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ABSTRACT: The splitting of the field of view (FOV) in polar voxels is proposed in this work in
order to obtain an efficient description of a cone-beam computed tomography (CT) scanner. The
proposed symmetric-polar pixelation makes it possible to deal with the 3D iterative reconstruction
considering a number of projections and voxel sizes typicalin CT preclinical imaging.

The performance comparison, between the filtered backprojection (FBP) and 3D maximum
likelihood expectation maximization (MLEM) reconstruction algorithm for CT, is presented. It
is feasible to achieve the hardware spatial resolution limit with the considered pixelation. The
image quality achieved with MLEM and FBP have been analyzed.The results obtained with both
algorithms in clinical images have been compared too. Although the polar-symmetric pixelation is
presented in the context of CT imaging, it can be applied to any other tomographic technique as
long as the scan comprises the measurement of an object underseveral projection angles.
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1 Introduction

Analytical methods like filtered backprojection (FBP) [1] have dominated the image reconstruction
in computed tomography (CT) because they produce images of areasonable quality with low cost in
terms of computing time. Current advances in computer science enable the use of iterative methods
like maximum likelihood expectation maximization (MLEM) [2] in CT image reconstruction [3,
4]. The improvement of image quality with iterative methods allows to reduce the dose a patient
receives during a CT examination as much as a 63% [5].

The main drawback of iterative methods is the large system matrices required for a precise
description of the scanner. The authors have already presented in [6] a description of the CT
scanner in polar coordinates that allows to reduce drastically the number of matrix elements to be
computed. Several approaches were studied in [6] to discretize the field of view (FOV) in polar
coordinates in a fan beam CT geometry. The approach proposedin [6] has been extended to cone
beam geometry and its performance is compared in this work with that obtained with the FBP,
based on measurements of synthetic phantoms and clinical images acquired with a preclinical CT
scanner.

2 System matrix

Iterative methods consider the reconstruction problem as alinear systemϕ̂ = Pψ . The tomograph
is modeled with the probability matrixP which links the reconstructed attenuation mapψ with
the estimation of the measurementϕ̂ . Each matrix elementPi j represents the contribution of the
j-th voxel to the attenuation of the i-th ray. Siddon’s algorithm [7] is the most common approach
to determine the system matrix. However, the intersection volume between the voxel and the ray
was considered to calculate the matrix elements, as it is described by Yao et al. in [8]. The large
number of projections and high resolutions (∼ 0.1 mm) used in CT lead to huge linear systems. The
description of the scanner in polar coordinates only requires the calculation of the matrix elements
of the first projection, while the remaining elements inP are obtained by rotating those in the first
projection. The strong reduction in matrix size when considering a polar discretization is shown in
table1. From table1 it can be inferred that the matrix size obtained with a cartesian discretization
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Table 1. Matrix sizes and reconstruction times using cartesian andpolar discretizations of the FOV.

Projections

Cartesian Polar
Size Time (s) Size Time (s)
(MB) Generation Iteration (MB) Generation Iteration

40 486 43 0.6 52 5 0.5

80 972 69 1 57 5.4 1.2

100 1200 88 1.4 60 5.7 1.8

200 2400 161 3 75 7.1 6.5

400 4800 318 5.8 104 10 25.8

of the FOV rises about 80 times faster with the number of projections than that obtained in the
polar case. The increase in the polar case is partly due to theoversampling of the central region
of the FOV, which leads to differences in reconstruction times. The values in table1 correspond
to a 80 mm FOV discretized in cubic voxels of 0.8 mm. Considering a typical CT scan with 200
projections, the reduction of the voxel size to 0.4 mm requires 8.5 GB to store the system matrix
when a cartesian discretization of the FOV is considered. But only the 224 MB of the first projection
are required in the polar case, because the full matrix is constructed as a block circulant matrix. The
large system matrices required for a cartesian discretization hinders the use of iterative algorithms
in typical CT acquisitions having 200 projections and voxelsizes of 0.4 mm. Such a limitation can
be overcome thanks to the small matrix sizes required with the polar discretization.

3 Experimental results

Experimental measurements were conducted with the AlbiraµCT, manufactured by Oncovi-
sion [9]. It consists of a 35µm focal spot size X ray tube, with a variable voltage from 10 kV
to 50 kV. The detector is a CsI flat panel with 2400×2400 pixels of 50µm. X ray tube and de-
tector are mounted in a cone-beam configuration having a FOV of 80 mm in diameter and 90µm
spatial resolution.

The number of iterations considered in the reconstruction influences the performance of
MLEM. In order to facilitate the comparison among the scenarios evaluated in this work, a fixed
number of 40 iterations that ensures the convergence of the algorithm, was employed in all recon-
structions.

The spatial resolution performance of the FBP and MLEM algorithms has been assessed
through the comparison of the modulation transfer function(MTF) curves. They have been cal-
culated as the Fourier transform of the reconstructed images [10] of a 50µm gold wire inside a
cylinder, 20 mm in diameter, polymethyl methacrylate (PMMA) phantom. The reduction of the
voxel size from 30µm (figure1(a)) to 5µm (figure1(b)) leads to an improvement in the spatial
frequency at 10% of the MTF from 10.3 lp mm−1 to 11.2 lp mm−1 when the MLEM algorithm
has been considered, and from 7.0 lp mm−1 to 11.2 lp mm−1 if the FBP is chosen. No further en-
hancement of the spatial resolution has been observed when voxel size’s smaller than 5µm were
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Figure 1. Comparison of the performance of spatial resolution for 30µm (a) and 5µm (b) voxel sizes. The
frequencies at which the MTF curve is 10% of its maximum valueare reported in each plot.

considered, because the contribution of the scanner’s intrinsic spatial resolution (∼ 90µm) is the
dominant effect.

Contrast and noise performance achieved with FBP and MLEM were compared with a PMMA
phantom 55 mm in diameter with five holes of 8 mm axially drilled at 16 mm off the center.
The holes were filled with inserts of synthetic materials modeling fat (polyethylene), soft tissue
(PMMA), organs (polyoxymethylene) and soft bone (ploytetrafluoroethylene). The last hole was
left empty in order to model air regions inside the body. The average (AI ) and standard deviation
(σI ) values in five 4.5 mm in diameter and 20 mm height cylindricalvolumes of interest (VOI) cen-
tered in each insert were considered to calculate the figuresof merit described in (3.1) and (3.2).
The percent standard deviation (STD) and contrast to noise ratio (CNR) have been considered in the
assessment of image noise and the ability in the identification of each material, respectively. The
average (AB) and standard deviation (σB) in the background in (3.2) correspond to those measured
in the soft tissue insert.

STDI =
σI

AI
100 (3.1)

CNRI =
2· |AI −AB|

σI + σB
(3.2)

The noise performance of the MLEM (0.8 mm), using cubic voxels of 0.8 mm, was compared
with the FBP considering 0.8 mm and 0.4 mm voxel sizes. The FBP(0.4 mm) configuration was
chosen because yields to images with spatial resolution comparable to MLEM (0.8 mm). Noise
(STD) dependence on the number of projections has been evaluated in the fat (figure2(a)) and
organs (figure2(b)) equivalent tissues. Whatever the considered tissue, similar STD values were
obtained with the MLEM and FBP when using 0.8 mm voxels. The CNR values of air, fat, organs
and soft bone respect to soft tissue obtained with the MLEM (0.8 mm) and FBP (0.4 mm) are
compared in figure2(c). As we consider the absolute difference in CNR, the values for the air and
soft bone respect to soft tissue are similar, this explain the closeness of the curves in figure2(c).
The same occurs with the fat and the organs curves. The smaller STD values achieved with the
MLEM algorithm lead to an improvement in CNR values in comparison to those measured with
the FBP. The CNR curves of the air and soft bone intersect whenthe MLEM reconstruction is
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(a) Fat tissue.
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(b) Organs tissue.
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Figure 2. Noise (STD) and CNR performance versus the number of projections. STD in the (a) fat and (b)
organs tissue equivalent inserts. (c) CNR measured with theMLEM using voxels of 0.8 mm (solid) and the
FBP considering voxels of 0.4 mm (dashed).

considered, causing that CNR values measured in the air are better than those in soft bone when
a small number of projections is employed, while the opposite scenario is observed if the number
of projections rises. This exchange in the CNR of air and softbone is due to the lack of ability
of the MLEM to produce sharp transitions between the air insert and its surrounding background,
that leads to an overestimation of the STD in the air insert. Therefore, limiting the improvement of
CNR values as the number of projections increases.

The performance of the FBP and the MLEM algorithms has also been evaluated in actual
acquisitions of a mouse, shown in figure3. Structures are better defined in the MLEM image
(figure3(b)) than in the FBP one (figure3(a)) despite the same voxel size has been considered in
both cases. The MLEM (figure3(b)) achieves an image detail comparable to that obtained with
the FBP, but using a smaller voxel size (figure3(c)). Similar behavior is appreciated in the three
attenuation profiles shown in figure4. In all three profiles is observed that the MLEM using a
voxel size of 0.8 mm reproduces the small structures in the air gaps and backbone as accurately as
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(a) FBP (0.8 mm) (b) MLEM (0.8 mm) (c) FBP (0.4 mm)

Figure 3. Transverse view of the abdomen of a mouse reconstructed with (a) the FBP algorithm and a voxel
size of 0.8 mm, (b) the MLEM using a 0.8 mm voxel size and (c) theFBP with a 0.4 mm voxel size.
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Figure 4. Comparison of the attenuation profiles obtained with the FBP and the MLEM algorithms along
the lines in yellow in figure3. (a) Attenuation profiles along a uniform region of the abdomen (yellow line
in figure3(a)), (b) profiles along the abdominal region with two air regions (yellow line in figure3(b)), (c)
attenuation profiles crossing the backbone of the mice (yellow line in figure3(c)).

the FBP using a 0.4 mm voxel size, while maintaining the less noisy properties of the FBP using a
0.8 mm in uniform regions like the abdominal tissue.

4 Conclusion

Polar symmetry reduces the size of the system matrix in cone beam CT, and overcomes the limita-
tion of a cartesian approach in the iterative reconstruction of clinical images of small animals with
voxel sizes smaller than 0.4 mm using custom computing resources. The MTF curves obtained with
the MLEM outperform those measured with the FBP, unless the scanner’s intrinsic spatial resolu-
tion represents the major contribution. The MLEM (0.8 mm) yields to images with noise properties
similar to the FBP (0.8 mm). The noisier images in the FBP (0.4mm) lead to lower CNR respect
to MLEM (0.8 mm), despite they both produce images with comparable spatial resolution. Thus,
MLEM outperforms FBP as long as reconstruction time is not critical. The results obtained with
synthetic phantoms have been reproduced with clinical images of a small mouse. Iterative recon-
struction improves the image detail without compromising the image noise for a given voxel size.
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