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Summary 

 

In the present thesis the effect of heat stress on milk, fat and protein yields and 

somatic cell score (SCS) has been studied in the Spanish Holstein breed of dairy cattle. 

In this work there are two levels of analysis; the first one is a phenotypic analysis 

carried out to determine the climatic variables most correlated to the production traits 

and to estimate the tolerance thresholds and slopes of the responses of the dairy traits 

and SCS studied to heat stress and to determine the reaction norm model to be used in 

analyses of tolerance to heat stress in Spanish Holstein. The second one is a genetic 

analysis of formerly cited responses, undertaken with the objective to estimate the 

environmental and genetic (co)variance components of heat stress tolerance. A total of 

2,514,762 test-day records belonging to 128,112 lactating goats distributed in 468 herds. 

Whereas that for genetic analysis used a random sample of 259,667 test-day records 

belonging to 27,377 cows distributed in 123 herds collected between 2002 and 2012, 

combined with maximum and average temperatures and the values of an index of 

temperature and relative humidity (THI), registered the day of milk recording in 

meteorological stations located less than 30Km from the farms. For the first study, a 

Ridge regression analysis and a BLUP method were carried out in order to select the 

climatic variables and dates that were recorded, having the highest correlations with the 

dairy traits and SCS under study. Then, tolerance thresholds and slopes of the 

regressions of these traits with the selected climatic variables were estimated with spline 

and polynomial models by means of Bayesian methods. Results shows that increases in 

temperature have been associated to a decrease in production traits and Heat tolerance 

thresholds have been found to be higher for milk (around 29.2ºC) and SCS than for fat 

and protein yields (around 18.1ºC). Polynomial functions showed better convergence 

behaviour and provided better goodness of fit than the classical splines model used to 

model heat stress. Genetic variability for response to increases in heat load has been 

observed. However, this variability may be mainly associated to level of production, so 

that animals with higher production levels seem to be more prone to suffer heat stress. 

Finaly, A cubic polynomial seems to provide better quality of adjustment than quadratic 

polynomial to determine both the population and individual deviations associated to 

increasing heat loads 
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Resumen 

 

La presente tesis trata del efecto del estrés térmico sobre las producciones de leche, 

grasa y proteína y sobre la puntuación de células somáticas (SCS) de la raza frisona 

española. En este trabajo hay dos niveles de análisis, a nivel poblacional objetivo fue 

determinar  las variables climáticas más correlacionadas con los caracteres productivos 

y SCS  y estimar el umbral y la pendiente de la tolerancia de la respuesta al estrés 

térmico de dichos caracteres y determinar el modelo de la norma de reacción para usarlo 

posteriormente en los análisis de tolerancia al estrés térmico. A nivel individual se 

hecho un análisis genético realizado con el objetivo de estimar los componentes de 

(co)varianza genéticos y ambientales de la tolerancia al estrés térmico. Para llevar a 

cabo los análisis fenotípico 2,514,762 registros del día de control de la producción y 

composición de la leche tomados de 128,112 vacas distribuidas en 468 rebaños. 

Mientras que para los análisis genéticos una muestra aleatoria ha cogido de 259,667 

registros del día de control de la producción y composición de la leche tomados de 

27,377 vacas distribuidas en 123 rebaños. Se combinaron con los datos de temperatura 

máxima y media y un índice de temperatura y humedad relativa (THI), registrados el 

mismo día del control lechero, en estaciones meteorológicas ubicadas a menos de 30 

Km de cada explotación. En este primer estudio, se utilizaron los métodos de regresión 

“Ridge”  and BLUP para seleccionar las variables climáticas, y las fechas de registro de 

las mismas, más correlacionadas con los registros de los caracteres lecheros en estudio. 

Después, se estimaron el umbral y la pendiente de la respuesta de los caracteres lecheros 

a cada una de las variables climáticas seleccionadas anteriormente, mediante modelos 

mediante modelos lineales y Polinómicos utilizando para ello métodos Bayesianos. Los 

resultados muestran que los aumentos de temperatura se han asociado a una 

disminución en los caracteres de producción and los umbrales de tolerancia de calor se 

han encontrado más alto para la leche (alrededor de 29,2 º C) y SCS que para grasa y 

proteína (alrededor de 18,1 º C). Funciones polinómicas mostraron un mejor 

convergencia y previsto una mejor bondad de ajuste que el modelo splines clásico. La 

variabilidad genética de la respuesta al aumento de la carga de calor ha observado. Sin 

embargo, esta variabilidad puede ser en gran asociado con el nivel de producción de 
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manera que los animales con niveles de producción más altos parecen ser más 

propensos a sufrir el estrés por calor. 

Al final, Un polinomio cúbico parece proporcionar una mejor calidad de ajuste del 

polinomio cuadrático determinado que tanto la población como las desviaciones 

individuales asociados al aumento de las cargas de calor. 
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1.1.  Climate change and dairy cattle in Spain 
 

Increases in global average air and ocean temperatures, widespread melting of 

snow and ice as well as rising global average sea level indicate that global warming is 

unequivocally inevitable (Intergovernmental Panel on Climate change (IPCC, 2007). 

This Climate change is expected to have an impact on animal production throughout the 

world (IPCC, 2007). IPCC (2007) reported that increased droughts and heat waves, 

especially during summer, are likely to dominate climate change impacts in Southern 

and Eastern Europe, while increased flooding and water logging in winter may 

dominate climate change impacts in the Northern part of the Mediterranean basin. 

In Spain, temperatures, especially minimum temperature, have increased over 

the last century by around 1.5ºC the annual average (Fernández-González et al., 2005). 

Climate change has had a particularly marked effect on southern Spain, increasing 

temperatures and reducing rainfall. In future perspectives, the analysis indicated that 

Spain, southern France and Italy should be expected to undergo the highest THI 

increase, which in 2041 - 2050 will range between 3 and 4 units. The area presents 

characteristics indicating risk of thermal stress for farm animals during summer months. 

The authors claim that at the end of the 2050, only northern Spain, France and Alpine 

regions are expected to have mean values of summer THI below the upper critical value 

of 68 (Segnalini et al., 2013). Meanwhile, IPCC (2007) predicted an average rise in air 

temperature ranging from +2 °C to +6.5 °C by the end of the century, which is slightly 

higher than the world average increment estimated to range from +1.1 °C to +6.4 °C. 

Holstein is a dominant dairy breed in the world because of its high milk 

production. Although most of Holsteins are bred in temperate or cold parts of the world 

(Europe, Canada and USA), they are also raised in hot and tropical environments, where 

they are challenged by many factors, including heat stress, which reduces production 

and fertility and can even cause death. It is assumed that also in regions traditionally 

characterized by less extreme climate conditions, cows will be faced with temperatures 

beyond their »comfort zone« (IPCC 2007). 

In dairy cattle, especially in Spanish Holstein is raised in all the country as 

showed Table 1.1. Andalucía and Castilla la Mancha have a significant population 

Compared to the rest country and detected many cows in these community. For 
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example, in 2012 detected 36,531 and 17,357 cows in Andalucía and Castilla la 

Mancha, respectively (Table 1).  

Table1.1. Distribution of Spanish Holstein in Spain by community (Ministerio 

de Agricultura, Alimentación y Medio Ambiente, 2012) 

 Total 

Reproductive 

Total animals Total  Nº of farms 

dam sire dam sire 

Andalucía 23,759 172 36,531 236 36,767 162 

Aragón 7,156 5 10,990 6 10,996 20 

Cantabria 48,690 268 71,758 384 72,142 895 

Castilla La Mancha 11,193 38 17,357 51 17,408 89 

Castilla León 45,694 101 70,409 132 70,541 433 

Cataluña 49,899 488 75,886 552 76,438 328 

Comunitat 

Valenciana 
3,582 1 5,495 1 5,496 7 

Extremadura 226 0 331 0 331 3 

Galicia 193,884 593 298,716 759 299,475 3,591 

Illes Balears 12,546 213 16,379 223 16,602 188 

Madrid 4,663 12 6,946 14 6,960 29 

Navarra 19,657 66 29,205 76 29,281 149 

País Vasco 21,612 72 32,181 100 32,281 302 

Principado De 

Asturias 
54,095 382 77,942 489 78,431 1,098 

Total 496,656 2,411 750,126 3,023 753,149 7,294 

 

1.2. Heat stress in Dairy cattle 

Stress produces with certain magnitude of external forces that are able to 

displace the bodily system from its resting or ground state (Yousef, 1985). Stress 

produces with certain magnitude of external forces that are able to displace the bodily 

system from its resting or ground state (Yousef, 1985). Many sources of stress, such 

climatic, as extensive cold and heat, nutritional, due to feed or water deprivation; social, 

http://www.magrama.es/
http://www.magrama.es/
https://aplicaciones.magrama.es/arca-webapp/flujos.html?_flowExecutionKey=e2s3&_eventId=desplegarCenso&censoActual.posCCAASeleccionada=1
https://aplicaciones.magrama.es/arca-webapp/flujos.html?_flowExecutionKey=e2s3&_eventId=desplegarCenso&censoActual.posCCAASeleccionada=2
https://aplicaciones.magrama.es/arca-webapp/flujos.html?_flowExecutionKey=e2s3&_eventId=desplegarCenso&censoActual.posCCAASeleccionada=3
https://aplicaciones.magrama.es/arca-webapp/flujos.html?_flowExecutionKey=e2s3&_eventId=desplegarCenso&censoActual.posCCAASeleccionada=4
https://aplicaciones.magrama.es/arca-webapp/flujos.html?_flowExecutionKey=e2s3&_eventId=desplegarCenso&censoActual.posCCAASeleccionada=5
https://aplicaciones.magrama.es/arca-webapp/flujos.html?_flowExecutionKey=e2s3&_eventId=desplegarCenso&censoActual.posCCAASeleccionada=6
https://aplicaciones.magrama.es/arca-webapp/flujos.html?_flowExecutionKey=e2s3&_eventId=desplegarCenso&censoActual.posCCAASeleccionada=8
https://aplicaciones.magrama.es/arca-webapp/flujos.html?_flowExecutionKey=e2s3&_eventId=desplegarCenso&censoActual.posCCAASeleccionada=8
https://aplicaciones.magrama.es/arca-webapp/flujos.html?_flowExecutionKey=e2s3&_eventId=desplegarCenso&censoActual.posCCAASeleccionada=9
https://aplicaciones.magrama.es/arca-webapp/flujos.html?_flowExecutionKey=e2s3&_eventId=desplegarCenso&censoActual.posCCAASeleccionada=10
https://aplicaciones.magrama.es/arca-webapp/flujos.html?_flowExecutionKey=e2s3&_eventId=desplegarCenso&censoActual.posCCAASeleccionada=11
https://aplicaciones.magrama.es/arca-webapp/flujos.html?_flowExecutionKey=e2s3&_eventId=desplegarCenso&censoActual.posCCAASeleccionada=14
https://aplicaciones.magrama.es/arca-webapp/flujos.html?_flowExecutionKey=e2s3&_eventId=desplegarCenso&censoActual.posCCAASeleccionada=17
https://aplicaciones.magrama.es/arca-webapp/flujos.html?_flowExecutionKey=e2s3&_eventId=desplegarCenso&censoActual.posCCAASeleccionada=18
https://aplicaciones.magrama.es/arca-webapp/flujos.html?_flowExecutionKey=e2s3&_eventId=desplegarCenso&censoActual.posCCAASeleccionada=19
https://aplicaciones.magrama.es/arca-webapp/flujos.html?_flowExecutionKey=e2s3&_eventId=desplegarCenso&censoActual.posCCAASeleccionada=19
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resulting from a low rank in the pecking order or internal, due to some physiological 

disorder, pathogens or toxins (Stott, 1981). Strain is the displacement from the resting 

or ground state by internal forces (Yousef, 1985). Once, any combination of 

environmental factors cause the effective temperature of the environment to be higher 

than the animal’s thermoneutral zone, the heat stress is achieved (Armstrong, 1994). 

For animal, reactivity with best performance and minimum of metabolic rate 

coincide with a range of environmental temperature that is named Thermoneutral zone. 

Temperatures above the thermoneutral zone trigger a chain of physiological, 

anatomical and behavioral changes in the animal’s body, such as reduction of feed 

intake, decline of performance (milk production, growth, and reproduction), decrease of 

activity, increase of respiratory rate and body temperature, increase of peripheral blood 

flow and sweating and change in endocrine function. Heat stress affects animal 

performance and productivity at all stages of the life cycle. Animals do not maintain 

strict homeothermy when there are heat stress (Silanikove, 2000). 

1.3. Heat stress impact on milk production 

Several studies reported that heat stress in dairy cattle affects production (Maust 

et al., 1972, Fuquay, 1981, Bryant et al., 2007b) and reproduction (Ravagnolo and 

Misztal, 2002, Garcia-Ispierto et al., 2007). Economic losses due to heat stress for the 

U.S. dairy industry are estimated to be between $897 and $1500 million dollars per year 

(St-Pierre et al., 2003). 

For lactating dairy cows, the ambient temperatures above 25 °C are associated 

with lower feed intake, drops in milk production and reduced metabolic rate, as reported 

by Berman (1968). Critical maximum temperature for cows is assumed to be at the level 

of 25-26°C (West, 2003) or 24-27°C (Brouček et al., 2009). Milk yield decreases of 10 

to 40% from winter to summer have been reported for Holstein cows (Du Preez et al., 

1990b). At 29 °C and 40 % relative humidity, Bianca (1965) determined decreases of 

daily milk yield of 3, 7 and 2 % in Holstein, Jersey and Brown Swiss cows, 

respectively. Additional decreases of milk yield of 31, 25, and 17 % were observed in 

former breeds when relative humidity increased up to 90 %. 



   
 

8 
 

Ravagnolo et al. (2000) stated that milk yield appears relatively constant until 

about 24°C and then declines at a pace of 0.2 kg per unit increased in THI when THI 

exceeded 72. Under Mediterranean climatic conditions, Bouraoui et al. (2002) reported 

drops in milk yield of 0.41 kg per cow and day for each point of increase in the value of 

THI above 69. Ravagnolo et al. (2000) and Bouraoui et al. (2002) estimated a negative 

correlation (r = -0.76) between milk yield and THI. Besides, they referred that as the 

THI values increased from 68 to 78, milk production decreased 4 kg. Gantner et al. 

(2006) indicated that milk production decreased as THI increase and the most intensive 

decrease took place between 60 and 120 days of lactation. A highly significant decrease 

of daily milk yield due to high THI values was also observed in heifers and cows by 

Gantner et al. (2011). 

West et al. (2003) mentioned that during hot weather, the mean THI registered 

two days earlier than test day had the greatest effect on milk yield. Milk yield of 

Holsteins declined 0.88 kg per each unit of the THI registered two days before the day 

of milk recording. Herbut and Angrecka (2012) recorded a decrease in milk production 

4 days after starting to register high temperatures. Production decrease varied from 0.18 

to 0.36 kg per THI unit depending on the level of milk production of the cow. Coppock 

et al. (1982) concluded that high-producing cows are more affected by heat stress than 

low-producing cows. An increase of milk yield increases the sensitivity of cattle to 

thermal stress and reduces the “threshold temperature” at which milk losses occur 

(Berman, 2005). Johnson et al. (1988) found a higher average decline of persistency in 

cows yielding more than 30 kg/day (-0.059 % per day) compared with cows yielding 

less than 25 kg/day (-0.019 % per day). Similarly, Berman (2005) reported a drop of 

5°C in the threshold temperature for heat stress when milk production increased from 35 

to 45 kg/day. 

In sheep and goat, Menéndez-Buxadera et al. (2012b) reported a decline in 

sheep milk production at THI=45 and that decline reached 98 g/day every increase of 5 

degrees in THI. However, Sevi et al. (2001) reported a reduction of milk yield after ewe 

exposure to temperatures over 35 ºC, even for short periods of time. Menéndez-

Buxadera et al. (2012a) observed genetic variation for heat stress tolerance in 

Murciano-Granadina and Payoya goats which, according to these authors, could be used 

for selection purposes. Finocchiaro et al. (2005) reported that the greatest decrease in 
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daily milk yield 62.2 g (-3.9%) per unit of THI above a threshold value of THI=23 was 

observed for temperature and humidity records taken the day before milk recording in 

sheep 

1.4. Ways of measuring heat stress 

The main factors which are responsible for energy flow to the animal are: 

effective air temperature, solar radiation, relative humidity, wind speed and structural 

properties of animal’s coat (Yousef, 1985). Thermal environment can be represented by 

a single or a combination of the bioclimatic factors. Extensive efforts have been 

undertaken to develop an index to take into account all environmental factors (ambient 

temperature, relative humidity, solar radiation and wind speed) causing measurable 

physiological responses. 

Many indices combining different environmental factors to measure the level of 

heat stress have been proposed. However, the lack of data, publicly available, on the 

amount of thermal radiation received by the animal, the wind speed, precipitation and 

rainfall limited their use. Therefore, the majority of studies on heat stress in livestock 

have focused mainly on temperature and relative humidity (Igono et al., 1985; Igono 

and Johnson, 1990; Ravagnolo and Misztal, 2000; Bouraoui et al., 2002; St-Pierre et al., 

2003; West, 2003; Correa-Calderon et al., 2004) because data on the amount of thermal 

radiation received by the animal, wind speed, and rainfall are not publicly available. On 

the other hand, temperature and humidity records can be usually obtained from a 

meteorological station located nearby. To indicate the degree of stress and to determine 

the influence on dairy animal a temperature-humidity index (THI) was developed that 

combines the effects of air temperature and humidity is the most common indicator for 

heat stress (Bianca, 1962; NRC, 1971). Marai et al. (2007) showed that the severity of 

heat stress is correlated to both ambient temperature and humidity level and the effect of 

heat stress is aggravated when high temperature is accompanied with high ambient 

humidity. 

THI was originally developed by Thom (1958) as an index to measure the levels 

of discomfort of humans during summer months. Afterwards, its use was extended to 

bovines by Johnson et al. (1961). This index has been developed as a weather safety 

index to monitor and reduce heat stress related losses. 
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The Table 1.2 showed the different calculation methods of THI developed over 

the years, Depending on the author, formulas are based on different weightings of dry 

bulb temperature (Tdb) and air moisture. THI integrate air moisture in the index by 

means of the relative humidity (RH), which provides information about water saturation 

of the air at a given temperature (Kelly and Bond, 1971; NOAA, 1976; LPHSI, 1990; 

Finocchiaro et al., 2005; Mader et al., 2006). Others use wet bulb temperature (Twb), 

which represents the equilibrium temperature of a thermometer covered with a cloth that 

has been wetted with pure water (Thom, 1959; Bianca, 1962; NRC, 1971) or dew point 

temperature (Tdp), the temperature to which the air must be cooled for saturation to 

occur; that is, the temperature at which RH is 100% (NRC, 1971; Yousef, 1985).  

 

Table 1.2. Formulas to calculate Temperature Humidity Index (THI). 

Formula Reference 

THI1= [0.4 × (Tdb °C + Twb°C)] × 1.8 + 32 + 15 Thom (1959) 

THI2= (0.35 × Tdb °C + 0.65 × T wb°C) × 1.8 + 32 Bianca (1962) 

THI3= (0.15 × Tdb °C + 0.85 × Twb°C) × 1.8 + 32 Bianca (1962) 

THI4= Tdb °C+(0.36*Tdp°C)+41.2 Yousef (1985); Bosen (1959) and 

Kibler (1964) 

THI5= (0.55*Tdb °C +0.2*Tdp°C)*1.8+32+17.5 NRC (1971) 

THI6= (Tdb °C + Twb°C) × 0.72 + 40.6 NRC (1971) 

THI7= Tdb °F-[(0.55-0.55*RH)*(Tdb °F-58)] Kelly and Bond (1971); NOAA 

(1976) and LPHSI (1990) 

THI8= Tdb °C -[0.55*(1-RH)]*( Tdb °C – 14.4)] Finocchiaro et al. (2005) 

THI9= (0.8*Tdb°C)+((RH)*(Tdb °C-14.4))+46.4 Mader et al. (2006) 

THI10= Tdb °C –[(0.31 − 0.31 RH)(Tdb °C − 14.4)] Marai et al. (2007) 

Tdb: dry bulb temperature; Twb: wet bulb temperature; Tdp: dew point temperature; RH: relative humidity. 

 

1.4. Diminishing the impact of heat stress 

Many strategies developed for reduction of effects of heat stress on animal 

agriculture, such as cooling systems and barn construction and facilities, changes in 

feed and its management (Armstrong, 1994; West, 1999; Berman, 2008; Stowell et al., 

2009).  
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Same with the environmental management, la production still decreases during 

the summer months with some facets of production, especially reproduction; also, the 

strategies can be successful in the short-time and during a chronic stress, the depressed 

effect of thermal stress cannot be totally eliminated, beside, taking account to 

knowledge of associations between economics, climate and genetic in terms of 

production or fertility, in addition, current selection acts against heat tolerance, so, the 

breeding strategies for heat tolerance in dairy cattle may be adequate in the long-term 

and economically. 
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Objective 

 

Determine the importance of heat stress on production 

traits and SCS and the genetic components of these traits. 
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2. Materials and Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

14 
 

2.1.Production and meteorological databases 

Initial data bases 

Data were obtained from two sources of information. The first one was the 

Confederation of Associations of Spanish Friesian (CONAFE) that provided records of 

phenotypic observation of production traits and the pedigree file. The second one was 

the meteorological state agency (AEMET) that records meteorological data. 

The raw database of Spanish Friesian test-day records for milk, fat and protein 

yield and somatic cell count (SCC) from up to 17 parities provided by CONAFE 

comprised 7,347,494 test-day records of 209,844 of Spanish Friesian cows collected 

from 1996 through 2012 in 568 herds in Castilla la Mancha (CLM) and Andalucía 

(AND), with an average of 10 test-day records per lactation and 2.50 lactations per cow. 

Concerning the weather stations, hourly (if available) or daily temperature and relative 

humidity data from 718 stations in both regions (CLM and AND) were provided by 

AEMET. Maximum (TMAX) and average (TAVE) daily temperatures together with 

two indices, that combine daily average (THIAVE) and maximum temperature 

(THIMAX) with relative humidity, respectively.  THI indices were calculated according 

to the following formula (NRC, 1971) 

THI = (1.8*T+32)-(0.55-(0.55*HR/100))*(1.8*T-26), 

where, T is temperature in Celsius degrees and RH is relative humidity, expressed as a 

percentage. Table 2.1 shows the number of meteorological stations by region and the 

type of collected information. 

Table 2.1. Number of stations collecting hourly or only average temperature and 

humidity by region. 

 Andalucía Castilla la Mancha 

Daily average temperature only  572 146 

Hourly temperature 134 55 

Daily/hourly humidity 154 51 
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Thereafter, herds were matched with the closest weather station, based on 

minimum distances from latitude and longitude information using a suit of R programs.  

Herds farther than 30 km from their closest weather station were discarded.  

Production data edits 

Upon receipt of the raw data, a series of analyses to remove anomalous data 

were performed. Firstly, data with parity number exceeding five were removed because 

parities over this number are rare in this population. Records with missing data of milk 

and missing test-day date were removed. Records obtained before 2002, were also 

removed. Data above the 99th percentile and below the 1st percentile of the distribution 

of each character and days in milk (DIM) per control and parity number (shown in 

Tables 2.2 and 2.3) were discarded. Moreover, 2308 and 4810 test day records obtained 

at extreme temperatures TAVE and TMAX, respectively, were ignored to avoid 

problems in the subsequent adjustment of the production vs. temperature curves. 

Finally, following CONAFE’s edits for genetic evaluations, all records from parities 

outside the age intervals shown in Table 2.4 were deleted 

Table 2.2. Thresholds by number of control to consider valid test-day records 

for production traits for all lactations. 

Number of control Milk (kg) Fat (%) Protein (%) Days in milk 

1 8.6-55.5 1.60-6.47 2.46-4.49 4-63 

2 12.0-59.0 1.54-5.60 2.39-3.83 33-95 

3 13.0-57.5 1.54-5.50 2.45-3.86 63-126 

4 12.3-55.0 1.56-5.49 2.52-3.94 93-157 

5 12.0-52.5 1.58-5.51 2.59 4.00 123-189 

6 11.0-50.0 1.60-5.55 2.64-4.07 154-220 

7 10.0-48.0 1.67-5.60 2.68-4.15 184-251 

8 8.0-45.6 1.73-5.69 2.73-4.27 214-281 

9 8.0-44.0 1.81-5.75 2.77-4.37 245-312 

10 7.0-42.0 1.87-5.81 2.80-4.49 275-343 

11 6.5-41.0 1.92-5.84 2.83-4.55 305-375 

12 6.0-40.0 1.96-5.90 2.85-4.63 335-418 

13 6.0-39.7 1.99-5.92 2.86-4.68 366-451 

14 6.0-39.0 2.03-5.93 2.88-4.72 396-484 

 

 



   
 

16 
 

Table 2.3. Limits for valid somatic cell counts (SCC) per parity. 

 Parity 

1 2 3 4 5 6 7 

SCC 4-3406 7-4846 9-5362 6-5800 1-5655 5-5753 1-6517 

 

Table 2.4. Age intervals required for valid parity records.   

Parity number Age at calving (months ) 

1 18-40 

2    28-59 

3 38-77 

4 48-94 

5 58-110 

 

The file obtained after these edits contained 2,514,762 test-day records until the 

fifth lactation, between 4 and 484 DIM for 128,112 cows from 468 herds and years 

2002-2012. The distribution of records, cows and average number of controls per 

lactation can be seen in Table 2.5. 

Table 2.5. Spanish Holstein cows and records number and mean of control 

number per lactation number. 

Lactation number Cows number Test-day records Mean of control number 

1 99,593 932,506 9.3 

2 78,422 700,244 8.9 

3 52,635 452908 8.6 

4 32,514 276,968 8.5 

5 18,133 152,136 8.3 

 

Because of the extremely skewed distribution of SCC, somatic cell score (SCS) 

was used in the subsequent analyses. SCS was calculated according to the formula (Ali 

and Shook, 1980): 

SCS = log2 (SCC/100) + 3, 
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Date of weather recording 

 

After editing the data, a multiple regression analysis of each character on daily 

temperatures of milk recording and the previous 15 days was carried out to determine 

the day that showed the highest regression coefficient. Data were pre-adjusted to correct 

noise factors that could distort the posterior estimate of the relationship between 

temperature and milk production. For the pre-correction, solutions obtained by a BLUP 

method under the following model were used: 

yijkl=HYi+LADIMj+ak+eijkl,  [1] 

where, 

yijkl = observations on production traits and SCC 

HYi= herd-year of calving fixed effect (3,712 levels) 

LADIMj = lactation-age at calving-days in milk fixed effect (533 levels) 

ak =animal random effect, with ak i.i.d. N(0, ) (128,112 levels) 

eijkl = residual effect, with eijkl i.i.d. N(0, ) 

In this step we used the programs BLUPf90 (Misztal, 1999). Please, notice that 

no pedigree information was used in the pre-correction (the relationship matrix of 

random animal effect was not considered in the analysis of pre-correction using mixed 

model). 

After adjusting the mentioned factors, a multiple regression analysis was 

performed using a ridge regression procedure to avoid the problems of colinearity 

between regressor variables (temperatures on consecutive days) using the library MASS 

of R (R3.2 version 2.15.2). 

2.1.Reaction norm of production to temperature increase. Population level. 

 

The aim of this part was to determine the threshold and slope of the response of 

production traits to temperature increases. The edited data base described in the 

previous section was used in this study. 
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Statistical models 

Two types of models were used, a splines model (SP) and Legendre polynomial 

models (LP). In SP models, two splines are fitted. The first corresponds to the comfort 

region, where production or somatic cell score (SCS) remain unaffected by temperature, 

and the second describes the stress region, where production and SCS follow a linear 

decay or increase with temperature. The point where the two splines meet is the 

thermotolerance threshold. For LP, quadratic and cubic functions were fitted to define 

the pattern of response to increasing temperatures. The general model used to determine 

the effect of temperature on productive traits and SCS at the population level had the 

following general form: 

yijkl_T=HYi+LADIMj+f(T)+ak+eijk_Tl, 

where, yijkl_T, is the observation for a given trait at a certain temperature, T, HYi, 

LADIMj;, and ak are the same as in model [1] used in the date of weather recording 

section; f(T) is a function of temperature (T= TAVE or TMAX), that differs between SP 

and LP models.  

For SP models  

, 

where, b is the slope of response to temperature increases and To is the thermotolerance 

threshold. The aim of the SP models was the estimation of To, b. 

 For LP models, 

, 

where, bi are the regression coefficients, Zi(x(T)) are the covariates of the Legendre 

polynomials of order q (in our case, q=3), evaluated at the corresponding standardized 

values of the T variables in the interval [-1, 1], x(T)., 

 

x= -1 

where, tmin was the minimum temperature or THI and range was the range temperature 

or THI.  
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In the PL models, the maxima and derivatives (slopes) at subsequent 

temperatures or THI of the LP functions were obtained as proxies for the threshold and 

slope in the SP models 

The inferential method implemented for estimating parameters for SP and LP 

models was a Bayesian Markov-chain Monte Carlo procedure, specifically a Gibbs 

sampler algorithm. For the SP models, a Metropolis Hasting sampling within the Gibbs 

sampler was used to obtain values for the threshold To, which did not have a known 

conditional distribution. A software program written in Fortran90 language provided by 

J.P. Sánchez (personal communication) was used in the estimation of the unknowns in 

the SP models. For the LP models, the Gibbsf90 package (Misztal, 1999) was used. A 

single long chain of 3,000 samples was generated for both models. The first 1,000 

samples were discarded as a burn-in, and the remaining samples were used to compute 

posterior means of model’s parameters. Convergence of Gibbs chains was monitored by 

visual inspection of plots of samples and the Geweke criterion. Post-Gibbs analysis was 

performed using boa package of R (R3.2 version 2.15.2). For each parameter, the mean 

and the high posterior density intervals (HPD95%) were calculated.  

Overall, six models, one SP and two LP models (quadratic and cubic) using 

either TAVE or TMAX, were fitted for each trait. Models were compared according to 

their goodness of fit, measured through the Deviance Information Criterion (DIC, 

Spiegelhalter et al., 2002).  

 

2.2. Reaction norm of production to temperature increase. Individual 

genetic and environmental components 

Material: 

In order to obtain a more tractable data from a computation point of view, a 

random sample of 25% of the herds were used in this part. From all records in the 

sampled herds, first lactation records were then extracted to avoid the complexity of 

models including test-day records from different lactations. The data set used in this 

part of the study contained 259,667 test-day records including production traits and 

somatic cell score (SCS) for 27,377 Spanish Holstein cows in 123 herds. Table 10 

shows a summary of the basic statistics of the sample and total data sets. 
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Table 2.6. Averages and first and 99
th

 percentile for the sampled and total (in 

parenthesis) data sets. 

 

 As shown in Table 2.6, sampled and total data showed similar averages and 

range for all traits. 

A Pedigree file was constructed using genealogical information provided by 

CONAFE . Ancestors of the animals with data were traced back for three generations 

(until the great grandparents). The final genealogical file contained 54,173 animals. 

Statistical models: 

A test day type of model that included a random regression on DIM and a 

random reaction norm to temperature were fitted following Brügemann et al. (2011) and 

Hammami et al. (2013). Only LP models were considered in this part because of the 

poor convergence behavior observed for the SP models in the previous part.  

The general model equation was:  

,  

  where,  

yijkl_DT = observation for a given trait at a certain DIM = D, and, temperature 

TAVE or TMAX) = T 

    

   

y ijkl _ DT =  HYSi +  ADIM j +  brZr (T) +
r =0

3

å  aDIM kr
Zr (D)

r =0

3

å  +  pDIM kr
Zr (D)

r =0

3

å  + aTks
Zs(T)

s=0

1,2

å  + pTks
Zs (T)

s=0

1,2

å + eijkl _ DT

 Average 1-99 Percentiles 

Milk yield (kg/d) 28.20 (28.27) 6.00-58.40 (6.00-59.00) 

Fat (%) 3.53 (3.57) 1.54-6.46 (1.54-6.46) 

Protein (%) 3.28 (3.27) 2.39-4.71 (2.39-4.72) 

Fat yield (kg/d) 0.97 (0.99) 0.97-2.70 (0.13-2.85) 

Protein yield (kg/d) 0.91 (0.91) 0.18-2.01 (0.17-2.16) 

SCC (thousands/ml) 170 (169) 1-4037 (1-4037) 
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HYSi = herd-year-season of test day; seasons defined from January to March, 

April to June, July to September and October to December (3,899 levels for milk and 

SCS, 3,898 levels in fat and 3,897 levels in protein)  

ADIMj = age-DIM (130 levels) 

br = regression coefficient for temperature 

Zr(T) = Covariate of the r
th

 Legendre coefficient evaluated at temperature = T 

, = additive genetic and permanent environmental random regression 

coefficients for DIM for animal k (r=0,3), respectively, 

Zr(D) = Covariate of the r
th

 Legendre coefficient evaluated at DIM=D 

, = additive genetic and permanent environmental random regression 

coefficients for T for animal k (alternatively, r=0,1 or r=0,2), respectively, 

eijkl_DT = residual effect, with eijkl i.i.d. N(0, ) 

The (co)variance structures for regression coefficients for individual animals for 

both the regressions on DIM and temperature were assumed to be: 

 ; , 

where, a and p are vectors of additive genetic and permanent environmental 

coefficients for all animals, respectively, and, Go and Po are the additive genetic and 

permanent environmental (co)variances for all the regression coefficients , respectively. 

Dimension of Go and Po matrices varied depending on the degree of the polynomial 

fitted to the temperature coefficients and included non-zero covariances between 

coefficients associated to DIM and to the temperature. 

Overall, four models were fitted for each trait-temperature combination. Models 

differed in the number of coefficients fitted for the polynomial functions for additve 

genetic and permanent environmental effects for DIM and temperatures as covariates. 

First, models including regressions for temperature only and varying the degree of the 

polynomial fitted from quadratic (TEM2) to cubic (TEM3) were solved. Then models 

  

   

aDIM kr   

   

pDIM kr

  

   

aTkr   

   

pTkr

    



e

2

AGGa   =  )var( o  IPPp   =  )var( o 



   
 

22 
 

fitting cubic random regressions on DIM together with a quadratic (DIM3TEM2) or, 

alternatively, a cubic (DIM3TEM3) polynomial regression on temperature were 

analyzed. 

 The additive genetic deviation for individual animals at time t and the additive 

and permanent environmental variances at time t were computed from the estimated 

solutions for genetic regression coefficients and the estimated (co)variance matrices as 

in Jamrozik and Schaeffer (1997). Genetic parameters (heritability and correlations) at 

different time points were obtained from the estimated (co)variances. 

 A Bayesian approach via Gibbs sampling to obtain samples from marginal 

posterior distributions of the parameters of interest was used using a software written in 

fortran90 language (López-Romero et al., 2003). 

Statistical model comparison 

The described models were compared according to the goodness of fit, using the 

logarithm of the marginal density (LMD) and to the predictive ability of future data, 

using a checking function that measures the expected difference under the predictive 

distribution (D) between an observation excluded from the total data to fit the model 

and its prediction. Both statistics are calculated by the program within the Gibbs 

sampling. Details of the calculation procedure for the model comparison statistics can 

be found in López-Romero et al. (2003). The best model is the one with the minimum 

value of D or with the maximum value of LMD. 

Post-Gibbs analyses were performed using the boa package of R (R3.2 version 

2.15.2). Convergence of Gibbs chains was monitored by visual inspections of plots of 

samples. 
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3. Results and Discussion 
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3.1. General description of the final data 

Production data 

Table 3.1 presents summary statistics of phenotypic data for the final data used 

in the subsequent analyses. Data correspond to 128,112 Spanish Holstein cows calving 

between 2002-2012 and 2,514,762 test-day records for five lactations. The observed 

means for analyzed traits are generally coincident with results from other Holstein 

populations found in literature (Aguilar et al., 2009; Bastin et al., 2012; Bohmanova et 

al., 2008; Hammami et al., 2013; Smith et al., 2013). 

Table 3.1. Mean, standard deviation (SD), percentiles 1 and 99 (in brackets), 

and animal and data number for the analyzed traits. 

* SCC = Somatic cell count 

Figure 3.1 presents the average phenotypic level of the analyzed traits per 

lactation and number of control. Daily production was lower for the first eight controls 

of first lactation and more persistent in this lactation when compared with the rest. Peak 

production was observed at the second control (between 33 and 95 days in milk) at 

around 30 vs. 39 kg for first vs. second and later lactations. Due to the large differences 

in milk production, tolerance to heat stress has been found to be higher during first 

lactation (Aguilar et al., 2009). Moreover, Aguilar et al. (2009) found that the largest 

negative correlation between general production level and heat tolerance differed 

between lactations and stage of lactation, being more negative at 50 DIM and 200 DIM 

for the first and later parities, respectively. Milk production stayed at relatively high 

levels (nearly 20 kg/d) at the 14
th

 control, showing a justification for extension of the 

previously standard 305 d of lactation length. Percentage of fat and protein and SCC 

 Mean SD Percentiles 

[1%-99%] 

Animals 

number 

Data 

number 

Milk yield (kg/d) 30.7 8.98 [11.20-52.10] 128,112 2,514,762 

Fat (%) 3.56 0.78 [1.77-5.46] 128,003 2,466,055 

Protein (%) 3.27 0.34 [2.59-4.20] 127,977 2,475,092 

Fat yield (kg/d) 1.07 0.34 [0.39-2.04] 128,003 2,466,055 

Protein yield (kg/d) 0.99 0.26 [0.39-1.60] 127,977 2,475,092 

SCC
1
* (thousands/ml) 275 549.71 [8-2979]  127,831 2,473,022 



   
 

25 
 

followed a reverse pattern from that of milk yield due to a dilution effect. Increasing 

values of SCC were observed in successive lactations. 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 lactation 1,  lactation 2,  lactation 3,  lactation 4 and   lactation 5. 

Figure 3.1. Average of daily milk production, fat and protein percentage (%) 

and somatic cell count (× 1000 cells /ml, SCC) per lactation and control number. 

Graphics in Figure 1 show the large effect of days in milk and control number in 

the values of the analyzed traits. Values for daily milk production can double when peak 

and last controls are compared for later than first lactations and SCC can be three times 

as high in fifth vs. first lactation. This is important to take into account when looking at 

patterns of raw production with climatic variables if the distribution of DIM is not even. 

Meteorological parameters:   

Figure 3.2 shows the variation throughout the year of average values of THI per 

maximum temperature (TMAX) and average temperature (TAVE). Maximum daily 

average temperature and THI attained 26.5 ºC and 73.5 respectively in the month of 
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July. Daily maximum temperature and THI were recorded in the same month at 34.5ºC 

and 88.3, respectively. The minimum temperature and THI values recorded for both 

temperatures (TAVE and TMAX) and THI (average and maximum) were 8.0ºC, 12.9ºC, 

47.0 and 56.0, respectively, detected in January. 

 

  

       

 

 

 

 

                 TAVE                average THI                    TMAX              maximum THI  

Figure 3.2. Variation through the year of average (left) and maximum (right) 

values of THI and temperature. 

According to Figure 3.2, the curves of temperature and THI are almost 

overlapped for both average and maximum weather parameters. Therefore, the 

temperature data were used as weather variable for later analyses because of the high 

correlation between temperature and THI curves and because of the relatively large 

amount of missing data of humidity in Andalucía. Carabaño et al. (2013) showed that 

the models with average temperature only adjusted better than models with THI in two 

small ruminant populations. Moreover, Bohmanova et al. (2007) found that humidity 

was the limiting factor of heat stress in humid climates, whereas dry bulb temperature 

was the limiting factor of heat stress in dry climates, such as the studied regions.    

Meteorological stations and farms distance 

Figure 3.3 shows a histogram for distances from farms to the closest 

meteorological station with either temperature or THI for each test day of recording. 

The average distance between weather stations and farms for average temperature was 

7.24 km with a maximum of 29.65 km and a standard deviation of 5.0, whereas the 

average distance for the THI was 13.29 km, with a maximum of 29.98 and a standard 

deviation of 7.90. The larger distance observed for the THI adds another argument in 
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favour of the use of temperature as weather parameter to measure heat stress. The 

figures for distances found in this study are within the values found in the literature. 

Hammami et al. (2013) reports as mean, maximum, and minimum distances between 

weather station and herd location of 7.6, 16.0, and 1.0 km, respectively, Menéndez-

Buxadera et al. (2011) an average distance under 25km and Zumbach et al., (2008) a 

distance of 14.0 km and 21.0 km from the two farms in the study. This Figure also 

shows that average distance by temperature lower than average temperature by THI 

(7.24 km) thus better accuracy and other raison to use model with temperature only. 

 

 

 

 

 

 

 

Figure 3.3. Histogram of distances from farms to meteorological stations 

providing average daily temperature and average daily temperature and relative 

humidity (THI) for each test day of recording. 

Date of weather recording 

Coefficients obtained in the ridge regression of production and SCC on the day 

of recoding and the previous 15 days are shown in Figure 3.4. This analysis had the 

objective to identify the date of weather recording that has a larger influence on the 

recorded traits in a certain test day. In other words, the day associated with the 

coefficient showing the most negative values for production and positive values for 

SCC.  
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Figure 3.4.  Estimates of regression coefficients on average (TAVE=blue line 

and squares) and maximum (TMAX= red line and circles) daily temperature at test day 

(0) and one to 15 days earlier obtained in the ridge regression analyses for the 

production traits and SCS. 

According to these curves, only kg and percentages of fat and protein followed a 

more clear pattern of more negative regression coefficients as the date of temperature 

recording approaches the test day. Milk yield and somatic cell production showed a 

quite random pattern. Thus, the temperature on the test-day was used in the following 

analyses. In other side, other authors (Bohmanova et al., 2007; Brügemann et al., 2011 

and Hammami et al., 2013) used the THI of three days previous to control for their 

studies. 

3.2.Reaction norm of production to temperature increase. Population level 

 

The aim of this study was to determine the comfort region for temperatures and 

the subsequent decay in production or increase in SCS. The splines models provide 

estimates of two parameters, the threshold and slope of decline in production and they 

have a clear biological interpretation. In SP two splines are fitted. The first corresponds 

to the comfort region, where production or SCS remain unaffected by temperature, and 

the second describes the stress region, where production and SCS follow a linear decay 

or increase with temperature. The point where the two splines meet is the 

thermotolerance threshold. On the other hand, polynomials provide estimates of 

regression coefficients, with a difficult biological interpretation. In order to provide 
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parameters with a biological meaning, maximum and derivatives of the polynomial 

functions were calculated per LP models. In order to provide a picture of the fitting 

process of the SP and LP functions for each trait-temperature combination, average and 

adjusted (by environmental and animal effects in [1]) production and SCS at successive 

temperature degrees together with the adjusted LP and SP functions are shown in Figure 

3.5. Adjustment by environmental effects had a large impact on the observed pattern, 

particularly for milk and fat yield. Milk production showed a cold stress region after 

data adjustment as well as a heat stress area. Fat yields tended to decrease in all the 

range of temperatures for the raw data and this yielded low threshold values for the SP 

models. The pattern of SCS to increasing temperatures for both raw and adjusted 

records was quite erratic. 
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Figure 3.5. Average of raw (red dots) and adjusted by environmental and animal effects 

(black squares) records by degree of average (TAVE) and maximum (TMAX) daily 

temperature and polynomial (green solid line) and splines (blue discontinuous line) fits 

for production traits and SCS. 
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Tables 3.2 and 3.3 present the results of estimated tolerance thresholds and slopes 

for the SP models and the proxies for those, the maxima and derivatives of the 

polynomial function for the LP models. 

Table 3.2. Posterior means and 95% high posterior density intervals (in brackets) of 

the threshold parameter in the spline model and maxima in the Legendre polynomial 

models. 

 TAVE   TMAX   

 Threshol

d (ºC) 

Slope  

(daily g/ºC) 

Derivative at 

threshold (daily 

g/ºC) 

Threshol

d (ºC) 

Slope (daily 

g/ºC) 

Derivative at 

threshold (daily 

g/ºC) 

Milk 

 

29.2 

 

-157.4  

[-203.4, -116.9] 

-87.6 

[-94.2,  -79.8] 

15.0 

 

15.9 

[15.0, 16.9] 

39.4 

[37.5, 41.6] 

Fat 

 

15.0 

 

- 4.4 

[-4.5, -4.3] 

-2.9 

[-3.0, -2.8] 

16.6 

 

-2.8 

[-2.9, -2.8] 

-1.9 

 [-2.0, -1.8] 

Protein 18.1 

 

-3.8  

[-4.0, -3.7] 

-1.6 

[-1.7, -1.6] 

21.5 

 

-2.3 

[-2.4, -2.3] 

-0.9 

[-0.9, -0.8] 

 

Table 3.2 showed the declined of production traits and increase in SCS by 

degree of TAVE and TMAX for SP and LP models. The daily losses in Table 3.7 can be 

used to determine the economic losses associated to heat stress such as in the study of 

St-Pierre et al. (2003). For milk production, a decline of -157.4 and -87.6 g/d/°C of 

TAVE above the threshold of thermotolerance was found by SP and LP models, 

respectively for TAVE. For TMAX, no relevant figures are provided given the fact that 

the comfort threshold estimated by the SP model was too low. Derivatives of the 

polynomial function at 30, 35 and 40 ºC of TMAX were -88.0, 800.2 and 1722.4 g/d/°C.  

For fat and protein yields, the estimated slope from SP models was larger than the 

derivative at the SP threshold, as might be expected from the gradual slopes of decrease 

provided by polynomial functions. A decrease of around -4.4 and -3.8 g/d/°C of TAVE 

were found for fat and protein yields, respectively, with the SP models. For TMAX the 

decay estimated for these traits was smaller, -2.8 and -2.3 g/d/°C, for fat and protein, 

respectively. For LP models, decay in fat and protein production was estimated as -

66.9/-62.5 and -67.6/-105.9 g/d/°C at 25/30 ºC of TAVE, respectively. For TMAX, the 

declines were similar when maximum daily temperatures were 35/40ºC. 

Goodness of fit of the models fitted to the studied traits were compared using the 

DIC values for this criterion are presented in Table 3.3 for SP and LP models with 

either TAVE or TMAX as measures of heat load.. 
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Table 3.3. Deviance information criterion (DIC) values for splines and 

polynomial models for production traits and somatic cell score (SCS) with average 

(TAVE) and maximum (TMAX) daily temperatures. Minimum (best) values for DIC 

are in boldface. 

 TAVE TMAX 

Splines Polynomial Splines Polynomial 

Milk 6570261.7 6569032.3 6569773.7 6569053.0 

Fat -798892.8 -799079.3 -798397.4 -798317.3 

Protein -1709251.6 -1709289.1 -1708358.6 -1708476.4 

SCS 3505640.7 3505586.9 3505615.3 3505594.0 

 

 

For all traits, the LP model ( a cubic polynomial) with TAVE as measure of heat load 

showed the best fit of the data. Polynomials are more flexible functions and can take 

into account gradual changes in the slope of reaction of the traits to incresing 

temperatures. Moreover, in the case of milk yield, a cold stress region was also detected, 

which cannot be accomodated with the SP model used in this study. Average 

temperatures might be thought of as better indicators of heat load than daily maxima 

because they may account for the fact that lower temperatures at night, which will lower 

the average, might alleviate the day high temperatures effect.  

 

To compare model improvement across traits, relative values of the DIC were 

obtained. Relative values are expressed as percentage of the loss in goodness of fit 

between the model in question and the model with best (smallest) DIC within trait. 

 

Results in Figure 3.2 indicate that losses in goodness of fit were different for 

milk vs. fat and protein yields. SCS showed nearly no effect of the heat stress function 

fitted or of the heat load variable used. For milk yield, larger losses were observed when 

fitting SP vs. LP models while the use of TAVE vs. TMAX did not change the 

goodness of fit within a model. On the contrary, the use of TAVE vs. TMAX had a 

larger impact on goodness of fit for fat and protein than the type of model used, SP vs. 

LP.  
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 Figure 3.6. Percentage of loss in the Deviance Information Criterion 

(DIC) with respect to the best model in each trait, for splines (SP) or Legendre 

polynomials of third degree (LP) fitted for productive traits and somatic cell score 

(SCC) on daily average (TAVE) or maximum (TMAX) temperature in the test day. 

 

3.3.Reaction norm of production to temperature increase. Individual genetic 

and environmental components 

 

Estimated average curves of response to temperature 

 Estimated curves for each trait temperature combination under the four models 

analyzed are presented in Figure 3.7. The effect of temperature on milk yield was very 

small and showed an upward trend with temperature. The fact that the records analyzed 

come from animals in first lactation, with lower production levels might explain the 

lack of heat stress observed. For fat and protein, a decreasing trend was observed for all 

the trajectory when quadratic polynomials were fitted, while cubic polynomials allowed 

fitting cold and heat stress areas for fat production. As for the whole population study, 

low thresholds of change in slope were observed for fat and protein. SCS showed very 

little variation with increasing temperature. Inclusion of individual regressions on DIM 

did not modify the pattern of respond for the same degree fitted to temperature.  
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Figure 3.7. Mean curves of response obtained from the estimated 

regression coefficients for models fitting only quadratic (TEM2) or cubic (TEM3) 

individual polynomial regressions on average (TAVE) or maximum (TMAX) or models 

fitting individual cubic regressions for days in milk and quadratic (DIM3TEM2) or 

cubic (DIM3TEM3) polynomial regressions on temperature for production traits and 

somatic cell score (SCS).  
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Estimation of breeding values 

 Figures 3.8 to 3.11 show estimated breeding values (EBV) for the four models 

analyzed for each combination of trait and temperature for the 10 top, 10 bottom and 

five random animals for the EBV of the estimated intercept under each model. These 

animals showed different types of response to increasing TAVE and TMAX values. 

Animals with high breeding value for production, a trend could be observed such that 

EBV decreased with increasing heat stress in terms of increasing daily temperature. For 

SCS the opposite trend was observed. For milk and SCS the trend was less notorious. In 

goats, Menéndez-Buxadera et al. (2012) categorized three types of animals, (i) Robust 

animals, which show a stable performance throughout the THI trajectory (with an 

average intercept and an average slope); (ii) Tolerant animals, which show a low genetic 

level (low intercept) and a high genetic capability to adapt to climatic stress (positive 

slope); and (iii) Non-tolerant animals, which manifest a high genetic level (high 

intercept) and very low capability to adapt to stressful climate conditions (negative 

slope). In our study, the animals with high genetic level were the ones most affected by 

temperature increasing (negative slope), whereas, the animals with a low genetic level 

for fat and protein did not show influence of temperature increasing. On the contrary, 

increases of estimated breeding values (positive slope) were observed and the animals 

with average EBVs did not change when temperature increased. These trends were 

observed for all models analyzed. Some reranking of animals was observed along the 

temperature range. This would indicate that sensitivity to increasing heat loads is 

different across animals and more notorious in highly producing animals. In other 

words, genetic variability associated to tolerance /susceptibility to heat stress has been 

detected mainly in the high producers. This result would indicate that the increase in 

metabolic heat associated to higher production might be one of the major components of 

heat susceptibility in Holstein dairy cattle.  
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Figure 3.8 . Estimates of the breeding values for production traits and SCS by 

TAVE and TMAX and TEM2 model. 
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Figure 3.9 . Estimates of the breeding values for production traits and SCS by 

TAVE and TMAX and TEM3 model. 
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Figure 3.10. Estimates of the breeding values for production traits and SCS by TAVE 

and TMAX and DIM3TEM2 model. 
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Figure 3.11. Estimates of the breeding values for production traits and SCS by TAVE 

and TMAX and DIM3TEM3 model. 
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Heritabity and genetic correlations across temperatures 

 

 Figures 3.12 and 3.13 show curves of heritability estimates across temperatures 

for different lactation stages, early lactation (4 DIM), peak (30, 60 DIM) and end of 

lactation (300 DIM), within a given model. Only models fitting individual regressions 

on DIM, DIM3TEM2 and DIM3TEM3, could provide these curves. Heritability 

estimates were larger for milk yields (0.08-0.40) than for fat and protein (0.05-0.30) and 

lowest for SCS (0.05-0.25), being within estimates for these traits found in the 

literature. Heritability estimates tended to decrease at higher temperatures, being the 

slope of decay more steep after around 20-25ºC for TAVE and after around 30ºC for 

TMAX. For late stages, the threshold for the steeper decay was observed at higher 

temperatures than for the beginning and peak of lactation. Also, heritabilities tended to 

be lower for peak and early lactation than for the last stage of the lactation. Therefore, 

for temperatures at the extreme of the high range, heritability for production and SCS at 

the end of the lactation tended to be noticeably higher than for traits measured at the 

beginning or at the lactation peak. Thus, as for the breeding values, a relationship 

between the level of production (higher at DIM 4, 30 and 60 than at DIM300) and the 

effect of heat load was observed. Aguilar et al (2009) and Sanchez et al. (2009), in two 

studies on the US Holstein population in Georgia using a SP model found a negative 

estimated correlation between general and heat tolerance (negative of the slope) genetic 

components, indicating that animals with a high level of production are expected to be 

less tolerant, which is in agreement with the results observed in our study. Moreover, 

Aguilar et al. (2009) found that additive genetic effects for heat stress and yield traits 

increased greatly from the first to third parity. Consequently, later parity cows are 

expected to be much more susceptible to heat stress than are first-parity cows. In a 

German Holstein population of first lactation animals, Brügemann et al. (2011) under a 

polynomial random regression model similar to the one used in our study also found a 

decrease of heritability with increasing heat loads (THI in their case) and larger 

heritabilities for later lactation stages. 
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Figure 3.12. Heritability for production traits and SCS by TAVE and TMAX and by 

DIM3TEM2 model at different DIM. 
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Figure 3.13. Heritability for production traits and SCS by TAVE and TMAX and by 

DIM3TEM3 model at different DIM. 
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Patterns of changes in heritability estimates across models (TEM2, TEM3, DIM3TEM2 

and DIM3TEM3) with increasing temperatures for production and SCS measured at 

different stages of lactation (4, 30, 60, 300 DIM) are shown in Figures 14 through 17. 

The pattern of decreasing heritability estimates as temperatures increase observed for 

DIM3TEM_ models is now also observed for models not including the individual 

regressions on DIM (models TEM2 and TEM3). For these models, lower heritability 

estimates were observed. This trend was clearer for the end of lactation stage (300 DIM) 

and for SCS and milk yield, the traits that seemed to show less sensitivity to increases in 

heat load according to Figure 3.7. For quadratic and cubic polynomials not much 

differences in heritability estimates were observed except for the lower end of the range 

of temperatures (the cold part). 
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Figure 3.14. Comparison of Heritability estimates for production traits and somatic cell 

score (SCS) by TAVE and TMAX and different models (TEM2, TEM3, DIM3TEM2 

and DIM3TEM3) at DIM 4. 

 



   
 

45 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. Comparison of Heritability estimates for production traits and somatic cell 

score (SCS) by TAVE and TMAX and different models (TEM2, TEM3, DIM3TEM2 

and DIM3TEM3) at DIM 30. 
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Figure 3.16. Comparison of Heritability estimates for production traits and somatic cell 

score (SCS) by TAVE and TMAX and different models (TEM2, TEM3, DIM3TEM2 

and DIM3TEM3) at DIM 60. 
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Figure 3.17. Comparison of Heritability estimates for production traits and somatic cell 

score (SCS) by TAVE and TMAX and different models (TEM2, TEM3, DIM3TEM2 

and DIM3TEM3) at DIM 300. 
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Genetic correlations for combinations of temperatures 

Figures 3.18 and 3.19 show the estimates of the genetic correlations for 

combinations of temperatures. Estimates for genetic correlations from the model with 

Legendre polynomials of second and third degree among specific values for both daily 

temperatures (TAVE and TMAX) were >0.90 for milk, >0.70 for fat and protein and 

>0.50 for SCS. However, the estimates for genetic correlations obtained for protein by 

polynomials model of second degree and average temperature was >0.90, similar to 

results reported by Brügemann et al. (2011). These authors found higher genetic 

correlations between the additive genetic components at low and high values of the THI 

than the correlations found in our study for genetic values at the two extremes of the 

temperatures range. This was probably due to the less extreme temperatures probably 

found in Germany than in the Southern regions of Spain.  

According to Robertson (1959) a genetic correlation below 0.80 is considered as an 

indication of the existence of an important effect of G×E. Therefore, GxE interaction 

might be considered to exist for fat and protein and SCS.  

As expected, genetic correlations between adjacent temperatures were higher 

than for those for more distant temperatures. This was also reported by Brügemann et 

al. (2011).  
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a) genetic correlations for quadratic polynomial model 

 

 

 

 

 

 

b) genetic correlations for cubic polynomial model 

 

 

 

 

  

 

Figure 3.18. Genetic correlations for production traits and SCS between all combinations of average daily temperature (TAVE) and two 

polynomial models.  
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c) genetic correlations for quadratic polynomial model 

 

 

 

 

 

 

d) genetic correlations for cubic polynomial model 

 

 

 

 

 

 

Figure 3.19. Genetic correlations for production traits and SCS between all combinations of maximum daily temperature (TMAX) and two 

polynomial models. 
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Comparison of models: 

 Models used in this study were compared in terms of goodness of fit through the 

estimated log of the marginal distribution and the predictive ability as described in the 

Material and methods section. Figure 20 shows the comparison of models adjusting 

using the marginal density, LMD, and the predictive ability parameter, D, in terms of 

improvement with respect to the worst model for each trait. Results for a reference 

model fitting only cubic polynomial regressions and no temperature effect are presented 

as well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20. Percentage of improvement with respect to the worst model for 

each trait for the four polynomial models analyzed (TEM2, TEM3, DIM3TEM2 and 

DIM3TEM3) together with the reference model including only cubic regressions on 

days in milk (DIM3) on average (TAVE) and maximum temperature (TMAX) 

according to the logarithm of the marginal density of the data (LMD) and the predictive 

ability (D).  
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For both criteria, including regressions on DIM resulted in improved models for 

milk and SCS. This was more notorious for milk yield and the predictive ability 

criterion, which improved up to 15% when DIM regressions were included. On the 

other hand, addition of the temperature effect had nearly no effect in the goodness of fit 

or predictive ability of the model for these two traits.  On the other hand, goodness of fit 

and predictive ability improved when a cubic polynomial on temperature was fitted to 

fat and protein yields. However, including regressions on DIM did not yield better 

models in terms of goodness of fit and even resulted in worse predictive ability. The 

discrepancy between the two criteria has been observed for overparametrized models 

that might show improved goodness of fit but worse ability of prediction of future 

records. Nearly no differences in the comparison criteria were found for TAVE vs. 

TMAX.  

The improvement percentage of prediction ability of the model 4 was 38% more 

compared with the rest of the models. The worst improvement percentage of predictive 

ability detected by first model that was simple model with Legendre polynomials of 

second degree with temperature. 

Pass from one model with Legendre polynomial of second degree for 

temperature to another model with Legendre polynomial of third degree for temperature 

greatly improves the model prediction with percentage of improvement 33 and 23% for 

fat and protein, respectively, greater relative of first model (1) 
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                                                                                                                         4. Conclusions 
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Conclusions 

 

Increases in temperature have been associated to a decrease in production traits, 

mainly fat and protein production, and to a lower extent to increases in somatic cell 

scores. Heat tolerance thresholds have been found to be higher for milk (around 29.2ºC) 

and SCS than for fat and protein yields (around 18.1ºC). 

 

Polynomial functions showed better convergence behaviour and provided better 

goodness of fit than the classical splines model used to model heat stress. 

 

Genetic variability for response to increases in heat load has been observed. 

However, this variability may be mainly associated to level of production, so that 

animals with higher production levels seem to be more prone to suffer heat stress.  

 

A cubic polynomial seems to provide better quality of adjustment than quadratic 

polynomial to determine both the population and individual deviations associated to 

increasing heat loads. 
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