
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

http://dx.doi.org/10.1016/j.jbi.2011.11.004

http://hdl.handle.net/10251/37186

Elsevier

Maldonado Segura, JA.; Martínez Costa, C.; Moner Cano, D.; Menárguez-Tortosa, M.;
Boscá Tomás, D.; Miñarro Giménez, JA.; Fernández-Breis, JT.... (2012). Using the
ResearchEHR platform to facilitate the practical application of the EHR standards. Journal
of Biomedical Informatics. 45(4):746-762. doi:10.1016/j.jbi.2011.11.004.



Using the ResearchEHR platform to facilitate the

practical application of the EHR standards
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Abstract -Possibly the most important requirement to support co-operative

work among health professionals and institutions is the ability of sharing

EHRs in a meaningful way, and it is widely acknowledged that standard-

ization of data and concepts is a prerequisite to achieve semantic interop-

erability in any domain. Different international organizations are working

on the definition of EHR architectures but the lack of tools that implement

them hinders their broad adoption. In this paper we present ResearchEHR,

a software platform whose objective is to facilitate the practical application

of EHR standards as a way of reaching the desired semantic interoperabil-

ity. This platform is not only suitable for developing new systems but also

for increasing the standardization of existing ones. The work reported here

describes how the platform allows for the edition, validation, and search of

archetypes, converts legacy data into normalized, archetypes extracts, is able

to generate applications from archetypes and finally, transforms archetypes

and data extracts into other EHR standards. We also include in this paper

how ResearchEHR has made possible the application of the CEN/ISO 13606

standard in a real environment and the lessons learnt with this experience.

Keywords : electronic healthcare records, standards, semantic interop-

erability, CEN/ISO 13606, archetype, ontology

1. Introduction

Nowadays it is a common scenario that the health data of one patient

is scattered among different Electronic Health Record (EHR) systems. This

leads to the existence of distributed and heterogeneous data resources cre-
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ating a large gap between the potential and actual value of the information

content of EHR systems. Closing this gap by making efficient use of data

held by these systems could improve significantly patient care, patient safety

and empower research activities.

Possibly the most important requirement to support co-operative work

among health professionals and institutions is the ability of sharing EHRs

in a meaningful and secure way. By meaningful we mean that both the

sender and receiver system have a common understanding of the content

exchanged, i.e. interoperability at the semantic level. Security implies the

safe and relevant communication of EHR data whilst respecting the privacy

wishes of individual patients. In this context, the focus of this paper will be

the meaningful sharing and exchange of EHRs.

It is widely acknowledged that standardization of data and concepts is a

prerequisite to achieve semantic interoperability in any domain. This is even

more important in the healthcare sector where the need to exchange health

data among professional and institutions is not an exception but the rule.

The faithful communication of EHRs crucially depends on the standardiza-

tion of its syntax, structure and semantics, i.e. on the standardization of the

EHR architecture and vocabulary used to communicate data. This requires

a consistent way for naming and organizing EHR data and concepts in such

a way that a requester can precisely specify the desired parts of an EHR and

know the data structures that will be provided in response [1]. The challenge

lies in finding a generic way to representing every possible EHR structure but

at the same time is capable of dealing with the diverse, complex and volatile

concepts required by different health care domains.
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Different international organizations are or have worked on the definition

of an EHR architecture [1, 2]. Health Level 7 (HL7) maintains the XML-

based Clinical Document Architecture (CDA) [3] that specifies the structure

and semantics of clinical documents for exchange. The Technical Commit-

tee 251 (health informatics) of the European Committee for Standardization

(CEN/TC251) has completed a European Standard for the communication

of the EHR called CEN EN13606 whose part 1 (reference model) [4] be-

came an ISO standard in February 2008 under the name ISO 13606. The

openEHR consortium [5] maintains an architecture designed to support the

constructions of distributed, patient-centered, life-long, shared care health

records. Finally, ISO provides a set of clinical and technical requirements for

an EHR architecture that support using, sharing and exchanging EHRs in

the technical specification TS 18308:2004 [6].

In spite of the maturity of EHR architectures, result of over fifteen years of

research and development, and the recognition of the need to share EHR data

between professional and institutions, the set of tools is scarce which hinders

their broad adoption. Since EHR architectures define non-trivial models with

potentially high nested structures, tooling becomes crucial. Furthermore, as

EHR architectures play a central role in EHR communication, in their use

we need to cater for different levels of conceptualization potentially ranging

from raw data to ontologies.

In the rest of this paper we describe the work carried out in the Re-

searchEHR project. Its main objective is to provide a software platform

for the semantic and standard-based description and sharing of information

drawn from legacy EHR systems, supporting healthcare professionals and
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institutions by providing a set of generic methods and tools for the cap-

ture, standardization, integration, description and dissemination of health

related information. Semantic interoperability is based on the use of EHR

architecture standards, medical terminologies and ontologies, Semantic Web

technologies, archetypes and standard to standard semantic transformations.

All these technologies are used at different levels, ranging from legacy data

all the way to ontological representation of domain concepts. Two different

research streams have been carried out. The first one is focused on how to

use archetypes to upgrade already deployed systems, in order to make them

compatible with an EHR standard. The second one deals with the use of

Semantic Web technologies to specify clinical archetypes for advanced EHR

architectures and systems. Archetypes play a crucial role in our approach:

they represent the meeting point between the semantic-centric modeling and

the data-centric modeling of EHRs.

2. Technological background

In this section we present the basic concepts about dual model architec-

tures and ontologies that will make the understanding of our work easier.

2.1. Dual-model architectures

The most remarkable feature of the dual model approach is the separation

of information models (such as software models or database schemas), repre-

sented by a stable and small information model, from domain models such as

blood pressure measurement, discharge report, prescription or microbiology

result which are represented by archetypes. Only the stable reference model

is hard-coded in database schemas or software, while the possible numerous
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and volatile domain concepts (archetypes) are modeled separately by domain

specialists. Since the software is only bound to the reference model it has no

direct dependency on domain concepts. Therefore, systems do not need to

be changed when domain concepts are created or altered.

In EHR environments, a reference model represents the generic and sta-

ble properties of health record information. It specifies the set of classes

that form the generic building blocks of the EHR, how these building blocks

should be aggregated to create more complex data structures and the con-

text information that must accompany every piece of data in order to meet

ethical, legal and provenance requirements. Although the reference model is

standardized across sending and receiving systems it is not enough to describe

the full semantics of the domain concepts. The generality of reference models

is complemented by the particularity of archetypes. Archetypes are formal

definitions of a distinct domain-level concept in the form of constrained com-

binations of the building blocks defined in the reference model. Their prin-

cipal purpose is to facilitate the definition of a semantic layer for common

understanding and mutual communication of clinical data structured as a set

of formal clinical concept definitions decided by health domain experts. The

hypothesis behind archetypes is that for each domain concept, a definition

can be developed in terms of constraints on structure, types and values of

the logical building blocks. The formal description of domain concepts is

achieved by linking the data structures and content to knowledge resources

such as terminologies and ontologies. Examples of native dual model EHR

architectures are CEN/ISO 13606 [4] and openEHR [5].

ADL (Archetype Definition Language) [7] is a formal language developed
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by openEHR for expressing textually archetypes that has also been adopted

by CEN/ISO 13606. An archetype expressed in ADL is composed of four

main parts: description, definition, ontology and revision history. The de-

scription section basically contains metadata, such as the identifier, the cur-

rent lifecycle state of development, version, etc. The most important section

of an archetype is its definition tree, where the clinical concept is represented

by constraining the reference model classes. The ontology section is where

the entities specified in the definition section are described and bound to ter-

minologies. Finally the revision history section contains the audit of changes

to the archetype. Constraints are written in a block-structured style. The

general structure is a recursive writing of constraints on types (known as

object nodes or object blocks), followed by constraints on properties of that

particular type (known as attribute nodes or attribute blocks), followed once

again by constraints of types (being the types of the attribute under which it

appears) until leaf nodes (those representing atomic data types) are reached.

Names of classes and attributes from the reference model are used for all

nodes.

Figure 1 shows an example of a CEN/ISO 13606 blood pressure archetype

that describes relevant information related to a blood pressure measurement.

The root node of the archetype is an entry (ENTRY[at0000]) which com-

prises, through the items attribute, a CLUSTER[at0008] grouping the blood

pressure information. This cluster contains the following four ELEMENTs

under the parts attribute: the systolic measurement (ELEMENT[at0001]),

the diastolic measurement (ELEMENT[at0002]), the mean arterial pressure

(ELEMENT[at0003]) and the position of the patient while the pressure was
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measured (ELEMENT[at0004]). The first three elements are physical quan-

tities (a value together with a measurement unit) and the last one a plain or

simple text.

Figure 1: The CEN/ISO 13606 blood pressure archetype

Currently, there exist some initiatives to define more generic and agnostic

(in the sense of being independent from reference models) clinical concepts

known as Detailed Clinical Models (DCM). DCM have their root in the semi-

nal work of Huff et al. [8, 9]. DCM are similar to archetypes, CDA templates

and clinical statements in many ways, see [10] for a detailed discussion. There

are several approaches around the world to define DCM, such as the Clini-

cal Elements Model of Intermountain Healthcare [8], the Clinical Contents

Model of CiEHR [11], the Logical Record Architecture of the NHS [12] or

the Dutch Care Information Model [13]. There are also efforts under way to

standardize the definition of DCMs as ISO CD 13972 [14, 15]. Nevertheless

the work described in this paper is based on archetypes although some of the
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tools could be easily extended to support DCM.

2.2. Ontologies

The Semantic Web [16] is a vision of the future Web in which information

is given explicit meaning, making it easier for machines to automatically pro-

cess and integrate information available on the Web. There are different basic

technologies for the success of the Semantic Web, amongst which the corner-

stone technology is the ontology. In the literature, multiple definitions for

ontology can be found [17, 18]. An ontology represents a common shareable

and reusable view of a particular application domain. It gives meaning to

information structures that are exchanged by information systems [19]. The

advances in the Semantic Web community make the ontology a candidate

technology for supporting knowledge-intensive tasks related to archetypes

and EHR systems. Moreover, they have been identified in the final report

of the Semantic Health project [20] as one of the basic technologies for the

achievement of semantic interoperability of health information systems.

The use of ontologies for representing biomedical knowledge is not new,

since they have been widely used in biomedical domains for the last few

years with different purposes [21, 22]. In addition to this, recent proposals

and approaches support our decision of developing Semantic Web solutions

for the management of EHR [23, 24, 25].

These ontologies will be built using the Web Ontology Language (OWL)

[26], which is the current W3C recommendation for the exchange of seman-

tic content on the Web. Given that OWL has subspecifications based on

Descriptive Logics (DL), OWL ontologies can be exploited by using DL rea-

soners such as Pellet [27] or Fact++ [28]. This facilitates the development of
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cost-effective methods for checking the correctness and consistency of medical

data, knowledge and archetypes, as we will describe later in this paper.

3. The ResearchEHR platform

The ResearchEHR platform aims at developing and applying semantic

technologies for managing existing EHRs. Figure 2 shows the overall archi-

tecture of the platform, which can be analyzed from different perspectives.

On the one hand, from an IT perspective, we can analyze it in terms of the

level at which the working units are considered, that is, the data level and the

ontology level. ResearchEHR includes specific methods and tools for working

with both data and ontologies according to the needs of particular tasks.

Archetypes play a crucial role in our approach; they represent the meeting

point between the semantic-centric modeling and the data-centric modeling

of EHRs. The idea behind this is that archetypes facilitate the definition

of a semantic layer for common understanding and mutual communication

of clinical data. Both works provide interfaces to different worlds: public

external information (OWL archetypes) and internal information (already

existing EHR sources). The semantic publication of the contents of the

archetypes would be in line with the objectives of the development of the

Semantic Web, which targets accessible web contents for both humans and

computers so that applications might interoperate semantically in an efficient

way.
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Figure 2: Overall architecture of the ResearchEHR platform

On the other hand, from the EHR perspective, the methods and tools that

conform the ResearchEHR platform can be classified according to activities

in EHR management: representation, normalization, validation, etc. This

will be the approach followed in this paper. Next, we provide an overview of

the different activities that ResearchEHR supports:

• Data and Knowledge Representation (see section 4): Archetypes are

used to describe the semantics of legacy health data in a manner in-

dependent of the particular data organization in the underlying data

repositories. This will enable users (mainly health professionals) to

view and query data repositories at the level of its relevant semantic

concepts. As a main advantage, this approach reduces the problem of

knowing the contents and structure of many information sources to the

problem of knowing the contents domain-specific concepts (archetypes),

which a user familiar with the domain is likely to know or understand
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easily. On the other hand, archetypes are a mean to achieve semantic

interoperability and constitute a basic element in advanced EHR en-

vironments. Therefore, these environments will certainly provoke the

design of many archetypes for different EHR standards. Hence, mecha-

nisms capable of comparing different archetypes, selecting the best one

for a certain purpose, checking the technical correctness and quality

of archetypes, and transforming archetypes into different models are

required. This issue is approached from a Semantic Web perspective in

the ResearchEHR project, since those technologies allow for a better

management of clinical information and knowledge.

• Archetype Edition (see section 5.1): A multimodel editor for creat-

ing archetypes is included in the ResearchEHR platform. Archetype

editing is a process of subtyping by constraints. The rules used to con-

trol the subtyping are those specified in the archetype model such as

strengthening of domain constraints on primitive attributes or the nar-

rowing of cardinality intervals. These rules are directly implemented in

an archetype editor included in the platform and are used by a semantic

manager to assist the user in the edition process.

• Archetype Validation (see section 5.2): The current ADL specification

is not precise enough regarding archetype semantics, particularly the

relationship between reference models and archetypes, which hinders

gaining a precise understating of archetypes and their implementation.

As a consequence we tackled the task of defining a precise archetype

modeling framework as a prerequisite for implementing tools providing
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enhanced support for archetypes.

• Archetype Search (see section 5.3): The development of archetypes

for different standards may convert the process of finding the right

archetype in a tedious task. In order to facilitate this task, we have

developed an ontology-driven tool for querying an archetype base.

• Archetype-based Applications (see section 5.4): The development of ap-

plications based on EHR standards require a deep knowledge of them.

In order to facilitate the task of clinical applications developers, Re-

searchEHR includes a generator of fully working applications from a

set of archetypes. This generator is able to produce applications for

multiple devices and technologies.

• Legacy Data Normalization (see section 6): Since the health data to

be made public resides in the underlying data sources, it is necessary

to transform source data to meet the data format of archetypes and

reference models. The effort required to create and manage such trans-

formation is considerable. To make this task simpler, ResearchEHR

also includes a mapping module between an archetype and a source

schema, which is able to generate XQuery programs that transform

the source data into a standard-compliant XML documents.

• Interoperability between standards (see section 7): We have developed

methods able to transform archetypes and extracts into standards such

as CEN/ISO 13606 and openEHR, as well as facilitating the persistence

of the archetypes in both ADL and OWL.
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4. Archetype Representation

ResearchEHR assumes that there is not a unique representation for archetypes,

but that we might need different representations for different challenges. In

this way, we are currently managing representations based on the Archetype

Object Model (AOM) and OWL.

Archetypes are usually defined in ADL which is a path addressable lan-

guage that provides an abstract syntax for representing them textually, and

uses AOM to express archetypes for any reference model in a standard way.

This language has important drawbacks for achieving the goal of semantic

interoperability, such as its syntactic orientation. Consequently, the formal-

ization of the exchange and transformation processes is more difficult than

using semantic oriented models such as ontological ones. Given this generic-

ity, the language does not provide any component that guarantees the con-

sistency of clinical information. It can only offer consistency at archetype

level, that is, the conformance of ADL/AOM principles.

ADL parsers allow reading the ADL archetype and returns a set of generic

objects. The reference model data structures and type concepts and their

properties, will be represented in AOM by means of C COMPLEX OBJECT

and C ATTRIBUTE entities respectively and they will point out to the spe-

cific reference model concept or property by means of the string attributes

rmTypeName and rmAttributeName respectively. These objects have no ex-

plicit semantic relations between them. Hence, the semantics is unknown for

the parser and only the association between elements from the definition and

ontology sections might be ideally done by the parser by string matching.

This ADL/AOM representation has some advantages and drawbacks in
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the context of ResearchEHR. On the positive side, the genericity allows for

creating archetypes from different standards easy. On the negative side, we

need to develop particular methods for guaranteeing the correctness of the

developed archetypes, and this representation is limited to perform semantic

activities like comparison or classification, and it is suboptimal for develop-

ing automatic methods for processing and exploiting archetypes. Such lim-

itations have been overcome by developing a representation for archetypes

based in ontologies.

The ontology layer of ResearchEHR is shown in Figure 3 and comprises

the ontologies that model EHR-related knowledge for the different stan-

dards. We have developed a series of OWL ontologies for representing the

semantics of archetypes [29]. Such ontologies were built from the inter-

pretation of the specification of EHR standards. It should be noted that

these ontologies do not model the whole EHR domain as understood in

dual modeling architectures, but only the knowledge required to represent

archetypes. This means that the ontologies developed cover the archetype

model and part of the reference model of the EHR standards. As a re-

sult of this interpretation process, three main ontologies were built: (1) the

CEN/ISO 13606-RM and OpenEHR-RM ontology, which represents the clin-

ical data structures and data types defined in the reference model of each

standards and (2) the ontology which defines the archetype model. The

ontologies for CEN/ISO 13606 and openEHR will import the corresponding

reference model ontology and the archetype model ontology. In this way, both

CEN/ISO 13606 and openEHR ontologies will combine concepts from refer-

ence and archetype models linked by means of ontology relationships and will
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express the archetype structure in a more comprehensible way. The current

implementation includes CEN/ISO 13606 and openEHR and the common

ontology that will allow in the future, to include other EHR standards in the

transformation. The three ontologies share the archetype model but they

differ in the reference model definition. The common ontology has been de-

fined to allow representing archetypes from both standards, in this way it

includes concepts from both reference models.

Figure 3: Ontological infrastructure for interoperability

Since archetypes are usually represented in ADL, a methodology for auto-

matically transform them into OWL was designed [30]. This transformation

process was implemented by using Model-driven Engineering techniques due

to the availability and maturity of tools, and is divided into the three phases

shown in Figure 4:

1. The input ADL archetype is expressed as a syntactic model. The tex-
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tual ADL archetype is transformed into a model conforming to AOM.

2. This syntactic model is transformed into a semantic model by using a

model to model transformation. A set of rules has been defined for the

model to model mappings between the syntactic archetype metamodel

and the CEN/ISO 13606/openEHR semantic one.

3. The semantic model is transformed into OWL according to the EHR

ontologies by using a model to text transformation.

Figure 4: The process for transforming ADL archetypes into OWL

The following modules of the ResearchEHR platform will use the ADL or

OWL representation of archetypes depending on which one better fits their

needs.

5. Archetype management

5.1. Archetype edition

Our main objective was to develop an archetype editing framework capa-

ble of working with several reference models. To the best of our knowledge,

the few current archetype editors only support one reference model. In these

editors the reference model is hard-coded making very difficult to keep pace

with its future evolution or to support other models. Other important issues

17



are how to incorporate a reference model into the tool in run time and how

to hide the complexity of reference models to archetype developers. We will

briefly discuss these issues in the rest of this section and how they have been

implemented in the LinkEHR Editor. For a detailed discussion we refer the

reader to [31].

Only a subset of reference model classes can be used to define archetypes,

i.e. their specialization can be the root of a domain concept definition. We

call them business concepts. For instance, CEN/ISO 13606 defines six ex-

plicitly: folder, composition, entry, section, cluster and element. In the case

of HL7 CDA, the selection is not so clear. In our applications we have consid-

ered those classes with an explicit clinical meaning such as clinicalDocument,

Section, Entry and the specializations of clinicalStatement (Observation, Re-

gionOfInterest, SubstanceAdministration, etc).

In the LinkEHR Editor new reference models can be imported at any time

as long as they are expressed in a W3C XML Schema. Users need to enu-

merate the business concepts of the reference model. After this the import

module analyses the schemas and as a result it yields a set of archetypes

expressed in ADL, one for each business concept, we call them business

archetypes. Four reference models have been tested successfully, namely

CEN/ISO 13606 [4], openEHR [5], HL7 CDA and CDISC ODM [32]. To the

authors’ knowledge, LinkEHR Editor is the only archetype tool capable of

handling multiple reference models.

The capability of representing reference model concepts as archetypes

brings about the possibility of using the same logic for archetype creation

either from scratch or by constraining an existing one. Business archetypes
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are the most general archetypes that can be defined for a reference model

and therefore any archetype must be a specialization of one of them. More

formally, the archetype editing process becomes a process of subtyping by

constraints. As a main consequence, only the specialization rules specified

in the archetype model need to be directly implemented in the editor. In

the LinkEHR Editor, the semantic validation of an archetype with respect to

other archetype (reference model) becomes a matter of finding a subsumption

mapping (type assignment) between both archetypes.

Business archetypes are used by a semantic manager to guide users during

archetype editing. It guarantees that the archetype being edited is valid with

respect the reference model and the parent archetype if exists. At runtime

it determines the set of entities (either attributes or types) that are allowed

at any point of editing and inform the user. The semantic manager also

checks that the constraints on data (cardinality, existence, domain, etc.) are

narrower that those specified in the parent archetype.

As stated before archetypes are defined by directly constraining the data

structures present in the reference model according to the archetype formal-

ism. This approach forces users to have a deep knowledge of the reference

model. In order to make the editor more user-friendly, the editor can incor-

porate plug-ins. A plug-in defines a customized working environment for a

reference model. It contains documentation such as descriptions, on-line tips

and hints, term lists and customized visual interfaces that hide the complex-

ity of the structure and non-clinical attributes (mainly attributes holding

context data such as dates or identifiers). The current version comes with a

plug-in for CEN/ISO 13606 and a new one is being developed for HL7 CDA.
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5.2. Semantic validation of archetypes

The detection of inconsistencies in specializations is a major challenge in

the process of editing archetypes. Archetypes need to be optimally designed

for their purpose, and considered trustworthy within their intended commu-

nities of use. In [33], the requirement of formal methods for validating the

design and content of archetypes has been identified. An archetype is cor-

rect if the set of constraints defined over the reference model and the parent

archetype are valid. The specialization of archetypes does not imply inher-

itance but the definitions in the specialized archetype have to be consistent

with the parent’s ones.

As it has been previously mentioned, two different representations of

archetypes are managed by the platform. Consequently, the semantic valida-

tion has to be guaranteed in any of them, which has required the development

of different validation methods, which are described next.

5.2.1. Archetype-driven method

Archetypes impose a hierarchical structure to EHR data. For this reason,

we employ a data model based on trees, more precisely labeled trees, to for-

malize the instances of archetypes. Archetypes then become type definition

over these labeled trees. The type system uses regular expressions to specify

the set of children of a node and label predicates to specify the set of valid

labels of a node. Any archetype constraint is modeled either by a regular

expression or a label predicate. For instance, regular expressions model exis-

tence, occurrence and cardinality constraints, whereas label predicates model

domain constraints of primitive types.

We formalize the inheritance relationship between archetypes by means
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of a subsumption relation [34] based on the containment of regular expres-

sion and label predicates. We say that an archetype A is more general than

archetype B if A subsumes B. The proposed subsumption relation not only

captures the containment relationship between the set of data instances de-

fined by two archetypes but also captures some of the structural relationship

between node objects from both archetypes by defining mappings between

types. This can be translated to the archetype specialization mechanism.

Subsumption mappings specify specialization relationships between the en-

tities (objects and attributes) of the child and parent archetypes. In the

editor, we specify reference model classes as archetypes. Therefore, the sub-

sumption relation is also used to formalize the relationship between reference

model classes and archetypes: we say that an archetype A specializes a class

B if B subsumes A. For a deep discussion on the type system we refer the

reader to [31]. LinkEHR Editor uses this approach to validate archetypes

that are being edited in the tool.

5.2.2. Ontology-driven method

The combination of advanced semantic models with reasoning techniques

reduces the effort required for implementing the quality assurance and valida-

tion methods. Our OWL representation of the reference model was achieved

by following the rules proposed by the OMG in the Ontology Definition

Metamodel specification (ODM) [35].

The semantics of archetype specialization is that the OWL semantics of

the parent archetype subsumes the one of the specialized archetype. OWL

reasoners allow us to find incorrect constraints over the reference model.

Thereby, a concept is wrong defined if the derived OWL class is unsatisfiable.
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That is, the set of instances of such concept does not conform to the reference

model. OWL reasoners infer subclass and equivalent axioms between classes.

In this way, checking the correctness and consistency of a specialization con-

sists on checking whether that subsumption is inferred. Each concept is

defined in our representation by means of an OWL class, and its constraints

are defined using OWL-DL axioms. Concept identity is associated with the

node id, which is used in the archetype definition to bind concepts and on-

tological definitions. The concepts in specialized archetypes might include

additional annotations that guide the validation process. Those annotations

indicate the name of the OWL class in the parent archetype that is being

specialized, if any. That binding is based on the concept identifier.

An example is shown next. Figure 5 shows the first definitions in Manch-

ester OWL Syntax [36] of the blood pressure archetype (see Figure 1). Each

concept is defined in OWL by means of equivalency axioms. The constraints

on multivalued associations are also translated into one class. Our OWL rep-

resentation permits the identification of the classes that violate the definition

of the parent archetype. Archeck is the module in charge of performing this

validation, as a stand-alone tool but also through a web interface [37].
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Class: ENTRY_at0000

EquivalentTo: ENTRY and ARCHETYPED_CLASS and (id value "at0000")

and (op_items only COLLECTION_ENTRY_at0000_items)

Class: COLLECTION_ENTRY_at0000_items

EquivalentTo: COLLECTION and (id value "COLLECTION_ENTRY_at0000_items")

and (elements only CLUSTER_at0008)

Class: CLUSTER_at0008

EquivalentTo: CLUSTER and ARCHETYPED_CLASS and (id value "at0008")

and (op_parts only COLLECTION_CLUSTER_at0008_parts)

Class: COLLECTION_CLUSTER_at0008_parts

EquivalentTo: COLLECTION and (id value "COLLECTION_CLUSTER_at0008_parts")

and (elements only (ELEMENT_at0001 or ELEMENT_at0002 or

ELEMENT_at0003 or ELEMENT_at0004))

and (elements min 2 ITEM) and (elements max 4 ITEM)

and (elements exactly 1 ELEMENT_at0001)

and (elements exactly 1 ELEMENT_at0002)

and (elements max 1 ELEMENT_at0003)

and (elements max 1 ELEMENT_at0004)

...

Figure 5: Excerpt of the blood pressure archetype in OWL

5.3. Ontology-driven archetype querying

The advanced semantic query subsystem aims to define queries driven

by the ontologies described in Section 4. It provides a graphical interface

that suggests at each step which elements can be included in the query to

avoid inconsistencies whereas allowing a higher level of expressiveness than

traditional querying interfaces.
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Figure 6: The architecture of the advanced semantic querying system

Figure 6 shows its architecture, which consists of three submodules and

two interfaces. The module Guided Search is responsible for providing proper

ontological resources to users according to the Archetype Ontology and the

status of the definition of the query. So, this module guarantees that there

are no syntactic errors or inconsistencies in the definition of the query by

limiting the options that users can make (see Figure 7).

The module Query Representation stores the status of the query and its

information during the definition process in order to assist the module Guided

Search. The module SPARQL Coding Module is in charge of transforming

the query definition into a well formed SPARQL query, and querying the

Archetype Base. On the other hand, the Communication Interface shows

graphically the options that the module Guided Search make available to the
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users during the definition process. Finally, the interface Jena API Module

is used to handle the RDF/OWL documents and to perform the SPARQL

queries in the Archetype Base.

Figure 7: An example of the graphical interface where the choices are provided to users
to define the query requirements

This subsystem reduces the complexity of knowing semantic query lan-

guages, such as SPARQL, and the URIs used in the underlying ontology of

the archetype base. However, the users still need to be conscious of the on-

tology and its structure to know how to relate the terms to define the proper

query. More information about this system can be found in [38].

5.4. From archetypes to applications

ArchForms [39] is the generator of applications from archetypes included

in ResearchEHR. The functionality of the generated applications are not

only be data input, but also data validation and generation of data extracts

compliant with a particular dual model-based EHR standard. The resulting

web applications generate CEN/ISO 13606 compliant EHR extracts in XML

format to exchange data with other systems and to facilitate the insertion of

data in the already existing databases. The approach used for developing this

web application generator does not only allow the generation of applications
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for a particular technology, but it can be easily adapted to different software

platforms, user interfaces and devices. This is possible because the process

for generating the application transforms first the archetype into a generic

representation of the graphical interface based on XForms [40], and further

stages take both the archetype and that graphical interface to generate a full

application.

The generative architecture of ArchForms has two main phases: (1) gener-

ation of the generic GUI models; and (2) generation of the code for the target

platform. The input of the generation process are the ontology representa-

tion of an archetype obtained from an ADL archetype. In order to generate

the application forms, archetypes are represented as generic GUI models, in-

dependently from a particular interface technology. A set of XForms models

are generated from each ENTRY concept of the archetype, independently

from the specific user interface implementation technology. Once the generic

GUI models are available, the source code of the application for a partic-

ular platform can be generated. First, one web form is generated for each

generic GUI model obtained in phase one. Second, the classes that support

the validation of the data input by the users and the persistence of EHR

extracts.

The current generator includes three different implementation technolo-

gies: Seam, TouchFaces and PrimeFaces. The generated applications share

the functionality but they differ in how the user interacts with the particular

device. Special attention has been paid to the usability and compatibility

of the web applications based on TouchFaces. These applications have been

tested for Android and iPhone. Figure 8 shows the corresponding application
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example for iPhone for the blood pressure archetype (see Figure 1).

Figure 8: Blood pressure iPhone application

6. Integration and standardization of legacy EHR data

6.1. Data access and integration

The LinkEHR Integration Engine (LinkEHR-IE) is the module that gives

access to existing data at the original health information systems. LinkEHR-

IE can be classified as a generic middleware that integrates clinical informa-

tion available in distributed and heterogeneous data sources [41]. It allows

the definition and management of a global, integrated and structured XML

view of all the clinical records stored for a patient that is generated on de-

mand [42].

LinkEHR-IE is based on Integration Message Definitions (IMD). They

describe the clinical concepts that can be shared among the different sub-

systems involved in an integration project. Each IMD can only be shared

as a whole. In other words, the minimum unit of information that can be
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shared between two subsystems is generated by an IMD entity. An IMD

definition includes the specification of the data sources to be used, the data

items (databases, tables and fields) to be extracted from each data source,

the input parameters accepted by query processor to execute filters on data

sources and the definition of elements that describe the labeling and nesting

format that constitutes the resulting XML document.

Once we have defined the needed IMDs for a use case, LinkEHR-IE can

be deployed. When an information request is received, the appropriate IMD

definitions are loaded and executed, thus querying the original data sources

in order to retrieve legacy data and integrating them into a single unified

XML view. Additionally, a transformation can be applied to the integrated

data in order to normalize it (see section 6.2) or to make it readable (a typical

XML-to-HTML XSLT transformation). The result can be returned to the

requester or directly rendered in a viewer.

6.2. Generation of standardized EHR extracts from legacy data

One of the main problems when adopting EHR-related standards is the

standardization of existing data. This problem is a difficult one, since it deals

with differences and mismatches between heterogeneous formats and models.

In our scenario, this problem is even more complex. On one side, we have the

legacy data that conform to a particular schema and with local semantics. On

the other side, we have EHR architectures and archetypes that intend to be

as generic as possible. Therefore, they are defined without any consideration

regarding the internal architecture or database design of EHR systems. Our

objective is to create an instance of the target schema (archetype) taking

data structured under the source schema (legacy EHR). For this purposes,
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we require an explicit representation of how the source schema and target

schema are related to each other. These explicit representations are called

(schema) mappings. To be useful in practice, mappings should be “compiled”

into an executable implementation, for example, under the form of SQL

queries for relational data, XSLT or XQuery scripts for XML data. The

target instances should possess a set of desirable properties, such as they

must be legal instances for the target schema, they contain all the source

information and at the same time they are non-redundant [43, 44]. All this

involves several challenges related to the semantics of schema mappings and

the generation of code based on these mappings.

As stated before, the potential mismatch regarding structure and seman-

tics between legacy EHR data and archetypes is big. Therefore, complex

and expressive mappings between them are required. Our first approach to

map EHR data and archetypes was to use available commercial tools. These

tools are capable of handling XML schemas, but since archetypes cannot be

expressed as XML Schemas these tools are not suitable for our purpose.

In ADL only the constrained entities (classes and attributes) of the ref-

erence model need to appear in the archetype definition. This rule poses a

difficulty when an archetype is mapped to a data source. In many cases it

would be necessary to map an unconstrained attribute, hence not present

in the archetype. Note that our final objective is to generate XML docu-

ments compliant with the reference model. Thus, when an archetype needs

to be mapped it becomes necessary to complete the archetype definition with

the reference model. We have implemented a merge function that takes an

archetype and the underlying reference model as inputs and outputs what we
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call a comprehensive archetype. A comprehensive archetype includes all the

explicit constraints (those defined by the archetype to be mapped) and all

the implicit ones (those defined by the reference model) that data instances

must satisfy. Figure 9 shows an example of comprehensive archetype. On the

left-hand side the original CEN/ISO 13606 archetype is depicted, whereas the

corresponding comprehensive archetype is shown on the right-hand side. As

it can be observed the comprehensive archetype contains all the constraints

of the original archetype as well as all the unconstrained entities from the

reference model such as act status, archetype id, etc.

Figure 9: The blood pressure comprehensive archetype

In LinkEHR we have followed the common approach for mapping sys-

tems. Users are responsible of defining a high-level non-procedural mapping

representation that does not cover all the mapping details. Then, based on

this representation, the tool generates the actual data translation program
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(low-level mapping) by working out the missing details. Figure 10 shows the

overall architecture of our archetype mapping systems. In our case, the spec-

ification is defined by a set of correspondences between entities of archetypes

and source schemas (either an XML Schema or other archetype). Two types

of correspondences are supported: between atomic entities (leaf nodes) and

between complex entities (inner nodes). The former are value correspon-

dences that specify how to calculate atomic values whereas the latter are

structural correspondences that may be used to control the generation and

grouping of elements in the target.

Figure 10: The archetype mapping and XQuery generation process

Value correspondences are defined by an ordered set of pairs. Each pair

contains a transformation function and a filter. The transformation function

specifies how to calculate a value in the target from a set of source values.
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The simplest kind of transformation function is the identity function which

copies a source value or a constant into a target value, but we can also make

use of a set of complex functions that have been defined into the tool, such

as type conversion, mathematical, logical, string, date and time functions.

Regarding the filter, it stipulates the conditions that source data must satisfy

in order to be used in the transformation function. The default filter is the

“true” predicate. According to the specified order only the first applicable

function is used. For instance table 1 contains a simple value correspondence.

It should be interpret as: if /patient/value is lower or equal to 0, then return

0; else if /patient/value is between 0 and 20, then return /patient/value*2;

else return 40.

Filter Function
/patient/value<=0 0

/patient/value>0 AND /patient/value<=20 /patient/value *2
true 40

Table 1: Sample mapping table

EHR reference models and archetypes may define complex structures with

depth nesting that makes the mapping specification a very complex task. A

first key requirement is represented by ease of use, in the sense that this

complexity should be hidden as much as possible. Value correspondences are

easy to specify. For instance, users do not have to fully specify the logical re-

lations (e.g. parent-child relations) between the entities of the schemas. It is

only necessary to specify the navigation path of the involved attributes. But

value correspondences lack expressive power and some mapping details must

be worked out [45]. A key aspect is the grouping semantics, i.e. when target

instances must be grouped and nested inside the same element. LinkEHR
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Editor comes with a default grouping semantics based on Partition Normal

Form. This default grouping strategy has resulted to be adequate in many

cases. Basically due to the fact that is context-aware, in the sense that data

with the same clinical context are grouped together. For instance, in the case

of CEN/ISO 13606 data that share the same committed time, attester, etc.

are grouped together.

The default semantics depends on the structure of the target schema

(archetype). In some occasion it is necessary to take into account the struc-

ture of the source schema [46]. Structural correspondences are used for this

purpose. Structural correspondences are defined by a set of source paths and

a filter. They control the creation of target instances, in such a way that a

new target instance is constructed for each set of source nodes addressed by

the paths that satisfies the filter.

Taking into account the abstract mapping specification, the archetype

constraints and the source schema an XQuery script is generated. The script

takes as input an instance of the source EHR data and generates a XML

document that is compliant both with the archetype and the underlying

reference model.

7. Interoperability between standards

ResearchEHR provides a methodology to enable EHR systems based on

dual model architecture but using different reference models to exchange

clinical data. It consists of two transformation steps: (1) archetype trans-

formation and (2) data transformation. In the first one, archetypes used

for capturing data in a specific system are transformed into valid archetypes
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for other standard. In the second transformation step, data captured and

already standardized in one of the systems are transformed into valid data

for other standard. The current implementation permits the transformation

between CEN/ISO 13606 and openEHR and has been implemented as a web

service and as a web application named Poseacle Converter [47].

7.1. Archetype transformation

As mentioned in section 4 we proposed ontologies for representing clin-

ical information semantics. However, for the technical transformation of

archetypes, we represent them as models because of the maturity of tools

and availability of languages for doing the transformations. Therefore, in the

architecture proposed, two layers are distinguished (see Fig 11): (1) ontology

layer and (2) metamodel layer.

Figure 11: Archetype transformation process

The ontology layer has been described in section 4. The metamodel layer

contains the metamodels corresponding to the semantic representations de-

fined in the ontology layer. Consequently, metamodels for the CEN/ISO 13606,

openEHR and the Common ontologies were developed by using the ODM
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standard. Once the metamodels have been obtained, the correspondences

among them were defined. The mappings used can be found in [48]. They

have been defined between the particular standard and the Common meta-

model and implemented using the model transformation language RubyTL.

This language allows defining a set of transformation rules that establish the

correspondences between objects of the metamodels.

The archetypes are then transformed by using the following workflow:

• The ADL archetype input is transformed into its MDE representation

conforming to the Archetype metamodel (Archetype model).

• The Archetype model is transformed into the Source EHR representa-

tion (source model)

• The Source model is transformed into the common archetype represen-

tation (Common model).

• The Common model is transformed into Target representation (target

model).

• The Target model is transformed into ADL code (target ADL archetype).

The RubyTL language allows obtaining a model with the trace of the

transformation. This model allows knowing the transformation mappings

that have been applied and it will be very useful in order to perform the data

transformation. As it can be observed in Figure 11, two trace models are

obtained as a result of each archetype transformation. They will be processed

in order to obtain an only model that includes the mappings applied between

ISO 13606 and openEHR and it is named semantic trace.
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7.2. Standardized data transformation

In dual model-based EHR standards, data is usually represented as XML

extracts. Therefore, in order to transform data extracts, the mappings es-

tablished between archetypes have to be applied to data. Figure 12 depicts

the data transformation process, which require the following steps:

• Generation of the syntactic mappings: Each piece of data in an XML

extract is identified by a syntactic path, which is the path of a concept

or property in the extract. The set of pairs of syntactic paths that define

the mappings between two standards are named syntactic mappings.

The syntactic paths for both standard representations can be obtained

from the ADL archetypes. In order to define the syntactic mappings,

the correspondences established at archetype level are used, that is the

semantic trace mentioned before.

• Transformation of data: The syntactic mappings will be used to access

data in the source standard representation and define them according

the target standard.
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Figure 12: Data transformation process

8. Validation in a real setting

The main goal of this research was to create a platform that could help in

the utilization of EHR standards for the description and communication of

health data, thus supporting faithful EHR sharing. The use case, described

below, was aimed at evaluating this goal. The evaluation study was the

development of a software platform for medicines reconciliation. Medicines

reconciliation is the process of obtaining and evaluating an up-to-date and

complete medication list in order to avoid medication errors such as omis-

sions, duplications, dosing errors or drug interactions. It should be done at

every transition of care in which new medications are ordered or existing

orders are altered. In this project, we cooperated with the Hospital of Fuen-

labrada (Spain) in a project whose objective was the development of tools

to guarantee the reconciliation between the hospital and the primary care
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centers of its health area.

The technical solution was based on the use of the CEN/ISO 13606

norm for the description and sharing of medication-related data. We chose

CEN/ISO 13606 for two main reasons: i) it defines a generic and simple

reference model that allows rapid development and is understood by health

and IT professionals easily, ii) it is a “native” dual model and therefore was

defined to be used along with archetypes. Four data sources were used:

the primary care information system, the hospital electronic health record

system, the pharmacy information system of the hospital and the Spanish

National Medication Database (Nomenclator Digitalis). The concepts to be

shared were modeled as archetypes. For the definition of archetypes we took

into account three main sources: the Patient Summary specifications devel-

oped by the epSOS European project [49], several archetypes of the openEHR

Clinical Knowledge Manager (CKM) [50] and the NEHTA specifications for

medications [51]. The Patient Summary archetype was directly created with

the LinkEHR Editor. Regarding the openEHR archetypes, they were trans-

formed into their representation according to the CEN/ISO 13606 by using

the Poseacle Converter tool and their correctness were checked by using the

Archeck validation tool.

The epSOS initiative is the main European electronic Health interoper-

ability project co-funded by the European Commission. Its main focus is

the improvement of medical treatment of citizens while abroad by providing

health professionals with the necessary patient data. Since the medication

information is part of the epSOS patient summary, we decided to use the ep-

SOS patient summary as the container data set of the medication data. The
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main advantage was that with the same effort and technological infrastruc-

ture the hospital was ready to share normalized patient summaries. Figure

13 depicts the archetype used to describe the medication information at both

primary care and the hospital information systems.

Figure 13: CEN/ISO 13606 medication archetype

The archetypes were validated by the clinical team composed by the Med-

ical Director of the hospital, the head of the Pharmacy Service and other

technical and clinical staff. The next step was to use the mapping capabili-

ties of the LinkEHR Editor in order to map the data sources schemas to the

archetype. Once again, the collaboration of the hospital members, both med-
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ical and technical, was a key success factor. They helped in identifying the

location and meaning of each data item at their data base systems and they

validated the final results. The mapping lead to the generation of an XQuery

script that once deployed at the original systems and applied to existing data,

is able to generate a standardized view or XML extract of existing and not

normalized data. Figure 14 depicts an example of clinical data represented

according to the patient summary archetype that describes partly the medi-

cation according to the archetype shown before. The root node of the patient

summary archetype is a composition (COMPOSITION[at0000]) which com-

prises the ENTRY[at0003]. This entry defines a medication table (CLUS-

TER[at0004]) that contains the following two ELEMENTs: the drug brand

name (ELEMENT[at1001]) and its source (ELEMENT[at0014]). Their val-

ues will be described by using coded or simple text data types. It defines

the brand name of the drug as plain text (RESOURCE DIABET 24 COM-

BIBLOCS 200ML) together with the Spanish National Medication Database

code (340430) and its origin (Primary Health Care setting - Atención pri-

maria in Spanish).
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<EHR_EXTRACT>

<all_compositions type="COMPOSITION">

<name type="SIMPLE_TEXT">

<originalText>Historia cl\’inica resumida-Paciente: MDSC299</originalText>

</name>

<archetype_id>CEN-EN13606-COMPOSITION.HCR_Fuenlabrada.v1</archetype_id>

<content type="ENTRY">

<name type="SIMPLE_TEXT">

<originalText>Medicaciones</originalText>

</name>

<archetype_id>at0003</archetype_id>

<items type="CLUSTER">

<name type="SIMPLE_TEXT">

<originalText>Tabla de medicaciones</originalText>

</name>

<archetype_id>at0004</archetype_id>

<parts type="CLUSTER">

<name type="SIMPLE_TEXT">

<originalText>Medicación</originalText>

</name>

<archetype_id>at1000</archetype_id>

<parts type="ELEMENT">

<name type="SIMPLE\_TEXT">

<originalText>Nombre comercial</originalText>

</name>

<archetype_id>at0101</archetype_id>

<value type="CODED_TEXT">

<archetype_id>at0002</archetype_id>

<originalText>RESOURCE DIABET 24 COMBIBLOCS 200ML</originalText>

<codedValue type="CD">

<codingSchemeName>Nomenclator</codingSchemeName>

<codeValue>340430</codeValue>

</codedValue>

</value>

</parts>

<parts type="ELEMENT">

<name type="SIMPLE_TEXT">

<originalText>Origen</originalText>

</name>

<archetype_id>at0014</archetype_id>

<value type="SIMPLE\_TEXT">

<archetype_id>at0031</archetype_id>

<originalText>Atenci\’on Primaria</originalText>

</value>

</parts>

</parts>

</items>

</content>

</all_compositions>

</EHR_EXTRACT>

Figure 14: Excerpt of an CEN/ISO 13606 patient summary extract that describes a med-
ication prescription
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The hospital EHR viewer was upgraded to include a new tab for the

patient summary. As a result when a physician is reviewing a patient EHR,

they have an access to the patient summary that includes the medication

list generated from data coming from both the hospital and the primary care

centers. Then they can act properly when prescribing medications assigned

to the patient to avoid safety risks.

Currently, over 430 physicians and 600 nurses from both the hospital

and primary care centers are using the system to gain access to a normalized

patient summary of more than 230.000 people. The key for the success of the

project was the deep involvement of the medical director and the clinical staff,

since they were responsible of defining the clinical content of the archetypes

and the logical correspondences to existing databases.

In addition to the definition of CEN/ISO 13606 archetypes for the de-

scription and sharing of medication-related data, the Poseacle Converter

tool was used in order to get also their openEHR representation. In this

way, it is also possible to transform the clinical data defined according to

CEN/ISO 13606 into valid clinical data conforming to openEHR. Figure

15 depicts the resulting openEHR extract for the running example. There

it can be observed how the different data structures and types have been

transformed into the corresponding openEHR ones like GENERIC ENTRY,

DV TEXT or DV CODED TEXT.
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<composition type="COMPOSITION">

<archetype_node_id>openEHR-RM-COMPOSITION.HCR_Fuenlabrada.v1</archetype_node_id>

<content type="GENERIC\_ENTRY">

<archetype_node_id>at0003</archetype_node_id>

<data type="ITEM_TREE">

<items type="CLUSTER">

<archetype_node_id>at0004</archetype_node_id>

<name type="DV_TEXT">

<value>Tabla de medicaciones</value>

</name>

<items type="CLUSTER">

<archetype_node_id>at1000</archetype_node_id>

<name type="DV_TEXT">

<value>Medicación</value>

</name>

<items type="ELEMENT">

<name type="DV_TEXT">

<value>Nombre comercial</value>

</name>

<archetype_node_id>at0101</archetype_node_id>

<value type="DV_CODED_TEXT">

<archetype_node_id>at0002</archetype_node_id>

<value>RESOURCE DIABET 24 COMBIBLOCS 200ML</value>

<defining_code type="CODE_PHRASE">

<terminology_id>Nomenclator</terminology_id>

<code_string>340430</code_string>

</defining_code>

</value>

</items>

<items type="ELEMENT">

<name type="DV_TEXT">

<value>Origen</value>

</name>

<archetype_node_id>at0014</archetype_node_id>

<value type="DV_TEXT">

<archetype_node_id>at0031</archetype_node_id>

<value>Atención primaria</value>

</value>

</items>

</items>

</items>

</data>

</content>

</composition>

Figure 15: Excerpt of the openEHR patient summary extract that describes a medication
prescription
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9. Discussion

One of the key factors for the successful deployment of standards is to

seamlessly integrate the new developments within the existing information

systems. The ResearchEHR platform was designed and developed with this

idea in mind, enforcing the reuse of data and knowledge available at health

organizations. This approach can be clearly seen at the use case of medica-

tions reconciliation that has been described.

First, we must be able to construct a complete view of the existing data re-

lated to the patient and the use case. The LinkEHR Integration Engine helps

in building such view by querying and integrating data from heterogeneous

and distributed data sources on demand. At the medicines reconciliation

case, this module has been used for extracting clinical data (allergies, prob-

lems and medications) from the different data sources, mainly the primary

care information system and the hospital EHR system. The data integra-

tion field has been active for many years. We can find many commercial

and free solutions dealing with it such as Mirth, InterSystems Ensemble or

Orion Rhapsody, but they are focused mainly toward the integration of ap-

plications and messages rather than integration of data. LinkEHR-IE is a

lightweight system that simplifies this process providing a flexible mecha-

nism for defining and generating integrated data extracts from data bases or

existing documents. From our perspective, dealing with messages, business

logics and systems integrations is a task to be performed at a higher level,

once the data is already normalized in a standard model.

The second step is to normalize those data into a standard representa-

tion. The LinkEHR Editor provides the two needed functionalities at this
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point. On the one hand, it can be used by clinical users to define formal con-

cepts or archetypes, following any standard or proprietary reference model.

On the other hand, it is a powerful tool for mapping and normalization of

non-standardized data based on those same archetypes. There exist tools

for both defining archetypes and mappings between schemas, but LinkEHR

Editor is the first one designed to perform both tasks natively, i.e. it sup-

ports both the editing of archetypes and the definition of mappings between

legacy data and archetypes or between archetypes. For example, another

archetype editor is the openEHR Archetype Editor. It can be used to create

archetypes but only supports the openEHR reference model. Moreover, it

has no functionality for binding those archetypes to existing data. As an

example of a data transformation tool, we can find Altova Mapforce. It is

a powerful data binding and transformation tool but it does not support

the concept of archetypes. Data transformed with LinkEHR Editor has not

only a different format, but in fact is semantically enriched through the used

archetype definitions. This difference is also demonstrated at the use case,

where we have been able to merge information from heterogeneous sources

into a homogeneous and standardized view from a semantic point of view. It

is not only about putting several data together in the same format, but to as-

sure that those data are semantically equivalent and can be described by the

same concepts (archetypes). This has been especially true while working with

medications from primary care and the hospital. At primary care, medica-

tions are prescribed by their commercial or brand name. At the hospital the

prescriptions are made by active ingredient, dose form and strength. The de-

fined medication archetype covers both methods, so that it can accommodate
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data from the two different systems. Moreover, due to the use of terminolo-

gies such as the Spanish National Medications Database, we have been able

to automatically transform any commercial reference or brand name to its

equivalent active ingredient+dose form+strength, to ease the understanding

of this information by the hospital professionals. Thus, the use of clinical ter-

minologies, together with archetypes, has demonstrated to be a fundamental

aspect for semantic enrichment of existing data.

The third step is to deal with several standards. We can define our own

archetypes or use archetypes that have been previously defined. For exam-

ple, we can find hundreds of openEHR archetypes at their online knowl-

edge repository [50]. A tool to allow the reuse of all those definitions was

also needed, and that was provided by the Poseacle Converter. This tool

is able of generating both ADL/OWL representations of archetypes from

CEN/ISO 13606 and openEHR and XML data extracts for such standards.

Its interoperability infrastructure has been carefully designed to be able to

include other standards in the future and, according to our knowledge, it is

the first implementation of such transformations.

At the fourth step, we have to check the validity of archetypes: the

existing ones, the automatically transformed ones and the newly created

ones. LinkEHR Editor and Archeck are two different approaches to solve

this problem and the need for both of them is drawn from the nature of

the ResearchEHR platform. We aim at developing activities that deal with

both data and knowledge in which archetypes are the common entities to

both types of activities. As it has been previously mentioned, there is not a

unique representation of archetypes and this is what ResearchEHR reflects.
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LinkEHR Editor has an incorporated mechanism to assure that archetypes

that are being edited are completely valid regarding the underlying refer-

ence model. Since this edition is guided by the archetype model itself, it

is impossible to add any property, class or attribute that does not exist

at the reference model. Moreover, it has an incorporated validation algo-

rithm that checks that any archetype is subsumed by its parent or reference

model archetype. Given that this process is guided by the XML schemas

of the EHR standard, transforming this into the ontological space would re-

sult in a real-time additional time greater than implementing the validation

at this level. On the other hand, the interoperability and semantic activ-

ities included in ResearchEHR are based on a semantic representation of

the archetypes. Given that archetypes are mainly written and distributed

in ADL, semantic activities require the transformation of ADL archetypes

into valid semantic representations. In addition to this, it could be possible

to receive archetypes generated in OWL from other systems. In such cases,

the AOL-driven validation would not be enough since. Archeck would then

validate those archetypes in such cases. This modules also demonstrate that

the OWL-DL representation of archetypes and the application of DL reason-

ing may save time and cost in the development of solutions for the semantic

validation of archetypes.

We also use all those archetypes and semantic definitions for advanced

uses, such as the querying and the generation of applications which have not

been applied in this use case. Archforms is the generator of applications

included in ResearchEHR, providing a simple way of generating applications

from archetypes. This module was not used in the use case because one of

47



the requirements of the hospital was the adaptation of its current system and

the goal of the use case was the visualization of information rather than the

input of new data, which is the aim of Archforms applications. However, in

future similar use cases we would like to study whether the adaptation of

Archforms applications to existing systems is more cost and time-effective

than the development of new modules for existing applications.

The only suite that could be comparable to ResearchEHR is the set of

tools developed in the the openEHR world, but there are some basic dif-

ferences between both suites. On the one hand, ResearchEHR has been

developed with a multimodel orientation. Despite some tools might be avail-

able so far only for CEN/ISO 13606, the transformation tools between stan-

dards could be used to fulfill this limitation. On the contrary, openEHR

tools are only available for the openEHR model. In addition to this, the

openEHR tools cannot deal with ontological archetypes and activities as Re-

searchEHR does. However, the current version of ResearchEHR does not

have an archetype manager like the one developed by the openEHR Foun-

dation. Our future plans include to incorporate into the platform ArchMS

[52], our prototype for multi-model archetype management and we are also

working in a standard-independent detailed clinical model (DCM) definition

framework. The availability of such an archetype repository would also facil-

itate the usage of the advanced query subsystem, which currently requires a

specific configuration of an archetype base. This system has the advantage of

facilitating the design of semantic queries in which the archetype ontologies

drive the process. In order to design a query, the users describe the proper-

ties they are looking for in the archetype base and the queries are issued by
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taking into account the formalization included in the ontology such as the

definition of transitive or symmetric properties.

10. Conclusions

Traditionally, computer systems process data without worrying of their

meaning. But there is an increasing need of taking into account the meaning

of that data in order to meaningfully share it, to better understand it and to

generate knowledge from it. The ResearchEHR platform we have introduced

represents a step ahead toward semantic interoperability of health informa-

tion systems. Based on the use of standards and archetypes we can deliver

a set of tools and services that cover the needs for semantic enrichment and

interoperability of existing data. A stack of innovative technologies has been

developed and integrated including the access and integration of data, the

normalization of existing information structures, the semantic modelling of

concepts through archetypes, the reuse of those concepts among different

standards and the exploitation of those standardized data. This software

platform represents a valuable resource towards a better use of health infor-

mation. As the medications reconciliation has showed, even with the most

advanced tools, the help and collaboration of clinical users is unavoidable.

They are the ones with the exact knowledge about what they want, need

and wish. Software developers cannot replace them or take decisions only on

a technical basis. The experiences gained by the authors during the devel-

opment of the platform show that archetypes are a suitable mechanism to

improve the communication between both worlds. They represent a formal

definition of the domain knowledge described by the final users themselves
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and a design contract for software and tools developers.

Finally, once the barrier of a good representation of information and con-

cepts has been broken, a new world of possibilities is opened. We have showed

some of the possibilities, such as applications generation and querying, but

the possibilities go beyond. One of the most promising uses includes the

improvement of clinical research methods, by enabling a seamlessly access

to information from multiple patients in a standardized way. We can also

think of advanced decision support systems or the automatic integration of

electronic health record systems and personal health record systems. Any of

these will require to work over a formal basis regarding data standardization

and semantic description of those data, and the ResearchEHR platform is

aimed to help on this duty.
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