . Since a ∈ W (FZ), there

exists y ∈ FZ ∩ W−1(a). It follows that Z−2(y) ⊆ W−2(a) and hence Z−2(y) ∩
U0(C) = ∅. Finally y ∈ FZ ∩W−1(a) ⊆ F0 ∩W−1(S′) ⊆

∩
F∈F Z(F ), and hence

a ∈ W (y) ⊆ U(y) and y ∈ HV E , so a ∈ U(HV E).
Therefore H is stable in S, so, by hypothesis, it has a cluster point x ∈ X. Since

HUF ⊆ F for each U ∈ U and F ∈ F , then F ⊆ H and x ∈ C. But this is a
contradiction, since HUE ∩ U0(C) = ∅ for each U ∈ U and E ∈ F . �

Theorem 4.9. Let S be an E-ideal in a quasi-uniform space (X,U). Then
(P0(X),US) is right K-complete if and only if any stable filter in S has a cluster

point in (X,U) and (S is not a bornology or X ∈ S).
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Proof. If S is a bornology and X ̸∈ S, then (P0(X),US) is not half complete by
Corollary 4.5. If X ∈ S, then US is the Hausdorff quasi-uniformity UH and the
result follows from [29, Proposition 6] (note that if X ∈ S, a filter is stable in S if
and only if it is stable).

So we can assume that S is not a bornology.
Suppose that (P0(X),US) is right K-complete, and let F be a stable filter in S. It

easily follows that (F )F∈F is a right K-Cauchy net in (P0(X),US), so it S-converges
to some C ∈ P0(X).

Let S ∈ S with S ∩ F ̸= ∅ for each F ∈ F , and let V ∈ U with V −1(S) ∈ S.
Then there exists F0 ∈ F such that F ∈ VS(C) for each F ⊆ F0, so F ∩ S ⊆ V (C).
Since F ∩ S ̸= ∅, it follows that C ∩ V −1(S) ̸= ∅. Choose x ∈ C ∩ V −1(S).

Now we will prove that x is a cluster point of F . Let U ∈ U and W = U ∩ V.
Then there exists F1 ∈ F such that F ∈ WV −1(S)(C) for each F ⊆ F1. Hence

x ∈ C ∩ V −1(S) ⊆ W−1(F ) ⊆ U−1(F ) for each F ⊆ F1. Therefore x is a cluster
point of F .

Conversely, suppose that any stable filter in S has a cluster point in (X,U), and
let (Aλ)λ∈Λ be a right K-Cauchy net in P0(X).

For each λ ∈ Λ, let Fλ =
∪

β≥λ Aβ and define F as the filter generated by the

filter base {Fλ : λ ∈ Λ}. Now we consider two cases:

(1) For each S ∈ S there exists λ0 such that Aλ ∩ S = ∅ for each λ ≥ λ0.
Since S is not a bornology, we can take x ̸∈ ∪S. It easily follows that

(Aλ)λ∈Λ converges to {x}.
(2) There exists S0 ∈ S such that for each λ0 there exists λ ≥ λ0 with Aλ∩S0 ̸=

∅.
Let us prove that F is stable in S. It follows that Fλ ∩ S0 ̸= ∅ for each

λ ∈ Λ, and hence F ∩ S0 ̸= ∅ for each F ∈ F .
Let U ∈ U and S ∈ S, then there exists λ0 such that Aλ1 ∈ US(Aλ) for

each λ ≥ λ1 ≥ λ0. Then Aλ1 ∩ S ⊆ U(Aλ) for each λ ≥ λ1 ≥ λ0. It follows
that Fλ0 ∩ S ⊆ U(Fβ) for each β ∈ Λ, and hence F is stable in S.

By hypothesis F has a cluster point x ∈ X. Let C ∈ P0(X) be the set
of cluster points of F and let us prove that C is a cluster point of the net
(Aλ)λ∈Λ.

Let U,W ∈ U and S ∈ S such that W 2 ⊆ U and W (S) ∈ S. There
exists λ0 such that Aλ1 ∈ WW (S)(Aλ2) for each λ2 ≥ λ1 ≥ λ0. We prove

that S ∩ C ⊆ U−1(Aλ) for each λ ≥ λ0. Let x ∈ S ∩ C and λ ≥ λ0.
Then x ∈ W−1(Fλ). Let a ∈ Fλ with x ∈ W−1(a), then a ∈ Aβ for some
β ≥ λ. It follows that a ∈ Aβ ∩W (x) ⊆ Aβ ∩W (S) ⊆ W−1(Aλ) and hence
x ∈ W−2(Aλ) ⊆ U−1(Aλ). Therefore S ∩ C ⊆ U−1(Aλ) for each λ ≥ λ0.

On the other hand, by Lemma 4.8 there exists λ with Fλ ∩ S ⊆ U(C),
and hence Aβ ∩ S ⊆ U(C) for each β ≥ λ.

We conclude that (Aλ)λ∈Λ converges to C.

�

Corollary 4.10. Let S be an E-ideal in a uniform space (X,U). Then
(P0(X),US) is complete if and only if any stable filter in S has a cluster point in

(X,U) and (S is not a bornology or X ∈ S).
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metric normed linear spaces, Topology Appl. 156 (2009), 2284-2291.

[26] H. P. A. Künzi, An introduction to quasi-uniform spaces, in F. Mynard and E. Pearl editors,
Beyond Topology, Contemporary Mathematics 486 (2009), 501–569.

[27] H. P. A. Künzi and S. Romaguera, Well-quasi-ordering and the Hausdorff quasi-uniformity,
Topology Appl. 85 (1998), 207–218.

[28] H. P. A. Künzi and S. Romaguera, Left K-completeness of the Hausdorff quasi-uniformity,
Rostocker Math. Kolloq. 51 (1997), 167–176.

[29] H. P. A. Künzi and C. Ryser, The Bourbaki quasi-uniformity, Top. Proc. 20 (1995), 161–182.
[30] A. Lechicki, S. Levi and A. Spakowski, Bornological convergences, J. Math. Anal. Appl. 297

(2004), 751–770.

[31] N. Levine and W. J. Stager, On the hyper-space of a quasi-uniform space, Math. J. Okayama
Univ. 15 (1971-72), 101–106.
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