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Abstract 

Brown trout (Salmo trutta L.) have been used as an indicator of ecological status. Habitat 

models assess habitat suitability based on physical conditions such flow velocity or water depth 

are. There are several methodologies to analyse the suitability and to develop habitat suitability 

models but, at the microscale, the development of continuous univariate Habitat Suitability 

Curves (HSCs) is by far the most common approach. Two main methodologies exist in the 

development of HSCs. The first one considers only the conditions observed at the fish locations 

(Category II ½ HSCs) whereas the second one considers also the conditions observed in the 

surrounding area (Category III HSCs) Several authors have suggested that considering each 

hydraulic variable independently may be questionable. Therefore the use of multivariate 

approaches among researches have increased. The Fuzzy logic is one of those who has most 

successfully been applied. The fuzzy logic approach mimics the human reasoning thus are 

presented in an IF-THEN sequence. If certain conditions are resent then the habitat suitability is 

that. There are two main approaches in the development of Fuzzy logic models; the Expert-

knowledge and the Data-driven. The Expert-knowledge approach is based on the literature and 

the consensus of scientists whereas the Data-driven approach is based on the optimization of 

the elements of the model based on field data.  

This study presented a methodology to develop Expert-knowledge fuzzy models based on 

HSCs and compared the results with those derived from the Data-driven approach. Specifically 

Three habitat suitability models were develop for the three considered size classes; brown trout 

adult-large (> 20 cm), juvenile-medium (20 - 10 cm) and fry-small (< 10 cm). Two models based 

on the Expert-knowledge approach but differing on the HSCs, Category II ½ HSCs or Category 

III HSCs and another model was based on the Data-driven approach. The 9 developed models 

were spatially explicitly validated in an independent river reach and their performance was 

compared by means of the fuzzy Kappa statistic.  

The Expert-knowledge approach herein presented have demonstrated satisfactory. It showed 

generally a good performance and did not differed substantially in comparison with the Data-

driven approach despite the Expert-knowledge models based on Category II ½ HSCs 

underrated the deep areas in the adult and juvenile. The Category III based models presented 

better performances that the Category II ½ counterparts and the models for adult and fry were 

recommended for further analysis. However the Expert-knowledge models presented lower 

specificity in comparison with the Data-driven approach. Then, in the juvenile case the Data-

driven fuzzy model was de recommended for further analysis. The comparison between models 

based on the fuzzy Kappa did not showed any similarity and the spatially explicit validation have 

been demonstrated fundamental in the proper selection between the developed models. 
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1 Introduction 

Freshwater fish are considered to be good indicators of water quality in river systems 

(Karr, 1981; Angermeier and Davideanu, 2004). Habitat models assess habitat 

suitability for freshwater fish species based on species selection of physical conditions, 

e.g. at the microhabitat scale such variables can be flow velocity, water depth or 

substrate (Bovee, 1982). The suitability of a given variable within the considered range 

is usually mathematised in an index indicating the degree of suitability of the 

considered variable; for instance the aforementioned, depth, velocity or substrate, as 

they take their feasible values. Accordingly to Waters (1976), who firstly introduced the 

use of suitability curves, these indices assessing the degree of suitability provide an 

output value that usually ranges from zero and one, with zero being unsuitable and one 

fully suitable for the target species. There are several methodologies to analyse the 

suitability and to develop the habitat suitability criteria, but the continuous univariate 

Habitat Suitability Curves (HSCs) are by far the most common in studies involving the 

physical habitat simulation (Payne, 2009). 

The HSCs are mostly based on the frequency analysis of field data considering the 

physical properties at the locations where fish were observed and/or the hydraulics at 

the surrounding unoccupied locations. Fig. 1 shows an example of the typical HSC 

shape for the variable depth, for the brown trout fry. The optimal depth was determined 

in the interval around 0.25 m whereas it become straight unsuitable as the depth 

decreases, but presented a smoother decrement if the depth increases. 
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Fig. 1 General example of a univariate Habitat Suitability Curve. 

 

Brown trout have been used as an indicator of ecological status (Karr, 1981) and, for 

several decades, researchers have developed brown trout habitat models in the form of 

the aforementioned univariate HSCs (Bovee, 1978; Raleigh, 1984; Heggenes et al., 

1991; Rincon and Lobon-Cervia, 1993). Therefore it could be considered a well-known 

species and the databases related with could be suitable to be analyzed with untested 

or brand-new statistical methodologies in order to evaluate or improve their 

performance. Despite the existence of abundant studies, several papers showed 

difficulties to transfer the developed models, questioning its generalization ability (Mäki-

Petäys et al., 2002; Fukuda, 2010). Although there have been reported some succeeds 

in the development of general models (Nykänen and Huusko, 2004). Multiple factors 

affect fish habitat selection, thus it is generally recommended the generation of site-

specific models of habitat suitability, especially for the application of physical habitat 

modelling (Moyle and Baltz, 1985; Bovee et al., 1998; Rosenfeld et al., 2005). 
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The aforementioned HSCs were categorized by Bovee (1986) in three Categories 

according to the methodology applied to its development. Category I include curves 

generated from literature and experts consensus. Category II are the Use curves, 

based on frequency analysis of the hydraulics over the fish locations and does not 

include any reference to fish electivity or habitat availability; Category III are the 

preference curves and are derived also from observational data on habitat use (i.e. 

hydraulics in the locations where fish were observed) but weighted by the habitat 

availability (i.e. hydraulics over the surrounding unoccupied locations) by calculating 

the forage ratio (Voos, 1981). Several authors considered an extra category which 

could be considered a modification of the Category II curves, so called Category II ½. 

This approach differs from the Category II curves in the way the survey is carried out 

applying the equal-effort approach (Johnson, 1980) balancing the different 

combinations of variables in order to avoid any bias derived from the data collection. 

The suitability index derived from each of the considered HSC should be summarised 

in a single index in order to assess the considered area. This composite index, usually 

called the Habitat Suitability Index (HSI) (sensu Vadas R.L and Orth, 2001), also 

ranges from zero to one with similar meaning. Different methods have been used to 

carry out the combination of the different suitability indices obtained from each physical 

variable in order to produce the HSI. The most important methods to combine them 

are: the lowest (Korman, 1994), the product (Bovee, 1986), the arithmetic mean 

(Terrell, 1984) and the geometric mean (Terrell, 1984). The lowest is a 'controlling 

method' assuming that the most limiting factor determines the upper limit of habitat 

suitability, then high suitability in any variable cannot compensate the low suitability in 

other at a given microhabitat. The product method is also a 'controlling method', 
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whereas arithmetic and geometric means are partially 'compensatory methods' (U.S. 

Fish and Wildlife Service 1981). The product approach assumes that unsuitable habitat 

conditions based on one variable cannot be balanced by good conditions based on 

others (Bovee, 1986). In contrast, the arithmetic mean assumes that good habitat 

conditions based on one variable can compensate for poor conditions of another 

(Terrell, 1984). Finally, the geometric mean assumes that each environmental variable 

is equally important (Benaka, 1999; Rubec, 1999) thus unsuitable conditions derived 

from a given variable could be also compensated by the remaining variables as well as 

the arithmetic mean does. 

Despite the existence of this wide range of possibilities, several authors have 

suggested that considering each hydraulic variable independently may be questionable 

so, it could induce a bias as a result of overlooking possible interactions between 

variables (Orth and Maughan, 1982; Lambert and Hanson, 1989), because fish do not 

select the habitats based on a single variable, but in a group of environmental variables 

that they can evaluate and balance. Therefore, researchers have developed and 

successfully applied multivariate techniques which are able to model fish habitat 

suitability taking into account the interactions between variables (Hayes and Jowett, 

1994; Lamouroux et al., 1998; Vismara et al., 2001; Ayllón et al., 2010; Muñoz-Mas et 

al., 2012). One of these techniques, the fuzzy logic approach, was demonstrated to be 

useful in ecological modelling at different scales and life forms. At the mesoscale, fish 

and also macroinvertebrates habitat suitability have been successfully modelled 

(Mouton et al., 2009; Mouton et al., 2011), and at the microscale there are also several 

examples for these organisms (Van Broekhoven et al., 2006; Mouton et al., 2008; 
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García et al., 2011), even some of them specifically for brown trout (Jorde, 2001; 

Magdaleno Mas and Martínez Romero, 2005; Muñoz-Mas et al., 2012). 

The fuzzy logic approach was firstly developed by Zadeh (1965). An important 

advantage of the fuzzy logic approach lays on its transparency, which may stimulate 

communication of model results to stakeholders (Adriaenssens et al., 2004; Van 

Broekhoven et al., 2006), and its ability to incorporate the ecological gradient theory 

(Mouton, 2008). The fuzzy logic approach mimics the human reasoning, and it can be 

communicated in linguistic terms. This approach considers that IF a number of 

elements exist, THEN a phenomenon occurs. For instance; if velocity is low, depth is 

medium and the substrate is coarse, then the brown trout will be probably present. 

However the fuzzy logic approach is not as imprecise apparently is transforming these 

descriptions into a mathematical framework (hereafter fuzzy inference system) in which 

suitable data processing can be performed providing numerical outputs (Kampichler et 

al., 2000). A fuzzy inference system consists of three parts: (i) fuzzy input and output 

variables, discretised in Fuzzy Sets (FS) (ii) the Fuzzy Rules and (iii) the fuzzy 

inference method (Kasabov, 1998). To implement the first part, fuzzy systems 

categorize the input and the output variable in linguistic terms; the aforementioned: 

Low, Medium, High etc. defined by Fuzzy Sets (Zadeh, 1965). The second part of the 

fuzzy inference system is implemented by defining relationships among these 

categories, by defining rules of association; the Fuzzy Rules (FR). These rules are 

constructed as the aforementioned IF-THEN sequence, where the 'IF' part is the 

antecedent and the 'THEN' part is the consequent. The third part consists of the 

defuzzification procedure giving a single suitability index similar to those obtained for 

the combination of the partial results from HSCs thus providing directly the HSI. 
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There are several methodologies to defuzzify, the most commonly applied at this time 

is the Centre of Gravity (Ahmadi-Nedushan et al., 2008) and has been previously 

applied in several studies (Jorde, 2001; Muñoz-Mas et al., 2012). The Fuzzy Sets and 

the Fuzzy Rules of a fuzzy model can be derived based on two main approaches; The 

Expert-knowledge and the Data-driven, although the border between them could be 

imprecise and combinations of both have been also suggested (Mouton et al., 2009). 

Both approaches have been useful in fish habitat modelling (see aforementioned 

examples) but there is a certain controversy about which one is more accurate. 

The Expert-knowledge approach is based on the literature and the consensus of 

scientists, whereas the Data-driven approach, usually applied in fish habitat modelling, 

is based on the optimization of the discretization of the input variables developed by 

Mouton (2008) (i.e. optimization of the number of Fuzzy Sets and their membership 

functions) and the optimization of the Fuzzy Rules developed by Mouton et al. (2008) 

(i.e. determination of the proper consequent for each combination of input Fuzzy Sets; 

the Fuzzy Rules). 

The main effort in the development of fuzzy inference systems with the Expert-

knowledge approach lays in the proper definition of the Fuzzy Sets and their 

corresponding membership functions, and in the fact that the number of rules grows 

exponentially with the number of variables and the amount of Fuzzy Sets, which could 

result in the redundancy of rules and misinterpretations or wrong formulisations (Chen 

and Mynett, 2003). On the positive side, the Data-driven approach imply the owning of 

a large database to optimize the Fuzzy Sets and the Fuzzy Rules, and sometimes it is  

impossible due to budget limitations leading to short or imperfect databases (Mouton et 
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al., 2008). This is especially important when no training cases appear to assess the 

proper consequent of one or more rules, which remain undetermined. 

Some authors have demonstrated that expert judgment is convergent and Expert-

knowledge fuzzy inference systems do not differ substantially depending on the 

consulted expert (Ahmadi-Nedushan et al., 2008), providing reliable models, while 

other suggested the opposite (Acreman and Dunbar, 2004; Adriaenssens et al., 2004), 

supporting the Data-driven approach. In order to shed some light on this kind of 

discrepancies, some authors pointed out the necessity of evaluating habitat models 

with independent data to test the reliability of habitat suitability models (Guisan and 

Zimmermann, 2000), but despite its importance and the existence of some examples, 

e.g. Guay et al. (2000), it could not be considered widespread. Regarding the Expert-

knowledge approach, the aforementioned HSCs, usually presented as category II or III 

suitability curves, could become a general template to develop fuzzy inference 

systems, because they provide important information for the variable discretization 

(development of Fuzzy Sets) and their habitat suitability for individual variables as if 

they were independent. Although preferences curves (Category III) have been strongly 

criticized (Hayes and Jowett, 1994; Payne, 2009) and its application have been 

deprecated because of its overcorrection (Bovee, 1996), they present in some cases 

widely generalization behaviour (Hayes and Jowett, 1994) and in fact presented larger 

similarity with the Fuzzy Rule optimization procedure programmed in the present study. 
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2 Objectives 

i. The main objective of the present study laid on the comparison of the Expert-

knowledge approach and the Data-driven approach in the development of 

habitat suitability models for three size classes (namely, fry 0-10 cm, juvenile 

10-20 cm, adult > 20 cm) of the brown trout (Salmo trutta L.). 

ii. The Expert-knowledge fuzzy models were based on univariate Habitat 

Suitability Curves (HSCs) in a sort of quasi Data-driven approach. The HSCs 

were developed on purpose for the present study. Two Expert-knowledge fuzzy 

models were developed, the first one based on HSCs with equal effort 

approach (Category II ½) and the second one based on preference curves 

(Category III).  

iii. Data-driven fuzzy models were also generated for each size class of the brown 

trout, using the same database used in their respective HSCs set development. 

iv. The robustness of the developed Expert-knowledge fuzzy models was tested by 

training the Fuzzy Rules by means of the Data-driven approach. The developed 

Fuzzy Rules were compared. 

v. Finally, the results were compared among the approaches, and the models 

were evaluated in a spatially explicitly context, in an independent reach of a 

similar river; the Cabriel River. 
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3 Methodology 

3.1 Microhabitat data collection 

The Mediterranean brown trout (Salmo trutta L.) was the target species of the 

microhabitat study. The fish were previously classified  in three size classes, 

approximately corresponding to small 0-10 cm, medium 10-20 cm, large > 20 cm. 

However to improve the understandability of the text these size classes will be called, 

fry, juvenile and adult in accordance with previous studies which classified the brown 

trout individuals in three size classes (Bovee, 1978; Ayllón et al., 2010). However the 

present study did not carry out any analysis aimed to identify the relationship between 

size and age and due to the variability expected in Mediterranean systems certain 

differences with the aforementioned studies could be expected. 

 

 

Fig. 2 Juvenile brown trout living in the Cabriel River (showing two marks in Alcian blue, for 
another kind of study). 
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The surveys were carried out in two rivers of the Tagus River Basin (TB), Guadiela and 

Cuervo, and four rivers belonging to the Jucar River Basin District (JRBD); Senia, 

Turia, Jucar and, its principal tributary, the Cabriel River; Fig. 3. 

 

 
Fig. 3 Map of the sites where brown trout microhabitat surveys were carried out during the 
period 2005 - 2009 in rivers of the Tagus River Basin (TB) and Jucar River Basin District 
(JRBD). 

 

The surveys were carried out at low flows during late spring, summer and early autumn 

in the period 2005-2009. The microhabitat study was done in complete and connected 

HydroMorphological Units (hereafter HMUs) classified as: pool, glide, riffle, and rapid 

accordingly to previous studies that classified HMUs in the Mediterranean context 

(Alcaraz-Hernández et al., 2011). The equal effort approach and the concept of habitat 

selection (Johnson, 1980) were adapted to the conditions in these Mediterranean 

rivers, with the selection of equal area (more or less 10 %) of slow and fast water 

HMUs, grouping pools with glides (slow) and riffles with rapids (fast). 
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Each HMU was surveyed by underwater observation by snorkelling during daylight, 

with minimum disturbance to the fish according to standard procedures (Heggenes et 

al., 1990; Heggenes, 1991). This technique allows the observation of the fish behaviour 

and its position in the water column, even in relatively adverse surveying conditions 

(Heggenes et al., 1990; Martínez-Capel and García de Jalón, 1999; Martínez-Capel, 

2008). The direct underwater observation has been demonstrated to be more reliable 

than electrofishing in the location of the fish, there is no displacements because of the 

galvanotaxis phenomena (Bovee and Cochnauer., 1977; Bovee, 1986; Gatz Jr et al., 

1987; Heggenes, 1991), during direct underwater observation it is possible to observe 

the fish behaviour, then the data are recorded for a specific activity (e.g., holding 

position and feeding) and no data is recorded if the fish was disturbed. It is very 

important the experience of the observer, and to spend many hours in the water, 

performing observation, in order to properly observe the fish activity, elucidating 

anomalous behaviour derived from the presence of the observer discarding any data 

related to suspicious or disturbed fish. 

Despite we did not perform any transferability test (Thomas and Bovee, 1993), the 

microhabitat conditions over the entire HMUs were originally measured in cross-

sections with a minimum amount of 300 points of unoccupied locations per survey, 

hereafter Availability records, in order to ensure the applicability of the aforementioned 

transferability tests thus conditioning the following steps in the development of the 

fuzzy models (i.e the Data-driven approach needed the application of a sub-sampling 

methodology). This methodology produced a variable density of data ranging from 1.23 

m2 to 7.96 m2 per record. Table 1 shows a summary of the sample sizes of each 

database. All the measurements in the Availability survey and in the Use survey (i.e. 
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locations where fish were observed) were taken with the same methods and the results 

were included in the respective datasets, i.e. Availability, no fish observed, or Use, 

some fish observed. 

 

Table 1 Summary of the sample sizes of microhabitat data for the three size classes, collected 
over the period 2005 -2009. JRBD: Jucar River Basin District; TB: Tagus Basin. 

River Period Use Availability Use Availability Use Availability

Jucar(JRBD) 2006 - 2007 19 735 38 735 7 735

Guadiela (TB) 2009 51 455

Turia (JRBD) 2006 25 379

Cabriel (JRBD) 2005 68 532

Senia (JRBD) 2006-2007 34 711 11 714

Cuervo (TB) 2009 29 385

Large-Adult

(>20 cm)

Small-Fry 

(0 - 10 cm)

Medium-Juvenile

(10- 20 cm)

 

 

Three physical variables were measured to characterise the microhabitats; flow 

velocity, water depth and substrate type, usually considered the most relevant 

variables for fish species distribution at this scale in combining with the cover (Waters, 

1976; Bovee, 1986; Heggenes, 1990; Gibson, 1993; Bovee, 1998). Although the 

present study did not included the later due to budget limitations and the inherent 

difficulty to determine the cover availability based on variations of the current flow. 

Velocity was measured with an electromagnetic current metre (Valeport®) and depth 

was measured with a graduated rod at the nearest cm (Fig. 4). 
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Fig. 4 Current meter and general view of the surveyor carrying out direct underwater 
observation. 

 

The percentages of each substrate class were visually estimated within 15 cm around 

the sampling point or at fish location (Bovee and Zuboy, 1988). The classification was 

simplified from the American Geophysical Union size scale in: bedrock, large boulders 

(>1024mm), boulders (256–1024 mm), cobbles (64–256 mm), gravel (8–64 mm), fine 

gravel (2–8 mm), sand (62 mm–2 mm), silt (< 62 mm) and vegetated soil (i.e. substrate 

covered by macrophytes), similarly to previous works made by snorkelling in Iberian 

rivers (Martínez-Capel and García de Jalón, 1999; Martínez-Capel et al., 2009b). In 

order to obtain a single index for mathematical purposes, substrate composition was 

converted into a single Substrate index (S) by summing weighted percentages of each 

substrate type. The weights used were: S = 0.08 x bedrock + 0.07 x boulder + 0.06 x 

cobble + 0.05 x gravel + 0.04 x fine gravel + 0.03 x sand (Mouton et al., 2011). 
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Table 2 Maximum surveyed velocity and depth and the most abundant substrate per river, 
derived from all data (Use and Availability).  

River Velocity (m/s) Depth (m) Substrate (S)

Cuervo (TB) 1.031 1.24 5

Guadiela (TB) 1.153 1.78 6

Senia (JRBD) 1.755 1.45 7

Jucar (JRBD) 1.284 1.01 0

Cabriel (JRBD) 1.78 1.47 7

Turia (JRBD) 0.621 1.11 0  

 

3.2 Validation data collection 

The validation of the performance of the developed models with independent data was 

based on the assessment of an hydraulic model were trout coordinates were collected 

for a given flow, thus becoming in an spatially explicit validation. 

In previous studies, a 2D hydraulic simulation with River-2D© (University of Alberta 

2002) was done in an approximately 300 m long reach of the Cabriel River, 9 km 

downstream the locations of the microhabitat survey; see more details in Muñoz-Mas et 

al. (2012). The topographic data of the river channel and banks were collected using a 

Leyca© total station and the substrate composition was visually estimated as 

aforementioned. Eleven cross-sections at three different flow rates, 0.54, 1.04 and 2.75 

m3/s, were used to calibrate the model in terms of water depth and velocity patterns, 

accordingly to previous studies (Jowett and Duncan, 2011).  

A survey in this river reach was conducted in a single week in the early summer of 

2012, with a steady flow rate of 0.89 m3/s corresponding to the Q85 of the stream flow 

series. Unlike the previous biological surveys, the surveyor did not snorkel all the entire 

HMUs; instead, the survey was done covering the whole area included in the 
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aforementioned hydraulic model which presents a stable trout population (Martínez-

Capel et al., 2009a). The survey was done with similar standard procedures 

(Heggenes, 1991) as the microhabitat surveys presented in the previous section. 

Instead of collecting the microhabitat data by recording velocity, depth and substrate, 

the coordinates in terms of (X,Y,Z) of the observed trout were measured with a FOIF © 

Total Station; the station was set using the permanent landmarks placed during the 

topographic survey carried out in the development of the hydraulic model. That (X,Y,Z) 

information was also used to check the model reliability in terms of morphologic 

changes on the river bed, showing no lateral displacements of the river channel and a 

small change in terms of river bed elevations about 0.04 ± 0.12 m, which was 

considered acceptable; thus the model was considered suitable to be used in the 

present study. 

The information to validate the habitat suitability models by size classes (in terms of 

velocity, depth and substrate) was, therefore, based on the hydraulic simulation, 

showing a maximum depth of 1.4 m and 0.53 m/s of mean velocity. The sample sizes 

for adult, juvenile and fry size classes were 31, 30 and 79 respectively.  

3.3 Development of Habitat Suitability Curves 

The Habitat Suitability Curves were the input in the generation of the Expert-knowledge 

fuzzy models in this study.  

Two sets of Habitat Suitability Curves of Category II ½ and Category III (Bovee, 1986) 

were developed, on purpose, for each size class including a curve for velocity, depth 

and substrate. The procedure to generate curves followed the common standards 

(Bovee, 1986). The data from each study site were weighted by the surveyed area, in 
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order to equal the degree of influence of each river on the resulting curve. This was 

followed by a frequency analysis of each separate variable producing the 

corresponding histogram. The intervals used in the frequency analysis were 5 cm/s for 

velocity and 5 cm for depth and the intervals for substrate were the nine classes 

corresponding to the integer numbers of the substrate index. This frequency analysis 

was carried out for the Use data and the Availability data. The resultant histogram for 

both datasets were standardised between zero and one. That histogram on the Use 

dataset was the used to develop the Category II ½ curves. 

The Category III curves were developed using the forage ratio (Savage, 1931; Cock, 

1978). Some authors (Hayes and Jowett, 1994; Bovee, 1998; Payne, 2009) pointed out 

the forage ratio may distort the results in terms of suitability (due to over-correction), if 

either the used or available habitat is poorly represented over any part of their range. In 

this study, the extreme values of the data distribution (Use and Availability data) were 

not trimmed for the development of the Category III curves, because the application of 

the generated Category III curves (in physical habitat simulation) was not an objective 

of the present study. 

For both sets of curves, the Category II ½ and the Category III, a smoothing technique 

in R environment was applied, specifically the smooth.spline function in the stats 

package (R Development Core Team, 2012). This procedure was applied to get a 

unimodal curve, reducing the effect of data gaps in the histogram, thus eliminating 

some steep segments up and down without ecological sense. In addition, these 

smoothed curves match the format required for the development of the Expert-

knowledge fuzzy models using the herein presented methodology.  
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3.4 Expert-knowledge fuzzy approach for habitat suitability modelling 

The Expert-knowledge fuzzy models were based on the aforementioned univariate 

Habitat Suitability Curves (HSCs) and the expert judgment of the corresponding 

authors. The Expert-knowledge fuzzy models present the usual elements in a fuzzy 

inference system. Firstly, the input variables in the form of categories defined in terms 

of Fuzzy Sets and their Membership Functions (MF) (Zadeh, 1965). Each Fuzzy Set is 

mathematically described by their Membership Function which indicates the 

membership degree, ranging from zero to one, to each Fuzzy Set of a given variable 

value. Since membership functions have overlapping boundaries, a given value may 

belong, with different proportions, to two adjacent Fuzzy Sets. Secondly, the set of 

rules, the Fuzzy Rules, relating each combination of the categories of the input 

variables with the corresponding output. Both elements present its own development 

methodology. 

The selected geometry of the MF was the trapezoidal, which showed successful in 

previous studies (Van Broekhoven et al., 2006; Mouton et al., 2007; Mouton et al., 

2008; García et al., 2011). A trapezoidal Fuzzy Set is defined by four parameters; am, 

bm, cm and dm. The membership degree to a given Fuzzy Set increases from zero to 

one between am and bm, is equal to one from bm to cm and decrease from one to zero 

from cm to dm. The region between am and bm is shared with the adjacent, if exists, 

becoming a fuzzy region. The region between bm and cm belongs, 'purely', to that Fuzzy 

Set whereas the region between cm and dm is again shared with the adjacent, 

becoming a fuzzy region as well (Fig. 5). 
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Fig. 5 Example of trapezoidal Membership Function (MF) to a given Fuzzy Set. The region 
between am to bm and cm to dm is shared with the adjacent whereas the region between bm and 
cm belongs 'purely' to the Fuzzy Set. 

 

The method proposed in this thesis consists of the determination of the parameters am, 

bm, cm and dm, for the different Fuzzy Sets of a variable, based on the changes of 

convexity in the corresponding HSC. The values which define each of this parameters 

were placed at the minimum and the maximum values of the range covered by the 

curve, and in each point of the HSC presenting a change in the curve character, i.e., 

from concave to convex or vice versa. All of those values are hereafter called breaks of 

the curve. 

The MF of the Fuzzy Sets of each variable were constructed by firstly defining bm and 

cm. Thus, bm and cm of the central Fuzzy Set were defined by the values of the breaks 

in the curve comprising the maximum suitability for the involved variable. This is the 

part of the curve where the slope equals or approaches zero and hereafter referred to 

as the plateau. These breaks also defined the dm-1 and the am+1 parameters of the 

adjacent Fuzzy Sets located at the left and right of this Fuzzy Set, respectively. The am 

and the dm of the central Fuzzy Set were defined by the following breaks both right and 
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left of the plateau and also correspond to the parameters cm-1 and bm+1 of the adjacent 

Fuzzy Sets located at the left and right. The further breaks in both sides, the left and 

the right, corresponding then to the bm-1 and cm+1, etc. The procedure to define the 

Fuzzy Sets parameters continued until a MF parameter was set for each break of that 

curve (Fig. 6 - A). Finally, the outer values of the outer MF were set equal to the last 

value to obtain a trapezoidal MF. This procedure was applied for the remaining HSCs 

constituting the first part of the fuzzy inference system. 

 

 

Fig. 6 Example of discretization of the variable depth in three Fuzzy Sets for the adult brown 
trout. The central Fuzzy Set covers the maximum suitability. The following interval in both sides 
is fuzzy and shared with the adjacent Fuzzy Sets. The process continues alternating defined 
regions with fuzzy regions until no more breaks are available for the analyzed HSC. EK = 
Expert-knowledge, DD = Data-driven. 

 

Instead of the procedure to determine the number, shape and parameters of the Fuzzy 

Sets of the input variables, the output variable was theoretically determined. Te main 

objective was to produce a model with an output between 0 and 1, like the Habitat 

Suitability Index (HSI); zero means unsuitable whereas one means the maximum 

suitability. The output variable was discretized in three Fuzzy Sets: Low, Medium and 
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High (Fig. 6 - B). The output variable was divided in five uniform intervals of range 0.2, 

resulting in alternating intervals that either fully belong to a Fuzzy Set or that cover the 

transition between two adjacent Fuzzy Sets. 

Once the Fuzzy Sets were created, Fuzzy Rules were defined based on the 

information derived from the HSC following the next procedure. The first step consisted 

of the assignment of a partial suitability to each of the considered Fuzzy Sets, 

independently for each variable. The partial suitability for the Fuzzy Set that covered 

the plateau of the HSC corresponded to High suitability, whereas the partial suitability 

of the Fuzzy Sets on the extremes was Low. The partial suitability assigned to the 

remaining Fuzzy Sets was Medium thus the suitability of each HSC provided the basic 

frame to assign the corresponding partial suitability. Then the partial suitability values 

of the three variables were aggregated in a single suitability value becoming the rule 

consequent. The combined suitability output for each rule was determined following the 

following criteria. If the depth was extremely Low or extremely High the output of the 

rule including that Fuzzy Set was always Low and could not be compensated by any 

better suitability output from the remaining variables. If the velocity was extremely high 

the combined suitability output was always Low and could not be compensated by any 

better partial suitability output from the other two variables. The combined suitability 

output for the remaining rules was determined as the maximum appearance, 

independently of any better remaining partial suitability output. For instance, if velocity 

suitability was High, depth suitability was Medium and substrate suitability was Medium 

the combined suitability was Medium, neglecting the high suitability from the velocity 

variable. If a draw appeared the suitability for that rule was determined as Medium in 

any case, if there was no conflict with the initial assumptions. Several authors 
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considered depth a non-controlling variable regarding the older brown trout size 

classes (Bovee, 1978; Ayllón et al., 2010) thus the aforementioned constrain was 

relaxed only for large brown trout, and the largest depth was assigned to Medium 

suitability if the combination of partial suitability was not in conflict with the remaining 

assumptions. 

3.5 Data-driven fuzzy approach for habitat suitability modelling  

3.5.1 Sub-sampling 

Prevalence can have a strong effect on model performance (Manel, 2001). The 

prevalence for every river database was extremely low in our study, because the 

number of data collected to characterise habitat availability was several times the 

number of habitat use the highest prevalence among study sites was 0.15. To avoid 

undesirable effects, a sub-sampling procedure was applied; the main objective was to 

obtain a new database with 0.5 prevalence but statistically similar to their originals. It 

should be done with a multivariate procedure to keep the combinations of velocity, 

depth and substrate. 

For every river database the sub-sampling methodology followed the next procedure. 

First the Euclidean distance of each case to the centre of gravity of the Availability 

dataset was calculated, with the centre of gravity calculated as: Centre of gravity 

(CDG) = (Average Velocity, Average Depth, Average Substrate Index). An example for 

the Senia-2006 dataset is shown in the Fig. 7. These distances comprise in a unique 

and simple index the three microhabitat variables. The records with little distances in 

general have more common values of the three variables (i.e. more common values of 

Velocity, Depth and Substrate index) than the records with larger distances. Then, a 
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cumulated frequency histogram of these distances was generated and then the records 

were extracted in a systematic sampling procedure through that cumulated frequency 

distribution. The number of sub-sampled records in each Availability dataset was the 

number of records in its respective Use dataset, so the resulting prevalence was 0.5. 

Generally, the histogram showed a steep slope for low distance values (i.e. many 

values are close to the Centre of gravity), and the slope decreased asymptotically as 

the distance increased. Regarding the sub-sampled dataset, the value triads (Velocity, 

Depth, Substrate) of the initial extracted records, in general, are more common than 

the last extracted triads that are rarer. Therefore, the subsample has each variable 

distribution similar to the original Availability dataset. The Fig. 7 shows an example of 

the selection of the records suitable to be extracted for the Senia-2006 dataset where 

13 records were sub-sampled. It is important to remember at this point, the survey was 

done with an equal effort surveying methodology; otherwise a strong bias would be 

committed. 

Statistical tests were then applied to check differences between the original Availability 

dataset and its respective sub-sample. These tests were applied to the three 

microhabitat variables separately. The applied tests were a robust generalization of 

Welch test (Welch, 1951), which compares means, and a robust generalization of 

Kruskal-Wallis test (Rust and Filgner, 1984), which is a non-parametric test on variance 

analysis. 
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Fig. 7 Steps followed during the sub-sampling approach in order to generate 0.5 prevalence 
databases (source: Muñoz-Mas et al., 2012). On the left, calculation of the distance of every 
case to the centre of gravity. On the right cumulative frequency analysis and systematic 
extraction of the corresponding cases. Numbers next to the dots correspond to the extracted 
cases.  

 

3.5.2 Data-driven fuzzy approach for habitat suitability modelling 

The development of the Data-driven fuzzy models followed the methodology presented 

by Mouton (2008). Their development involve two main procedures similarly to the 

steps followed to develop the Expert-knowledge fuzzy models explained above. Firstly 

the optimization of the Fuzzy Sets is carried out and then the Fuzzy Rules are 

optimized.  

The optimization of the Fuzzy Sets aims at the optimal discretization of the input 

variables in categories; Low, Medium, High etc. based on the Shannon–Weaver 

entropy (Shannon and Weaver, 1963). The main goal was to obtain a balanced  

discretization based on the number of cases included in each Fuzzy Set, in order to 

improve the results in the optimization of Fuzzy Rules; otherwise, if a Fuzzy Set of an 
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input variable contains very few training instances, the rules that apply this Fuzzy Set 

will be poorly trained. In the Data-driven approach, the Fuzzy Set geometry is also 

defined by its membership function and, following the same criteria than the Expert-

knowledge approach, the selected geometry was the trapezoidal. Likewise the EK 

methodology, four parameters, am, bm, cm and dm, determine the degree of membership 

of a given value to that Fuzzy Set. The optimization of the Fuzzy Sets consists of the 

slight modification of these parameters, step by step; after each modification the 

Shannon–Weaver entropy following (1) is calculated: 

 (1) 

where n is the number of classes or Fuzzy Sets and pi the proportion of data belonging 

to the class i. These steps are going on while an improvement of the entropy is 

obtained and until the entropy reach the threshold or the maximum. In order to 

calculate the proportion of data in a given class, a datum is assigned to a given class 

(Fuzzy Set) if its membership is higher than 0.5 (see Mouton et al. 2008 for further 

details). 

A Presence/Absence was the selected output discretization thus two Fuzzy Sets were 

generated to cover the output range. Although more gradual discretizations are 

sometimes used, the method of direct observation for individual fish lead to this option, 

preventing from any other discretization of the output, because the survey was carried 

out trout by trout and there was no micro-scale information about fish abundance 

(which usually demands an estimation at larger scales). 
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Therefore, the habitat suitability was discretized in two Fuzzy Sets with no overlapping 

areas. The absence of overlapping areas do not provide always an integer value, zero 

for Absence or one for Presence, because the final suitability depends on the centre of 

gravity of both Fuzzy Sets, considering the areas under their respective degrees of 

fulfilment. Therefore, an smooth transition from presence to absence is obtained. 

The Data-driven fuzzy models also present a set of rules which relate the inputs with 

the output variable. These rules are also constructed as an If-Then sequence, and the 

optimization of the proper consequent for every set of antecedents was the main goal 

of the following step. This optimization was carried out based on the information 

contained in the pooled database for each size class (i.e. the pooled data from the Use 

dataset and the sub-sampled Availability). 

The optimization was done with the software FISH (Mouton 2010). During the 

optimization process FISH© executes a defuzzyfication procedure generating a fuzzy 

classification (Mouton et al., 2008) and the entire optimization is based on the 

comparison of the potential output and the measured one by means of a performance 

criterion based on the confusion matrix (Mouton et al., 2010a). The entire optimization 

was based on the performance criterion of Cohen's Kappa (Cohen, 1960) (hereafter 

Kappa) which showed acceptable results in previous studies (Mouton et al., 2008; 

Muñoz-Mas et al., 2012). The Fuzzy Rules were optimized based on the hill-climbing 

algorithm (Michalewicz and Fogel, 2000) in FISH. For each fuzzy rule (or set of 

antecedents) the process start at one random consequent (for example Low), then this 

consequent is changed to its adjacent category (for example, Medium ) and the Kappa 

is calculated. If the model performance increases in the current step, the algorithm 
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continues with the adjusted rule; if not, it retains the previous one repeating the process 

with a new output category. 

To assess the model convergence and robustness, for the adult and the juvenile 

classes, 10 times three-fold cross validations were done, with five iterations each; for 

fry, 10 times two-fold cross validations were done, also with five iterations each. The 

value of Kappa was then calculated as the average value of such criterion in the 150 or 

the 100 resulting confusion matrices. The optimal consequent of a rule was the 

consequent that occurred with the highest frequency in the optimizations. The rules 

that did not present any case to be trained (hereafter 'uncovered rules') were assessed 

by comparison with the Expert-knowledge approach. 

3.6 Validation, model adjustment and models comparison 

A spatially explicit validation was carried out in order to test models generalization and 

their transferability over the study site of the Cabriel River. The validation was carried 

out in terms of model sensitivity and model specificity (i.e. the ability of the generated 

models to assess fish location with the maximum suitability, but not assessing the 

entire reach with the maximum suitability). The flow present in the validation survey 

(0.89 m3/s) was simulated in the hydraulic model and the habitat suitability for each 

pixel was calculated using the generated models, i.e. Expert-knowledge and Data-

driven models. The entire assessment was carried out with the fish habitat module of 

the CASiMiR numerical modelling toolbox (Jorde, 2000; Schneider, 2001) discretising 

the modelled area in pixels of 1 m2. 

A frequency analysis, pixel by pixel, of the assessment of the entire area for the nine 

generated models was carried out, after reclassifying suitability in five equal intervals 
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(width 0.2). In addition, the frequency analyses of suitability at the fish locations (for 

each size class) were carried out applying the same discretization; then both 

distributions were compared. 

It is relevant to remember that the Expert-knowledge fuzzy models were based on the 

HSCs which were developed applying an smoothing technique over the calculated 

histograms. This procedure filled the intervals where there were no fish observations, in 

order to provide unimodal curves. This filling-up modified the curve values toward 

higher values of suitability; however, the Data-driven approach does not allow 

automatically the implementation of similar modification. Therefore, the irregular 

distribution of the Use data can produce irregular patterns on the transitions between 

suitable and unsuitable conditions gathered in the Fuzzy Rules set. 

To reduce or mitigate this effect, the output of the assessment of the trout locations by 

means of the generated Data-driven models was used as a feedback to modify the 

corresponding Fuzzy Rules in the Data-driven approach. Accordingly to the procedure 

applied in the Expert-knowledge approach, the modifications tried to maximize the 

percentage of fish locations in pixels assessed  with high or the maximum suitability, 

thus surely producing overpredictive model. However overprediction should not be 

considered a model error (Mouton et al., 2010b). The absence of the target species in 

a suitable area may be due to the unbalanced colonization of habitats in the study area 

given the presence of barriers, temporal population variations or sampling inefficiencies 

(MacKenzie et al., 2003). Additionally, the modification was intended to be the 

minimum in order to keep the results in the data driven approach, with minimum human 

intervention. 
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The number of Fuzzy Sets and Fuzzy Rules can vary regarding the considered 

approach. Additionally the fact that the Use data were collected for individual fish 

limited the Data-driven output, reducing the problem to a Presence/Absence approach 

thus the considered output in the Expert-knowledge approach and in the Data-driven 

approach differed in the number of fuzzy sets. Altogether hampered the models 

comparison, thus two different approaches were carried out. The first one based on 

similarities and differences on the rules consequents and the second one based on the 

models performance. The first comparison could be considered more mathematical, 

and the second more biological. 

It has been demonstrated that Fuzzy Rules and their corresponding Membership 

functions have a strong impact on model training (Mouton, 2008) and hence on model 

performance thus the direct comparison of the Fuzzy Rules derived from different 

Fuzzy Sets and approaches; Expert-knowledge and Data-driven, was considered 

potentially imprecise. Then in order to check the robustness of the developed Expert-

knowledge Fuzzy Rules, the Fuzzy Rules based on Expert-knowledge Fuzzy Sets were 

optimized by means of the Data-driven approach. The Fuzzy Sets generated by means 

of the Data-driven approach and the Expert-knowledge approach did not match thus its 

counterpart was unfeasible. Then, the consequents were compared and discussed 

between Data-driven and Expert-knowledge models for each fish class.  

The second comparison was carried out between the models performance with the 

simulated flow at the validation site. The assessment of the four developed models for 

each size class were pairwise compared in the spatially explicitly context of the river 

reach. However, the outputs from the two main approaches dissuaded from a pixel by 

pixel comparison, thus the spatial explicit comparison was carried out with the Map 
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Comparison Kit version 3.2.2 (Research Institute for Knowledge Systems, The 

Netherlands, 2011). This software allows the comparison taking into account certain 

degree of tolerance between the categories of the overlaid pixels and taking into 

account the surrounding pixels. The comparison becomes a fuzzy comparison in both 

the category definition and in the considered location (Hagen, 2003; Hagen-Zanker et 

al., 2005). 

The fuzziness of the overlaid categories was implemented by assigning to each cell a 

membership vector instead of a single category. Each element in the vector declares 

the degree of membership for one category (Hagen, 2003) and ranges from one, 

perfect agreement, to zero, null agreement. All this information is gathered in the 

'category similarity matrix', where similarity between categories decreases when 

distance from the diagonal increases. The considered decrease was linear from the 

same category, with perfect agreement, to the further category, with null agreement, 

presenting perfect consistency (Saaty, 1980) (Table 3). 

 

Table 3. Category similarity matrix used in the spatial fuzzy comparison of the models. The 
considered similarity linearly decreases as the category becomes farther. The linearity provided 
a perfect consistency (Saaty, 1980). 

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

0.0-0.2 1 0.75 0.5 0.25 0

0.2-0.4 0.75 1 0.75 0.5 0.25

0.4-0.6 0.5 0.75 1 0.75 0.5

0.6-0.8 0.25 0.5 0.75 1 0.75

0.8-1.0 0 0.25 0.5 0.75 1

Suitability
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u
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a
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In addition, the fuzziness of location considers the area surrounding each pixel, 

therefore the fuzzy representation of a given pixel depends on the cell itself and, to a 

lesser extent, on the cells within a certain distance in its neighbourhood (Hagen, 2003).  

The extent to which the neighbouring cells influence the fuzzy calculation is 

represented by a distance decay function. There is no a standard universal way to 

select the proper decay function and its parameters (personal communication Hagen, 

2012). The brown trout could be basically considered a territorial fish (Chapman and 

Bjonn, 1969; Titus, 1990; Johnsson et al., 2000) thus its distribution along the 

validation site was expected to be determined by its territoriality (i.e. the disposition of 

the surrounding individuals conditioned the position of the considered individual). 

Therefore the selected extent of the influencing neighbour cells was based on the 

distances of each individual to the nearest. Therefore, in the present study, a linear 

decay (cone shape, defined by slope = 1) and a variable radius of 5 m, 5 m and 2.5 m 

for adult, juvenile and fry, respectively, were considered as appropriate accordingly to 

the mean distance to the nearest trout of the corresponding size class. The fuzzy 

Kappa statistic was selected as the similarity index. The fuzzy Kappa statistic is similar 

to the traditional Cohen’s Kappa (Cohen, 1960), correcting the overall agreement of 

both models by the agreement expected to occur by chance. 

The results of the previous analyses provided us with a general assessment on the 

performance of the models over the validation area, but they did not consider trout 

densities. Trout could be considered a territorial fish (Chapman and Bjonn, 1969; Titus, 

1990; Johnsson et al., 2000), thus a validation considering fish density was appropriate 

because the correct assessment of the most populated areas could be considered a 

keystone in the selection of a given model for further analysis. An estimated trout 
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density would be desirable to carry out the proper validation, but the survey methods 

do not allow its correct calculation. Therefore, the trout density was calculated as the 

number of fish observed of a given class per unit area. Fish density was calculated 

using the tool Kernel Density in ESRI® ArcMapTM 9.3 (Copyright© 1999-2008 Esri 

Inc.) with a radius equal to the mean distance to the nearest trout of the corresponding 

class accordingly to the aforementioned calculation of the fuzzy comparison. 

This density value was standardized between 0 and 1 and discretized, also in five 

intervals corresponding to; Very Low density, Low density, Medium density, High 

density and Very high density. The mean habitat suitability, assessed by means of the 

generated models, was calculated and the results were compared and plotted (Fig. 9). 

Finally, the variability of the assessment for the areas with similar density was also 

analysed by plotting the range of the assessed suitability in terms of maxima and 

minima. 
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4 Results 

4.1 Habitat Suitability Curves and Fuzzy Sets - Adult  

4.1.1 Habitat Suitability Curves - Adult 

The Category II ½ curves for the adult trout showed the maxima at 0.125 m/s, 0.35 m 

and 6 (corresponding to cobble) for velocity, depth and substrate index respectively 

(Fig. 8). The Category III curves showed a clear displacement of the highest suitability 

to higher velocity and larger depth, thus the maximum suitability appeared around 0.8 

m/s and 1.3 m respectively, and 5.5 for substrate index (corresponding to gravel-

cobble). Only the depth curve showed a clear pointed shape, but the other Category III 

curves were wider than the Category II ½ counterparts (Fig. 8). 

4.1.2 Expert-knowledge Fuzzy Sets - Adult 

With the Expert-knowledge approach, based on Category II ½ and Category III curves, 

three Fuzzy Sets were produced for the variable velocity, four Fuzzy Sets for the 

variable depth and two Fuzzy Sets for substrate, presenting certain similarity in the 

shapes of the Fuzzy Sets but varying in their partial suitability (Fig. 8). 
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Fig. 8. Category II ½ and Category III Habitat Suitability Curves and their corresponding Fuzzy 
Sets for Adult brown trout. The last sequence corresponds to the Data-driven Fuzzy Sets 
obtained from the Shannon-Waver entropy based optimization. Nuse correspond to the amount 
of trout observations whereas the Navail to the amount of observation about the surrounding 
conditions considered in the development of the corresponding model. In the back the complete 
frequency analysis of the Use data and the Availability data is shown. 
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4.1.3 Data-driven Fuzzy Sets - Adult 

After the sub-sampling, the statistical tests did not show significative differences 

between the original database and the extracted sub-sample (Table 4). The Data-

driven approach discretised the variables velocity and depth in three Fuzzy Sets, and 

the variable substrate in two Fuzzy Sets, achieving the Shannon–Weaver entropy 

values of 0.42, 0.99 and 0.94 for velocity, depth and substrate respectively (Fig. 8).  

 

Table 4 Test results for every sub-sampled Availability dataset. Tval. means test value and S 
lev. means signification level. 

T.val. S.lev. T.val. S.lev. T.val. S.lev. T.val. S.lev. T.val. S.lev. T.val. S.lev.

Cuervo 2009 0.14 0.71 0.4 0.52 0.66 0.42 0.08 0.76 0.36 0.54 0.58 0.44

Guadiela 2009 0.02 0.88 0.79 0.38 0.03 0.86 0 0.98 0.25 0.61 0.04 0.85

Senia 2007 0.02 0.87 0.78 0.38 - - 0 0.98 0.25 0.61 - -

Jucar 2007 0.05 0.82 0.26 0.52 0.47 0.51 0.04 0.84 0.06 0.8 0.85 0.35

Substrate 

(S)

River Year

Robust generalization of Welch test
Robust generalization of 

Kruskal-Wallis

Depth (m)
Velocity 

(m/s)

Substrate 

(S)
Depth (m)

Velocity 

(m/s)

 

 

4.1 Habitat Suitability Curves and Fuzzy Sets - Juvenile  

4.1.1 Habitat Suitability Curves - Juvenile 

The juvenile case produced Category II ½ curves with maxima at 0.175 m/s, 0.35 m 

and substrate index around 6 (corresponding to cobble) for the variables velocity, depth 

and substrate respectively (Fig. 9). The Category III curves showed a certain 

displacement of the highest suitability to higher velocity and larger depth, achieving the 

maxima at 0.55 m/s and 0.55 m respectively, and the highest suitability for substrate 
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index of 4 (i.e. gravel). In comparison with the adult, the Category III curves for juvenile 

did not present as dramatic displacements; regardless the considered variable, these 

curves presented a wider suitability than the Category II ½ counterparts (Fig. 9). 

4.1.2 Expert-knowledge Fuzzy Sets - Juvenile 

The Expert-knowledge approach showed a different discretization in the models 

derived from Category II ½ and Category III. From Category II ½ curves, two, four and 

two Fuzzy Sets were obtained for velocity, depth and substrate, respectively, whereas 

from the Category III, the Fuzzy Sets presented similar discretization as the adult, with 

three, three and two Fuzzy Sets for velocity, depth and substrate (Fig. 9).
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Fig. 9 Category II ½ and Category III Habitat Suitability Curves and their corresponding Fuzzy 
Sets for Juvenile brown trout. The last sequence corresponds to the Data-driven Fuzzy Sets 
obtained from the Shannon-Waver entropy based optimization. Nuse correspond to the amount 
of trout observations whereas the Navail to the amount of observation about the surrounding 
conditions considered in the development of the corresponding model. In the back the complete 
frequency analysis of the Use data and the Availability data is shown. 
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4.1.3 Data-driven Fuzzy Sets - Juvenile 

As in the case of large fish, the sub-sampling methodology did not produced statistical 

differences between the original database and the subsample, and the resulting 

database was considered suitable for further analysis (Table 5).  

 

Table 5. Test results for every sub-sampled Availability dataset. T. val. means test value and S. 
lev. means signification level. 

T.val. S.lev. T.val. S.lev. T.val. S.lev. T.val. S.lev. T.val. S.lev. T.val. S.lev.

Senia 2006 0.07 0.79 1.24 0.28 0.02 0.9 0.25 0.62 0.05 0.83 0.02 0.9

Senia 2007 0.03 0.87 2.09 0.17 0.19 0.67 0.08 0.78 2.34 0.13 0.01 0.91

Jucar 2006 0.06 0.81 0.23 0.64 0.98 0.34 0.05 0.83 1.25 0.26 1.06 0.3

Jucar 2007 0.1 0.75 0.03 0.87 0.43 0.52 0.15 0.7 0.25 0.62 0.62 0.43

Cabriel 2005 Set 0.04 0.83 0.31 0.58 0.04 0.84 0.02 0.89 0.07 0.79 0.01 0.94

Cabriel 2005 Oct 0.47 0.5 0.17 0.68 0.52 0.47 0.3 0.58 0.06 0.81 0.56 0.45

Substrate 

(S)

River Year

Robust generalization of Welch test
Robust generalization of

Kruskal-Wallis

Depth (m)
Velocity 

(m/s)

Substrate 

(S)
Depth (m)

Velocity 

(m/s)

 

 

The Data driven approach discretized the variable velocity in three Fuzzy Sets, the 

depth in three, and substrate in two, achieving the Shannon–Weaver entropy values of 

0.62, 0.98 and 0.87 respectively (Fig. 9). 
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4.2 Habitat Suitability Curves and Fuzzy Sets - Fry 

4.2.1 Habitat Suitability Curves - Fry 

The fry showed Category II ½ unimodal curves with maxima at 0.12 m/s, 0.25 m and 

substrate index of 0 (corresponding to silt and vegetation) for the variables velocity, 

depth and substrate respectively (Fig. 10). The Category III curves presented certain 

displacement toward larger values of velocity and depth, thus the peak of the curve 

appeared at 0.55 m/s and 0.57 m respectively, whereas the highest suitability for 

substrate remained constant (Fig. 10). 

4.2.2 Expert-knowledge Fuzzy Sets - Fry 

The Expert-knowledge approach lead to a different number of Fuzzy Sets for the 

models derived from the Category II ½ and the Category III curves. The Category II ½ 

curves produced fewer Fuzzy Sets than the Category III. The variable velocity was 

discretized in two Fuzzy Sets and the variable depth in three Fuzzy Sets whereas the 

variable substrate presented two Fuzzy Sets. The discretization derived for the 

Category III curves was similar for the three involved variables presenting three Fuzzy 

Sets for the three variables (Fig. 10). 
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Fig. 10 Category II ½ and Category III Habitat Suitability Curves and their corresponding Fuzzy 
Sets for Brown trout fry. The last sequence corresponds to the Data-driven Fuzzy Sets obtained 
from the Shannon-Waver entropy based optimization. Nuse correspond to the amount of trout 
observations whereas the Navail to the amount of observation about the surrounding conditions 
considered in the development of the corresponding model In the back the complete frequency 
analysis of the Use data and the Availability data is shown. 
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4.2.3 Data-driven Fuzzy Sets - Fry 

The sub-samplig methodology did not produced statistical differences between data 

sets (Table 6). The Data driven approach discretized the variable velocity in three 

Fuzzy Sets, depth in three Fuzzy Sets and substrate in two Fuzzy Sets, achieving the 

Shannon–Weaver entropy values of 0.59, 0.98 and 0.98 for the variables velocity, 

depth and substrate respectively (Fig. 10). Notice the variable substrate presented 

almost no overlapping. 

 

Table 6. Test results for every sub-sampled Availability dataset. T. val. means test value and S. 
lev. means signification level. 

T.val. S.lev. T.val. S.lev. T.val. S.lev. T.val. S.lev. T.val. S.lev. T.val. S.lev.

Turia 2006 1.17 0.29 0.82 0.37 0.87 0.37 2.2 0.1 0.7 0.4 0.7 0.4

Jucar 2007 1.17 0.29 0.82 0.37 0.83 0.37 2.2 0.1 0.7 0.4 0.7 0.4

River Year

Robust generalization of Welch test
Kruskal-Wallis

Depth (m)
Velocity 

(m/s)

Substrate 

(S)
Depth (m)

Velocity 

(m/s)

Robust generalization of

Substrate 

(S)

 

 

4.3 Fuzzy Rules 

4.3.1 Expert-knowledge Fuzzy Rules 

The Expert-knowledge Fuzzy Rules were generated accordingly to the aforementioned 

methodology and are summarized in the Table 7. The Expert-knowledge approach 

allowed the definition of the whole Fuzzy Rules set thus no uncovered rules appeared 

in the application of this approach. 
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4.3.2 Data-driven Fuzzy Rules  

The Data-driven optimization of the Fuzzy Rules achieved the values 0.31 ± 0.04, 0.21 

± 0.02 and 0.37 ± 0.08 of the Cohen's Kappa for the adult, the juvenile and the fry size 

class respectively. The training for the adult model presented five rules uncovered (with 

no cases to be trained) and the Expert-knowledge approach was used in their 

determination. The juvenile model presented five uncovered rules and were also 

determined using expert knowledge. The fry model had more uncovered rules, (seven), 

and similarly the Expert-knowledge approach was used in their definition (Table 7). 
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Table 7 Summary of the Fuzzy Rules for the habitat suitability models. EK = Expert-knowledge, 
DD = Data-driven. Italics mean adjusted/modified rule. Asterisk (*) means uncovered rule. The 
output was determined through authors consensus in the EK models. Bold means discrepant 
output in the two approaches. Numbers refer to the amount of cases for training each rule.  
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1 L VL L L * L L1 L *

2 L L L L * M L22 L H L15 L L1 L H H24 L L1 L

3 L M L H L30 M L3 L M L30 M L13 L H H10 H H28 H

4 L H L M L1 M * H L L3 L * L/H L * L * H

5 M VL L L * L *

6 M L L L * M L2 H M H2 L * L L * L

7 M M L M L3 H * H M * H H27 H H H6 L

8 M H L M * M * H* L * L * H* L * H*

9 H VL L L * L * L *

10 H L L L * L * H L * L * L L L1 L * L*

11 H M L L * L * H* L * L * L* L * L * L*

12 H H L L * L * H* L * L * L* L * L * L*

13 L VL H L * L L1 L *

14 L L H L * M L109 L/H H H104 L L1 H H L37 L L2 L

15 L M H H H115 H H49 H H H51 H L44 H M H7 H L21 L/H

16 L H H M H37 M * H L L9 L L2 H L * L * H

17 M VL H L * L *

18 M L H L * H L9 L H H39 L * H L L1 H

19 M M H H H7 H H1 H M * H H172 H M L26 L

20 M H H M * M * H* L * L L1 H* L * H*

21 H VL H L * L * L *

22 H L H L * L L1 L L L15 L * L L H7 L * L*

23 H M H L L2 L * H* L * L L9 L L * L H1 H

24 H H H L H1 L * H L * L * L* L * L * L*  

 

4.4 Fuzzy Rules robustness and Fuzzy Rules comparison 

The training of the Fuzzy Rules using the Data-driven approach and considering the 

Fuzzy Sets based on the HSCs produced a model for adults with a Kappa value of 0.20 
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± 0.03 after the Category II ½ curves, and 0.21 ± 0.03 after the Category III curves. The 

juvenile models obtained Kappa = 0.18  ± 0.03 (based on Category II ½) and Kappa = 

0.19 ± 0.05 (based on Category III). The fry models presented the highest values of 

Kappa, being 0.39 ± 0.1 and 0.37 ± 0.1 for the Category II ½ and the Category III-

based models, respectively. 

Therefore, the performance indices were in any case lower than those obtained with 

the Fuzzy Sets developed within the Data-driven approach. The amount of uncovered 

rules was larger than in the pure Data-driven approach. The adult models presented 55 

% and 66 %, based on Category II ½ and Category III curves, respectively. The 

juvenile model presented and slightly improvement with 54 % and 50 % of uncovered 

rules, whereas the fry had a higher amount of uncovered rules, i.e. 62 % and 55 % in 

the two models. Accordingly, these results demonstrated the improvement of the 

proper distribution of the training cases on the optimization results (i.e. higher values of 

Kappa) and the reduction of uncovered rules. 

The Expert-knowledge approach discretized the output in three Fuzzy Sets (i.e Low 

suitability, Medium suitability and High suitability) and the Data-driven approach in two 

Fuzzy Sets (i.e Low suitability and High suitability), thus the comparison of the output 

meant a significant difference only if an approach provided High suitability while the 

other provided Low suitability. 

4.4.1 Fuzzy Rules comparison - Adult 

The Data-driven Fuzzy Rules for the adult, based on the Category II ½ Fuzzy Sets, 

differed in two rules with its Expert-knowledge counterpart (Rule #3 and Rule #24 

Table 7). However the major difference appeared in a single rule (Low Velocity, 
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Medium Depth and Low Substrate) because this presented a large amount of training 

cases (30 cases) whereas the other discrepant rule appeared in the rule covering High 

Velocity, High Depth and High Substrate which was trained based on a single observed 

trout (1 case) thus its discrepancy was considered uncertain in comparison with the 

previous case. 

The Expert-knowledge approach based on Category III curves discretized the variable 

depth in four fuzzy sets (i.e. Very Low depth, Low depth, Medium depth and High 

depth). The Data-driven fuzzy model trained with that Fuzzy Sets based on the 

Category III HSCs did not presented any case to train the rules including the Very Low 

depth Fuzzy Set. Additionally it presented a single discrepant rule corresponding to 

Medium Velocity, Low Depth and High Substrate; its suitability was considered High in 

the Expert-knowledge approach and Low in the Data-driven approach but it was trained 

with only 9 cases (Rule #18 Table 7). However an appreciable difference was observed 

in the assessment of the rules that included the Fuzzy Set corresponding to Low 

Depth, thus the Expert-knowledge approach showed permissive assigning the Medium 

suitability to that rules whereas the Data-driven approach assessed that rules always 

as Low thus restricting the suitable areas to deeper areas in comparison with the 

Expert-knowledge approach. 

4.4.2 Fuzzy Rules comparison - Juvenile 

The comparison of the Fuzzy Rules between Expert-knowledge and Data-driven based 

on HSCs, for juvenile, showed discrepancies in only one rule between models based 

on Category II ½ HSCs (Rule #2 Table 7) and similarly one rule differed in the model 

based on Category III HSCs (Rule #15 Table 7). The Category II ½ based models 

differed in the rule; Low Velocity, Low Depth and Low Substrate, which was considered 
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High in the Expert-knowledge approach and Low in the Data-driven. In the Category III 

based models differed in the rule; Low Velocity, Medium Depth and High Substrate, 

thus it was considered High in the Expert-knowledge approach and Low in the Data-

driven (Table 7). 

4.4.3 Fuzzy Rules comparison - Fry 

The fry presented the largest differences, with two discrepant outputs in the Category II 

½ case (Rule #14 and Rule #22 Table 7) and two in the Category III case (Rule #15 

and Rule #23 Table 7). However the major difference in the Category II ½ case 

appeared in a single rule, Low Velocity, Low Depth and High Substrate, trained with 37 

cases which corresponded to the 44 % of the whole database; based on Category III 

curves, the major difference was in the rule; Low Velocity, Medium Depth and High 

Substrate, trained with 21 cases (25 % of the whole database). 

4.5 Fuzzy models performance 

4.5.1 Fuzzy models performance - Adult 

The assessment of the simulated flow at the validation site showed different results for 

the models of adult brown trout. The Expert-knowledge model based on Category II ½ 

curves assessed most of the reach with high suitability, but the shores and the deep 

areas corresponding to the northern and middle reach areas (Fig. 11 A). On the 

contrary, the Expert-knowledge model based on the Category III HSCs presented most 

of the area as medium suitability and higher variability; the suitability gradually 

increased from the shallower areas to the deeper, where it can be High or Very High 

(Fig. 11 B). 
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Fig. 11. Maps of habitat suitability assessment for the adult brown trout carried out with the four 
models in the validation site (Cabriel River). A - Expert-knowledge based on Category II ½ 
curves, B - Expert-knowledge based on Category III curves, C - Unmodified Data-driven model 
and D - Modified Data-driven model. N means trout observations at the validation site. The 
Suitability was classified in 5 categories corresponding to Very Low (VL), Low (L), Medium (M), 
High (H) and Very High (VH). 

 

The unmodified Data-driven model assessed most of the reach as unsuitable for adult 

brown trout, but the deep areas which were assessed with the highest suitability (Fig. 

11 C). One rule was modified in order to maximize the number of fish locations 

assessed with the maximum suitability (Rule #14, Table 7). The assessment showed 

most of the reach as highly suitable but the shores remained unsuitable (Fig. 11 D). 
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4.5.2 Fuzzy models performance - Juvenile 

In general, there was a larger agreement among the models for the juvenile brown 

trout. The Expert-knowledge fuzzy model based on Category II ½ curves assessed 

most of the reach with the highest suitability, but the shores and the deeper areas, 

especially in the northern area (Fig. 12 A). The Expert-knowledge model based on 

Category III HSCs presented the highest suitability all along the surface but a narrow 

fringe parallel to the shores (Fig. 12 B). 

 

 
Fig. 12 Maps of habitat suitability assessment for the juvenile brown trout carried out with the 
four models in the validation site (Cabriel River). A - Expert-knowledge based on Category II ½ 
curves, B - Expert-knowledge based on Category III curves, C - Unmodified Data-driven model 
and D - Modified Data-driven model. N means trout observations at the validation site. The 
Suitability was classified in 5 categories corresponding to Very Low (VL), Low (L), Medium (M), 
High (H) and Very High (VH). 
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The unmodified Data-driven model assessed most of the reach as highly suitable but a 

relatively wider fringe parallel to the shores (Fig. 12 C) and small pieces of shallow/fast 

habitats. One rule was modified in order to maximize the number of fish location 

assessed with the maximum suitability (Rule #4,Table 7). This change improved the 

sensitivity of the model, and the validation flow was assessed mostly with the highest 

suitability, enlarging the suitable area and narrowing the aforementioned fringes (Fig. 

12 D). As the previous Data-driven model, this one presented small pieces of 

shallow/fast habitats with lower suitability. 

4.5.3 Fuzzy models performance - Fry 

The habitat assessment for the fry showed certain disparity between models. The 

Expert-knowledge model based on Category II ½ curves assessed most of the reach 

as highly suitable but the shores and the deeper areas (Fig. 13 A); however, the 

Expert-knowledge model based on Category III presented high suitability all along the 

surface but keeping certain decrease on the deeper areas, although this phenomenon 

appeared attenuated in comparison with the previous model (Fig. 13 B). 

On the contrary, the unmodified Data-driven fuzzy model assessed the deeper areas 

as highly suitable and the shallower as unsuitable, switching the habitat assessment of 

the two Data-driven models (Fig. 13 C). One rule was modified to improve the Data-

driven fuzzy model (Rule #15, Table 7), maximizing the number of fry locations 

assessed with the maximum suitability; thus the reach was assessed mostly with the 

highest suitability but near the shores (Fig. 13 D), and the difference with the previous 

Data-driven model was notable.  
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Fig. 13 Maps of habitat suitability assessment for the fry brown trout carried out with the four 
models in the validation site (Cabriel River). A - Expert-knowledge based on Category II ½ 
curves, B - Expert-knowledge based on Category III curves, C - Unmodified Data-driven model 
and D - Modified Data-driven model. N means trout observations at the validation site. The 
Suitability was classified in 5 categories corresponding to Very Low (VL), Low (L), Medium (M), 
High (H) and Very High (VH). 

 

4.6 Comparison of Fuzzy models performance - Frequency analysis 

The frequency analysis of the habitat assessment over the simulated validation site 

showed that, disregarding the Data-driven modifications, the Expert-knowledge models 

were in general more optimistic (higher suitability values) than the Data-driven models 

(Fig. 14).  
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4.6.1 Expert-knowledge fuzzy models based on Category II ½ HSCs 

The Expert-knowledge fuzzy models based on Category II ½ curves indicated, for the 

three size classes, that most of the reach had the maximum suitability; thus the 

sensitivity was high but not the specificity (Fig. 14, upper sequence). The models 

presented large frequency of the higher suitability (i.e. suitability ranging from 0.6 to 

1.0) within the entire reach (i.e. Availability) (Fig. 14 black bars) similarly than the 

frequency analysis of the assessment of the trout locations (i.e. habitat Use) (Fig. 14 

grey bars). 
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Fig. 14 Frequency analysis of the habitat assessment carried out with the four generated 
models and the three size classes (black bars) over the entire simulation reach (Availability 
data). Frequency analysis of the habitat assessment carried out with the four generated models 
and the three size classes (grey bars) over the corresponding size class locations (Use data). 
EK mean Expert-knowledge and DD Data-driven.  
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4.6.2 Expert-knowledge fuzzy models based on Category III HSCs 

The frequency analysis for the Expert-knowledge fuzzy models derived from Category 

III HSCs (Fig. 14 second sequence) presented most of the area with the maximum 

suitability (i.e. 0.8 - 1.0) for the juvenile and the fry size classes (Fig. 14 black bars) and 

all the observed trout locations in both size classes were assessed with the maximum 

suitability (Fig. 14 grey bars). In that class of maximum suitability, there is an over-

proportion of habitat Use in relation to Availability. Therefore, the models for juvenile 

and fry based on Category III HSCs presented perfect sensitivity but low specificity. 

The adult model presented the habitat assessment spread along the considered 

categories in comparison with the previous models. The largest frequency of the 

Availability (Fig. 14 black bars) appeared for the middle ranged suitability (i.e. suitability 

from 0.4 to 0.6) and the frequency decreased in both sides, towards lower and higher 

suitability (Fig. 14 black bars). However, there were no habitat Use in the lower 

suitability intervals (Fig. 14 grey bars) and an appreciable amount of trout locations 

were assessed within the higher suitability intervals (i.e. suitability ranging from 0.4 to 

1.0). As well as in the two previous models, there was an over-proportion of habitat 

Use in relation to the Availability; this means that there was a positive selection of the 

fish towards the microhabitats of higher suitability, as expected. Therefore it presented 

good sensitivity but the better specificity among the Expert-knowledge fuzzy models 

(Fig. 14 first and second sequences). 

4.6.3 Data-driven fuzzy models 

The unmodified Data-driven fuzzy models presented major disparity among the results 

(Fig. 14 third sequence). The adult case presented a good trade-off between sensitivity 
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and specificity (Fig. 14 third sequence - Adult). The largest frequency of the 

assessment of the entire reach appeared in the lowest suitability interval (i.e. suitability 

ranging from 0.0 to 0.2) (Fig. 14 black bars) whereas the maximum frequency of adult 

locations corresponded to the highest suitability interval (i.e. 0.8 - 1.0) (Fig. 14 grey 

bars). However, accordingly to the premise that overprediction is not necessarily an 

ecological error, the Data-driven model for the adult class was modified by enlarging 

the adult locations assessed with the maximum suitability (Fig. 14 last sequence - 

Adult). It maximized the trout locations assessed with the maximum suitability  (i.e. 

suitability ranging from 0.8 to 1.0) (Fig. 14 grey bars) thus maximized the sensitivity 

and retained certain specificity, because the Availability data presented a relevant 

proportion with the lowest suitability (i.e. suitability ranging from 0.0 to 0.2) (Fig. 14 

black bars). 

The frequency analysis of the unmodified Data-driven model for juvenile showed most 

of the reach and most of the habitat use at microhabitats with the highest suitability (i.e. 

suitability ranging from 0.8 to 1.0) (Fig. 14 third sequence - Juvenile). Thus presented a 

high sensitivity and relatively low specificity (Fig. 14). However an appreciable amount 

of trout were located in areas assessed as unsuitable (i.e. suitability 0.0 - 0.2). The 

modification of a single rule (Rule #4 Table 7) displaced the assessment (Fig. 14 last 

sequence - Juvenile) of that juvenile locations to higher suitable values (Fig. 14 grey 

bars) but the specificity remained almost constant (Fig. 14 black bars) . 

The unmodified Data-driven fuzzy model for the fry size class presented the worse 

results (Fig. 14 third sequence - Fry). The maximum frequency appeared for the lowest 

suitability (i.e. suitability 0.0 - 0.2) and most of the fish locations were assessed as 

unsuitable (Fig. 14 grey bars). Thus the sensitivity was low. The modification of a single 
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rule (Rule #15 Table 7) improved the results (Fig. 14 last sequence - Fry) maximizing 

the trout locations with maximum suitability (i.e. 0.8 - 1.8) (Fig. 14 grey bars), but 

keeping an acceptable trade-off between sensitivity and specificity. 

4.7 Comparison of Fuzzy models performance - Fuzzy Kappa analysis 

The spatially explicit comparison between models did not show a clear pattern and the 

degree of similarity varied regarding the considered approach and size class. However 

it could be considered that the similarity was generally low.  

The adult models presented no similarity regardless the considered approach or model 

(Table 8) but a slight similarity between the Expert-knowledge fuzzy model based on 

Category II ½ HSCs and the modified Data-driven model, because this comparison 

achieved a value of fuzzy Kappa 0.42. However this value was mainly produced by the 

fact that most of the reach was considered highly suitable rather than the fact that both 

approaches presented similar pattern of the assessment; more specifically, the Expert-

knowledge approach indicated a reduction of suitability as the depth increases whereas 

the unmodified Data-driven model presented the opposite pattern (Fig. 11). 

The juvenile models presented perfect agreement between those assessments 

belonging to the same approach, but lower similarity for different approaches, although 

the modified Data-driven model presented certain similarity with the Expert-knowledge 

models, achieving the fuzzy Kappa values of 0.42 and 0.5 in comparison with the 

models based on Category II ½ and Category III curves, respectively (Table 8).  

The fry models presented low similarity between the models derived under the same 

approach. Besides there was no similarity between the models with different 
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approaches. It was remarkable that the agreement expected by chance was larger than 

the expected by any coincidence on the model assessment, showing negative values 

of the fuzzy Kappa in the comparison of the Expert-knowledge fuzzy model based on 

Category II ½ and its unmodified Data-driven counterpart (Table 8). Again, the results 

confirm the relevant differences between the unmodified Data-driven model and any of 

the others. 

 

Table 8. Spatially-based comparison among the models for each size class. The values 
correspond to the fuzzy Kappa statistic (Hagen, 2003). The habitat assessment was reclassified 
in 5 equal-length intervals, the degree of membership was linearly decreasing from perfect 
agreement (1 to the same category) to null agreement (0 to the further category). The radius of 
influence was 5 m (adult and juvenile) and 2.5 m (fry). 

EK Cat II ½ EK Cat III Unmodified DD Modified DD

EK Cat II ½ 1 0.2 0.12 0.42

EK Cat III - 1 0.3 0.26

Unmodified DD - - 1 0.3

Modified DD - - - 1

EK Cat II ½ 1 0.87 0.33 0.43

EK Cat III - 1 0.35 0.5

Unmodified DD - - 1 0.76

Modified DD - - - 1

EK Cat II ½ 1 0.52 -0.07 0.12

EK Cat III - 1 0.09 0.24

Unmodified DD - - 1 0.51

Modified DD - - - 1

A
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4.8 Fuzzy models performance - Density and suitability correlation analysis 

4.8.1 Density analysis 

The density analysis showed that the adult brown trout appeared sparsely distributed 

all along the reach but with a peak of density in the northern part of the validation site 

(Fig. 15). Although the juvenile brown trout appeared all along the study site (Fig. 15) a 

density peak appeared close to the adults, which conditioned the generated density 

categories (Fig. 15). Both cases presented the maximum density in areas with a 

relatively large depth and in an area where the flow was concentrated downstream a 

relatively fast habitat. The fry appeared more sparsely distributed with several areas of 

Very High density; in general they were far from the older individuals (Fig. 15). 

 

Fig. 15 Density map. The kernel density tool in ESRI® ArcMapTM 9.3 (Copyright© 1999-2008 
Esri Inc.) was used to calculate densities and the results were standardized between zero and 
one and divided in five equal-length intervals corresponding to Very Low, Low, Medium, High, 
Very High density. 
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4.8.2 Density and suitability correlation - Adult 

The analysis of correlation of the assessed suitability and the observed density showed 

different patterns regarding the methodology and the size class, without a common 

pattern (Fig. 16). The Expert-knowledge model based on Category II ½ HSCs for adult 

showed a positive trend between the average suitability and the density, but a 

decrease on the average suitability in the most densely populated interval (Fig. 16 

upper plot). The Expert-knowledge fuzzy model based on Category III HSCs presented 

a positive correlation between the density and the average suitability achieving the 

maximum suitability in the most highly populated areas (Fig. 16 upper plot). The 

unmodified Data-driven presented an increasing trend as the density increases, 

whereas the modified Data-driven presented similar pattern but the average values 

were higher than in the unmodified counterpart. 

4.8.3 Density and suitability correlation - Juvenile 

The Expert-knowledge fuzzy model based on Category II ½ HSCs for the juvenile class 

presented a flat trend as the density increases from Very Low density to Medium 

density, and decreased for larger densities. The most densely populated areas dit not 

assess any area with the highest suitability (Fig. 16 middle plot). The Expert-knowledge 

fuzzy model based on Category III HSCs presented high average suitability for the 

lowest density interval achieving the maximum suitability for the remaining density 

intervals regardless the observed density interval. The unmodified Data-driven fuzzy 

model for the juvenile class presented medium average suitability with an slight 

increasing trend as the density increases, although it presented some irregularities 

(Fig. 16 middle plot). The modified Data-driven fuzzy model presented an increment of 
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the average suitability at the lower density intervals presenting the maximum average 

suitability for the remaining intervals. 

4.8.4 Density and suitability correlation - Fry 

The Expert-knowledge fuzzy models based on Category II ½ and in the Category III 

HSCs presented high average suitability regardless the density interval (Fig. 16 lower 

plot). The unmodified Data-driven fuzzy model presented positive correlation between 

the average suitability and the fry density (Fig. 16 lower plot). However, as the juvenile, 

it presented some irregularities. The modified Data-driven fuzzy model presented and 

improvement regarding the unmodified Data-driven fuzzy model with higher values of 

the average suitability at any considered density interval, and not presenting 

pronounced irregularities. 

 



 

Màster en Enginyeria Hidràulica i Medi Ambient 
Rafael Muñoz Mas 

 

59 

 

 

Fig. 16. Average suitability (black lines) for the five generated density categories, by fish size 
class. The frequency distribution of the assessed suitability on each density area was very 
skewed, thus the range of the habitat assessment per density category were plotted. These  
values corresponded to the maximum and the minimum values assessed in the cosidered area. 
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5 Discussion 

As general overview about the results, they showed that some of the habitat suitability 

models are appropriate to be applied in the Cabriel River at the validation site or even 

further, because they provided with satisfactory results in terms of performance in both 

terms, in number of correctly assessed fish locations and taking into account an 

assessment of fish density. 

5.1 Habitat Suitability Curves - HSCs 

5.1.1 HSCs Category II ½ 

The development of Category II ½ suitability curves followed common standards 

(Bovee, 1986). These curves differed of those from literature in most of the cases.  

The adult curves allowed us the greatest number of possible comparisons, as 

explained in this paragraph. In general the Category II ½ curves presented here 

showed the highest suitability for low values of both velocity and depth, compared with 

some of the most relevant studies about adult brown trout. Such reference studies 

included curves of the three Categories, I, II and III (Bovee, 1978; Raleigh, 1984; 

Hayes and Jowett, 1994; Heggenes, 1996; Ayllón et al., 2010) (The last study not as 

important than the previous, but recently developed in the Iberian Peninsula). Our 

curve of velocity was similar to those from Bovee and Raleigh, and the depth curve in 

comparison with the Ayllón's curve and the corresponding from Hayes and Jowett. 

Notice that Hayes and Jowett's study presented both, curves of Category II and 

Category III. The substrate showed similar suitability over coarse substrates than those 

from literature, and did not present remarkable differences. 
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For juvenile trout, the Category II ½ curves presented less possibilities for comparison. 

The velocity curve presented similar pattern than Raleigh's and Bovee's, but Ayllón's 

differed strongly because it showed the highest suitability for fast waters. The depth 

curve presented the higher suitability for shallower areas compared with Raleigh's; 

regarding that from Bovee, it entirely covers our Category II ½ curve, becoming wider, 

whereas the Ayllón's presents higher suitability for deeper areas than our curves. The 

substrate suitability present similar pattern than those from literature with the highest 

suitability over coarse substrates. 

The Category II ½ curves for fry presented the highest suitability for lower velocities, 

compared with Bovee's, Raleigh's and Ayllón's curves. Nevertheless, the depth curve 

was similar to Ayllón's, lower than Raleigh's; like the previous case, Bovee's curve 

(very generalist, obtained from different sources) covers entirely our curve. A great 

discrepancy appears with the substrate, because the aforementioned studies which 

include any reference to fry showed the highest suitability similarly to the older size 

classes, i.e. over coarse substrates. In contrast, our curve presented the maximum for 

silt. This result could be strongly determined by a limited availability of the 

combinations depth-velocity-substrate, with an important correlation of habitats, 

meaning that the fry usually occupy the slow and shallow habitats, which in turn are 

usually covered with silt; this curve could produce a bias in the physical habitat 

simulation, thus any application should be very careful in this aspect, considering the 

curves from other authors additionally. 

5.1.2 HSCs Category III 

The Category III curves developed in the present study showed relatively major 

similarities with those from literature than the Category II ½.  
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The adult case presented the highest suitability for faster areas in comparison with 

Bovee's, Raleigh's and Ayllón's curves, but similar if compared with the corresponding 

of Hayes and Jowett. The curve for depth had the same pattern of similarities, the 

highest suitability was presented for deeper areas in comparison with all of the curves 

from literature but the Hayes and Jowett's and the Ayllón's. The later presents a 

constant high suitability regardless the depth in accordance to Bovee's curves (Bovee, 

1978). 

The juvenile presented the curves with the largest coincidence with those from 

literature; they were different from Raleigh's and Bovee's, presenting the highest 

suitability for faster flows but with similar pattern than the Ayllón's. In addition, the curve 

for depth showed clear similarities with Bovee's, Raleigh's and Ayllón's. The substrate 

did not differed substantially, and the highest suitability was just slightly displaced one 

category toward the finer substrates in comparison with the corresponding Category II 

½ curve, but with an appreciable suitability at coarse substrates (cobble/boulder), like 

the curves from literature. 

The fry curves presented similar pattern than Ayllón's and Raleigh's for velocity, 

whereas the Bovee's curve involves the fry's Category III curve for the variable velocity. 

The depth curve presented similar pattern than Bovee's and Raleigh's but the highest 

suitability for deeper areas if compared with Ayllón's. The displacement produced by 

the forage ratio for the variable substrate did not generate strong changes in the 

Category III curve (compared with the Category II ½) thus the curve presented the 

highest suitability also over silt, differing from those from literature which present the 

highest suitability over coarse substrates. 
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5.2 Expert-knowledge fuzzy models 

5.2.1 Expert-knowledge fuzzy models based on Category II ½ 

The fuzzy models derived from the Category II ½ HSCs presented good performance 

in terms of assessment of the fish locations for the three size classes; the fish locations 

were assessed mostly over 0.8 suitability. Although the specificity was low, most of the 

area was also assessed over 0.8 suitability, but it was not considered misleading since 

the study reach homes a stable trout population (Martínez-Capel et al., 2009a) and 

over-prediction should not be always considered as a model error (Mouton et al., 

2010b). 

The limited amount of trout and the extreme variability in natural systems are factors 

limiting the colonization of all the suitable microhabitats thus this uncolonised 

microhabitats that presented similar habitat conditions than the occupied one's should, 

likewise, be considered suitable. Therefore these models become numerically 

overpredictive. However, the patterns of habitat suitability over the study reach showed 

a decay of the suitability over the deeper areas (Fig. 16). This fact was especially 

significant for the adult and the juvenile size classes, because it coincided with their 

most densely populated areas (Fig. 11, Fig. 12 and Fig. 15). The current flow during 

the time of the validation survey (Q = 0.89 m3/s) represented the flow Q85 of the stream 

flow time series; thus larger depths are expected at the study site, and the validity of 

the models based on Category II ½ curves would be easily overrode.  

Several authors considered that, for the large trout, the large depth could not be 

considered as limiting at all (Bovee, 1978; Ayllón et al., 2010) and specifically some of 

them pointed out the fact that as the trout ages it becomes more and more pool dweller 
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(Heggenes, 1996; Ayllón et al., 2010). These asseverations agreed with previous 

studies where adult and juvenile trout were repeatedly observed in deeper areas in the 

vicinity of the validation site (Martínez-Capel et al., 2009a). The trout is considered a 

territorial fish (Chapman and Bjonn, 1969; Titus, 1990; Johnsson et al., 2000) and this 

territoriality is related with food availability (Brännäs et al., 2003) but not related with 

food scarcity. 

Trout has been demonstrated to be a drift-feeding strategist (Elliott, 1973; Bachman, 

1984) holding stations in slow water, but close to a fast current (Wańkowski and 

Thorpe, 1979; Bachman, 1984) and recently some models included the availability of 

macroinvertebrates-drift to improve fish habitat modelling with promising results (Hauer 

et al., 2012) agreeing with the previous asseverations. These studies suggests that our 

observations of trout distribution at the validation site matches the food availability 

pattern. An implication for future studies is the possibility of improving the suitability for 

trout in that deeper and more densely populated areas, but keeping a good trade-off 

between sensitivity and specificity.  

5.2.2 Expert-knowledge fuzzy models based on Category III 

The calculation of Category III HSCs was made in order to compare and evaluate their 

application in the development of Expert-knowledge fuzzy models. Given the previous 

comments about the habitat assessment in deep areas, the Category III curves meant 

a possibility for improvement, due to the shift of curves produced by the forage ratio. 

The generated Category III curves presented all the inconveniences compiled by 

Payne (2009). The application of the forage ratio produced a displacement of the curve 

toward the higher values of the variable in the case of velocity and depth, whereas the 
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substrate curves remained almost constant. In the past, this displacement (over-

correction) as well as the statistical assumptions behind the forage ratio, discouraged 

their application (Bovee, 1996). 

However, upholding their consideration, some authors have demonstrated habitat 

availability affects habitat use and even habitat selection by brown trout (Heggenes, 

1991; Rincon and Lobon-Cervia, 1993; Grossman and De Sostoa, 1994) 

recommending certain consideration or correction based on habitat availability. 

Although the overcorrection produced through the application of the forage ratio is 

undesired, and it should be prevented with certain quality control during the generation 

and processing of data (Payne, 2009), and despite the existence of several 

alternatives, they are not widespread. Hayes and Jowett (1994) pointed out that the 

forage ratio (i.e. used and availability proportions) is particularly sensitive to extreme 

values, and it does not account for habitat that was not available at the time or place of 

sampling, therefore the tails of the curves should not be considered.  

Regardless this important considerations, here the generated curves were used just as 

a base to develop the Expert-knowledge fuzzy models and the tails of the curves were 

not trimmed. The Category III HSCs agreed with previous studies where the preference 

curves for adults shifted to deeper and faster areas compared with suitability ones 

(Bovee and Zuboy, 1988). 

In contrast, the curves for fry presented similar displacement, whereas the literature 

suggested that the forage ratio could displace the curves to shallower and slower 

areas. 
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The assessments with the Expert-knowledge models based on Category III curves 

were considered in general satisfactory; however, this result cannot be considered as 

general for any study and the considerations by previous authors are very important for 

any application (e.g. Bovee, 1996; Payne, 2009). The frequency analysis on habitat 

availability and fish habitat use showed that such models improved the models 

performance (Fig. 14). The specificity was reduced in some caes but in contrast they 

presented clearer positive correlation between the average suitability and the trout 

density (Fig. 16).  

The results for adult brown trout could be criticized because most of the trout location 

were assessed as Medium, whereas the models based on Category II ½ indicated 

mostly the maximum suitability at those locations. It should be noticed that suitability 

0.4 - 0.6 did not mean absence, and this range of suitability corresponded to the 

intervals of the curves which presented certain suitability, thus trout were observed but 

they were not abundant. Therefore, it was considered a satisfactory result. 

The model for adult trout can be considered the most specific among the models 

presented here, because the trout covers more intensively the areas with Medium-to-

High suitability than the remaining models (Fig. 11), and the density and average 

suitability was clearly correlated with an increasing trend (Fig. 16). The Juvenile was 

the least specific and most of the area was assessed with the maximum suitability (Fig. 

9); nevertheless, the least densely populated areas presented the lowest average 

suitability. The model generated for the fry size class presented only a small 

improvement; but the model based on Category II ½ presented a slight decrease at the 

more densely populated areas, while the other model based on the Category III HSCs 

presented a slight increase. 
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5.3 Data-driven fuzzy models 

Regarding the Data-driven fuzzy models the achieved values of the Cohen's Kappa 

could be considered acceptable in comparison with previous studies which used similar 

training strategies (Mouton, 2008; Muñoz-Mas et al., 2012). Considering the amount of 

trout locations at highly suitable microhabitats, the Data-driven fuzzy models 

(unmodified) showed a poorer performance than the Expert-knowledge approach (Fig. 

14) but they presented a positive correlation between the assessed suitability and the 

trout density in any case (Fig. 16). The observed deficiencies were improved by 

modifying the corresponding rules thus providing finally satisfactory results.  

5.3.1 Data-driven fuzzy model - adult 

The Data-driven fuzzy model for the adult size class was considered satisfactory 

despite the relatively low value of the performance criteria (Kappa = 0.31). The model 

presented the best trade-off between sensitivity and specificity (Fig. 14) in addition to a 

positive trend between average suitability and trout density (Fig. 16). These results 

agreed with previous studies (Heggenes, 1996; Ayllón et al., 2010) which assigned the 

maximum suitability to the deepest areas. The modification of this Data-driven fuzzy 

model was mainly considered in the development of the proposed methodology. In 

order to maximize the model agreement one rule was modified (Rule #14 Table 7). The 

modified Data-driven model improved the habitat assessment over the trout locations, 

displacing all of them to the interval comprising the maximum suitability but keeping 

certain specificity (Fig. 14), thus the model was considered suitable for further analysis. 

However, the rule that includes the most extreme condition -High velocity, High depth, 

High substrate- was determined as High. This will provide an increasing suitability as 
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the flow increases, and it should be taken into account if this model is applied in further 

analysis; our results indicate that the limiting conditions for the adult brown trout had 

not been surveyed. One of the advantages of the fuzzy approach is the versatility and 

easy adjustment, thus this deficiency could be fixed adding an extra Fuzzy Set to the 

variable depth or velocity and determining the rule consequent in those new cases as 

Low.  

5.3.2 Data-driven fuzzy model - juvenile 

The Data-driven model for the juvenile class was also considered satisfactory despite it 

achieved the lowest Kappa value (Kappa = 0.21). The frequency analysis over the 

validation site and the assessment at the trout locations presented a acceptable trade-

off between the sensitivity and the specificity (Fig. 14). The modification of this model 

implied the modification of a single rule (Rule #4 Table 7), displacing the habitat 

assessment over the trout locations close to the maximum suitability for all the 

observed individuals; the frequencies of the available unsuitable pixels remained 

almost unaltered (Fig. 14). 

The analysis of the consequents showed certain discrepancy with the literature 

because usually it has been considered that the habitat suitability decreases beyond 

certain depth but the Data-driven model determined the rules' consequent including the 

High depth as High (Bovee, 1978; Raleigh, 1984; Ayllón et al., 2010). However, in 

contrast to the adult model, the Fuzzy Rules including the maximum velocity were 

assessed as Low in any case; this issue allow the application of the model in larger 

flows. On the other hand, a careful application is necessary in the habitat assessments 

when considering Low velocity, Low dept and High substrate, since it has been 

assessed as Highly suitable and could provide the maximum suitability over too 
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shallow areas. In that sense, a narrow Fuzzy Set covering the extremely shallow depth 

would be preferable in order to avoid the aforementioned situation.  

5.3.3 Data-driven fuzzy model - fry 

The data-driven models for the fry class were clearly the worst, despite the highest 

value of the performance criteria (Kappa = 0.37). The frequency analysis in validation 

determined the maximum frequency of fish in the unsuitable microhabitats. This results 

were not surprising because the database for fry had the lowest sample size (N = 44) 

which hardly could cover the whole conditions found in the study site, even taking into 

account that the validation sample was almost twice as large (N = 79). The fry model 

considered that small fish prefer pools in accordance to previous studies but 

disagreeing with the distribution pattern in the spatial validation (Fig. 15). The observed 

pattern (Fig. 15), accordingly with several authors, could be produced by the exclusion 

produced by the presence of older and larger trout, which also prefer these areas 

(Raleigh, 1984). However, the Expert-knowledge model did not show that pattern, thus 

this conclusions could come from imperfections on the database or properly from the 

exclusion of the better habitats derived from the presence of older individuals. 

Therefore further effort should be placed in the improvement of the fry's database in 

order to discern the causes of that phenomenon. 

5.4 Rules comparison 

The comparison of the Fuzzy Rules developed with Expert-knowledge approach and 

the rules corresponding to those Fuzzy Sets but trained with a Data-driven approach 

showed that the Expert-knowledge approach was more optimistic, i.e., it gave higher 

suitability in general. This result was not surprising because the consequent of the 
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Data-driven model was presence/absence and the training strategy of the Data-driven 

approach was based on the principle of the-winner-takes-all (i.e. the most frequent 

result in the binary result was the selected consequent, High or Low). In contrast, the 

Expert-knowledge approach presented a smoother transition, considering as Medium 

those rules that presented certain suitability on the combination of the HSCs. The 

results also pointed out the improvement of the model performance in Data-driven 

models when Fuzzy Sets are developed based on the calculation of the Shannon-

Weaver entropy, in accordance with previous studies (Mouton, 2008); thus these Fuzzy 

Rules sets presented lower values of the Cohen's Kappa and larger amount of 

uncovered rules.  

5.4.1 Rules comparison - adult 

The models based on Category II ½ curves for adult trout presented two discrepant 

rules. The first one corresponding to, Low Velocity, Medium Depth and Low Substrate 

(Rule #3, Table 7). This rule comprised 30 cases and the Expert-knowledge approach 

determined it as High whereas the Data-driven approach as Low. The second 

discrepant rule corresponded to: High Velocity, High Depth and High Substrate (Rule 

#24, Table 7) but trained with a single datum. In both cases the discrepancy agreed 

with the 'pure' Data-driven approach that relegate the adults to deep areas in 

accordance with several studies (Ayllón et al., 2010) that demonstrated the preference 

for pools of the adult brown trout.  

The comparison of the rules based on the Category III HSCs presented only one 

discrepant rule: Medium Velocity, Low Depth, High Substrate (Rule #18, Table 7). The 

Expert-knowledge approach determined it as High whereas the Data-driven approach 

as Low. Taking into account the fact that the Medium depth in the Category II ½ case 
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corresponds mostly to Low depth in the Category III case, this conflict also arose 

because the Data-driven approach considered the shallow areas as unsuitable in any 

case, while the Expert-knowledge approach was more permissive and determined 

some of them with better suitability. 

Altogether suggested a review of the rules including the shallow to medium depth 

conditions in order to carry out a downwards adjustment and the opposite for the rules 

that include the large depth. Additionally the importance of the substrate should be also 

reviewed since some of that optimistic consequents were conditioned by its partial 

suitability, for instance, the Rule #18 (Table 7). 

5.4.2 Rules comparison - juvenile 

The models based on Category II ½ curves presented one discrepant rule 

corresponding to: Low Velocity, Low Depth and Low Substrate; it was trained with 15 

cases. The Data-driven approach indicated Low suitability for Low velocity and Low 

substrate regardless the depth, while the Expert-knowledge approach considered some 

combination as Medium or High. The Data-driven output was in accordance with 

previous studies (Jutila et al., 1999) which demonstrated, applying a multivariate 

approach, the positive correlation between depth and substrate size with juvenile 

density. According to the present results, these rules (including Low velocity - Low 

substrate) had a slight impact on the assessment of the validation site and no 

modification was considered here. However, in some cases such rules should be 

adjusted in the Expert-knowledge model, for the application in different rivers with other 

physical characteristics. 
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The models based on Category III presented one discrepant rule, that is: Low Velocity, 

Medium Depth and High Substrate (Rule #15, Table 7), trained with a relatively large 

amount of data (44 cases) corresponding to the 16 % of the whole database. The 

Expert-knowledge assessed that rules consequent as High but the robustness of the 

rule could suggest a slight reduction on the rule consequent moving from High to 

Medium approximating the result to the obtained by means of the Data-driven 

approach. However, regardless the great differences in the inputs discretization (i.e. 

differences in the Membership Functions associated to the Fuzzy Sets) those 

conditions were assessed also as highly suitable in the Data-driven model, with an 

improvement of model performance. The juvenile brown trout has been reported to 

inhabit at shallower water than adults with a relatively slow velocity and coarse 

substrate (Raleigh, 1984), which suggest to disregard any modification. 

5.4.3 Rules comparison - fry 

The models based on Category II ½ for brown trout fry presented two discrepant rules; 

the first was, Low Velocity, Low Depth, High Substrate (Rule #14, Table 7). The Expert-

knowledge approach assessed the suitability as High, whereas the Data-driven 

approach did the opposite. The second discrepant rule was, High Velocity, Low Depth, 

High Substrate (Rule #22, Table 7); in this case the Expert-knowledge indicated Low 

and the Data-driven High. The first discrepant rule was trained with 37 cases, 

corresponding to the 42 % of the data, whereas the second corresponded to the 8 %. 

Both rules suggested a preference for deep areas instead the observed distributions at 

the validation site (Fig. 13) 

The models derived from Category III curves also had two discrepant rules; considering 

the smaller amount of Fuzzy Sets determined for depth ('Very Low' depth was no 
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considered after the Category III curves), these discrepant rules corresponded to the 

previous ones observed after the Category II ½-based models. The habitat evaluation 

in the validation site with the Data-driven model (Fig. 14) and the analysis of correlation 

with density (Fig. 16) did not suggest any clear or robust modification of the Expert-

knowledge model based on the results obtained here because the sample size was 

larger in the validation database and the Expert-knowledge outperformed the Data-

driven models. However, the Data-driven approach apparently corroborated previous 

studies where the fry preference for deeper areas was considered but the presence of 

older individuals would displace them toward shallower areas (Raleigh, 1984). 

Therefore further research should be placed on the enlargement of the fry database 

and on the study of the real habitat suitability for the fry class. 

5.5 Comparison based on Fuzzy Kappa  

The spatially explicit comparison among the models corroborated certain similarity in 

each approach, especially in the cases where no relevant displacements of the HSCs 

were observed. Obviously, regarding the Data-driven models a great concordance was 

expected because, depending on the model, only one or two rules were adjusted or 

modified. The spatial analyses showed major similarities in juveniles, followed by adults 

and fry. 

The highest values of suitability were provided by the juvenile's models; however, most 

of the area was assessed with the maximum suitability, which limited the achievement 

of any conclusion about the properness of the entire analysis. These models presented 

almost perfect agreement between pairs and slight similarities between approaches.  
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On the other hand, the values achieved in the adult's models comparison disagreed 

with the expected results. The model based on Category III HSCs apparently provided 

the highest suitability in similar areas than the unmodified Data-driven (Fig. 11); the 

major discrepancies appeared in the shallower areas where the Expert-knowledge 

approach had been more permissive providing medium suitability, in comparison with 

the Data-driven (Table 7). In contrast, the fuzzy Kappa was relatively low when 

comparing Expert-knowledge fuzzy model based on Category III HSCs with the 

unmodified Data-driven fuzzy model (Table 8), and similar in magnitude as the 

comparison of the unmodified Data-driven fuzzy model with the Category II ½ based 

model (Table 8). Therefore, the comparison did no shed any light on adult models' 

similarity.  

The fry models presented relatively low values of the fuzzy Kappa in the comparison of 

models under the same approach, although there was an apparent similarity on model 

performance (Fig. 13). The smaller values achieved by the fuzzy Kappa, in relation to 

the juvenile and adult, could be related to the smaller on the radius of influence; the 

smaller radius is coherent with the spatial relations between fish, their field of vision 

and their competition, and it is logical that the mathematical effect of smoothing 

produces more similarities as the radius increases. The similarity between approaches 

was null, even providing negative values of the fuzzy Kappa statistic. The presence of 

negative values imply that the percentage of expected agreement by chance was 

larger than the real agreement; this effect is usual in 'natural' systems (personal 

communication Hagen, 2012) and was not considered an error. This results agreed 

with the preliminary observations (Fig 13), thus the unmodified Data-driven model 
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determined fry as a pool dweller, in contrast with the Expert-knowledge models that 

relegated trout fry to shallower areas (Table 7 and Fig. 13). 

The selection of the parameters in the calculation of the fuzzy Kappa should be 

adjusted in a trial and error procedure (personal communication, Hagen, 2012). 

However, some calculations were done in order to determine parameters as 

meaningful as possible, by selecting the average distance to the nearest trout of the 

proper size class, according to the density calculation. The density analysis considering 

each size class separately could be criticized because trout presents a relevant 

territorial behaviour (Chapman and Bjonn, 1969; Titus, 1990; Johnsson et al., 2000; 

Brännäs et al., 2003), thus adults compete with juvenile and fry, and juvenile compete 

with fry. 

Nevertheless, the results may suggest that the analysis was more generalist because 

adults and juveniles appeared concentrated over similar locations, although adult was 

more sparsely distributed. If the upper size class would had been used to calculate the 

trout density, the juvenile density would be concentrated it in a single point. Then, the 

correct assessment of that area would be probably too important. Finally, the analysis 

of the correlation between density and the suitability would be extremely conditioned by 

the proper assessment of that area. Regarding the fry, they appeared relatively far from 

juveniles and adults, but the density along the reach was higher, thus the mean radius 

was half the radius of adult and juvenile; as a consequence, no great differences could 

be expected if the analyses were carried out taking into account the older size classes. 
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5.6 Benefits of validation 

The general overview of results corroborate the premise proposed by Guisan and 

Zimmermann (2000) about the need of the validation of habitat models with 

independent data to test its reliability and applicability. In the present case there were 

several issues to miss-select the proper models. Despite the existence of several 

studies that demonstrated difficulties in models' transferability (Fukuda, 2010), in 

general there should be no doubts about the validity of the data collected; rivers from 

the same region, with similar dimensions and an acceptable sample size, specially for 

adult and juvenile, but not for fry. 

The flow assessed in the Cabriel River (Q=0.89 m3/s) did not provide with the hydraulic 

conditions out of the surveyed extremes; the simulated flow produced a maximum 

average velocity of 0.53 m/s and a maximum depth of 1.4 m, both quite close to the 

maximum surveyed values in the Use datasets and clearly comprised in the Availability 

datasets. Therefore, both curves Category II ½ and Category III were within the range 

to develop fuzzy habitat suitability models; however, previous literature have 

reprobated Category III curves (Bovee, 1996). Then accordingly to that studies the 

wiser choice would had been the selection of the models based on the Category II ½ 

HSCs. Ignoring the option of the Category III HSCs and the Expert-knowledge models 

derived from. Additionally, the Data-driven approach has been widely and successfully 

applied (Mouton, 2008; Mouton et al., 2009; Mouton et al., 2011), but the cross-

validation, especially in the fry case, has demonstrated to be insufficient to get the 

proper generalization capacity. Therefore the development of the Data-driven models 

unquestioning the obtained results could also derive in the selection of a worse or 

improper models. Altogether demonstrating the necessity about the development of 
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proper validation strategies. Hence, in this case we recommend the Expert-knowledge 

fuzzy model based on Category III HSCs in the adult case, and the unmodified Data-

driven fuzzy model in the juvenile case. The fry case should be based on an enlarged 

database but considering the actual models available, the best choice would be the 

Expert-knowledge fuzzy model based on Category III HSCs. 

5.7 General comments 

The Data-driven approach has demonstrated strongly dependent on the training 

database, but with a model validation its adjustment would be easily carried out. In 

addition this kind of models inform about the relations between the input variables and 

about how the variables jointly determine the rule consequents. However, the Expert-

knowledge approach needs some assumptions or some data exploration which in most 

of the cases should be based on previous multivariate analysis which need its 

corresponding training database. In the Iberian Peninsula, the studies on fish habitat 

suitability are scarce due to the high percentage of endemisms and their limited 

distribution area (Ferreira et al., 2007). Most of that endemism are threatened (Smith 

and Darwall, 2006) thus leading to incomplete or 'imperfect' databases. Therefore in 

modelling habitat suitability for that uncommon species the field data collection could 

be unavoidable. In that sense, both methodologies could complement each other in a 

sort of feedback in order to improve model's reliability, in accordance with previous 

studies that emphasized the need of collaboration of both approaches (Mouton et al., 

2009).  

The presented methodology allow modellers to generate Expert-knowledge fuzzy 

models derived from Habitat Suitability Curves (HSCs) on a systematic procedure, 
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which is specifically recommended when no large experts panels are available. 

However, experts should be consulted if possible, and consulting companies should be 

discouraged of the generation and application of this kind of models by themselves if 

no experts are involved in their development. There is certain subjectivity on its 

development because the presented methodology includes some decisions and 

profanes could miss the correct choice; the author of this thesis was one of the persons 

involved in the data acquisition, which provides with some experience and knowledge 

on the field and fish behaviour. 

In the present study the smoothing technique applied in the curve development was 

intended to be the minimum modification in order to get unimodal curves, but it 

incorporated certain subjectivity in the parameters selection. Further improvements will 

be focused on generating an objective and systematic smoothing procedure, allowing 

repeatability, which is considered basic on science. In addition, the expert judgment 

was also applied in the combinations of the partial suitability and in the determination of 

the controlling variables under some conditions, but its development over unknown 

species should be made with care, therefore experienced judgement should be 

involved in their development. 
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6 Conclusions 

1. The Category II ½ Habitat Suitability Curves (HSCs) for the adult presented the 

highest suitability for low values of velocity and depth in comparison with some 

of the most relevant studies about adult brown trout. The Category III HSCs 

presented the optimum for faster flow and larger depth than most of the 

literature's curves. Instead, the substrate agreed most of them. 

2. The Category II ½ HSCs for the juvenile did not presented a clear pattern in 

comparison with those from literature but the substrate which showed 

coincident with the optimum, over coarse substrate. The Category III HSCs 

coincided with most of their literature's counterparts. 

3. The depth and velocity Category II ½ HSCs for the fry did not presented a clear 

pattern in comparison with those from literature. The major difference appeared 

in the substrate, the developed curve presented the optimum over silt whereas 

the literature showed it over coarse substrates. The depth and velocity 

Category III HSCs for the fry did not presented a clear pattern in comparison 

with those from literature. The major difference appeared also in the substrate 

curve. 

4. The Expert-knowledge approach presented the capability to transform 

dichotomous input data into a wider range of outputs thus the output was 

categorised in three Fuzzy Sets. 
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5. The Expert-knowledge fuzzy models based on Category II ½ presented good 

sensitivity because assessed the trout locations with high suitability, although 

the specificity was low and in the adult and juvenile cases the suitability 

decreased in the most populated areas. 

6. The Expert-knowledge fuzzy models based on Category III outperformed the 

based on Category II ½ thus presented good sensitivity and similar or better 

specificity. In addition all of them presented better correlation between trout 

density and suitability. 

7.  The Data-driven fuzzy models for adult and juvenile presented the better trade-

off between sensitivity and specificity in addition to a positive correlation 

between density and suitability. 

8. The Data-driven fuzzy models for fry presented the worse validation thus 

confirming the necessity of large-enough databases to properly apply the herein 

used Data-driven approach. 

9. The Expert-knowledge approach showed consistent in the development of the 

Fuzzy Rules since no great differences with the Data-driven approach were 

observed. However the Expert-knowledge models based Category II ½ HSCs 

for adults and juveniles underrated the deeper areas. 

10. The comparison of the model performance based on the fuzzy Kappa did not 

showed clear similarities between models neither intra-approaches nor inter-

approaches. 
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11. The spatially explicit validation of the developed models has been demonstrated 

fundamental in the selection of the proper models for each of the considered 

size classes. 

12. The better model for adult and fry were the Expert-knowledge models based on 

Category III HSCs whereas the best models for juvenile brown trout was the 

Data-driven fuzzy model.  
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7 Further research  

Several future lines of research and possible improvements raised in accordance to the 

obtained results. The first one due to its simplicity was the necessity of enlargement of 

the brown trout fry database because it presented the smaller sample size and the 

most inconsistent results. This enlargement should consider also de presence of elder 

size stages, altogether improving the habitat suitability modelling. Additionally, this will 

offer a deeper insight into the discernment about the fry preferences for deep habitats 

reported by Raleigh (Raleigh, 1984) and the corresponding displacement due to the 

presence of elder life stages or rather than the opposite; its preference for shallower 

habitats. The second suggested improvement was the development of a systematic 

smoothing technique in the development of the HSCs aiming to provide unimodal 

curves but presenting the minimum possible alteration keeping as much as possible 

the original distribution. This could be carry out by means of an optimization algorithm; 

for instance the functional modification of the simplex algorithm (Rowan, 1990) 

implemented in R (R Development Core Team, 2012) by King (2008). A dichotomous 

output function that penalizes the multimodality can be easily developed in combining 

with the different functions for the mode calculation appeared in the R package 

'modeest' (Poncet, 2012). The Data-driven approach showed affected by imperfections 

on the database (i.e. the presence uncovered rules or the impossibility to carry out real 

regression modelling). To improve that deficiencies alternatives to the hill-climbing 

algorithm could be tested. Recently a tool box have been developed in R (R 

Development Core Team, 2012); the 'frbs' package. This package host several 

alternatives (Riza et al., 2013). Some of the most promising approaches are the HyFIS 

approach (Kim and Kasabov, 1999) and the Genetic Lateral Tuning of Linguistic Fuzzy 
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Systems (GLTLFS) (Alcalá et al., 2007). The first one (HyFIS) belongs to the Fuzzy 

Neural Network (FNN) discipline which combines the human-like reasoning style of 

Fuzzy Inference Systems with the learning and connectionist structure of the Artificial 

Neural Networks (ANN) (Jang and Sun, 1995). HyFIS modifies the Membership 

Functions in to better predict the training data whereas the GLTLFS optimizes the 

Membership Functions through genetic algorithms but appearing coupled to a rule 

selection procedure thus automatically simplifying the Fuzzy Inference System. Finally, 

none of the aforementioned alternatives is stand-alone able to cope with low 

prevalence databases. Therefore, despite the possibility to carry out the subsampling 

procedure (Muñoz-Mas et al., 2012), alternative techniques should be tested; for 

instance, the Probabilistic Neural Networks (PNN) (Specht, 1990). The PNN are a 

classificatory type of ANN which compare the assessed conditions with each datum 

included in the training database. To deal with differences on the intensity of the output, 

the weight of each category is inversely proportional to the number of training data in 

the corresponding category. Thus the classification to a given category depends on the 

values of the variables to determine the degree of membership to a given category but 

not on the amount of data from that category present in the training database. 
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