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ABSTRACT

Individual patient characterization is key in the creation of a closed loop system for
glucose homeostasis. Usage of mathematical models for patient individualization and
prediction is not yet performed out of the research environment due to lack of reliable
models, and especially because of the low repeatability of the glycaemic response of
diabetic patients. This thesis is devoted to the study and application of methods that
focus on improving the quality of diabetic patient’s identi�cation.

Data acquisition in diabetes is very restricted due to safety concerns in the
diabetic population. It is of great relevance to obtain glucose pro�les that enhance
the individualization of the patients and at the same time avoid dangerous drops
or increments in the glucose levels. In this work, optimal experiment design was
applied to the case of a patients monitoring in several days, using boundaries in the
optimization as safety limits for the patient. The outcomes of the experiment design
con�rm the importance of separation between meal ingestion and insulin treatment.

The use of Continuous Glucose Monitor (CGM) models for both simulation and
analysis is a crucial step for the design of robust controllers. In this thesis, two
commercial CGM devices where modeled regarding at four signal properties of
the error committed in the glucose estimation: 1) An exponential distribution was
�tted to the delay, 2) Stationarity of the mean and standard deviation was analyzed
and compensated, 3) Auto-correlation was modeled using AR models, 4) Several
probability distributions were �tted to the data, resulting the best �t on the normal
distribution for both monitors.

Uncertainty in the postprandial glucose pro�le, and especially that due to intra-
patient variability is the great problem to overcome in experimental identi�cation
for diabetes. Patients response drastically change from day to day even when the
circumstances are the same in the patient’s life. In this thesis, this problem was
assessed by allocating the uncertainty of the data into interval model’s parameters.
Representative predictions of each patient were achieved in a cross validation
experiment for 12 diabetic patients. Finally, one speci�c combination of monitoring
periods, corresponding to the real variability displayed by each patient, was found
to be optimal for predicting the patient’s behavior perfectly.
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RESUMEN

El correcto funcionamiento de un sistema de control de glucosa en lazo cerrado para
pacientes diabéticos depende en gran medida de la caracterización matemática de
estos pacientes. Los modelos actuales para la predicción de glucosa son poco �ables
fuera del entorno de la investigación, especialmente por la poca repetibilidad de
los per�les de glucosa en pacientes diabéticos. Esta tesis está dedicada al estudio
y aplicación de métodos que mejoren las identi�caciones en pacientes diabéticos.

La riqueza de los datos en diabetes está muy limitada por motivos de seguridad
en la salud de los pacientes. Es de una gran importancia obtener per�les de glucosa
que ayuden en la identi�cación de los pacientes y que, al mismo tiempo, eviten
caídas peligrosas de la glucosa en sangre. En esta tesis se han diseñado experimentos
optimizados para la identi�cación mediante el uso de varios días de monitorización de
pacientes diabéticos, estableciendo límites en la optimización para asegurar la salud
del paciente.

El uso de modelos de simulación y análisis en Monitores Continuos de Glucosa
(CGM) es imprescindible para el diseño de controladores robustos en diabetes.
En esta tesis se han modelado dos dispositivos CGM comerciales de acuerdo a
cuatro características del error en la señal del monitor: 1) El retraso ha sido
caracterizado mediante distribución exponencial, 2) Se ha analizado y compensado
la estacionaridad de la media y desviación estándar del error, 3) Se ha modelado
la autocorrelación de la señal usando modelos AR, 4) Se han ajustado cuatro
distribuciones de probabilidad a los datos del error, siendo la distribucón normal la
mejor para ambos monitores.

La incertidumbre en la glucosa postprandial, especialmente aquella causada por
la variabilidad intrínseca del paciente, es el principal impedimento para conseguir
identi�caciones de pacientes diabéticos que proporcionen buenas predicciones. En
esta tesis la variabilidad se ha tratado mediante el uso de intervalos en los parámetros
de los modelos usados. Se han logrado obtener predicciones representativas de cada
paciente mediante un experimento de validación cruzada en datos experimentales
de 12 pacientes diabéticos. Finalmente se ha obtenido una combinación especí�ca de
periodos de monitorización, correspondiente a la variabilidad real del paciente, que
es capaz de predecir perfectamente el comportamiento de cada paciente.
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RESUM

L’èxit d’un sistema de control de la glucosa en cuble tancat per pacients diabètics
depèn de la caracterització matemàtica dels pacients. L’ús de models destinats a la
individualizació de pacients i la seua predicció encara no ha sigut aplicada fora de
l’entorn d’investigació degut a la poca �abilitat dels models actuals, i especialment
per la poca repetibilitat de la resposta glucèmica dels pacients diabètics. Aquesta
tesi està centrada en l’estudi i aplicació de mètodes que milloren la qualitat de les
identi�cacions de pacients diabètics.

La riquesa de les dades en diabetis està molt limitada per motius de seguretat
de la salut dels pacients. És d’una gran importància aconseguir per�ls de glucosa
que ajuden en la identi�cació dels pacients i que, al mateix temps, eviten caigudes
perilloses de la glucosa en sang. En aquest treball s’han dissenyat experiments òptims
per al cas de diversos dies de monitorització de pacients diabètics, establint límits en
l’optimització per assegurar la salut del pacient.

L’ús de models de simulació i anàlisi en Monitors Continus de Glucosa (CGM)
és imprescindible per al disseny de controladors robusts en diabetis. En aquesta tesi
s’han modelat dos dispositius CGM comercials observant quatre característiques de
l’error a la senyal del monitor: 1) S’ha caracteritzat el retard amb una distribució
exponencial, 2) S’ha analitzat i compensat l’estacionaritat de la mitjana i la desviació
estàndard de l’error, 3) S’ha modelat l’autocorrelació usant models AR, 4) Quatre
distribucions de probabilitat s’han ajustat a les dades de l’error, sent la distribució
normal el millor cas per ambdós monitors.

La incertesa en la glucosa postprandial, i especialment la causada per la
variabilitat intrapacient, és el major problema que s’ha que superar en la identi�cació
experimental de pacients diabètics. En aquest treball la variabilitat s’ha tractat
amb l’ús d’intervals als paràmetres dels models emprats. S’ha aconseguit obtenir
prediccions representatives de cada pacient considerant un experiment de validació
creuada en 12 pacients diabètics. Finalment, s’ha trobat una combinació particular de
períodes de monitorització que representa la variabilitat real del pacient, i que pot
predir perfectament el comportament de cada pacient.
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MOTIVATION AND OBJECTIVES

In humans, plasma glucose is normally maintained within a narrow range
(approximately 65-140 mg/dL), in both the fasting and fed state, due to a tightly
linked balance between glucose production (mainly from the liver), absorption (from
the gut) and utilization from the muscle, the adipose tissue and the brain. Diabetes
Mellitus is a disease characterized by the loss of natural glucose homeostasis,
resulting in high glucose concentrations in the patient, which if not treated lead to
both chronic (cardiovascular diseases, renal failure or diabetic retinopathy) or acute
life-threatening complications (diabetic ketoacidosis and coma).

In the last decades it has become a major health problem worldwide. Its impact
all over the world, and especially in the developed countries, has alarmed the health
organizations in many countries, and major e�orts are being performed to overcome
this threat. Scoping into the future is even more shocking. As seen in the report by
the IDF of 2013 [55], global diabetes prevalence in 2013 is 8.3% of the population (382
million people), with a projection in 2035 of 10.1% prevalence (592 million people).
The burden of diabetes is enourmous, causing 5.1 million deaths and taking up about
11% of the total health spenses in 2013. The increase in population combined with
aging of people makes the problem of diabetes to get into epidemic proportions
in the next decades, along with a huge economic impact. There are two types
of diabetes mellitus. Type 1 diabetes mellitus (T1DM) is characterized by absolute
insulin de�cit due to autoimmune destruction of the pancreatic beta cells, which
are the natural insulin providers in a healthy person. This condition requires of
exogenous insulin delivery to the patient. On the other hand, type 2 diabetes is
caused by two di�erent, but related, alterations: insulin resistance, and impaired beta
cell function. Type 2 diabetes results in a relative insulin de�cit which can be coped
with non-pharmacological measures in the early stages of the disease. However, the
natural progression of type 2 diabetes leads to a progressive loss of beta cell function
overtime, yielding �nally into a condition of absolute insulin de�cit which requires
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of exogenous insulin delivery to the patient.

Survival of patients with T1DM has increased since the discovery of insulin in
1921 by Banting and Best [3] (before the patient died in a few months). Following
insulin discovery, e�orts were done to ease insulin replacement. In practice, insulin-
based treatments palliated the high levels of glucose in blood that are present in
diabetic patients. However, insulin physiology was still not perfectly replicated,
especially considering that natural insulin secretion occurs in the portal vascular
system, while exogenous insulin delivery is done in the subcutaneous tissue. This
causes arti�cial delays in the insulin action with respect to the response of a
healthy person. To overcome this limitation, faster absorbing insulin analogs were
developed, and administered in di�erent doses over the course of the day of the
diabetic person, in order to mimic the behavior of the natural secretion of the
pancreas. The subcutaneous route is still a sub-optimal delivery place for even the
fastest insulin analogs, causing complications such as hypoglycemia in the case of
over-insulinization, or high mean glucose registries in the case of repeated under-
insulinization.

Current insulin-based treatments are administered by the patient under physician
advice and supervision, requiring of the patient to be educated in several aspects
of the treatment, like carbohydrates estimation in the ingested meals or insulin to
carbohydrate ratio in the circadian rhythms. Also, glucose monitoring is traditionally
performed using Self Monitoring of Blood Glucose (SMBG), where the patient has to
regularly (from 1 to 6 or 7 times per day) measure the capillary blood glucose through
�nger pricking. These practices are often too complicated and stressful for the
patients, causing many therapy mistakes in their daily life, ultimately jeopardizing
the quality of life of the diabetic people.

Feasibility of an automatic, portable, insulin delivery system is being researched
in the late years under the de�nition of Arti�cial Pancreas. Such a device is possible
due to advances in continuous glucose monitoring and continuous insulin delivery
by means of subcutaneous insulin pumps. These advances are specially crucial for
patients with type 1 diabetes, who lack of an endogenous insulin secretion by their
pancreas.

Continuous Glucose Monitors (CGM) developed in the last decade have made the
arti�cial control of glucose possible, and their development is under constant review
by the scienti�c community. Although the possibilities of CGM are encouraging, it is
not a mature technology, and this type of monitors are subject to poor performance,
especially during hypoglycemia and in the area outside the calibration region [70].
Despite this, it has been shown that CGM signi�cantly improves glycaemic control
in adults with type 1 diabetes [2] [37], reducing mean glucose over time, glucose
variability and exposure to either hyperglycemia and hypoglycemia.

Undoubtedly, a potential application of CGM is in the arti�cial pancreas, driving
the automatic infusion of insulin in combination with a subcutaneous insulin pump
[47]. Despite successful results have been reported in the nocturnal period [15, 48],
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the large blood glucose (BG) variability following a meal makes postprandial control
still an unmet need. Indeed, rapid glucose �uctuations may a�ect CGM accuracy
[86], which is currently a limiting factor for the controller performance.

CGM measurements are the main and most important technological source of
uncertainty in the glucose pro�le of a diabetic patient. Every sensor is di�erent,
but the principles of sensing used by the most used commercial devices are shared,
and consequently dynamics in the error signals can be compared, and thus modeled,
easing the characterization of other uncertainty sources. Further uncertainty sources
in the diabetic glucose pro�les can be listed, such as circadian variability, unmeasured
hormone in�uences, illness, physical activity or meal related uncertainties. Many
of these perturbations to the endogenous system are di�cult to be measured in a
controlled environment, and so far impossible to be predicted in a home setup.

One of the main challenges of the arti�cial pancreas is the lack of reliable models
that closely resemble the physiologic behavior of a diabetic patient’s glucose. Many
models have been presented and tested in literature, and several cases are exposed
in the state of the art of this thesis. However, few current models can be described
as accurate representations of diabetic patients, and most of them lack of conclusive
validation of diabetic patient’s data. Variability within the patient’s population, and
especially intra-patient variability are the most important problems to be found on
the modeling endeavor. Variability prevents repeatability of the results, avoiding
the validation of most of the models presented with experimental data, even though
mathematical and physiologically the models are well supported. This thesis is
devoted to overcome these limitations of the diabetic patient’s models.

Objectives

Four main objectives are pursued in this thesis:

1. E�cient protocols for patient identi�cation. The �rst objective of this
thesis is to analyze the current methodologies of gathering data from diabetic
patients in order to facilitate the characterization of real patients. Several cases
of optimal experiment design in diabetes are already present in literature, and
will be reviewed in the state of the art. Data acquisition from living humans is
challenging due to ethical and health safety reasons, and this characteristics of
the identi�cation are taken into account in the design of optimal experiments
for model identi�cation.

2. Representative glucose sensor modeling. The second objective is to �nd
an accurate model to simulate continuous glucose monitors and the errors
associated to these devices. Modeling the error of the CGM in order to simulate
the behavior of the sensors is of the greatest importance for the development
of successful controllers for the arti�cial pancreas.
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3. Exploration of possibilities of models with uncertainty. Many
possibilities are available for uncertainty characterization (possibilistic
approach, bounded response, local identi�cation...). The third objective in
this thesis is to search for the most appropriate method for identifying the
variability of the glucose of a type 1 diabetic patient, exploring the possibilities
of application on di�erent measuring technologies, such as blood glucose
reference and CGM.

4. Uncertainty modeling validation. The last objective of this thesis is to
challenge the models and methods designed with real data from diabetic
patients. It is intended that the work performed in here will be of practical use
for future research in the �eld. Therefore, experimental application is probably
the most important objective for this thesis.

Outline

Figure 1: Work-�ow schematics for this thesis. The conceptual blocks that correspond
to the subsequent parts of this thesis are highlighted in dashed circles.

A quick visual outline of this thesis contribution can be seen in Figure 1. In there,
two work �ows can be seen for the execution of an identi�cation experiment in
diabetes. This thesis starts (part I) with a literature review of identi�cation in diabetes
and associated methodologies. This part of the thesis applies on the background of
the work�ow depicted in Figure 1.
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The �rst (top) work �ow involves the use of virtual patient data for identi�cation
experiments. Virtual patient identi�cation is needed for proving the bene�ts of the
proposed identi�cation methodology. The �rst scienti�c contributions of this work
are comprised in the second part of this thesis, focusing on the improvement of
the conditions of identi�cation for both the identi�cation of virtual patients and in
the experimental condition. Experimental design focuses on the second (bottom)
work �ow in Figure 1. This design is carried out using multiple models in order to
obtain rich quality data from the diabetic patients. Diabetic patients hospital data
is then gathered and analyzed for CGM error modeling, in order to obtain a much
more reliable virtual patient simulation, including daily monitoring using a simulated
CGM.

The last part of this thesis is the core identi�cation study. This study is also
composed of two parts, one using computer generated data using the CGM models
developed earlier, and other using real experimental data from 12 diabetic patients.
The di�erences between virtual and experimental identi�cations are clearly exposed
throughout the thesis, detailing the di�culties that rise when facing real life patient
variability. The focus on variability is also constant in this work, and a new
identi�cation methodology considering uncertainty is here extensively stated and
validated.
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CHAPTER 1

PARAMETER ESTIMATION

Identi�cation of a model’s parameters is an inverse problem. As such, identi�cation
consists in the characterization of the inputs and parameters of a system given the
outputs and rest of the inputs of such system. Frequently, a priori information on
the system can be used to narrow the search path of the problem, but this type
of information is not enough to allow for a complete derivation of the models. In
the glucose-insulin model identi�cation paradigm, the inverse problem is usually
reduced to �nding the parameters of a model which characterize an individual
given the glucose pro�le of that patient, and the patients information such as meal
characteristics and insulin treatments.

1.1 Optimization and Intervals

Parameter estimation is usually posed as an optimization problem. Its solution relies
on optimization algorithms attempting to optimize an index of the �t of the model’s
output to the available data. Usually scalar indexes are considered for characterizing
the deviation of the model from the data. Such indexes can be formulated, for
example, as a quadratic error depending on a set of parameters p that has to be
minimized:

J(p) =

N∑
i=1

(yi(p)− ỹi)TQi(yi(p)− ỹi) (1.1)

where yi(p) are the model predictions for time i and ỹi are the experimental

11
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measurements, therefore, the data to be �tted. Qi is the data weighting matrix, which
permits to �t more accurately some data in detriment to other data samples. Qi is
usually chosen as a diagonal matrix, due to the assumption that data samples are
independently correlated to each other. The choice of the diagonal values in the
matrix are usually referred to as “weights” of the data samples. This quadratic error
index re�ects the most classical approach to parameter estimation.

A usual compromise choice for the weighting matrix is to make the relative errors
of each data sample weight the same in the cost index in order to �t all data points
equally in the time axis. This is achieved by forcing the diagonal of Qi to be equal
to 1/ỹ2

i . This type of ponderation matrix has the disadvantage of underestimating
large errors in high glucose values (hyperglycemic region) of the output of the model
than in low values (hypoglycemic case). Usually it is preferred that all errors are
normalized in the optimization index, and this is achieved with a di�erent weighting
matrix, like for example the case where all the elements of the diagonal are equal to
1/max(ỹi)

2. This way the contribution of every data sample is standardized in the
glucose concentration axis.

The most common choice of optimization methods for parameter estimation
are simple local optimization algorithms, with iterative executions for easier
convergence. There are many drawbacks to the use of local optimization:

1. The initial value of the parameters to be chosen for the identi�cation heavily
in�uences the �nal outcome of the optimization. The choice of these values
relies strongly in guesswork.

2. Convergence to the global optimum of the problem is achievable, but not
guaranteed.

3. There may be several sets of parameters that yield similar optimization index
values. This problem may happen with a very �at solution region but it can
also happen for di�erent local “valleys” of the index function.

These problems are very much present for every model shown in Chapter 2, and
every diabetes model in literature whatsoever. The solution of the identi�cation
problem in diabetes has to be focused in the practical aspect of the optimization.
It is established in the scienti�c community that models of the glucose system, even
though are often based on physiological aspects of the glucose metabolism, are far
away from being accurate. The approach to patient identi�cation is much more
focused in the e�cacy of the predictions of the model rather than interpretation of
the identi�ed parameters. It is then �ne for an identi�cation in the diabetes paradigm
to achieve a �at solution in the parameter space, if that solution is a global optimum.
It is not acceptable though falling on local optimum values of the index, which are
likely to provide worst predictions than a global solution. Also, searching for a single
optimal value of the parameters set is often not the best option, since there may be a
full set of acceptable solutions that fall under feasibility conditions. The use of global
search optimization methods is encouraged for this kind of problems.
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Identi�cation feasibility or identi�ability of a model is the property that
determines whether the model is suitable to characterize a set of data and in which
terms. Identi�ability analysis must be performed prior to any identi�cation study
to discard possible incongruences of the model’s structure or incompatibilities with
the data. Improving identi�ability of the models proposed is one of the goals of this
thesis, and optimal experiment design will be introduced as one of the main aid tools
for diabetic patient identi�cation.

Given that the endogenous glucose system is subject to great parametric
variations, uncertainty on the parameter estimation has to be assessed. In local
classical methods, uncertainty on the estimate is evaluated (if at all) by using
asymptotic properties of the estimator that rely on a number of doubtful assumptions,
like assumption of linearity of the parameter’s space. This type of uncertainty
measurements is not reliable for the diabetes environment and models which
are subject to physiologically induced non-linearities both in the input and in
the parameter space, and the use of new estimation methods that naturally take
uncertainty into consideration is at its utmost importance. Also, intra-patient
variability in the diabetic person is a great deal in the parameter estimation, and
further encourages the use of some methodology for uncertainty consideration.

A possibility for considering the uncertainty in the parametric space is using
interval analysis. Interval analysis has been a very active �eld in scienti�c
computation for the last 40 years (see for example [72]). Intervals are de�ned as
a new kind of numbers, on which all classic arithmetic operations can be performed.
An interval [x] is de�ned as a closed, bounded and connected set of numbers:

[x] =
[
x−, x+

]
=
{
x | x− ≤ x ≤ x+

}
(1.2)

x− (lower) and x+ (upper) are the limits or boundaries of the interval, and are
the scalar magnitudes that de�ne it. Another scalar characteristic of the interval that
is derived for the boundaries and will be of special interest is its width w ([x]), and
it is de�ned as follows:

w ([x]) = x+ − x− (1.3)

Interval analysis do not impose any restriction on the internal possible values of
the interval further than continuity. This feature makes interval computation very
suited to work with uncertain magnitudes naturally by identifying not only scalar
values of the model’s parameters, but also interval magnitudes of those parameters.
Identifying interval parameters allows for the characterization of many sources of
uncertainty:

• Parametric uncertainty. Parameter feasibility vicinity is directly identi�ed by
using intervals and no further assumptions are needed.
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• Modelmismatches. Unmodelled dynamics can be (arti�cially) included as larger
intervals in the interval identi�cation.

• Measurement errors. Sensor-induced uncertainty is common in the diabetes
paradigm, especially in continuous monitoring systems. Interval identi�cation
can be used for consideration of this error (assuming some knowledge on the
measurement error) in the identi�cation algorithm.

• Parameter variability. Parameters that are traditionally considered in model
as scalar values can in fact be variant in time, and as such are suited to be
identi�ed with uncertainty in interval quantities.

Interval parameters in glucose metabolism models produce interval glucose
outputs. The power of using interval analysis for simulation relies in the fact that
glucose envelopes of an interval model will bound all possible scalar simulations
of the (scalar) parameters within the bounds of the interval parameters used.
This guaranteed outcome of an interval model is true not only for simulations
of single parameters, but also for any combination of parameters included in
the intervalization of the model. In Figure 1.1, a simple simulation of a glucose
metabolism model is presented, picturing the envelopes in blue. In green a thousand
simulations of the scalar model are plotted where the uncertain parameter is
randomly generated within the boundaries of the interval parameter. As can be
clearly observed, every possible solution of the original model is contained within
the envelopes of the interval model, as expected.

Intervalization of a given scalar-based model is not straightforward. The
computation of both envelopes has to be taken in consideration and depending on the
nature of the parameters considered uncertain, the calculations involved can be very
complex. Fortunately, interval counterparts of every model proposed in Chapter 2
can be found in literature. In this thesis the intervalization of glucose models will not
be reviewed, and instead, it will be taken as given. An extensive review of the models
proposed in here was performed by Maria Garcia-Jaramillo in her PhD thesis [36],
including the intervalization process of every equation and the �nal interval system
of equations of every model. More recently, the model simulated in Figure 1.1 (model
will be reviewed in detail in later chapters) was further improved in its interval form
by de Pereda et al. [24], including the possibility of simulating as intervals more
parameters than the interval version presented by Garcia-Jaramillo. Both versions of
the model will be mentioned in the present thesis.

In the rest of this chapter, optimal experiment design and identi�ability
improvement will be reviewed. Then the interval identi�cation process will be
described, including a review of the most used identi�cation algorithms in literature.
Finally the optimization tools and software in this thesis will be quickly stated.
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Figure 1.1: Envelopes obtained for an interval simulation of a postprandial period.
The simulation considers a 10% uncertainty in the meal size. The interval bounds are
plotted in blue, and the scalar simulations are drawn in green.

1.2 Optimizing Identi�ability

Identi�ability analysis can be divided into two stages [98]: A priori identi�ability and
A posteriori identi�ability. A priori identi�ability is the feasibility of identi�cation of
the model’s parameters considering that in�nite noise-free data is available. It is
an structural property of the model and the lack of it represents a model that can
produce the same output with several sets of parameters given a determined input.
A posteriori identi�ability incorporates the data into the identi�ability analysis. It
analyzes the in�uence of data noise and uncertainty in the estimation of parameters,
and its main outcome is the reliability of an identi�cation.

1.2.1 Methods based on FIM

A posteriori identi�ability often relies in the analysis of the model’s parameters
sensitivities to the output variations. In the following, the classic method based on
the Fisher Information Matrix will be reviewed. Analyzing with detail the Fisher
Information Matrix (FIM), all information about local identi�ability of the model can
be extracted, since it implies linearization of the model.

To understand the method, let us take the index de�ned in equation (1.1). The
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statistical expectation of the index for a set of parameters slightly di�erent than the
optimal is given by:

E[J(p+ δp)] ∼= δpT

[
N∑
i=1

(
∂z

∂p
(ti))

TQi(
∂z

∂p
(ti))

]
δp+

N∑
i=1

tr(ViQi) (1.4)

where Vi represents the covariance matrix of the measurement errors (Qi is
typically chosen as V −1

i ), z is the model output andN is the number of data samples.
The term between brackets is the Fisher Information Matrix and it expresses the
quantity of information contained in the experimental data, as explained in detail by
Ljung [68]:

FIM =

N∑
i=1

(
∂z

∂p
(ti)

)T
Qi

(
∂z

∂p
(ti)

)
. (1.5)

The terms ∂z/∂p are the sensitivity functions of each parameter p and they are of
great importance for the evaluation of the practical identi�ability since they gather
the parameter in�uence on the output of the system. The FIM is a square matrix with
dimension equal to the number of parameters that are to be identi�ed. The inverse
of the FIM is an approximation of the covariance matrix of the estimation error of
the model parameters:

C = FIM−1 =

[
N∑
i=1

(
∂z

∂p
(ti))

TQi(
∂z

∂p
(ti))

]−1

(1.6)

The diagonal of C contains the information of the con�dence interval in the
estimation of every parameter. The statistical expected value of the error of an
estimation (which is a measure of the con�dence interval of the model’s parameters)
is actually bounded by the matrix C following the Cramer-Rao inequality for
unbiased estimators (the true value of the parameters equals the expectation of the
estimated parameters), as introduced originally in the classic references [20] and [85].

E
(

[p̂− p] [p̂− p]T
)
≥ C (1.7)

where E stands for the statistical expected value and p̂ is a estimation of the
parameters p. For further explanations and proofs of the Cramer-Rao inequality, the
reader is referred to Ljung’s work [68]. Given that the FIM is known and that it is
invertible (non-invertability means structural non-identi�ability), the coe�cient of
variation (CV) for the parameter pi being identi�ed is calculated as:
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CVi =

√
Cii
pi

(1.8)

The interpretation of this con�dence interval limit is simple: if, for example,
a parameter pi has a CV of 0.4 it means that, for the measurement error which
variance was considered in the calculation of Qi, successive parameter estimations
will have a standard deviation of 40% of the true parameter value (for a fully e�cient
unbiased estimator). There is more useful information to be drawn o� the FIM, like
the correlation matrix. This matrix, the elements of which are the approximated
coe�cients of correlation between the ith and the jth parameters, is de�ned as:

Rij =
Cij√
CiiCjj

(1.9)

Analyzing the correlation matrix gives information on the compensation e�ect of
the changes in the values of the parameters over the model output. If two parameters,
pi and pj , are highly correlated, a change in the output due to a change in parameter
pi can be hidden by the appropriate change in pj . Very strong correlations between
di�erent parameters are a display of poor identi�ability of a model. A correlation of
value 1 between parameters is a sign of a structural problem of identi�ability of the
model, because both parameters have the same exact e�ect on the model’s output.
Thus, FIM analysis can also be used in the process of a priori identi�ability analysis
by identifying structural identi�ability problems.

1.2.2 Monte-Carlo methods

Calculation of the coe�cients of variation and the con�dence region of the
parameters in an identi�cation using the FIM is an approximation of the “real”
con�dence in the parameter’s identi�cation. Further methods are explored in
literature to obtain better approximations of the CV without incurring in too many
approximations. The group of methods for parameter uncertainty estimation that
make less assumptions on the parameters distribution is the group of Monte-Carlo
methods.

Parameter estimation using data collected from a system will generally not yield
the same results if the experiment is repeated, because of the perturbations acting
on the system and noise in the measurement systems. The vector of outputs of the
system is then a random vector ys that is related to an estimation of the parameters
p̂(ys). Monte-Carlo methods aim to estimate p̂(ys) and its con�dence region by
creating a set of �ctitious data vectors with a mathematical model and incorporating
realizations of random variables in order to simulate the in�uence of noise and
perturbations, creating the virtual dataset ym. Several realization runs of the model
applied to di�erent realizations of the “noise” will create di�erent estimations p̂(ym)
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of the parameter vector.

One of the di�culties of the Monte-Carlo methods lies in the choice of the
distribution used to generate the �ctitious data ym. The jack-knife [83] and the
bootstrap [26] methods make it possible to avoid estimating the distribution of the
noise from the residuals.

Jack-knife

The main advantage of this approach is its simplicity. The virtual data is fragmented
in nt vectors of equal size ymi , (i = 1, . . . , nt). Let p̂ be the estimate of the parameters
obtained from all the virtual data vector, and p̂i the estimator related to all the data
but ymi . Then nt pseudo-estimates can be de�ned as

p̃i = ntp̂− (nt − 1)p̂i (i = 1, . . . , nt) (1.10)

And the computation of the average of these pseudo-estimates is the jack-knife
estimator of p̂(ys), denoted as pjk . The covariance matrix of the population of
pseudo-estimators p̃i is

Cjk =
1

G− 1

nt∑
i=1

(p̃i − pjk)(p̃i − pjk)T (1.11)

And the 100(1 − α)% con�dence interval for a given pi parameter can be
calculated using the T 2 Hotelling distribution:

pjki ± t
1−(α/2)
N−Np

√
Cjkii
nt

(1.12)

where Cjkii are diagonal elements of Cjk and pjki is the ith element of pjk .

Bootstrap

This approach assumes that the errors are independent random variables with
identical but otherwise unspeci�ed distribution. In order to obtain an estimation
of the parameters p̃, this method uses only the experimental values ys and the model
simulated output values ym. Let us assume

ys(ti) = ym(ti, p
∗) + bi (i = 1, . . . , nt) (1.13)
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where p∗ is the real value of the parameter vector, and bi correspond to
independent random variables with the same distribution. Then, an estimate of bi is
given by the ith residual:

b̂i = ys(ti)− ym(ti, p̂) (i = 1, . . . , nt) (1.14)

where p̂ is the estimate of the vector p∗. A vector of virtual data yf is then
obtained as

yf (ti) = ym(ti, p̂) + b̂ (i = 1, . . . , nt) (1.15)

where b̂ is chosen among the residuals b̂k; (k = 1, . . . , nt) for every ti with equal
probability for every b̂k . This is equivalent to substituting the empirical distribution
of residual for the true distribution of the bi’s, which is more acceptable the closer
p̂ is to p∗. Repeating this operation for di�erent runs of the model, a population of
�ctional vectors of data can be obtained, and similarly to the jack-knife approach, the
mean of the population (pB) and the covariance matrix (CB) can be used to deduce
a 100(1− α)% con�dence interval for the parameter pi as follows:

pBi ± t
1−(α/2)
N−Np

√
CBii (1.16)

where CBii are diagonal elements of CB and pBi is the ith element of pB .

1.2.3 Practical Identi�ability and Optimality

Monte-Carlo methods for uncertainty estimation can be too cost e�ective for large
datasets and models, such as those present in the work developed in this thesis.
Therefore, FIM based methods for identi�ability calculation are used in this thesis
from this point onward.

In practical terms, the identi�ability analysis must be done applying some
simpli�cations. The sensitivities of the parameters have to be calculated by
approximating the derivatives of the output with �rst order approximations. In
general, application of the analytic expression of the derivative function is the correct
way of performing the FIM calculation. Regarding the models of diabetes in literature
though, the analytical expression of the derivative with respect to the parameters of
the model’s output is not feasible.

Usually, the sensitivity function is calculated by linearizing the model around the
nominal parameter, and obtaining the symmetric �rst order di�erence. In practice,
two simulations of the model are calculated, one with a positive variation of the
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selected parameter, and the other with a negative variation and then the sensitivity
function, resulting in practice in a linearization of the derivative. The sensitivity
function is computed using equation (1.17).

Sp =
z(p+ ∆p)− z(p−∆p)

2 ·∆p
(1.17)

Also, if the FIM results to be singular it can not be inverted, and that is considered
a sign of non-identi�ability. In fact, it is a sign of a priori non-identi�ability, so a priori
identi�ability analysis is being carried out with this method as well. Usually, when
working with noisy measurements, it is really di�cult to get a singular FIM, and
yet it will be di�cult to identify any parameter because the FIM is bad-conditioned.
The condition number of the FIM has to be analyzed to overcome this computation
problem, and its magnitude checked to analyze if it permits inversion of the matrix
and therefore identi�ability of the model.

Identi�ability of a model depends on model structure, and the data used for
identi�cation. Identi�ability of a model can be improved by conditioning the data
used for identi�cation, and designing optimal experiments for the model used. So
far, identi�ability has been analyzed as a property of a parameter, quanti�ed as the
con�dence interval in the estimation of each parameter. That information is obtained
from the Fisher Information Matrix (or better, from its inverse), which summarizes
the information of all the parameters of the model for a given experiment. The
problem of optimal experiment design can be expressed then as an optimization
problem of �nding the minimum value of a certain scalar function of the FIM that
optimizes the identi�ability of the model. That scalar function is called optimality
criteria, and its general expression is:

j(Ξ) = φ[FIM(p,Ξ)] (1.18)

where φ is a scalar function. The evaluation of the Fisher Information Matrix is a
function FIM of p, the parameters vector, and Ξ, the experiment conditions to be
optimized.

There are several criteria that can be used in this case, as seen in [33]:

• D-optimality, in which the scalar function chosen is the determinant of the
FIM. The three following equations are equivalent, and all of them de�ne the
D-optimality criterion and whether it has to be maximized or minimized in
order to improve identi�ability:

Ξ = argminΞ det(FIM
−1(p,Ξ)) (1.19)

Ξ = argmaxΞ det(FIM(p,Ξ)) (1.20)
Ξ = argmaxΞ ln(det(FIM(p,Ξ)) (1.21)

• E-optimality, in which the function is the smallest eigenvalue of the
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information matrix, and it has to be maximized.

• A-optimality, in which the problem is solved by maximizing the trace of the
information matrix.

In order to better understand the meaning of these criteria a geometrical analogy is
needed. If every parameter is placed in an axis of the geometrical space, then the
region de�ned by the con�dence intervals of each one of the parameters de�nes
an ellipsoid the axis of which are given by the eigenvalues of the inverse of the
information matrix. Given that the objective of the optimization is to minimize
all the regions of con�dence, every axis of the ellipsoid have to be minimized, or
equivalently, the volume of the ellipsoid has to be minimized, and that volume is
exactly the determinant of the inverse of the FIM. The rest of the criteria have similar
meanings that are summarized in Figure 1.2.

Figure 1.2: Each criterion reduces the con�dences intervals attempting to minimize
one singular scalar value. Adapted from [33].

The question of which criterion should be used arises now. The D-optimality is
the most used of the three standard criteria cited above. This is due to some exclusive
appealing properties of the criterion [33]:

• Easy geometrical interpretation, as seen in Figure 1.2.

• Invariance with respect to non-degenerated transformation applied to the
model parameters, such as rescaling. This property is applied in equation 1.21
in order to work, during the optimization process, with smaller quantities.
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• Yielding to optimal experiments which correspond to replications of a small
number of di�erent experimental conditions.

• Optimal experiment design yields to non-singular FIM.

The main drawback this criterion has is that it gives too much importance to the
parameter to which the model is most sensitive. Geometrically, this problem is
equivalent to the idea of trying to minimize the volume of the ellipsoid by reducing
mostly its bigger axis.

There are other criteria available for di�erent purposes, like the modi�ed E-
optimality, that tries to maximize the FIM condition number, aiming to make the
con�dence ellipsoid as spherical as possible [97]. The correct application of this
criterion would be in a case of strong parameter correlations, and the design will
yield to a decoupled identi�cation in parameters. That is not the case in this thesis
though. D-optimality will be the one used for the experiments designed for diabetic
patients, and for every model tested.

The optimization problem associated is non-linear, and global solvers are
suggested for its solution. The choice of experimental parameters for the
optimization is as wide the experimentation ambit. One of the most common choices
is to optimize the sampling times of a given experiment. The choice of these
parameters usually relies on the person performing of the experiment design, but
it conditions the characteristics of the optimization. Too many parameters may
lead to long, unrealistic convergence times on the optimization algorithm, or even
non convergence at all. Also, if many experimental parameters are introduced
experimental setup may be too complicated to perform. Given this arguments, and
especially in the diabetes context, the number of parameters to be optimized should
remain as low as possible for achieving the maximum identi�ability needed.

1.3 Identi�cation with Uncertainty

The use of intervals for identi�cation has been developed since the 1990s due to its
ability to cope with uncertainty either in the structure of the model and also in the
measurements and parameters. Focusing on the measurement error, a parameter
estimation methodology outstands over all others: the error-bounded estimation.

1.3.1 Error-bounded Estimation

Error bounded estimation assumes that an error exists in the measured variable, and
that there exist a trusted estimation of this error. The estimated error must be within
bounds that are acceptable for the good working of the system. One may de�ne the



1.3. IDENTIFICATION WITH UNCERTAINTY 23

error as:
e(p) = ỹ − y(p) (1.22)

where ỹ is the vector of experimental measurements, and y(p) is the model output,
which is dependent on the parameter vector p. The problem of bounded error
estimation considers that the output errors lie within acceptable bounds:

e− ≤ e(p) ≤ e+ (1.23)

where e− and e+ are the lower and upper acceptable bounds of the error. The
identi�cation problem relies on �nding all possible values of the parameter vector p
that produce outputs that fall within the acceptable bounds. The subsequent problem
is a set inversion problem, and it can be solved by set inversion algorithms like the
SIVIA (Set Inversion Via Interval Analysis) algorithm presented in Jaulin et al. [56].

The SIVIA algorithm divides the parameter space into “boxes”, i.e
multidimensional intervals, and evaluates the correspondent image in the output
space for compliance with the desired characteristics. Given that interval analysis
produces guaranteed solutions of the output of the model to all the values of the
parameter space inside the evaluated box, classi�cation of the boxes evaluated can
be divided into three categories:

• Guaranteed solutions. All parameters in the evaluated box lead to an output
error ful�lling the constraints.

• Guaranteed non-solutions. All parameters in the evaluated box lead to an
output error violating the constraints.

• Indeterminate solutions. Otherwise.

The algorithm works iteratively classifying the boxes into these three categories
and dividing indeterminate boxes into smaller boxes for further classi�cation. The
algorithm searches all the parameter space. The accuracy of the algorithm is given
by the acceptable size of the indeterminate boxes in the parameters space. These
boxes compose the boundary of the parameter space that produces outcomes of the
model in the acceptability constraints. The SIVIA methodology is summarized in
Figure 1.3. The images in the output space are related to boxes in the input (or
parameter) space. The boxes in the input space are divided each time they are
classi�ed as undetermined. The �rst evaluation to be performed correspond to the
whole parameter space, which will be evaluated as undetermined if the acceptability
criterion embraces only some part of the output space. The parameter space is then
divided using a prede�ned criterion to the choice of the user into smaller boxes, and
reevaluated. The algorithm then works as a tree-search algorithm, �nishing a branch
when it is classi�ed into true or false solutions, or if the resolution threshold for the
search boxes is met.

Even though error-bounded estimation is very extended within the scienti�c
community, it depends heavily on the estimation of the error assumed in the
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Figure 1.3: Basics of the SIVIA algorithm. The boxes that produce images in the
output space that fall within the acceptability range (red ellipse) are classi�ed as true
solutions, in blue. Boxes out of the acceptability zone are classi�ed are false solutions
and marked in white. Red boxes are undetermined. Adapted from [7]

measurements. In the context of diabetes monitoring, errors associated to continuous
glucose monitoring are often very large [70] which makes CGM estimations too
noisy for a closed loop control environment, given the complexity of the models
associated. In the hospital environment is possible to obtain much more reliable
measurements, with errors smaller than the 2% [74], which can always be neglected
for identi�cation.

Error-bounded estimation is very much focused in the search of feasibility of a
group of parameters with the uncertainty of the measurement, although it can also be
used for consideration of parametric variability. For control-oriented identi�cation,
�nding all possible values of the parametric space in which the model’s parameters
move (system’s variability) is more important than �nding the feasible parameter
set that matches the uncertainty in the measurement. Therefore, a successful robust
controller has to respond to system’s variability, but never neglecting the in�uence
of measurement errors.

1.4 Software and optimization tools

Identi�cation and optimization is usually a computationally intensive task. Global
non-convex optimization is especially demanding in computation requirements, and
it has been established that identi�cation on model identi�cation in diabetes relies on
global optimum solutions. There is a wide variety of optimization methods available
in literature, but in the following lines we will quickly review the algorithms to be
used in this thesis.



1.4. SOFTWARE AND OPTIMIZATION TOOLS 25

All data analysis and computations were done in the Matlab environment, release
2012a (Mathworks, Natick, MA).

1.4.1 Scatter search for Matlab

Scatter search for Matlab (SSM from now on) is a global optimizer based on statistical
principles and geometrical analysis of the parameter space. This search algorithm has
already been used in the arti�cial pancreas environment with the objective of patient
identi�cation, by Cesar Palerm in Santa Barbara [76].

SSM optimizer is a project of the CSIC (Centro Superior de Investigaciones
Cienti�cas) and the University of Vigo. It is a global optimizer, easily comparable
with genetic algorithms. However, SSM does not use codi�cation of the population
as genetic algorithms do, although it does work by spawning new generations
(o�spring) of the function optimum by combining the properties of the previous
(parents) population. SSM does not generate random “mutations” on the population,
as opposed to genetic algorithms, although it renews the existing individuals by
adding new random samples to the new generations of optimal solutions in each
algorithm iteration. For the details of the inner working of the algorithm, information
on the computational cost and better understanding of the searcher the reader can
refer to Julio Banga’s group papers in 2006 [88] and 2007 [27].

This optimizer has the advantage of using local solvers to re�ne the search when
it seems to have found some optimum solution. The local solver to be used can be
chosen from a list available in the SSM’s documentation. The local solver chosen was
the fmincon solver, which is implemented in Matlab’s Optimization Toolbox, along
with many other optimizers and aid tools for solving any optimization problem in
the Matlab environment. This local solver �ts into the group of solvers denominated
as “Nonlinear programming solvers”, or “Constrained nonlinear optimizers”. This
sort of algorithms are deterministic solvers that use �rst and second derivatives of
the objective function, along with some heuristics to cope with the various problems
that deterministic local searchers have. Abundant information about this kind of
algorithms can be found in Coleman and Li paper of 1996 [18], Powell’s conference
in 1978 [81], or for a more general reference see Bazaraa’s book [5].

1.4.2 Covariance Matrix Adaptive Estimation

A very well known global optimization method within the scienti�c community is
the algorithm of estimation based on adaptations of the matrix of covariance of the
sample population (CMAES). CMAES performs very fast optimizations on a single
objective even for large parameters spaces. The optimization performed by CMAES
is based on the update of generations of sampling individuals, in a similar way as
an evolutionary algorithm, although the update process and the randomly generated
individuals are handled di�erently.
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CMAES uses statistical properties of the populations and updates them in each
iteration based on the characteristics of the population and the explored parameter
space. The adaptation objective in on the covariance matrix adaptation moves the
sampling population in order to better �t it to the contour lines of the objective
function being minimized. It is assumed that the optimal covariance matrix equals
the inverse of the Hessian matrix, although this is only strictly true in convex-
quadratic functions. For general optimization functions, the CMAES methodology
aims to approximate the inverse of the equivalent of the Hessian matrix for the
objective function properties. Convergence and performance of this family of
algorithms can be accessed in the proceedings of the 2005 IEEE Congress on
Evolutionary Computation [1]. For further explanation on the CMAES rational, and
its computational analysis, the reader is referred to the works of Hansen in [40] and
[41].

Optimizations using interval parameters may consist of two independent
parameter sets, upper and lower bounds, where obviously all the lower bounds must
be smaller than their respective upper bounds. These greater-or-equal restrictions
introduce further constraints on the optimization index. Unfortunately, the build
released by Hansen et al. [41] does not implicitly consider restrictions neither in
the outputs nor in the inputs, so they have to be integrated in the cost index with a
penalty method.

1.4.3 ε- MOGA Evolutionary Algorithm

Classic parametric identi�cation results in a single “optimal” point in the parameter
space, being insu�cient for the case of a time-varying model based on poor
prediction capabilities. Many problems in engineering can be translated to
multiobjective optimization problem, including the diabetic patient identi�cation
problem. In the case of identi�cation in presence of uncertainty using interval
models, a problem of optimization of two objectives can be suggested: minimization
of glucose interval width and minimization of the �tting error. This problem
will be explained in detail in the following thesis, and multiobjective optimization
algorithms are used to �nd it’s solution. A brief explanation of these kind of
algorithms follows, along with the details of one particular methodology used in
this work.

Multiobjective identi�cation is the process of simultaneously optimizing two or
more con�icting objectives subject to certain constraints. The solution of this kind
of problems is not a single optimal point in the objectives search space, but a family
of solutions called a Pareto Front (PF). PF present advantages over single objective
optimization techniques:

• Provide the designer with the possibility of a better selection of the �nal
solution, presenting a wide variety of possibilities that in many cases include
the single objective solution of an analog problem.
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• Are representative of the whole space of design variables, all of them optimal.

• Require of no tradeo� parameters to be tuned in the algorithm.

PF are created on the basis that each individual in the family is non-dominated by
the other individuals. An individual is dominated by other in the population if its
evaluation in both of the optimization objectives is worse. Therefore, an individual
is considered non-dominated and included in the PF by the algorithm if it is best
solutions for both objectives in a particular region of the objective space i.e. it cannot
be replaced by other point in the objective space for improving an objective, without
worsening another one.

Figure 1.4: Display of the concept of ε-dominance. J(Θp) represents the PF
interpolation and J(Θ∗p) the actual PF individuals. J1 and J2 are the objective
variables, and ε1 and ε2 are the box widths (adapted from [43]).

Evolutionary algorithms are popular solvers for multiobjective problems because
of Pareto front groups being susceptible to evolution rules, and both the solver
and the problem being population based methods. The ε-MOGA (Multi Objective
Genetic Algorithm) evolutionary algorithm developed by [43] takes the concept of
dominance an step further with the notion of ε-dominance. ε-dominance is based
on the domination concept explained before, but it ads a new constraint to the PF
individuals: each individual must be isolated within a box of previously de�ned
magnitude. The concept of ε-dominance is clearly displayed in Figure 1.4, where
the objective space is overlapping a grid of equally dimensioned boxes. Dominance
is then applied to the box in which the Pareto individual is placed, and not just to the
point in the objective space. This box-dominance is the ε-dominance of the individual
of the PF in that box.

The ε-MOGA algorithm is able to characterize all kind of PF, including non-
convex, non-linear discontinuous search spaces, which is the case for diabetic patient
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models optimization. The algorithm converges faster than similar evolutionary
algorithms, and supposes a smaller computational burden [44]. The main
achievement of this algorithm is the fact that the PF obtained from ε-dominance
are well-distributed in the objective space independently of the problem, which is
not the case for any other multiobjective optimization algorithm. A well distributed
PF is of great help in the interpretation of the results, and can be of utility when
choosing an individual out of the PF with a decision making methodology.



CHAPTER 2

MODELS FOR THE ARTIFICIAL PANCREAS
DEVELOPMENT

One of the main problems for glucose control is the insu�cient accuracy of existing
mathematical models for describing the physiology of the glucoregulatory system.
In this chapter the modeling context for the arti�cial pancreas will be reviewed, and
the state of the art of mathematical models in literature will be described.

2.1 Introduction

A mathematical model is characterized both by its objective and its structure. The
main objective in modeling a type 1 diabetic subject is of course to be able to
reproduce the patient’s metabolism from a clinical point of view. In the arti�cial
pancreas context, models must be useful from the control point of view. According
to the structure of a model, quoting the work of Walter and Pronzato [98], the
main distinction to be made is whether a phenomenological or behavioral modeling
approach must be followed. A phenomenological model is a model based on prior
knowledge about physical or, in the case of the arti�cial pancreas, physiological
principles. This kind of processes are often called knowledge-based models as
opposed to behavioral models, which merely approximate the observed behavior
of the output without any prior knowledge of the process. Behavioral models
are focused on data reproduction, and not at all in the process behind, while
phenomenological models only use the data to adjust the parameters, while the
structure is determined by the process itself.

Examples of phenomenological models are:

29
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• Chemical reactions. Biological reactions.

• Systems of force equilibrium.

• Models of deposit systems.

• Electromagnetic models. Electrical engines.

Examples of behavioral models are:

• ARX/ARMAX models.

• Polynomial models.

• Random models.

The behavioral models exposed do not have the purpose of imitating any
experimental process, and are “all-purpose” models that have to be adjusted to any
particular system. On the contrary, the phenomenological models listed are speci�c
of the process they represent. Table 2.1 shows a comparison of the di�erences
between both modeling paradigms. In the context of the arti�cial pancreas almost
every model published is phenomenological, even the simplest ones, due to the vast
knowledge of the physiology available from the physicians. Behavioral models have
also be used to characterize diabetic patients behavior, mostly in proof-of-concept
studies like the ones performed by [94].

Phenomenological models Behavioral models
Parameters have a concrete meaning have no concrete meaning
Simulation long and di�cult quick and easy

Prior information taken into account neglected
Validity domain large (if structure is correct) restricted

Table 2.1: Phenomenological and behavioral models as seen by Walter and Pronzato
[98].

Usually, phenomenological models tend to be complex and highly nonlinear.
Linearizing a phenomenological model changes its aim and its nature. When
a nonlinear phenomenological model is designed, its aim is usually a better
understanding of the system through simulation. Reasons for linearizing are usually
attempts to control, or design of better controllers, but this transformation neglects
the prior information of the system and its complexity, so the linearized model
results in a behavioral model, with a restricted validity domain and lost of the
experimental meaning of the parameters. A tradeo� between model complexity
and accuracy is also imposed by the individualization of the model to an speci�c
patient. Excessively complex models may struggle when �tting to an individual
due to limitations of data available in the domiciliary context (data collected at
home) yielding to lack of identi�ability of the model. Loss of identi�ability hinders
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parameter interpretation of the identi�ed model, which is an important goal for
physiology-based phenomenological models of diabetes.

Insulin treatment and meal ingestion can be posed as the input sub-models for the
actual glucose endogenous regulation system. The outcome of the insulin infusion
input model is the plasma insulin concentration, which is a main actor in glucose
regulation, and works as an input to the endogenous system. Meal input works as
a disturbance to the whole system, and the outcome of the related input system is
the glucose �ux into blood from the gut. In summary, physiological models of the
glucose-insulin system for type 1 diabetes involve three main sub-processes:

• Insulin absorption model. This model involves insulin pharmacokinetics,
di�usion through di�erent tissues and natural insulin degradation. Insulin
absorption depends on the type of insulin used for the therapy and the route
used for its delivery. Insulin is injected or infused in the subcutaneous
tissue, delaying its appearance in plasma compared to insulin secretion by the
pancreas. In case multiple daily injections are used, pharmacokinetics of both
rapid-acting and long-acting insulin have to be considered. In case of insulin
pumps (as in the arti�cial pancreas) only rapid-acting insulin is used.

• Glucose absorption model. Glucose input is represented in this model,
which is also called the gastrointestinal model. It involves the process of
ingestion, digestion and absorption from the intestine into blood of glucose
and other nutrients. The nutritional composition of the meal in�uences the
process of gastric emptying, a�ecting the �ow of carbohydrates through the
gut.

• Glucoregulatory model. The internal regulation of glucose is represented
by this model. The transformation of glycogen to glucose by the liver (hepatic
glucose production) and glucose uptake by peripheral tissues, the in�uence
of di�erent hormones in blood glucose, insulin independent consumption of
glucose, and in summary, every e�ect that, in the organism, can a�ect the
concentration in glucose. The models representing all these physiological
processes and relations tend to be of high complexity, and it is really common
to disregard some of the in�uences on the glucose concentration, so that the
model becomes simpler and for other purposes than simulation.

The insulin absorption and gastrointestinal models are usually considered as the
input models for the glucose-insulin system, for they characterize the two main
exogenous (coming from outside the body) inputs into blood that in�uence the
glucose concentration (Figure 2.1). Several model reviews can be found in literature,
being the most notorious Willinska’s review [101] and Nucci and Cobelli’s review
[75], or the more recent one by Colmegna et al. [19].

Subcutaneous insulin injection or pump delivery is the main control action to
counteract disturbances like meal ingestion. Insulin pharmacokinetics has been
studied for a long time, and the behavior of insulin analogues is well documented
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Figure 2.1: Glucose-insulin system and its sub-processes.

in literature. Complex glucose absorption models have been developed in the last
years, but there still exist serious limitations to represent the physiological behavior
of the digestive and intestinal absorption processes during a mixed meal mainly
due to limitation of clinical data. The main di�culty in the characterization of
the gastrointestinal model is that glucose absorption is only measurable with tracer
methods [4], but few studies have been done in this area so far. The only experiments
done in this area were not performed using real mixed meals, but instead the patients
ate marked jelly with eggs and bacon. The in�uence of the nutritional composition
is very relevant in the �nal model output, and it has not been taken in consideration
so far.

Most commonly used models for the above mentioned systems will be introduced
in the next sections, and later a critical review of the usefulness of these models will
be performed in order to narrow down the scope of the research, not to forget that
the last objective of this thesis is the identi�cation of postprandial models for control.

2.2 Insulin absorption models

Modeling of subcutaneous (s.c.) insulin di�usion and absorption dates back to the
80’s. Kobayashi et al. published in 1983 a model based on a one-compartmental
delay di�erential equation for U40 Actrapid insulin [61] on type 1 and type 2 diabetic
patients. Models proposed in literature have been increasing in complexity since
then, like the two-compartmental model proposed by Kraegen et al. in 1984 [65],
or the model considering two di�erent insulin pathways proposed by Puckett et al.
[82] in 1995. Increasing in complexity, Mosekilde et al. proposed a model based
on partial di�erential equations describing insulin dissociation, protein binding,
di�usion and absorption [73]. Later, Trajanoski et al. simpli�ed that model, and
Tarín et al. extended it’s use to new insulin formulations, speci�cally to the insulin
analog glargine [95].

Works focused on the development of the arti�cial pancreas have studied in more
detail the fast-acting insulin (e.g. lispro) used in insulin pumps. Wilinska et al. from



2.2. INSULIN ABSORPTION MODELS 33

the University of Cambridge compared eleven di�erent models for insulin lispro
kinetics on data from seven patients with type 1 diabetes [100], concluding that the
best performance was achieved by a model which considered two insulin absorption
channels, a slow and a fast one. The group of Cambridge is one of the lead research
teams for the arti�cial pancreas development, and they published a diabetic patient
simulator in 2010 for in silico testing of controllers [99]. However, a simpli�ed version
of the insulin absorption model was included, comprising a two-compartment single-
path absorption structure, probably due to identi�ability problems. The group of
the University of Virginia and the University of Padova also published a simulator
(henceforth UVA simulator) in 2007 [69] with a very similar two compartment model.
The models proposed by these two groups will now be displayed in more detail due
to its widespread use.

2.2.1 UVA model

The model proposed by Dalla Man et al. in 2007 [22] has two compartments for the
interstitial space and considers the elimination of insulin to happen entirely after
the absorption to the plasma compartment. There are two variants of the model,
depending on the complexity considered for the model of insulin distribution. The
�rst and simpler model is the one shown in Figure 2.2. In this model, absorption
takes place from both stages of the subcutaneous route.

Figure 2.2: UVA model with one compartment for the insulin in plasma. Adapted
from [22].

The equations related to the model are:

Ṡ1(t) = −(ka1 + kd)S1(t) + u(t) (2.1)
Ṡ2(t) = kdS1(t)− ka2S2(t) (2.2)
İp(t) = ka1S1(t) + ka2S2(t)− keIp(t) (2.3)
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where S1(t) and S2(t) are two compartments for the subcutaneous insulin
absorption, ka1, ka2 and kd are the �ux rates between compartments and plasma
insulin Ip(t), and ke is the insulin elimination rate. The insulin input is represented
by the variable u(t). Usually the subcutaneous part is used with a more complex
insulin distribution and elimination model, also proposed by the Virginia and Padova
group. The new model is displayed in Figure 2.3. In this case, elimination of insulin
takes places both by degradation in the plasma compartment and in the liver. The
in�uence of the liver is displayed by a new compartment.

Figure 2.3: UVA model considering insulin in the liver and in plasma. Adapted from
[22].

The corresponding system of equations related is very similar, but substituting
equation (2.3) with the following two di�erential equations:

İl(t) = −(m1 +m3)Il(t) +m2Ip(t) (2.4)
İp(t) = −(m2 +m4)Ip(t) +m1Il(t) + ka1S1(t) + ka2S2(t) (2.5)

where the plasma insulin elimination is replaced with a set of �ux parameters
(m1, m2, m3 and m4) and two dynamic states (Ip and Il) that represent insulin in
plasma and the liver. Published values for T1DM patients were made available in
2008 in the international patent for the UVA simulator [78]. Public available values
[22] for healthy and T2DM patients for the distribution and elimination part of the
model are shown in Table 2.2. Parameter m3 does not appear in the table because it
only is constant for T1DM patients while for the literature cases it presents dynamic
behavior depending on the endogenous insulin secretion. Nevertheless, this model
is implemented in the University of Virginia Simulator [63], and nominal parameters
for healthy and diabetic patients are used in glucose pro�les simulated with it.
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Parameter Healthy value T2DM value Units
m1 0.19 0.379 min−1

m2 0.484 0.673 min−1

m4 0.194 0.269 min−1

Table 2.2: Published values of the UVA s.c. insulin model.

2.2.2 Cambridge model

In 2005 Willinska compared eleven subcutaneous models of increasing complexity
[100]. Those models where evaluated for bolus-basal treatments and continuous
infusion with insulin pumps with insulin lispro, a human insulin analog. The
structure of the model with a better �t to experimental data is shown in Figure 2.4.

Figure 2.4: Cambridge’s model compartmental structure.Adapted from [100].

The equations of the model are:

Q̇1a(t) = ku(t)− ka1Q1a(t)− LDa(t) (2.6)
Q̇1b(t) = (1− k)u(t)− ka2Q1b(t)− LDb(t) (2.7)
Q̇2(t) = ka1Q1a(t)− ka1Q2(t) (2.8)
Q̇3(t) = ka1Q2(t) + ka2Q1b(t)− keQ3(t) (2.9)

I(t) =
Q3(t)

Vi ·BW
(2.10)

LDa(t) =
VMAX,LDQ1a(t)

kM,LD +Q1a(t)
(2.11)

LDb(t) =
VMAX,LDQ1b(t)

kM,LD +Q1b(t)
(2.12)
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The most signi�cant characteristic of this model is the existence of two channels
of insulin, one of slow absorption and a fast absorption insulin channel, both with
degradation of insulin ruled by a Michaelis-Menten kinetic equation. Q1a(t) and
Q1b(t) are the states related to slow insulin distribution in the subcutaneous tissue,
Q2(t) is the state related to the fast distribution channel, andQ3(t) is directly related
to the plasma insulin. LDa(t) and LDab(t) describe insulin degradation with the
constant parameters VMAX,LD and kM,LD , Vi is the insulin distribution volume,
BW is the patient’s body weight and �nally ka1, ka2 and ke are the constant �uxes
and elimination rates between insulin compartments. The insulin concentration is
directly calculated from the fourth compartment. Published parameters of the model
are shown in Table 2.3.

Parameter Published value Units
ka1 1.12 · 10−2 min−1

ka2 2.1 · 10−2 min−1

ke 1.89 · 10−2 min−1

k 0.67 -
Vi 56.45 · 10−2 L kg−1

VMAX,LD 1.93 mU min−1

kM,LD 62.6 mU

Table 2.3: Nominal values of the parameters in Willinska’s model.

In the simulator published in 2010 [99] the Cambridge group implemented a much
simpler linear compartmental model. The model structure is shown in Figure 2.5.

Figure 2.5: Cambridge simulator insulin absorption model structure. Adapted from
[99].

This model displays a simple �ow of insulin through two compartments into
the bloodstream, and it only considers elimination of insulin from blood. The �ow
constants between compartments is the same. The equations of this model are shown
next:

Ṡ1(t) = u(t)− tmaxIS1(t) (2.13)
Ṡ2(t) = tmaxIS1(t)− tmaxIS2(t) (2.14)

İ(t) =
tmaxIS2(t)

Vi
− keI(t) (2.15)
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The insulin compartment I(t) is directly the insulin concentration. There are
three parameters in this model: tmaxI is the insulin absorption rate, ke is the
elimination rate from the blood compartment, and Vi is the insulin distribution.
Willinska et al. presented probability distributions of these parameters calculated
from a population of 18 type 1 diabetic patients. For sake of simplicity and uniformity
only mean values will be shown in this manuscript in Table 2.4, but the complete
distributions can be found in [99].

Parameter Published value Units
tmaxI 0.018 min−1

ke 0.14 min−1

Vi 0.12 L kg−1

Table 2.4: Mean values of the parameters in the Cambridge simulator model.

2.3 Glucose absorption models

Glucose absorption models aim at characterizing the �ux of exogenous glucose
absorbed from the intestine under di�erent circumstances taking under
consideration the information on the meal intake. Modeling meal absorption
has been proven di�cult due to complex physiology of gastric emptying and
intestinal absorption. The nature of the meal, its size and composition, as well as
the speed of ingestion, and patient conditions, have in�uence on the rate of stomach
emptying [71] and the �nal absorption rate of glucose. Large variability was reported
by Klingensmith et al. [60] even within the same patient and meal. Furthermore, the
rate of appearance of glucose in the bloodstream is not directly measurable (unlike
blood insulin concentration in the insulin absorption models) which hardens the
modeling endeavor.

One of the �rst models proposed in literature was an exponential model for
gastric emptying presented in [54], where the emptying rate is dependent on the
meal’s volume and calorie density. After the contribution by Hunt et al. most of
the published models express the dynamics of glucose appearance as a function of
the carbohydrate content of the meal. In 1992 Lehman and Deutch [67] proposed a
trapezoidal emptying of the stomach based on the carbohydrates ingested neglecting
the in�uence of other nutrients. In 2006 Fabietti et al. [28] proposed an input-output
model based on the di�erent absorption rates of mono- and polysaccharides. A model
independent approach was proposed by Herrero et al. in [46], where the glucose
absorption pro�le was extracted from a library comprehending several mixed meals
and di�erent patients. Also, deconvolution methods have been applied in order to
infer the glucose absorption pro�le as proposed in [45].

In the simulators published up to date, physiological compartmental models
are usually implemented. In the following lines we will describe in detail glucose
absorption models from the UVA and Cambridge groups.
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2.3.1 UVA model

Chiara Dalla Man et al. published in 2006 a complete gastrointestinal model along
with a critical review of the existing models in literature [21]. This model considers
a two-compartment model for digestion and a simple single-compartmental model
for the absorption in the gut. To overcome the issue of the measurability of glucose
rate of appearance from the gut the UVA group used data from a triple tracer study,
allowing for the estimation of glucose absorption, although in healthy subjects. The
model follows the structure shown in Figure 2.6.

Figure 2.6: A two compartment model represents the stomach and a single
compartment the intestine. Adapted from [21].

The two compartments in the stomach part (qsto1 and qsto2) represent the
solid and liquid phase of carbohydrate digestion before the gastric emptying. The
emptying of the stomach is a non-linear function of the total amount of glucose in
the stomach, as will be shown in the model equations later. The compartmental
model equations are:

q̇sto1(t) = −K21qsto1(t) +Dδ(t) (2.16)
q̇sto2(t) = −Kempt(qsto)qsto2(t) +K21qsto1(t) (2.17)
q̇gut(t) = −Kabsqgut(t) +Kempt(qsto)qsto2(t) (2.18)
Gex(t) = fKabsqgut(t) (2.19)

where δ(t) is the Dirac delta and D is the meal size, simulating an impulse input to
the model. f stands for the bio-availability of the meal. The rest of parameters added
(K21 and Kabs) are �ux constants between compartments, for characterization of
the transfer of glucose through the system, except for theKempt parameter, which is
time-varying and de�nes the form of the gastric emptying. The equations describing
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the transfer rate describing the �ow of glucose from the stomach to the intestine are:

Kempt(qsto) = Kmin + Kmax−Kmin
2 ·

·{tanh[α(qsto(t)− b ·D)]− tanh[β(qsto(t)− c ·D)] + 2} (2.20)

qsto(t) = qsto1(t) + qsto2(t) (2.21)

α =
5

2D(1− b)
; β =

5

2Dc
(2.22)

These equations give the gastric emptying a very characteristic shape. In Figure 2.7
the Kempt is plotted against the amount of glucose remaining in the stomach qsto.

Figure 2.7: Gastric emptying rate versus glucose remaining in the stomach. Adapted
from [21].

Kmax and Kmin are the maximum and minimum emptying rates through the
digestion process, while b and c are geometric parameters describing the shape of the
gastric emptying. The parameters shown next have been identi�ed both for an Oral
Glucose Tolerance Test (OGTT, consisting in 75g of oral glucose ingestion according
to the World Health Organization recommendation) and a mixed meal, although the
mixed meal consisted only of traced jelly with eggs and bacon. Parameter K21 is
forced to be equal toKmax for identi�ability issues. The published values are shown
in Table 2.5.

2.3.2 Cambridge model

Hovorka et al. proposed a simple model for glucose absorption in 2004 [49], where
the gastrointestinal system is modeled by two identical compartments with the same
transfer rate. Later, the model was re�ned [99] considering the transfer rate tmax as
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Parameter Published value (OGTT) Published value (meal) Units
Kabs 0.205 0.071 min−1

K21 0.045 0.054 min−1

Kmax 0.045 0.054 min−1

Kmin 0.013 0.006 min−1

b 0.85 0.69 -
c 0.25 0.17 -

Table 2.5: Nominal values of the parameters in the UVA model.

a time-varying parameter. The equations of the model are:

Ġ1(t) = −G1(t)

tmax
+Bio ·D(t) (2.23)

Ġ2(t) =
G1(t)

tmax
− G2(t)

tmax
(2.24)

Gex(t) =
G2(t)

tmax
(2.25)

where:

• D(t) is the amount of carbohydrates ingested in grams. The meal intake in
this model is considered as a pulse input.

• Bio is the e�ectiveness of the absorption of the carbohydrates ingested, i.e.
the portion of the carbohydrates that have been eaten that will go into the
circulatory system (Bioavailability).

• tmax is the maximum absorption time of the carbohydrates. This parameter
regulates the transfer speed between the compartments. It is a bounded
parameter following:

tmax =

{
tmax ceil if Gex > Gex ceil
tmax otherwise (2.26)

where tmax ceil = G2

Gex ceil
and Gex ceil is the maximum glucose �ux from the

gut.

• Gex(t) is the output of the model, as a �ux of glucose from the gut. G1(t) and
G2(t) are the transition compartments for glucose in the disgestion process.

The nominal values of the parameters are shown in Table 2.6.

This model has the weakness of not considering the di�erent compositions of
mixed meals, as other models do, but it computes a very simple input for the
glucoregulatory system in the simulation environment.
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Parameter Published value Units
tmax 40 min
Bio 0.8 -

Gex ceil [0.02, 0.035] mmol kg−1 min−1

Table 2.6: Nominal values of the parameters in Hovorka model.

2.4 Endogenous models

The endogenous model is the part of the glucose-insulin model that describes the
di�erent regulatory metabolic pathways of blood glucose concentration. Given that
this thesis is focusing in the identi�cation of glucose metabolism for T1DM subjects,
the author decided that the dynamics and equations describing the secretion of
insulin were no relevant to be shown for those models that describe it, since it does
not exist in type 1 diabetes.

Usually the endogenous model comprises two sub-models: (1) insulin
pharmacodynamics and (2) glucose metabolism and distribution. This second sub-
model has to consider the in�uence of the liver and the kidneys on the blood glucose
production and elimination, as well as the peripheral intake by muscles and adipose
tissue, and any other in�uences that may a�ect glucose concentration.

Two di�erent groups of models will be described next. The �rst two models
(Bergman and Panunzi) are considered as minimal models, and are very simple
models that do not attempt at simulating the whole metabolic system of glucose
regulation but to capture the main dynamics in speci�c assays like the Intra Venous
Glucose Tolerance Test (IVGTT) for insulin sensitivity estimation. Minimal models
are widely used for research either in simulation studies or for control, but lack
the accuracy of more complex models. The other two models reviewed next are
physiology-based models developed by the UVA group and the Cambridge group,
and are much more complex than the previous ones, aiming at population studies
for controllers validation.

2.4.1 Bergman model

The �rst model to be reviewed is the (probably) most used and best known among all
the endogenous models used in diabetes. It was proposed by Bergman et al. in 1981
[6]. It is considered a minimal model because it only describes the in�uence of insulin
on blood glucose concentration, and it does not consider many other phenomena,
or it considers them in a very simpli�ed way, leading to a low order model. The
justi�cation for this simplicity is that the objective of this model was, initially, to
simulate the response of the IVGTT, which has a very simple behavior.

Bergman minimal model considers that insulin actions on glucose are delayed,
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and that delay is represented by a new compartment of remote insulin. The scheme
of the model is shown in Figure 2.8.

Figure 2.8: Bergman minimal model of insulin and glucose dynamics. Adapted from
Bergman and colleagues [6].

The equations that describe the model are:

İ(t) = −nI(t) + p4u1(t) I(0) = Ib =
p4

n
u1b (2.27)

Ẋ(t) = −p2X(t) + p3[I(t)− Ib] X(0) = 0 (2.28)

Ġ(t) = −p1G(t)−X(t)G(t) + p1Gb +
u2(t)

VG
G(0) = Gb (2.29)

where the insulin compartment is described by the state I(t), with parameters p4

and n involved in the insulin input and elimination respectively. Parameters p3 and
p2 describe the input and output �uxes for the remote insulin compartmentX(t), and
�nally glucose difusion and transportation is gobernated by parameter p1, which is
a compound parameter involving both liver interaction (k1) and usage by periphery
(k2). For subcutaneous insulin absorption, equation (2.27) would be substituted by the
corresponding model in Section 2.2. G(t) is the blood glucose concentration, u1(t)
is the exogenous insulin �ow entering circulation, u2(t) is the exogenous �ow of
glucose coming either intravenously or from the gastrointestinal system. Published
values for the model parameters are shown in Table 2.7.

Bergman model has been used for more than 20 years in diabetes research due to
its identi�ability and controllability properties, despite its simplicity. Nevertheless,
Bergman model will be analyzed in detail in Section 2.4.1.
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Parameter Published value Units
p1 0.035 min−1

p2 0.05 min−1

p3 0.000028 ml/µU · min2

p4 0.098 ml−1

n 0.142 min−1

VG 117 dl

Table 2.7: Nominal values of the parameters in Bergman model [92].

2.4.2 Panunzi model

Simona Panunzi et al. published a study in 2007 comparing some of the
characteristics of Bergman model and new features of a proposed model for the
IVGTT scenario, with a delayed insulin secretion rate [77]. The new model proposed
surpassed the rest in simulated experiments and in identi�ability properties, but it
was only tested in healthy patients. The equations of the model are:

Ġ(t) = −KxglI(t)G(t) +
Tgh
Vg

(2.30)

İ(t) = −KxiI(t) +
Tig max
Vi

(
G(t−τg)
G∗

)γ
1 +

(
G(t−τg)
G∗

)γ (2.31)

This model includes delayed di�erential equations for the insulin production sub-
model, but when simulating type 1 diabetic patients, whom do not have endogenous
insulin secretion, the model becomes much more simple. The parameters involved
in the previous model are:

• Gb is the basal glucose concentration.

• Ib is the basal plasma insulin.

• Kxgl is the insulin sensitivity. It represents the insulin-dependent glucose
uptake by tissues per unit of insulin concentration.

• Tgh represents the balance between the hepatic glucose production of glucose
and the insulin-independent glucose intake, including the one of the liver.

• Vg is the apparent glucose distribution volume.

• Kxi is the disappearance rate of insulin.

• G∗ is the glycemia at which the insulin secretion rate is half of its maximum.

• Tig max is the maximum rate of insulin release.

• Vi is the apparent insulin distribution volume.
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• τg represents the apparent delay with which the pancreas changes insulin
release in response to a variation in blood glucose.

• γ is the progressivity with which the pancreas reacts to circulating glucose
concentrations.

The values published for these parameters, only for healthy patients, are shown in
Table 2.8.

Parameter Published value Units
Vg 0.152 L kg−1

τg 19.271 min
Kxgl 1.43× 10−4 min−1 pM−1

Kxi 0.101 min−1

γ 2.464 -

Table 2.8: Nominal values of the parameters in Panunzi model.

Panunzi model is also used later in this thesis because of its simplicity, but some
variations were made in Chapter 2.5 due to the focus of this model on healthy patients
and the IVGTT scenario, and in order to extend its use to diabetic patients.

2.4.3 UVA model

The core of the UVA model was presented in [22], and it is one of the most important
models in diabetes research. It is a very complex model almost exclusively based
on physiological knowledge of the glucose metabolism. It is usually combined with
the UVA gastrointestinal model and the insulin pharmacokinetics model of the same
group (in fact all the models were developed together) in a large mathematical model
of the glucose metabolism. Magni et al. [69] used a linearization of the UVA model
to control an in silico diabetic patient. It is also the model implemented in the UVA
simulator [63] which was accepted by the FDA (Food & Drug Administration) as
substitute of animal trials in the context of a controller validation trial by University
of Virginia and Padova. The core structure is pretty simple, as shown in Figure 2.9:

The model equations are:

Ġp(t) = EGP (t) +Ra(t)− Uii(t)− E(t)− k1Gp(t) + k2Gt(t) (2.32)
Ġt(t) = −Uid(t) + k1Gp(t)− k2Gt(t) (2.33)
G(t) = Gp(t)/VG (2.34)

In the previous equations there are many inputs and outputs to the glucose
compartments that need description. It must be noted that so far there are no insulin
related equations; insulin in�uences the �ow of glucose coming in or out of the
di�erent compartments. The meaning of these variables is explained next:
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Figure 2.9: UVA’s model core is composed of two compartments of glucose, one for
blood and one for the tissues interstitial �uid. Schematics adapted from [22]

• Ra is the exogenous �ux of glucose coming from the gut.

• Uii is the utilization of glucose that is non dependent on insulin. It is usually
considered constant and equal to Fcns.

• Uid is the utilization that depends on the insulin concentration, and it follows
the following set of equations:

Ẋ(t) = −p2UX(t) + p2U [I(t)− Ib] (2.35)
Vm(X(t)) = Vm0 + VmxX(t) (2.36)

Uid(t) =
Vm(X(t))Gt(t)

Km +Gt(t)
(2.37)

where X(t) is the remote insulin, I(t) is the plasma insulin, Ib is the basal
insulin and Vm(t) is the transfer rate for the Michaelis-Menten equation shown
in equation (2.37).

• E(t) represents the renal excretion, which occurs if plasma glucose exceeds a
certain threshold. It is modeled as follows:

E(t) =

{
ke1[Gp(t)− ke2] if Gp(t) > ke2

0 otherwise (2.38)

where ke1 is the glomerular �ltration rate and ke2 is the renal threshold of
glucose.

• EGP (t) is the Endogenous Glucose Production, and it depends on a delayed
insulin signal as follows:

İ1(t) = −ki[I1(t)− I(t)] (2.39)
İd(t) = −ki[Id(t)− I1(t)] (2.40)

EGP (t) = max{0, kp1 − kp2Gp(t)− kp3Id(t)} (2.41)
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where I(t) is the insulin concentration in plasma, Id(t) is the delayed insulin
action, ki is the insulin delay �ux rate and kp1, kp2 and kp3 are constant
parameters that describe EGP .

The published parameters for healthy and type 2 diabetic patients are those in Table
2.9.

Parameter Healthy Type 2 diabetes Units
VG 1.88 1.49 dL kg−1

k1 0.065 0.042 min−1

k2 0.079 0.071 min−1

kp1 2.70 3.09 mg kg−1 min−1

kp2 0.0021 0.0007 min−1

kp3 0.009 0.005 mg kg−1 min−1 per pmol L−1

ki 0.0079 0.0066 min−1

Fcns 1 1 mg kg−1 min−1

Vm0 2.5 4.65 mg kg−1 min−1

Vmx 0.047 0.034 mg kg−1 min−1 per pmol L−1

Km0 225.59 466.21 mg kg−1

p2U 0.0331 0.0840 min−1

ke1 0.0005 0.0007 min−1

ke2 339 269 mg kg−1

Table 2.9: Nominal values of the parameters in Cobelli model.

This model has been used in several experimental settings for closed-loop
controller testing. Kovatchev et al. published a study on 20 T1DM patients using an
MPC controller tuned with the UVA simulator [62] [15]. Improvement was reported
in hypoglycemic events occurrence and in the amount of time spent in euglycemic
range. Currently, the UVA group is performing home control experiments using
controllers designed with this model.

An update of the UVA model and its simulator was published in January 2014
[23]. The model is still based on the previous equations, but glucagon kinetics are
included using a single compartment model. In order to simulate di�erent glucose
utilization depending on the glycemic region, the updated model includes a new
glucose utilization module that depends on the risk of hypoglycemia. These last
updates were not subject to examination in this thesis.

2.4.4 Cambridge model

The Cambridge group proposed an endogenous model with split focus on three
insulin actions and its �nal e�ect on blood glucose [53]. The model considers the
following insulin e�ects:
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• Insulin increases the �ow of glucose from blood to the tissues.

• Insulin increases the glucose uptake by muscles and adipose tissue.

• Insulin inhibits production of glucose in the liver.

These three in�uences are re�ected in the model as virtual compartments. The
relation between actual insulin in plasma, every virtual compartment representing
insulin actions and the two compartments for glucose is shown in Figure 2.10. x1,
x2 and x3 represent the insulin actions, Q1 is the glucose mass in the accessible
compartment, and Q2 is the glucose present in the non-accessible compartment.

Figure 2.10: Hovorka endogenous model structure arranged in compartments.
Adapted from [53].

The equations that represent this model are:

ẋ1(t) = −ka1x1(t) + kb1I(t) x1(0) = 0 (2.42)
ẋ2(t) = −ka2x2(t) + kb2I(t) x2(0) = 0 (2.43)
ẋ3(t) = −ka3x3(t) + kb3I(t) x3(0) = 0 (2.44)
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where x1(t), x2(t) and x3(t) are the three di�erent insulin actions. These actions
are used as inputs to the actual endogenous model.

Q̇1(t) =−
[
F c01(t)

VGG(t)
+ x1(t)

]
Q1(t) + k12Q2(t)−

− FR(t) + EGP (t) +Gex(t) Q1(0) = Q1,0

(2.45)

Q̇2(t) =x1(t)Q1(t)− [k12 + x2(t)]Q2(t) Q2(0) = Q2,0 (2.46)
G(t) =Q1(t)/VG (2.47)

Equation (2.45) has several terms to be de�ned:

• Q1(t) is the compartment of plasma glucose.

• Q2(t) is the compartment of glucose in the interstitium.

• Gex(t) is exogenous �ow os glucose.

• EGP stands for Endogenous Glucose Production, which is the �ux of glucose
coming from the liver. It is de�ned as:

EGP (t) =

{
EGP0[1− x3(t)] if EGP ≥ 0

0 otherwise (2.48)

• F c01 is the insulin-independent glucose �ux, and it is de�ned as:

F c01(t) =
F s01G(t)

G(t) + 1.0
where F s01 =

F01

0.85
(2.49)

• FR is the renal glucose clearance above the glucose threshold of R_thr, and it
is de�ned as:

FR(t) =

{
R_cl(G(t)−R_thr)VG if G(t) ≥ R_thr

0 otherwise (2.50)

Where R_cl is the renal clearance.

The model has many parameters to be tuned, specially in the part of insulin actions,
where there are two parameters for each action corresponding to the input (kb1,
kb2 and kb3) and output (ka1, ka2 and ka3) �ows of the compartment. Usually
these parameters are reformulated into the so called insulin sensitivities, due to their
physiological meaning since they correspond to the glucose decrement per unit of
insulin given. The reformulation is then:

• SIT = kb1
ka1

where SIT is the insulin sensitivity to the transport of glucose.

• SID = kb2
ka2

where SID is the insulin sensitivity to the distribution of glucose.



2.5. CRITICAL SELECTION OF MODELS 49

• SIE = kb3
ka3

where SIE is the insulin sensitivity to the endogenous glucose
production.

After this transformation, equations ((2.42)), ((2.43)) and ((2.44)) result in:

ẋ1(t) = −ka1x1(t) + SIT ka1I(t) x1(0) = 0 (2.51)
ẋ2(t) = −ka2x2(t) + SIDka2I(t) x2(0) = 0 (2.52)
ẋ3(t) = −ka3x3(t) + SIEka3I(t) x3(0) = 0 (2.53)

The published values of all the parameters are those in Table 2.10. The parameters
shown in here are mean values of the several sets of parameters published [49].

Parameter Published value Units
k12 0.066 min−1

VG 0.16 L kg−1

EGP0 0.0161 mmol kg−1 min−1

F01 0.0097 mmol kg−1 min−1

ke 0.138 min−1

Vi 0.12 L kg−1

ka1 0.006 min−1

ka2 0.06 min−1

ka3 0.03 min−1

SIT 51.2× 10−4 mU L−1 min−1

SID 8.2× 10−4 mU L−1 min−1

SIE 520× 10−4 mU L−1 min−1

Table 2.10: Nominal values of the parameters in Hovorka model.

The Cambridge model has been used both for simulation and control purposes,
in many di�erent scenarios, from critical patients [50] (with adequate model
modi�cations) to overnight experiments [49] with successful results, and recently
it has been implemented in a complete mathematical patients simulator [99]. This
simulator was also used for patient prediction and controller tuning in a recent
closed-loop experiment performed both in adolescents [48] and in adults [51] in an
overnight controlled environment. Currently, the Cambridge group is performing
domiciliary studies under similar premises [52], showing very promising results. In
late 2013, Haidar et al. published a revised version of the Cambridge model including
stochastic parameters for intra-patient variability consideration [39]. The model was
identi�ed using bayesian estimation methods on a cohort of 12 young aduls with type
1 Diabetes.

2.5 Critical selection of models

The right selection of a model �tting our purpose is of utmost importance. Thus, a
critical analysis of literature models in carried out in this Section. UVA’s model is
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a clear outstanding model in literature and is likely to be chosen for population in
silico validation of controllers because of its FDA acceptance. However, Willinska et
al. published a review of the identi�ability of models for simulation [101], stating that
UVA’s model has the problem of having too many parameters to be identi�ed from
clinical data, which ensures identi�ability problems with the model structure when
trying to characterize an individual patient with this model. In the same review,
the Cambridge model was pointed out to oversimplify the glucose absorption input
model, leading to physiologically unrealistic glucose �uxes into circulation.

Minimal models (not used for simulation) such Bergman’s or Panunzi’s model
skip the problem of over-parametrization, but obviously describe with less accuracy
glucose behavior. Bergman’s model has been strongly criticized in late years because
of its simplicity and the fact that it does not �t correct glucose behavior against
insulin. Quon et al [84] proved in 1994 with a series of experiments involving
the Biostator device that Bergman model underestimates insulin action on glucose
removal from blood, and it overestimates the e�ect of glucose concentration in its
own disappearance (glucose e�ectiveness).

In 1999, Regittnig et al. [87] con�rmed the overestimation of glucose e�ectiveness.
They also proved that all minimal models are inevitably wrong if they consist of
one single compartment for glucose, without considering the interstitial dynamics
or other situations. Considering that a minimal model has to stay simple, let us take
a closer look to the equations related to the glucose compartment in minimal models,
like the Bergman model. Considering that there is no exogenous input of glucose,
equation ((2.29)) stands:

Ġ(t) = −p1G(t)−X(t)G(t) + p1Gb (2.54)

The part of the equation −p1G(t) is the term of the Bergman model that represents
the glucose e�ectiveness, and it depends directly on the parameter p1, which is
patient-dependent. The term p1Gb sets the equilibrium point of the model to
the basal glucose if insulin is at basal level and there is no glucose input. The
term X(t)G(t) is the insulin related term, applying insulin action through a delay
compartment. Looking at the equation of the glucose compartment of another
minimal model, the Panunzi model:

Ġ(t) = −KxglI(t)G(t) +
Tgh
Vg

(2.55)

In this case, the term related to glucose e�ectiveness does not exist. The term related
to insulin input,−KxglI(t)G(t), is applied without a delay because Panunzi’s model
was designed for healthy patients and the delay is considered in the endogenous
secretion of insulin. The term Tgh

Vg
is similar to the equilibrium point term in

Bergman’s equation (2.54), both are constant terms that de�ne the equilibrium point
of the equation, but they are considered in di�erent ways. In the Bergman model,
the basal level is stated explicitly, while in the Panunzi model it is seen as a hepatic
balance of glucose. Both approaches are true and useful, and the identi�cation is
done in the same way in both examples.
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Bergman model exhibits an odd behavior when simulating a diabetic patient
to whom basal insulin infusion is removed. The correct physiologic behavior to a
empty insulin compartment in a diabetic patient is for blood glucose to increase
asymptotically. In Figure 2.11 a postprandial simulation with Bergman’s model is
shown, including a long pre-prandial stage of 10 hours in which the insulin infusion
is stopped; then, at minute 600, insulin infusion is restore to its nominal value and a
75 grams of a mixed meal ingested (simulated by the UVA model) simultaneously to
a 7.5 units of insulin bolus injected.

Figure 2.11: Bergman model simulation of a stop in the basal insulin infusion
with nominal values of glucose e�ectiveness. Basal infusion is restored when the
postprandial period begins.

A small increase in glucose level can be seen as a consequence of the elimination
of insulin infusion. Basal insulin removal causes a change in the settling point of the
output variable, i.e. glucose concentration. If basal insulin infusion stops in a model
with smaller glucose e�ectiveness, the results are shown in Figure 2.12.

The behavior observed in the “warming” period of Figures 2.11 and 2.12 is
unrealistic. A diabetic patient whose insulin infusion is removed should become
an unstable process, not just change its equilibrium point. Panunzi’s model, in its
equation ((2.55)) becomes a pure integrator if insulin is removed, making the system
unstably increasing. Panunzi’s model seems more suited to the physiology of glucose
in diabetic patients in this case, but it also has its disadvantages. As it was said before,
the Panunzi model represents the delay of insulin action in the equation of secretion,
but that equation ((2.31)) is eliminated when simulating diabetic patients because of
the absolute insulin de�ciency in T1DM, so the delay e�ect is removed as well. If the
delay is not reinstated somehow, the model simulates much faster dynamics when
applying the bolus insulin in front of the simultaneous meal ingestion, making blood
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Figure 2.12: Bergman model simulation of a stop in the basal insulin infusion with
50% reduction in glucose e�ectiveness.

glucose to drop immediately after the injection, as can be seen in Figure 2.13.

This phenomenon is too pronounced and unrealistic. Even though insulin
dynamics can, and often are, faster than gastrointestinal absorption, the e�ect on the
displayed simulation is too abrupt and can yield to danger to the simulated patient.
However, this e�ect can be easily avoided by adding a simple dynamic delay equation
((2.57)) to Panunzi’s model, resulting in the next system of equations:

Ġ(t) = −KxglX(t)G(t) +
Tgh
Vg

(2.56)

Ẋ(t) = −ki[X(t)− I(t)] (2.57)

With the addition of a new parameter to the model. This new parameter is not tuned
and requires a nominal value to be set. This can be done simply by reviewing related
literature. In [42] Helms & Kelley quantify the regular insulin action delay with a 30
minutes settling time. By looking at the new delay equation as a �rst order model,
the time constant of the system can be calculated by assuming that the settling time is
3×τ (being τ the system’s time constant), which reads a time constant of 10 minutes,
and the parameter ki results to be equal to 0.1 min−1. The nominal parameter of
this delay is dependent on the type of insulin being used, and it should be subject to
deeper identi�cation studies in the future. The response to a meal and a bolus in that
case is shown in Figure 2.14, where the dropping of glucose just after the bolus time
is almost non present.
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Figure 2.13: Panunzi model simulation of a postprandial period. Meal ingestion
occurs at minute 120. Blood glucose drop after insulin bolus administration and
before meal glucose appears into bloodstream is circled.

Figure 2.14: Modi�ed Panunzi model simulation of a postprandial period. Meal
ingestion occurs at minute 120.
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The shown model is completely satisfactory for identi�cation purposes and
control. In order to check the model’s reliability we look upon the work of 1994
by Torlone et al. [96], where they showed a series of experiments in which insulin
bolus is injected few minutes prior to an intravenous glucose infusion (infused in
order to avoid hypoglycemia). This experiment shows clearly the e�ect and dynamics
of insulin, and how it makes glucose to decrease in a similar way to an impulse
response. From the work done by Torlone et al. it can be extracted that there is
no signi�cant change in blood glucose until approximately 15 minutes after bolus
injection, and then glucose drops steadily for 30 minutes until approximately 70
mg/dL (approximately 3 mmol/l). A very similar set-up was used for simulating
the modi�cation of Panunzi’s model including insulin delay; an insulin bolus was
applied and the e�ect on the blood glucose measured, as displayed in Figure 2.15, but
no intravenous glucose infusion was simulated.

Figure 2.15: Variation of blood glucose (mg/dL) in Panunzi’s model simulating a drop
of glucose after insulin injection. Insulin is given at time 0.

In simulation, the response is exactly as expected: no signi�cant change in blood
glucose in the �rst minutes, and in the next half hour, glucose level drops to almost 70
mg/dL. This new dynamics make the new model much more reliable than Bergman
or Panunzi’s models in the referent to insulin simulation, and also proves valid the
arti�cial delay added to the insulin action.

Another simple feature has also been included in the modi�ed Panunzi model.
Endogenous hepatic glucose production is one of the parameters of the model,
Tgh, and it is considered constant. This parameter is actually variable, because
endogenous hepatic production is suppressed by insulin. A simple variation of the
model has been introduced, considering the Tgh parameter to be reduced when
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plasma insulin surpassed a de�ned threshold, and de�ned as a piecewise function
as follows:

Tgh =

{
Tgh0 if I(t) < Tghthr mIU/l

Kgh · Tgh0 otherwise (2.58)

where Tghthr is the above mentioned insulin threshold, Tgh0 is the basal
endogenous production and Kgh is the glucose production factor.

With the described changes applied to Panunzi’s model, a very useful yet simple
model was developed and can be used for identi�cation and identi�ability studies
in the following thesis. This resulting model will be mentioned in this thesis as
“Modi�ed Panunzi Model”





CHAPTER 3

IDENTIFICATION IN DIABETES

Insulin treatment is currently a necessity for T1DM patients. The insulin dose
must be individualized foreach patient and for that physicians have traditionally
characterized the patients using clinical parameters tuned heuristically. Such
parameters represent an estimation of the insulin e�ect on glucose metabolism
and the quality of glucose control depends on the performance of the parameters
estimation. The latter is time consuming and requires constant patient reevaluation
by a skilled health-care team. As a common consequence there is a mismatch
between patient’s needs and the actual insulin treatment, resulting in suboptimal
glycaemic control.

In the arti�cial pancreas context the characterization of a patient is required to be
much more accurate. Model individualization is required for every patient in order
to get accurate enough predictions of the blood glucose levels. Using mathematical
models for glucose prediction has been present in diabetes literature since the �rst
models were published, but few satisfying results have been achieved for long term
predictions.

Patient identi�cation deals with inter-patient (between patients) variability.
The problem of characterizing inter-patient variability is handled individualizing
models for each patient independelty. Intra-patient variability is much di�cult to
quantify, and in this thesis it is the main problem to overcome by the methodology
and experimentation here described. From this point onward when referring to
variability only intra-patient (within the patient) variability will be accounted.
Intra-patient variability is the compound e�ect of several factors: not measured
methabolism, stress intensity, hour of the day and meal uncertainty among others.
The e�ects of this variability can be observed in many of the measured and identi�ed
parameters, often resulting in poor repeatibility in parameter identi�cation.
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In this chapter the most important and latest �ndings published in literature
related to model individualization for diabetes will be reviewed.

3.1 Patient Identi�cation

Glucose prediction from identi�cation of models using experimental glucose data can
be classi�ed according to the nature of the model used. As described in the models
in Section 2, models for diabetes can be data-driven or physiology-driven.

From the engineering point of view, Ståhl and Johansson published a pilot
identi�cation study [94] using modi�ed models from literature and data-driven
models. This paper describes the experience of the �rst author, whom was diagnosed
with diabetes shortly before the study, analyzing and modeling his own glucose
pro�le over a period of several weeks. They analyzed in detail the characteristics
of the data-set, including auto-correlation function, probabilistic distribution of the
samples, sampling times, and statistical properties. They used models in literature
for the input models, using in both cases (insulin and meal) two di�erent pathways
for fast and slow inputs. As for the endogenous models, they tested a battery of grey-
box, data-driven models, including Auto Regressive models with exogenous inputs
(ARX), Auto Regressive Moving Average models with exogenous inputs (ARMAX),
General Transfer Function Models (GTFM), and state space models of increasing
complexity. They used the models for validation of the identi�ed patient under
di�erent prediction horizons. The study concluded that GTFM were well suited for
prediction up to 2 hours ahead (8 simulation steps), but further horizons of prediction
were not possible using any of the models used. The study performed by Ståhl and
Johansson was very useful in the diabetes identi�cation scene as a pilot study, but it
was nonetheless limited in many aspects. The data-set used was comprised only
of data from one patient, thus neglecting completely the population variation in
the diabetes metabolism. The study also only used self-measured capillary samples
with irregular sampling times. Capillary blood glucose estimation can be subject to
many errors and disturbances, and it is also too sparse to be able to capture glucose
dynamics. More frequent sampling and more reliable measurements can improve the
outcome of the study.

Johansson and his colleagues in Lund continued the investigation further on,
publishing another study [14] where the e�ect of subspaced based models was
considered. In this case, the data was taken from a patient that was wearing a
CGM, monitored during three days under CSII (Continuous Subcutaneous Insulin
Infusion) therapy, which provided with much more frequent data than in the previous
study. Again, the models used for the inputs of the system where rather complex
physiology-based models, like the UVA group meal model and the Cambridge insulin
model described in chapters 2.3.1 and 2.2.2 respectively. The rational behind this
decision lies in the fact that the perturbations of the system (i.e. meals and insulin
treatment) have an enormous impact on the diabetic patient glucose. The lack of
physiologic insulin secretion in response to a meal make glucose homeostasis a hard
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task. In this context, insulin replacement in the subcutaneous tissue and meals
represent a perturbation of the glucose system that needs a detailed description
of the models used. This work showed that predictions with horizons larger than
30 minutes were very imprecise for CGM measurements. CGM involves more
frequent sampling, but it introduces large errors in the measured blood glucose
concentration, leading to great di�culties in the predictions. Nevertheless, this study
introduces separation between meals and its related insulin dose and viceversa for
easier identi�cation, which is a concept that will be investigated later in this thesis.

Rollins et al. published another self study, where a type 2 diabetic patient (Rollins
himself) was monitored for several weeks [90] without insulin treatment. This
study focused on predicting glucose by using many di�erent measurements of the
patients metabolism. The patient followed a normal life routine, wearing sensors of
temperature, body activity, heat �ux and CGM, as well as a diary with all relevant
information about meals. They used data-driven models with multiple inputs in order
to �t the patient’s data. Model validation was performed against CGM estimations.
Rollins showed that very good predictions (rfit up to 0.70) can be achieved if more
data from the patient’s metabolism and daily rhythm was provided. Unfortunately,
these results are not extendable to type 1 diabetic patients since insulin treatments
induce enormous perturbations to the system that were not modeled in this paper.
Also, only 1 patient was monitored for this study, and diabetic patients may be
reluctant to wear all the devices needed for full metabolic monitoring required for
this study. Furthermore, complexity of this kind of monitoring make it unfeasible in
clinical practice.

Georga et al. studied the possibility of using a combination of physiological
models as inputs to the system, and vector machine for regression as predictor of
blood glucose [38]. Their study comprised seven patients with 10 days average
monitoring period. They incorporated the possibility of using an exercise model
as an input to the glucose predictor. They showed results similar to those of [90],
but slightly less accurate predictions to those in [94], but comparisons between these
studies are loosely sustained since the two previous studies only simulate one patient.
No signi�cant improvement was observed when including the exercise model into
the prediction method.

In the work of Cameron et al. on prediction of blood glucose for MPC controllers,
a comparison of multiple models is performed [13]. Four variations of a very simple
data-driven model are tested for their predictive capabilities. The variations a�ect
the meal prediction of the model in di�erent ways, with increasing complexity:

• No meal detection. Meals occur without announcement or reaction of the
predictive model.

• Meal detection. Probabilistic detection of meals is implemented in the
prediction model.

• Meal detection and anticipation. Meals are predicted and action is anticipated
to the actual meal e�ect on glucose.
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• Meal announcement. Meal time is assumed to be input by the user.

Prediction horizons of up to 5 hours are tested for all the variations of the model,
both on simulated meal data and 19 days of experimental clinical data. Prediction
capabilities are computed with mean error and root mean squared error (RMSE).
Predictions are evaluated against prediction horizon on experimental data, and
against time for a 2-hour prediction horizon in simulated meal data. This study
presents large prediction errors (100 mg/dL) even for relatively short prediction
horizon, but prediction performance increases as more information is estimated or
provided to the model, being the meal announcement variation the most successful
in terms of prediction capabilities.

Palerm et al. studied the possibility of using physiology models for identi�cation
of diabetic patients [76]. They used a modi�cation of the Cambridge model in
data from �ve diabetic patients in a mixed meal response. The measurements
were taken using a YSI 2300 STAT PlusTM (YSI Inc., Yellow Springs, Ohio) very
frequently (5 minutes period). This study incorporates an identi�ability study of the
Cambridge model’s parameters, leading to a 4 parameter estimation for a well posed
identi�cation problem, at least locally. Given the non-linearities of the Cambridge
model, global solvers ought to be used for the data �tting. In this case, Palerm
et al. used a hybrid method combining both global and local solvers to enhance
identi�cation speed [89]. As opposed to the study performed by Johansson and his
colleagues, in this case frequent reliable data was �tted, and several patients were
individually identi�ed and compared. Yet, validation results were not satisfactory.

The work performed by Palerm et al. supposed a solid �rst approach to the
identi�cation problem, but still, unsuccessful. The predictions were not able to mimic
the response of the patients in di�erent days, which can be caused either by model
mismatch to the actual physiology or variations in the parameters within the same
patient, or even maybe the incorrect use of data for identi�cation.

Finan et al. proposed a comparison of models identi�cation for diabetic patients
based on ARX models [32]. They used data from 9 type 1 diabetic patients for
identi�cation comparing every prediction to that of a Zero Order Holder (ZOH).
The ZOH predictions consisted simply in maintaining the glucose level for as
long a the prediction horizon is. The predictions of the models were tested for
prediction horizons of 30, 60 and 90 minutes. The study concluded that non
signi�cant improvement on the prediction capabilities (Relative Mean Square Error
of the validation days) was observed from using ARX models instead of a ZOH.
This conclusion is of great importance for identi�cation in type 1 diabetic patients,
since it discourages the use of pure data-based models in the prediction of glucose
concentration. The authors conclude that non-modeled disturbances hinder greatly
the performance of the selected models, and that getting reliable quantitative
measures of exercise and stress levels would result in better quality predictions.

Concerning the lack of identi�ability showed so far by all of the available models
in literature, Simone del Favero et al. approached the identi�cation problem from a
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completely new angle [25]. They proposed a method for identi�cation using clinical
index instead of purely mathematical quadratic indexes for data �tting. The clinical
index consisted in a weighted index based on the glucose prediction danger to the
patient. The reasoning behind this kind of �tting is that predictions for clinical
patients are not worse as they di�er from actual data, but as they unable to detect
situations in which the patient may be endangered. For example in the case where
a patient is heading towards hypoglycemia and the predictions are those of high
glycaemic levels.

3.2 Experiment Design for Arti�cial Pancreas

Model identi�cation is limited by both the model complexity and the amount and
quality of the available data. The current state of models for identi�cation has already
been stated. In this chapter we will focus on the improvement of data acquisition
techniques in the diabetes environment.

Predictions of the identi�ed models are highly dependent on the identi�ability
of the model itself. Identi�ability of a model is the facility to repeat an identi�cation
of its parameters under similar circumstances. Identi�ability of a model is mainly
dependent on the models structure, but it can also be improved by performing
experiments that ease the process of the identi�cation. The process of preparing data
gathering experiments in order to enhance the identi�ability of the model is called
Optimal Experiment Design. Optimal Experiment Design is rare on the diabetes
context due to the fact that data acquisition usually occurs in a clinical environment,
where there are physical and ethical limitations to the experimental conditions.

There is a set of clinical tests that can help clinicians to either diagnose diabetes
or to identify clinical parameters of glucose homeostasis:

• Oral Glucose Tolerance Test (OGTT). This standard test is used for diagnostics
of diabetes. The test starts in the morning with the patient following the usual
physical activity as in a normal day. The previous evening a meal of 30-50 g of
carbohydrates is consumed. In the morning, a fasting blood sample is collected
and then a solution of 75 g of glucose in water is drunk over a period of 5
minutes. Blood is then monitored afterwards at intervals. The most common
interval though is a single sample (plus the fasting sample) 2 hours after the
glucose solution ingest.

• Intravenous Glucose Tolerance Test (IVGTT). This standard test is used for
measuring the pancreas activity either in a healthy person or a diabetic patient.
The glucose is administered in a antecubital vein over 60 seconds using a dose
of 300 mg/kg. Glucose (and potentially insulin) is monitored starting at the
moment of the infusion, with a fast sampling period (5 minutes or less) in the
�rst period of the experiment, and more distanced measured at the end, lasting
the whole of the experiment at least 3 hours.
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• Postprandial Glucose Test. This test is used to screen for diabetes and to evaluate
treatments of therapies in diabetic subjects. The patient eats a balanced meal
of measured components with a carbohydrate content of 100 g or more. The
patient is then monitored for a minimum of two hours, and in case of necessity
of testing a therapy, it is applied normally to the patient. This test is the
easiest to perform since it follows the daily routine of the patients with a tight
monitoring of blood glucose.

• Clamp Glucose Test. Clamp tests are a battery of experiments that consist
in arti�cially keeping blood glucose levels steady by intravenously infusing
either glucose solution and/or insulin. They are di�cult to perform as
they require of an skilled doctor adjusting the glucose infusion levels to the
appropriate concentration in order to lead blood glucose to the desired range.
An example of clamp test is the euglycaemic hyperinsulinemic clamp, which
consists on administering a large insulin infusion while maintaining glycemia
in a controlled range of 90-100 mg/dL. This test permits the quanti�cation
of the insulin resistance of the patient without risking the patient to go to
hypoglycemia.

Much more complex experiments can be performed for measuring metabolic
�uxes in diabetic patients, as for example methods with radioactive tracers can help
in the characterization of emptying rates in the digestive tract. In 2003 Basu et al.
described a triple-tracer method for assessing the postprandial glucose metabolism
[4], which was later used by Dalla Man et al. for developing a model of the
gastrointestinal absorption of glucose [22]. This type of tests though are extremely
di�cult to perform, even with single tracers; they require specialized instruments for
the detection of the isotopes, and they are also much more intrusive to the patients
involved

The �eld of optimal experiment design for diabetes has been developed greatly
by Federico Galvanin and his team. In 2009 they published a design of a postprandial
monitoring experiment with a variating insulin infusion throughout the post-
prandial period [34]. The approach they used leads to results dependent on the
model used, which for their case was the Cambridge model described earlier. They
based their design on the optimality of 5 parameters of the endogenous glucose-
insulin model, attempting to minimize the uncertainty in the identi�cation of those
parameters. After a priori sensitivity analysis, they realized that two of the 5
parameters are highly correlated in the postprandial period and cannot be identi�ed
together so they reformulated the problem as the optimization of identi�ability of
4 parameters, one of which was the ratio between the unidenti�able parameters.
The outcome of the experiment design was a 2 meal monitoring where they tunned
the CHO content of the meals and the insulin infusion from an insulin pump. The
outcome of the experiment was relatively complex with the insulin infusion pro�le
de�ned as a piecewise constant function with 12 levels and 11 level switching times.

The qualitative result shown in the experiment design proposed by Galvanin et
al. is actually di�cult to implement in a real experiment. Given that the models
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used are inaccurate, it is not advised to take the results of the experiment design
accurately. Nevertheless, the results of this paper are very useful: it demonstrates
that identi�ability in diabetes is increased for longer experiments, and it shows
that exciting the insulin input, statistically satisfactory parameter estimation can be
achieved.

Later on, Galvanin et al. published another work on optimal experiment design
using on-line updates to the identi�ability of the parameters [35]. They realized from
previous experimentation that model-based experiment design was too dependent
on the model used. They decided to approach the issue in this paper introducing a
model mismatch, based on the simple idea of simulating the data with one literature
physiological model (in this case de UVA model) and identifying with another (the
Cambridge model). The experiment design outcome is very similar to that of the
previous work, with step shifts on the insulin infusion to the patient.

Galvanin et al. concluded the study with a feasibility analysis of the experiments
designed. When introducing the model mismatch, the classic model based
experiment design was unable to provide feasible experiments. When using
the on-line experiment redesign and identi�cation, feasibility was achieved, and
identi�ability of the parameters was greatly improved. However, the amount of
glucose and insulin to be delivered with the new method was much more aggressive.
Clearly, this is unfeasible and unethical in the clinical setting as it would pose patients
safety at risk.

Cobelli and Thomaseth published a study of optimal inputs for the Bergman
minimal model using also optimality of identi�cation of the parameters of the model
[17]. They focus on the design on �nding optimal continuous functions of excitement
to the endogenous model. They concluded that the outcomes of the experiment
are very interesting from the modeling point of view, but of limited relevance in
the diabetes context. Indeed, the optimal inputs obtained are too di�cult to realize
in clinical practice. They also imply that delayed insulin inputs can be useful for
identi�cation of certain parameters of the model.

Few other relevant works on the �eld of experiment design have been published.
However, modi�cations on the traditional inputs with the aim of improving data
quality is often seen in research of the arti�cial pancreas. Percival et al. for example
used delayed insulin bolus (2 hours after the meal) for the data acquisition of glucose
pro�les for a control algorithm [80].

Even though the clear objective of Percival et al. when shifting the bolus time was
to enhance the identi�ability of the model, there is no further justi�cation to it. In
general, diabetes research lacks on simple experiments designed for the day-by-day
routine of the diabetic patient; simple and safe enough experiments that will imply
the patient participation and understanding of the disease he is living with, and the
research related to it.



64 CHAPTER 3. IDENTIFICATION IN DIABETES

3.3 Uncertainty and Interval Identi�cation in
Diabetes

Individualization of models for diabetes is greatly hindered by the fact that few
models in literature consider intra-patient variability. In the models described in
Section 2 every model parameter stands for a physiological constant or function,
and it is assumed to be characteristic to each patient. Most of the model proposed
are published with some distribution in their parameters that resemble population
values. These population values are an accepted quanti�cation of the inter-patient
variability for the parameters evaluated. However, characterization of a patient is
dependent on the current metabolism of the patient, which is highly variable. This
intra-patient variability has been regarded in literature with little detail.

One of the main sources of metabolic variability is the circadian rhythm of
the patient. It is well established that the circadian variations of diabetic patients
cause above average glucose levels in the early morning (event known as “Dawn
Phenomenon”), among other e�ects. The circadian e�ect has been quanti�ed in
the insulin dependance by Scheiner and Boyer [93], showing a higher insulin
relative dosage needed in the morning in type 1 diabetic patients. Higher insulin
demand combined with constant basal infusion rates directly results in high morning
glycemia, such as the reported in the Dawn Phenomenon. This work shows how
insulin basal rate decreases for every age group after breakfast time, showing a
periodic behavior of one of the better known physiologic parameters in diabetes:
the insulin sensitivity. Furthermore, this work emphasizes the great di�erence in
the population values when distributed by age groups, and suggests that a single
probability distribution is not su�cient to characterize one parameter for the type 1
diabetic population.

Understanding that physiologic parameters are not correctly characterized by
only a number, several authors in recent years have been adapting physiological
models in order to simulate patients with variability inherently considered. Using
interval analysis methods and models is a new way of considering those parameters.
Interval models consider internal parameters as “ranges” instead of punctual
numbers. The parameter at a given time is actually unknown, but it is known to
be comprised within the boundaries of the interval that de�nes it. The outputs of
interval models are also intervals, and in the case of diabetes, the main output being
glucose, means that we have to work with uncertain ranges of glucose.

Calm et al. published work based on the Cambridge where modal interval
analysis is applied for the plasma glucose prediction to face uncertain food intake
and patient parameters such as insulin hepatic and peripheral sensitivity [12]. The
model was later validated against Monte Carlo simulations proving it to be a much
more e�cient in computation [11]. The interval model developed was tested against
several scenarios where parameters in the insulin absorption and meal absorption
models were considered to have between a 10% and 20% variation. In general, wider
variability considered in the parameters yield wider glucose outcomes. Calm et



3.3. UNCERTAINTY AND INTERVAL IDENTIFICATION IN DIABETES 65

al. showed that even relatively small variations considered in the parameters of
the model (10%) yield wide glucose prediction bands (approximately 100 mg/dL).
Considering that sensitivity parameters of a real diabetic patient can be much more
variable than the 10% considered by this study, even larger glucose prediction bands
are expected when characterizing diabetic patients in an experimental setting.

Another approach to interval models simulation was undertaken by de Pereda
et al. on the Cambridge model [24]. They tackled the uncertainty analysis by using
monotonicity analysis of the states of the model and its critical points. The bounds
provided by this type of analysis are very similar to those proposed by Calm et al.,
but with the advantage of considering more parameters subject to uncertainty, as
for example the insulin absorption lag time tmaxI . They also proposed the use
of the uncertainty model as a short-term prediction tool, showing that for smaller
prediction horizon scenarios, band widths do not grow excessively, and are suitable
to use in regulation algorithms such as Model Predictive Control. The work done by
de Pereda et al. is very recent (2012), and it still has to be tested as a suitable method
for identi�cation and control.

To our knowledge, Kirchsteiger et al. published the only identi�cation procedure
with consideration of uncertainty so far [59]. This work was initially based on
a simple data-based transfer function model with 6 interval parameters. The
identi�cation was performed on data from 9 patients and three postprandial periods
for each patient. After some trials, a simpli�ed model structure was proposed for
identi�cation, due to identi�ability issues, reducing it to only 4 interval parameters.
The identi�cation was posed as an optimization problem, where not only the �tting
error was identi�ed for 3 days, but also the standard deviation of each parameter
considering the three postprandial periods. This procedure kept the parameters from
resulting in too wide intervals, while still �tting the data of the patient. Even though
the idea of identi�cation of 3 separate days with common parameters is appealing,
the study lacked of the proof of cross-validation on the data. Validation on single
meals was performed, but not using the interval parameters, neither selecting a day
a priori as the validation day. It is unclear whether the day used for validation was
just the 3rd day chronologically or the best case validation. Also, the data source on
this study was treated without consideration of the possible errors introduced, which
is a very important issue if not using glucose reference data.





CONCLUSIONS

Identi�cation studies for type 1 diabetic patients are rarely found in literature.
In this part of the thesis the most signi�cant cases of patient individualization
were reviewed, but unfortunately not one of them displays satisfactory prediction
capabilities. In summary, individualization of type 1 diabetic models is still work
in progress and special e�ort must be done in order to develop new strategies for
predicting the glucose of a diabetic patient. A summary of the reviewed studies can
be found in Table 3.1.

Additionally, these studies have signi�cant limitations as a few patients were
included and validation of the identi�cation was either not performed or poor.
Only one study using physiology-based models presented validation data (Palerm
et al. 2006 [76]), and even though validation data is presented, the results are
not satisfactory. In that study, no consideration of uncertainty was performed. In
this thesis a full cross-validation study on multiple patients is presented using �rst
principles models. By adding uncertainty on the identi�cation process, validation
expected results will be improved in the whole population of patients examined.

Poor prediction and identi�cation results published in literature suggest that
individualization studies may be much more challenging for the diabetes paradigm
than other classic engineering problems. These facts did not dissuade the author
to advance as much as possible towards the solution of the identi�cation problem,
and in fact, new identi�cation strategies are explored in this thesis that we
believe strongly encourage the scienti�c community to push the limits of patient
individualization forward.

Model accuracy is an open issue when dealing with glucose predictions. No
proposed model of those reviewed in this thesis has shown exceeding performance
over the others, and each one of them has been designed following a di�erent set of
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directions. Models based on physiology are the most extended models in control and
identi�cation in diabetes, but they all lack on solid validation results. Model based
experiment design can be used for a better use of the models proposed.

Almost no focus has been given to uncertainty consideration in the identi�cation
context in literature, despite the public knowledge of enormous variations in some
of the physiology parameters, and large errors registered in continuous monitoring
studies. Uncertainty treatment is key for better prediction of glucose concentration
of diabetic patients, even using current models based in physiology. Interval models
appear as the perfect choice for these type of problem, and will be used in this thesis
to develop reliable identi�cation methodologies. Of course, as modeling in diabetes
advances, predictions can be more and more accurate, with less uncertainty from
unmodelled dynamics to be considered by the intervals, but we consider this to be
work to be done in parallel to the identi�cation methodologies, which are the focus
of this thesis.

Interval analysis and error-bounded estimation is a well established
methodology, but have never been used in the diabetes context. This is most likely
a consequence of the fact that estimating error incidence in glucose monitoring is
usually very di�cult. Sets of parameters that result from bounding all the possible
errors in the glucose concentration space when measured by CGM are surely too
large to be used in prediction studies and controller design. An interval approach
more focused on the modeling of intra-patient variability is presented in this thesis,
where the focus of the interval model is not to simulate all feasible responses to
a single set of data but to bound several similar experiments on the same patient.
With this repetition of days on the experiment, patient variability is expected to be
present and interval models are expected to capture it. Coping with error in the
measurement is handled by acknowledging a compromise between data �tting and
measurement error. This type of interval bounding also focuses on the development
of robust controllers because it provides not only patient characterization but also
relative uncertainty measures for every di�erent patient, which is closely related to
robust controller design parameters.





Part II

Issues in Continuous Glucose
Monitoring for Patient

Identi�cation
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CHAPTER 4

OPTIMAL EXPERIMENT DESIGN

In the following chapter, a simple experiment is designed with the main objective of
optimizing glucose data identi�ability, regardless of the model used. Several safety
measures have to be accounted for, including risk to hypo and hyperglycemia to the
patient. The experiments are desired to be home-made, performed entirely by the
patient, with few to non in�uence into the daily life of the patient.

4.1 Introduction

Optimal experiment design requires of the designer to determine the experimental
parameters to be used for optimization of identi�ability. The diabetic patient model
inputs are the variables that can be adjusted for the adequation of the experiment.
For obtaining an optimal experiment, the best combination of the inputs regarding
at the identi�ability of the model is to be found.

Another variable usually considered in the optimization of the inputs is the
sampling period of the measurements. In the experiments to be performed in
this thesis, the measurements are considered to be sampled by a CGM, so the
measurements are taken with the sampling period of the monitor (every 5 minutes),
and the number of samples linearly increases with the experiment’s length. The
design problem is then transformed into how long the experiment should last.
Usually, identi�ability of the model increases with the number of samples because
the experiment’s data get richer, so the boundary of the experiment time is not
of identi�ability issues but of safety reasons. After medical consultation and
examination of the resources for the experiments, it was decided that the length of
the experiment was to be �xed at �ve hours after a meal, considering that most of
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the postprandial response and input excitation occurs in this period.

The most common inputs of a complete glucoregulatory model are two, the meals
and the insulin infusion (supposing insulin pump treatment). Meals are usually
considered as a disturbance, but in this work, mathematical models are used for
simulating the meal absorption as an input to be designed. Insulin postprandial
infusion is considered as an input as well. Both inputs can be parametrized as:

• Parametrization of the meal system input:

1. Meal size
2. Meal composition

• Parametrization of the insulin system input:

1. Insulin bolus size
2. Insulin bolus time (relative to meal time)
3. Basal infusion rate

Regarding meal composition, the published parameters in literature for the meal
model analyzed in here, the UVA gastrointestinal model, were identi�ed under the
speci�c conditions listed below:

• Caloric input: 10 kcal/kg

• Carbohydrate: 45%

• Protein: 15%

• Fat: 40%

• Carbohydrate estimation and uncertainty: 90 ± 5 g

Carbohydrate estimation represents the size of the meal. The rest of the parameters
determine the gastric emptying pro�le, and the identi�cation performed in [21]
produced the parameter values shown in Table 2.5 based on the speci�ed meal
composition. Unfortunately, no identi�cations on di�erent meal compositions have
been performed on this model. Therefore, if optimum performance of the model is
desired, experiments with this model are to be performed with similar composition
to that shown in [21]. The size of the meal is one of the parameters for the experiment
design.

Regarding at the insulin input, the parameters chosen for optimization of the
experiment design are much more complex than the those of the meal ingestion,
which is only considered as an impulse. The insulin pump treatment can have any
shape imaginable in accordance to the pump limitations. Designing an absolutely
free insulin pro�le, i.e. a non-parametric input, would be too expensive in
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computational terms (for more information see [98]), so a parametric input is chosen.
The classic pro�le of basal-bolus infusion is preserved in this experiment design for
simpli�cation purposes and to increase the patient’s compliance with the experiment.

Once decided that a traditional treatment is going to be followed, the only
parameters to be chosen for the experiment design are the amount of insulin to be
given as a bolus, the basal insulin level, and the instant the bolus is administered. The
basal rate was discarded from the parameter optimization set after a pilot experiment
design. In this �rst experiment, the in�uence of basal was found to be neglectible on
the model’s identi�ability when compared with the rest of parameters (meal and
bolus). Also, adding a variable basal rate for each patient increased the number of
optimization parameters too much, making the optimization much computationally
intensive, which was not desired.

In summary, the experiment conditions to be tuned in the optimization are:

• τ - Delay of the insulin bolus with respect the meal time, in minutes. A
positive delay means that the insulin dose is given after the meal and viceversa.
The boundaries for the optimization problem are set to -60 and 300 minutes.
Maximum advancement of the insulin bolus is de�ned so as to prevent
hypoglycemic events.

• Meal - The size of the meal in grams of carbohydrates. The boundaries for the
optimization problem are 0 and 100 grams of carbohydrates.

• Bolus - The amount of bolus insulin units to be given. The boundaries for
the optimization problem are 0 and 10 insulin units. These boundaries were
chosen using an insulin-to-carbohydrate ratio of 1:10 as population mean.

Only one meal per day is considered in order to avoid in�uences from the circadian
variation of insulin sensitivity. The vector Ξ (as seen in equation (1.18)) is a vector of
size 3 · nd, where nd is the number of days of monitoring. This vector is the output
of the experiment design.

Given that the problem is highly non-linear (due to non-linearities of the index
and the model) SSM global optimizer was used to obtain the solutions, as introduced
in the Section 1.4.1. The constraints for the optimization problem are the restrictions
of the blood glucose in order to keep the patient under safe health conditions. The
simulation was forced to start from equilibrium in a blood glucose level of 100 mg/dL.
The maximum level of glucose (hyperglycemic bound) was set to 250 mg/dL and the
minimum level (hypoglycemic bound) was set to 70 mg/dL. These boundaries are
respected at all times during the optimization of the experiment design.

Before the actual experiment design, a selection of the most relevant parameters
is performed. A very simple analysis of identi�ability is carried out on each of the
models tested in order to discard non-relevant parameters that may induce optimality
problems in the minimization of the experiment design. Repeated iterations of
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sensitivity analysis are done over the full model parameter set, iteratively removing
any parameter that produces either singularity of the FIM or that presents a
coe�cient of variation larger that 30%.

In the following lines results for experiment design in diabetes for two di�erent
models are shown. Despite the fact that Bergman’s model has been proven unreliable
for simulating some glucose dynamics, it is desirable to execute the experiment
design methodology varying the models used in order to make the experiments as
model-independent as possible. Therefore the �rst experiment design presented is
calculated for this model. After that, experiments designed for the modi�ed Panunzi
model are displayed. Qualitative information can be extracted from every model’s
designed experiment. Common conclusions will be synthesized after the experiment
design with both models considered and a feasible, patient-friendly protocol will be
developed

4.2 Experiments designed with Bergman’s model

Initially, Bergman’s endogenous model requires for the identi�cation of three
parameters, but two more are to be identi�ed in a realistic identi�cation experiment:
distribution volume and basal glucose. Glucose distribution volume a�ects the
glucose concentration with respect to the glucose inputs of the system throughout
the postprandial period, and basal glucose states for the initial state of the glucose
simulation, which for Bergman’s model (equation (2.29)) also a�ects the dynamics of
the system. To complete the simulation of a diabetic patient, UVA’s gastrointestinal
model is implemented along with Cambridge’s insulin absorption model. UVA’s
gastrointestinal model is one of the few models presented in literature with
identi�cation on mixed meals instead of glucose solution (even though the mixed
meal used is far from being a classic meal), and that is the reason to choose it
for the virtual patient’s simulation. The Cambridge insulin absorption model was
chosen based on the analysis of Willinska et al. where it was compared against
11 literature models [100] and showed excellent prediction capabilities. Bergman’s
endogenous model combined with UVA’s glucose absorption model and Cambridge’s
insulin subcutaneous model sums up a total of 17 parameters, described in Table 4.1.

Considering only blood glucose as the measurable output of the system,
identi�ability of all parameters is not expected. A three days experiment as the
identi�cation period was assumed. Later in this chapter, the choice of a three days
experiment is discussed and proven to be adequate for the type of experiments being
designed. A sensitivity analysis previous to the experiment design was performed,
and the results are shown in Table 4.2. Only three iterations were needed to
obtain a feasible set of parameters for identi�cation on the Bergman model, but the
algorithm initially discarded 8 parameters due to non-invertability of the FIM, which
is closely related to structural non-identi�ability. Indeed, the structural combination
of Bergman model with the selected input models rendered many parameters di�cult
to identify just from glucose concentration data. Should richer data be available,
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Model Number Parameter Meaning
Endogenous 1 p1 Glucose e�ciency

2 p2 Insulin action rate of disappearance
3 p3 Insulin action rate of appearance
4 V olg Distribution volume of glucose
5 Gb Basal glucose

Gastric 6 Kabs Glucose absorption rate in the gut
7 Kmax Maximum gastric emptying
8 Kmin Minimum gastric emptying
9 b Involved in the gastric emptying
10 c Involved in the gastric emptying

Insulin 11 Vi Distribution volume of insulin
12 k Proportion of insulin in the slow channel
13 ka1 Transfer rate in the slow channel
14 ka2 Transfer rate in the fast channel
15 ke Insulin elimination
16 VMAX,LD Michaelis-Menten parameter
17 kM,LD Michaelis-Menten parameter

Table 4.1: Parameters integrated in Bergman’s model.

such as plasma insulin data or tracer data of glucose �ux from the gut, the sensitivity
analysis would change.

The �nal number of parameters identi�able, out of the initial 17, is 7. Only two
of those parameters are part of the endogenous model, while three characterize the
gastrointestinal model, and the other two are part of the insulin model, as can be
seen in Figure 4.1.

Those 7 parameters are used to optimally express the identi�ability of the model.
The experiments designed next expres the model’s identi�ability in the optimization
index by using this optimal set of parameters. The range of days considered for
experimentation is from one to four days. At the end of the experiment design
for all the models under study, the best option was chosen from within of all the
experiments designed, including the di�erent options of parameter sets, models, and
length of the experiments.

In the next lines, experiments designed comprising one, two, three and four days
of monitoring are displayed. All experiments are designed using D-optimality, as
described in Section 1.2.

• The results of an experiment designed for one day of monitoring consisting on
the �ve following hours to a meal are: τ = −31.59 minutes, Meal = 100 g CHO
and Bolus = 10 IU. In the case of only being able of monitoring one day, the
optimum experiment to be followed requires the diabetic patient to advance
the bolus approximately half hour, and then eat a large meal (100 grams CHO).
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Number Parameter Iteration
1 2 3

1 p1 - - -
2 p2 - - -
3 p3 - - -
4 V olg 0.25 0.14 0.13
5 Gb 0.12 0.08 0.07
6 Kabs - - -
7 Kmax 0.25 0.24 0.23
8 Kmin 0.42 - -
9 b 0.16 0.12 0.04
10 c 0.20 0.18 0.09
11 Vi - - -
12 k 0.34 0.33 -
13 ka1 0.31 0.22 0.09
14 ka2 - - -
15 ke 0.22 0.14 0.12
16 VMAX,LD - - -
17 kM,LD - - -

Table 4.2: Bergman’s model parameter coe�cient of variation (CV) for a three
meals simulation. Each column represents an iteration in the sensitivity analysis.
Parameters �xed to nominal values due to non-identi�ability are indicated by a dash.
Parameters �xed at iteration 1 are cause of structural non-identi�ability.

Figure 4.1: Optimal set of parameters for Bergman’s model combined with UVA’s
gastrointestinal model and Cambridge insulin absorption.
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It is worth remembering that 100 grams of carbohydrates is the top value given
to the optimizer for the experiment design. Also, 10 is the top boundary for the
bolus variable in the optimization, and it is the corresponding value of insulin
for an standard treatment of insulin boluses for a 100 grams of carbohydrates
meal. This means that, in addition to maximizing identi�ability of the model,
the experiment design keeps the patient under standard glycaemic control.
This is a direct response to the output restrictions to the simulation model
that force the patient’s glucose to be within healthy range. The glucose pro�le
associated to the experiment described can be seen in Figure 4.2.

Figure 4.2: Bergman’s model response to the proposed experiment for 1 day. Meal is
ingested at time 120 min.

The glucose pro�le shows a very quick response to the advanced insulin bolus,
dropping quickly to a level of approximately 70 mg/dL. This level is the safety
threshold indicated as a constraint to the output in the optimization algorithm
in order to keep the patient under safe conditions. This simulation shows how
the optimizer is exciting the output variable as much as possible, and always
keeping the (virtual) person safe.

• The conditions of the experiment designed for two days monitoring are:

– Day 1. τ = 25.23 minutes, Meal = 86.81 g CHO and Bolus = 10 Insulin
Units

– Day 2. τ = −29.58 minutes, Meal = 100 g CHO and Bolus = 10 Insulin
Units
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In this new experiment two di�erent therapies are applied to the patient.
The second day is a replicate of the conditions of the experiment design
corresponding to only one day. In the �rst day of identi�cation, a bolus of 10
insulin units is delayed approximately 25 minutes, for a meal of 86.81 grams
of carbohydrates. In this case the proportion of insulin units to grams of
carbohydrates of the meal is not maintained, thus, not a standard glycaemic
control is performed on the patient (including the e�ect of the delay). The
glucose pro�le for the designed two-day experiment is shown in Figure 4.3.

Figure 4.3: Bergman’s model response to the proposed experiment for 2 days. Meals
are ingested at time 120 and 1020 min.

Observing the �rst day response of the model to the proposed experiment,
the fact of non-proportionality of insulin to carbohydrates makes more sense.
The model moves from 250 mg/dL down to 70 mg/dL, which are the top and
bottom safety thresholds in the experiment design optimization algorithm. The
optimizer is exciting the measurable variable (blood glucose) through all the
feasibility glucose range in order to maximize identi�ability. Given that in the
�rst day, due to the delay of the insulin bolus, there is no falling of the blood
glucose to the lowest level, it has to drop to that level after the meal, that is
why the insulin bolus is still relatively big with respect to the size of the meal.
Given those values, the maximum amount of carbohydrates for that meal, so
that the experiment does not exceed the upper safety threshold, is 86.81.
It is interesting to understand why the two days di�er in the relative
bolus administration time. In the �rst day, no insulin excitation is applied
in approximately 30 minutes from meal time and all the information
extracted from that period is contributing to increase the identi�ability of the
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gastrointestinal input model, the UVA model. In the other day, the opposite
situation is happening: only the insulin subcutaneous model is experimenting
excitation in the �rst period of the simulation, so information from glucose is
a�ecting only the parameters of that model. The strongest the variation of the
states of the model in that period, the greater the identi�ability will be.

• The conditions of the experiment designed for three days monitoring are:

– Day 1. τ = 26.43 minutes, Meal = 85.6 g CHO and Bolus = 10 Insulin
Units

– Day 2. τ = −30.44 minutes, Meal = 100 g CHO and Bolus = 10 Insulin
Units

– Day 3. τ = −30.71 minutes, Meal = 100 g CHO and Bolus = 10 Insulin
Units

In this case, the advancing of the bolus is repeated two days. Given that the
meals do not have to be consecutive, or that one day does not have any relation
to the others, the order of the experiment days is not relevant for the result of
the experiment. The glucose pro�le for the designed three-day experiment is
shown in Figure 4.4.

Figure 4.4: Bergman’s model response to the proposed experiment for 3 days. Meals
are ingested at time 120, 1020 and 1920 min.

The second and third days are virtually the same experiment, and the �rst day
displays again the extreme excitation of glucose between safety boundaries. It
can be appreciated once again how there is a separation of dynamics between
the di�erent input models.
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• The conditions of the experiment designed for four days monitoring are:

– Day 1. τ = 25.44 minutes, Meal = 86.81 g CHO and Bolus = 10 Insulin
Units

– Day 2. τ = 14.36 minutes, Meal = 99.64 g CHO and Bolus = 10 Insulin
Units

– Day 3. τ = −29.92 minutes, Meal = 100 g CHO and Bolus = 10 Insulin
Units

– Day 4. τ = −30.88 minutes, Meal = 100 g CHO and Bolus = 10 Insulin
Units

In this �nal case the two last days are repeated again, displaying an advance of
the insulin bolus, and a new delayed bolus pro�le appears, but in this case with
a big meal. The delay on the bolus is smaller so that the meal can be bigger,
contributing to the improvement of identi�ability of UVA’s gastrointestinal
model. The glucose pro�le for the designed four-days experiment is shown in
Figure 4.5.

Figure 4.5: Bergman’s model response to the proposed experiment for 4 days. Meals
are ingested at time 120, 1020, 1920 and 2820 min.

As it can be observed, there is not much di�erence in the �rst two days of
identi�cation because the di�erence in the meal size is relatively small.

The most relevant observation of this experiment design with the Bergman
model is that separating dynamics of the input models is the key to improve the
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identi�cation of the whole system. It is better for a model general identi�ability
to advance the bolus rather than having it delayed following the cases of one day
experiment design (advancing bolus) and three-day experiment design (advancing
bolus two days out of three). However, a better scenario comprises both situations,
advancing and delaying the bolus. A minimum of a two-day experiment is then
required for basic identi�cation of the system.

Experiment’s length is selected attending to: 1) identi�ability conditions, 2)
experiment parameters and 3) practical implementation aspects. It has been stated
that a minimum of two days for monitoring seems reasonable for identi�cation
purposes due to the two di�erent pro�les of experiment. Naturally, as more data
(more days of experiment) is available, the probability of a satisfactory identi�cation
increases. However, the practical implementation aspect limits the number of days
in a experiment. In Figure 4.6 evolution of identi�ability of each parameter of the
optimal set in Bergman’s model can be observed for all the cases exposed before and
after the experiment design.

An abrupt decrease in the coe�cient of variation of all parameters occurs
between one and two days of monitoring, reinforcing the mentioned minimum
of identi�ability in two days, both for the experiments with and without optimal
design. If more days are added to the experiment identi�ability keeps increasing
less rapidly. Very similar trends in the identi�ability rise are observed for both the
original experiments and for the optimal designed experiments. The identi�ability
levels, as measured by coe�cient of variation of the parameters are much lower
for any experiment length when choosing the optimal design for the experiment.
A three-day experiment was chosen thinking on the limitations introduced by the
clinical implementation of the experiment. It is desired to have as many identi�cation
days as validation days, which makes the real monitoring period twice as long as
the experiment designed. Given that the average sensor lifetime in a continuous
glucose monitor is approximately one week, the three days experiment was chosen as
monitoring duration, for maximization of identi�ability. Results have to be compared
with designed experiments based on other models in order to make the experiments
as model-independent as possible. Comparison between the coe�cients of variation
of a three-day identi�cation experiment is displayed in Figure 4.7.

A remarkable fall in the coe�cient of variation is observed for all the parameters,
and not just for the general identi�ability of the model. In the original sensitivity
analysis of Bergman’s model all the parameters were selected to be identi�able,
assuming identi�ability of the model when all its parameters presented CVs below
30%. For Bergman’s model the limitant parameter (highest CV) was parameter 7,
Kmax. Using experiment design we reduce the variability of this parameter to
half of the identi�ability threshold, not sacri�cing identi�ability in any of the other
parameters.
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Figure 4.6: Coe�cient of variation for Bergman’s model’s parameters. Top graph
shows the evolution of the parameters’ identi�ability with experiment length.
Bottom panel displays the identi�ability of the same parameters applying the
designed experiments. It is clearly shown how identi�ability increases (CVs decrease)
with experiment length. Parameter numeration is equivalent to that of Table 4.2.
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Figure 4.7: A comparison of identi�ability for each parameter with and without the
experiment design for the case of a three meals monitoring.

4.3 Experiments designed with modi�ed Panunzi’s
model

Identi�ability of the modi�ed version of Panunzi’s endogenous model, which was
described in Section 2.5 will be analyzed next. Modi�ed Panunzi’s model and the two
input models already used for Bergman’s system comprise a total of 16 parameters,
4 of which correspond to the endogenous model. The 16 parameters are described in
Table 4.3.

Many of the parameters involved in the sensitivity analysis for Bergman’s
endogenous model are repeated for this case, but the numeration is di�erent due
to the di�erent number of parameters in the endogenous model. The results of the
identi�ability study are shown in Table 4.4.

Following the same methodology than in the Bergman’s model analysis, only two
parameters were not identi�able because of FIM singularity. These two parameters
(10 and 16) show in Table 4.4 with their row in the �rst iteration blank. Parameter
16 is �xed in the identi�cation because of its low sensitivity, and parameter 10 is
�xed to its nominal value due to a very strong correlation (proportional relation) to
parameter 1. Five iterations on the sensitivity analysis were needed for the modi�ed
Panunzi’s model in order to obtain a feasible set of parameters for identi�cation, to
produce a 10 parameter set with good identi�ability.

The set of parameters in the last column of Table 4.4 is considered the optimum
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Model Number Parameter Meaning
Endogenous 1 Kxgl Insulin sensitivity

2 Vg Distribution volume of glucose
3 Tgh Hepatic balance
4 ki Insulin action delay

Gastric 5 Kabs Glucose absorption rate in the gut
6 Kmax Maximum gastric emptying rate
7 Kmin Minimum gastric emptying rate
8 b Involved in the gastric emptying
9 c Involved in the gastric emptying

Insulin 10 Vi Distribution volume of insulin
11 k Proportion of insulin in the slow channel
12 ka1 Transfer rate in the slow channel
13 ka2 Transfer rate in the fast channel
14 ke Insulin elimination
15 VMAX,LD Michaelis-Menten parameter
16 kM,LD Michaelis-Menten parameter

Table 4.3: Parameters to be identi�ed in Modi�ed Panunzi’s model.

set of parameters for identi�cation even though 3 of the parameters of that set present
CVs in the acceptable limit of identi�ability (30%). Those parameters (Kxgl, Kmin

and ke) in the proposed limit of identi�ability are considered of great importance for
the identi�cation of individual patients in the postprandial period. Kxgl represents
the insulin sensitivity of the patient, a parameter that is known to present high inter
and intra-patient variability, thus needed to be subject to identi�cation. Kmin stands
for one of the parameters de�ning gastric emptying, also very variable between and
within patients. ke is the insulin elimination rate, and strongly a�ects the insulin
dynamics and overall sensitivity of the patient. All these parameters were sensitive
to identi�cation in diabetic patients, and were decided to be included in the optimal
set, following the proposed methodology. The summary of identi�able parameters
is explained in Figure 4.8.

These 10 parameters will be used in the experiment design for the calculation
of the index of total identi�ability of the model. All identi�able parameters are
distributed amongst all the submodels of the modi�ed Panunzi’s system. The same
approach of multiple day identi�cations used for the optimal experiment design of
Bergman’s model is used in here. In the next lines, experiments designed comprising
one, two, three and four days of monitoring are displayed.

• The results of an experiment designed for one day of monitoring consisting on
the �ve following hours to a meal are: τ = −17.95 minutes, Meal = 100
g CHO and Bolus = 10 IU. The same pro�le as in the Bergman’s model
experiment design is observed in the modi�ed Panunzi’s experiment for the
one-day monitoring. The insulin bolus is not as advanced as in Bergman’s
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Number Parameter Iteration
1 2 3 4 5

1 Kxgl 1.14 0.98 0.55 0.53 0.31
2 Vg 0.46 0.43 0.26 0.24 0.23
3 Tgh 0.51 0.18 0.18 0.18 0.06
4 ki 4.91 - - - -
5 Kabs 1.60 1.12 0.67 - -
6 Kmax 0.78 0.66 0.53 0.24 0.24
7 Kmin 0.87 0.68 0.33 0.33 0.30
8 b 0.41 0.20 0.18 0.17 0.13
9 c 0.66 0.51 0.34 0.20 0.18
10 Vi - - - - -
11 k 0.91 0.81 0.36 0.29 0.27
12 ka1 0.45 0.43 0.26 0.25 0.20
13 ka2 3.77 2.57 - - -
14 ke 0.88 0.71 0.49 0.49 0.30
15 VMAX,LD 1.92 0.92 0.66 0.62 -
16 kM,LD - - - - -

Table 4.4: Modi�ed Panunzi’s model parameter coe�cients of variation (CV) for a
three meals identi�cation.

model design, but the meal and bolus size are again in the maximum value of
the constrained optimization. Separation of dynamics of the insulin absorption
system is the best option for the one-day monitoring scenario. The response
of the new model to the experiment designed is shown in Figure 4.9.
Comparing modi�ed Panunzi’s model response in a single day experiment
with the Bergman’s model response (Figure 4.2), the glucose pro�le is virtually
identical. This fact may lead to two conclusions: 1) Using simple endogenous
models, the dynamics of the input models direct the behavior of glucose
concentration; 2) the optimization of identi�ability is not strongly dependent
on the endogenous models used. Indeed the model’s parameters are di�erent
in each model, but the signal from where information is being extracted is
the same, and regarding that signal from a theoretical point of view, the
optimal glucose pro�le in terms of containing information, must be very rich
in information for any other model too. That is why it is expected of optimal
experiment glucose outcomes to be similar for the modi�ed Panunzi’s model
to the results for the other experiments already designed.

• The conditions of experiment designed two day monitoring are:

– Day 1. τ = 157.80 minutes, Meal = 44.25 g CHO and Bolus = 3.07
Insulin Units

– Day 2. τ = −17.92 minutes, Meal = 100 g CHO and Bolus = 9.99 Insulin
Units

The second day in this experiment is the same as the single day experiment,
in which the bolus is administered in advance to the meal time, thus only
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Figure 4.8: Optimal set of parameters for the modi�ed Panunzi’s model combined
with UVA’s gastrointestinal model and Cambridge insulin absorption.

the insulin system is being excited in that period. In the �rst day, a new
situation is proposed, similar to the case of Bergman’s design in which the
bolus was delayed, but in this case, the delay is much bigger. However, delaying
the insulin bolus up to two hours and a half can be quite dangerous for the
patient because of risks of hyperglycemia, that is why the meal size is much
smaller for this large delay case, in order to keep the glucose pro�le within
safety constraints. In Figure 4.10 the response of the model to the experiment
proposed can be observed.
In the case of the �rst day the small amount of carbohydrates given to the
patient (44.25 grams) has the objective of rising the blood glucose up to the
superior limit of safety of the patient. The insulin bolus is given when the
blood glucose gets to the maximum established, and the amount of insulin
given is so that it will force the blood glucose down to the lower safety
constraint. Again, the experiment design is exciting the glucose signal used for
identi�cation from one boundary to the other, in order to maximize the amount
of information contained in the glucose signal. Bergman’s model was probably
not able rise so fast up to the limit of hyperglycemia due to the so called term
of glucose e�ciency (as explained in Section 2.5) that makes glucose to drop
automatically when it rises above the stability point. As this term is not present
in the modi�ed Panunzi’s model, glucose dynamics are much faster and permit
stronger excitations from the inputs, which is more realistic.

• The conditions of experiment designed three day monitoring are:

– Day 1. τ = −17.83 minutes, Meal = 100 g CHO and Bolus = 10 Insulin
Units

– Day 2. τ = −18.42 minutes, Meal = 100 g CHO and Bolus = 10 Insulin
Units
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Figure 4.9: Modi�ed Panunzi’s model response to the proposed experiment for 1 day.
Meal is ingested at time 120 min.

– Day 3. τ = 165.74 minutes, Meal = 44.38 g CHO and Bolus = 3.01
Insulin Units

In this case the advanced bolus administration is given in two out of the three
days of the experiment, while the other day a small meal is given, with the
insulin bolus delayed 165 minutes, just like in the two days experiment. The
fact that the “bolus given in advance” scenario is repeated proves that there is
more information to be extracted from the excitation of the insulin absorption
model than in the rest of the system. This conclusion is repeated for both
model’s experiment design. The simulated glucose pro�le of the model is
shown in Figure 4.11.
This is a very good example of how the di�erent experiments designed for each
independent day are not dependent on the order of those days. Sometimes the
case of the small meal and delayed bolus happens in the �rst day, some others
at the end, and it can also be in the middle of the 3 days. Also, it is con�rmed
that increasing the number of experiments causes the richest information
postprandial period to repeat in order to maximize the identi�ability. No
further synergies between di�erent days where observed, and every day is
independent in the optimization algorithm.

• The conditions of experiment designed for the �nal case of four day monitoring
are:
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Figure 4.10: Modi�ed Panunzi’s model response to the proposed experiment for a 2
days monitoring. Meals are ingested at time 120 and 1020 min.

– Day 1. τ = 167.06 minutes, Meal = 44.25 g CHO and Bolus = 3 Insulin
Units

– Day 2. τ = −17.22 minutes, Meal = 100 g CHO and Bolus = 10 Insulin
Units

– Day 3. τ = −18.41 minutes, Meal = 100 g CHO and Bolus = 10 Insulin
Units

– Day 4. τ = 86.19 minutes, Meal = 47.07 g CHO and Bolus = 4.13
Insulin Units

The conditions for day four are a little bit di�erent than the previous ones,
but it hardly de�nes a new type of therapy for a day of identi�cation. It is
a variation of the pro�le with a small meal and delayed insulin bolus shown
in day one, considering a smaller delay so that the insulin bolus has not only
a role of correction of the level of blood glucose, but also tries to counteract
the rise of blood glucose that is still coming from the gut. That is observed in
Figure 4.12, where the time of administration of the bolus does not wait for the
blood glucose to stop rising and get stabilized, and instead, it forces it down
before the absorption is over.

As a summary, with the optimal set of parameters of the modi�ed Panunzi’s
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Figure 4.11: Modi�ed Panunzi’s model response to the proposed experiment for a 3
days monitoring. Meals are ingested at time 120, 1020 and 1920 min.

model, two di�erent pro�les of glucose are determinant for the good identi�cation
of the model.

• The �rst therapy has already been seen in Bergman’s model experiment design,
and it consists of an advance of the bolus of insulin to the meal time, improving
the identi�ability of the insulin subsystem.

• The second therapy consists on a big delay (2-3 hours) in the administration of
the bolus, while giving a small amount of carbohydrates (40-50 grams) to avoid
severe hyperglycemia. With this therapy, separation of insulin and glucose
dynamic from the meal is obtained, while maintaining plasma glucose in a
safe range.

In Figure 4.13 the evolution with the number of days of the parameters
identi�ability is shown for the optimal set of parameters.

The graphs are very similar to those seen in the analysis of Bergman’s model.
The in�uence of the number of days, especially between days one and two, is very
important both in the case of experiment and no experiment design. It is worth
noting the di�erence on scale between the top and bottom panel. While without
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Figure 4.12: Modi�ed Panunzi’s model response to the proposed experiment for a 4
days monitoring period. Meals are ingested at time 120, 1020, 1920 and 2820 min.

experiment design the parameter’s CVs start in some cases as high as 0.8, applying
optimization of identi�ability this starting variability is reduced to approximately
0.6. Again, a minimum of two days is required for optimal identi�ability of the whole
system, because of the great drop of CVs of all the parameters in the system, but also
because of the inclusion of both therapies proposed which guarantee the separation
of dynamics of both input systems. For the same reasons exposed in Bergman’s model
analysis, a three days experiment is preferred, and it concurs with the �ndings of the
experiment design using modi�ed Panunzi’s model.

The in�uence of the experiment design in the identi�ability of the model can
clearly be seen in Figure 4.14, where it is shown that experiment design improves
identi�ability dramatically. In this case, identi�ability of almost all the parameters
rises, getting their coe�cients of variation divided by two or three. Special cases
are the parameters 1 and 14, whose identi�ability rises to a smaller extent. This
resistance to change in the identi�ability might be explained by the strong correlation
between these two parameters since both of them are very related to the plasma
insulin dynamics and its in�uence in blood glucose (parameter 1, Kxgl, is the insulin
sensitivity and parameter 14, ke, is the plasma insulin elimination). On the contrary,
Vg identi�cation improves dramatically with experiment design.
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Figure 4.13: Modi�ed Panunzi’s optimal set of parameters and their coe�cients of
variation as they get smaller with the number of monitoring days. Top graph shows
the evolution of the parameters’ identi�ability with experiment length. Bottom
panel displays the identi�ability of the same parameters applying the designed
experiments.
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Figure 4.14: Identi�ability of the optimal set of parameters of modi�ed Panunzi’s
model before and after the experiment design for the case of a three meals
monitoring.

4.4 Discussion and clinical protocol

Identi�ability has been drastically improved in both models, but in theory, the
experimental design should not end here. The optimal design requires of interaction
with the experimental setup in order to keep improving the conditions of the
identi�cation. For example, the assumption of nominal values in the parameters for
the analysis and experiment design may be questionable, and every identi�cation
performed on real data must be subject to an identi�ability analysis. With the
collection of new experimental data, we may be able to design further experiments
based on a new nominal value on the parameter space.

Up to this point, only two models were tested following the exposed
methodology, but the experiment design is open for more models to be challenged in
their identi�ability. When looking at the identi�ability analysis, it was accepted that
a parameter was identi�able if its CV was below 0.3. After the optimal experiment
design, the optimal set of parameters has had the CVs of all its parameters reduced
in many cases far below the 0.3 threshold. Naturally, the question arises: “what if
more parameters were included in the optimal set?”. ‘It is very much possible that
those parameters CV drop below the identi�ability threshold after the optimization of
identi�ability. However, it is impossible to know this a priori, and a iterative approach
must be used to check this hypothesis. Unfortunately, optimal experiment design is
a very heavy computation task, and embedding it in an iterative paradigm seems
unreasonable, and thus this hypothesis is discarded.

The results of the experiment design do not have to be taken literally in practice.
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The assumptions made when using each model with its nominal parameters have
great importance on the results of the experiment design. From a practical point of
view, experimenting with several di�erent models allows us to draw some general
qualitative conclusions. That is why the design has been repeated several times in
this thesis. Qualitative and common characteristics of the experiments designed are
extracted in the next lines, trying to get the most important features needed in a
monitoring for the good posterior identi�cation of a patient, regardless of the model
used.

The experiment design aims to separate the dynamics of the sub-models for a
better identi�cation. There are two di�erent single day experiments present: in one
case insulin dose is given without meal perturbation, limited by the hypoglycemia
constraint, in order to obtain information of the subcutaneous insulin model. The
other situation is exactly the opposite: a meal is given while the insulin dose is
delayed limited by the hyperglycemia constraint. During this time, the intestinal
absorption model is the only one acting on the output signal. Optimal experiment
design forces the model to move in all the range of operation set in order to
preserve patient’s safety, thus extracting more information out of the data. Maximum
excitation of the model is required, while separating the perturbations to the output
signal for maximum identi�ability.

The application of the designed experiment in ambulatory conditions is not
straightforward. In the optimal experiment design the (virtual) patient is supposed
to be stabilized into euglycemic range. In real experiments, even during the
fasting state, patients may not be under steady state conditions, presenting glucose
concentration measurements in any glycaemic range. Under these circumstances,
application of the optimal experiment design to the clinical setting requires some
cautions. Indeed, if the patient is hyperglycemic at the beginning of the experiment,
delaying more than two hours the insulin dose can be dangerous for the patient’s
health, with extremely high glucose values. On the other hand, if the patient is
hypoglycemic (or prone to hypoglycemia) in the preprandial period, administrating
an insulin dose without carbohydrates ingestion can lead to severe hypoglycemia.

Therefore, an adaptation of the optimal experiment design to the initial metabolic
state of the patient is proposed [66]. For every major meal of the day, if the patient
starts the monitoring with a blood glucose level over 150 mg/dL or in the 100-150
mg/dL range with an increasing trend (hyperglycemic risk), the insulin bolus is given
followed 30 minutes later by a 100 grams meal. If the glucose level is below 100
mg/dL or in the 100-150 mg/dL range with a decreasing trend (hypoglycemic risk), a
40 or 60 (patient’s choice) grams meal is given and the insulin dose administration
is delayed 120 minutes. In both situations the dose to be administered is the one
recommended to the patient, depending on the size of the meal and his/her usual
insulin-to-carbohydrate ratio. The patient can choose among three menus with the
same relative nutritional composition. With this protocol the separation of dynamics
is achieved, while minimizing risks for the patients. This protocol is summarized in
table 4.5.
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Pre-prandial glycemia Action
Greater than 150mg/dL or
between 100− 150 and rising

Infusion of an insulin bolus 30 minutes
before of 100 grams meal

Lower than 100mg/dL or
between 100−150 and decreasing

40 grams meal and bolus infusion 2 hours
later

Table 4.5: Clinical protocol for application on ambulatory experiments.

The protocol was approved by the Ethical Committee of the Clinic University
Hospital of Valencia and home-made monitoring was performed for validation of the
identi�cation procedure. Patients were monitored during two weeks, with a wash-
up week in between, and instructed to follow the protocol de�ned by the experiment
design. Twelve subjects with T1DM under long-term intensive insulin treatment
with CSII (nine women; 41.8 - 7.3 years old; diabetes’ duration, 20.2 - 10.3 years;
body mass index, 25.1 - 2.8 kg/m2; glycosylated hemoglobin [A1C], 8.0 - 0.6%; basal
insulin dose, 0.8 - 0.3 U/h; I:CHO ratio, 1.3 - 0.5 U/10 g of CHO [mean - SD]) were
studied in the hospital (inpatient study) following a period of ambulatory CGM. In
the ambulatory period the subjects underwent at least two outpatient 6-day periods
of CGM monitoring for the identi�cation (the �rst 3 days) and validation (the last 3
days) of an individualized model to be used in the prediction of the 5-h postprandial
period. In order to account for intra-patient variability, a prediction model with
interval parameters was calculated from the previous identi�ed model considering
20% uncertainty in insulin sensitivity and 10% in CHO estimation. The interval model
was validated during the last 3 days of CGM, where the patients had a standardized
meal daily (40-g, 60-g, or 100-g CHO content, depending on the pre-prandial glucose
readings). Unfortunately, validation had to be performed over CGM readings, leading
to non-conclusive results. Glucose gold reference data are required for the successful
validation of an identi�cation study on diabetic patients, since noisy measurements
in the validation days can a�ect the results of the validation, and therefore the overall
performance of the identi�cation experiment.

The data acquired using this protocol was later used to test new computer
generated insulin treatments for diabetic patients [91]. Pilot identi�cations were
performed on the domiciliary data, and the identi�ed models were used for the
computation of adjusted-to-patient insulin therapies in a full randomized double-
blind study. Although the identi�cation performance was not excellent, they yielded
reasonable insulin therapies to be used in clinic that were approved by the medical
committee. The main limitation of the identi�cations performed was that no
uncertainty was considered in the identi�cation. Uncertainty was arti�cially added
for the validation, and it was considered to be the same for every patient, which lead
to incomplete characterization of the patient. In further experiments, uncertainty
must be included in the identi�cation methods.

On the clinical part of the experiments performed, subjects were admitted to the
Endocrine Clinical Research Center of the Clinic University Hospital of Valencia,
Valencia, Spain, at 09:00 h. They were put in the sitting position, and two venous
lines were prepared: one for arterialized venous blood sampling and the other for
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insulin or glucose infusion, if required. Indeed, to ensure comparable metabolic
conditions between studies, where appropriate, subjects received an intravenous
infusion of regular human insulin following a feedback procedure to maintain PG
close to 90 mg/dL until the beginning of the studies at 13:00 h (time 0 of the study).
Then, the test mixed-meal was consumed in 15-20 min. At the same time, insulin
was administered following the randomization schedule, and PG was monitored for
5 h, until the end of study at 18:00h (time 300 min). In order to avoid hypoglycemia
during time 0-300 min, a controlled glucose infusion was started if blood glucose
fell below 75 mg/dL, and the pre-meal glycaemic levels were maintained (euglycemic
clamp).

Similar results were observed in the in-hospital part of the experiment for the
regular insulin treatment, which is adjusted by medical experts, and the computer
generated insulin therapy. This �ndings lead to the conclusion that CGM-based
algorithm for the calculation of prandial insulin is feasible, although it does not
reduce unpredictability of individual glycaemic responses.





CHAPTER 5

CGM STATISTICAL MODELING AND VALIDATION

Identi�ability is highly dependent on the quality of the measurements obtained. In
this chapter the focus will move from the improvement of experiments towards
the analysis and improvement of data acquisition devices. Sensor induced errors
are one of the main problems in diabetes experimentation nowadays. Continuous
glucose monitoring (CGM) devices estimate plasma glucose from interstitial glucose
measurements every 1-5 minutes. They are potentially much more informative
than the traditional and sparse method based on capillary self-monitoring of blood
glucose. However, CGM devices are only approved as adjunctive to capillary self-
monitoring due to their low accuracy.

Despite its relevance to the interpretation of glycaemic time-series and to the
implementation of a future arti�cial pancreas, few studies have investigated the error
characteristics of current CGM devices, especially in the postprandial state. Breton
et al. [9] developed an error model for CGM based on a posteriori recalibrated data
from the FreeStyle Navigator™(Abbott Diabetes Care, Alameda, USA). However, in
contrast to real-time calibration algorithms, a posteriori recalibration implies the
use of all reference BG points to minimize the sensor readings-reference glucose
mismatch. In addition, Facchinetti et al. [31] demonstrated using simulation studies
how small errors in data recalibration can a�ect the derived statistical properties
for the error. Recently, Facchinetti et al. published a study [29] on the error of the
SEVEN® PLUS sensor (also under review in this thesis) where the diabetic subjects
wore four sensors during a 9 hour study, to a total of 36 monitoring sessions.
The sensors were tested against a HemoCue Glucose 201 Analyzer, using standard
calibration procedures. The sensors showed clear correlations between them, and
AR models were used for adjustment of the error, providing an accurate CGM error
model and the factor that compose them. No simulation model of the sensor was
provided, and no correlation with the blood glucose signal was provided. Therefore,

99
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error characterization of real-time CGM devices in the postprandial state is still an
open issue and an area for additional investigation.

In this chapter an analysis and modeling of the postprandial error of two
commercial real-time CGM devices is performed, namely the Dexcom® SEVEN®

PLUS and the Medtronic® Paradigm® Veo™, that were simultaneously worn by
subjects with type 1 diabetes following a set of four standardized mixed meals.
Statistical properties of the signal error were analyzed and a new simulation model
was generated aiming for its integration into in silico studies.

5.1 Data and methodology

Twelve subjects with type 1 diabetes treated with continuous subcutaneous insulin
infusion (CSII) (male/female 3/9, age 41.8 ± 7.3 years, diabetes duration 20 ± 10
years, HbA1c 8.0 ± 0.6%) were studied in the postprandial state under controlled
conditions, on four di�erent occasions. Patients were monitored twice when eating a
standardized meal with 40 g CHO content and twice, in addition, when they received
a 100 g CHO meal. On each occasion, CGM was performed simultaneously with a
SEVEN® PLUS (Dexcom, San Diego, USA) device and a Paradigm® Veo™ (Medtronic,
Northridge, USA) device.

Both devices were inserted the day before the experiment, in order to allow
the devices to stabilize before the experiments. During the �rst day the monitors
were calibrated according to the manufacturer instructions using the same capillary
measurements. The day of the experiment, the devices were calibrated using the
same capillary measurement obtained in fasting state.

The patients arrived at 9:00 AM to the clinic. Pre-prandial plasma glucose was
standardized around 100 mg/dL by means of a feedback insulin infusion. At 13:00
h, patients ate the standardized meal and received the corresponding insulin bolus
using a subcutaneous insulin infusion system. Plasma glucose levels were measured
for 5 hours after the meal, every 5 minutes the �rst two hours after the meal and every
10 minutes afterwards, thus obtaining more frequent measurements during the meal
rise phase. Plasma blood glucose levels were measured on arterialized venous blood
using a reference method (YSI 2300 STAT Plus Glucose analyzer, YSI Yellow Springs,
Ohio, USA), and synchronously compared with CGM’s subcutaneous measurements
(5 min frequency). Only forty-seven datasets were available for analysis when the
SEVEN® PLUS device was used, because one dataset was discarded due to a �at sensor
measurement at 40 mg/dL during the whole duration of the experiment. In the case
of the Paradigm® Veo™ device, only 42 datasets were available because the �rst 6
experiments were not monitored with this device.

YSI data is assumed to be very accurate, especially if compared with any CGM
device. Nowotny et al. [74] evaluated the accuracy of the YSI 2300 Glucose Analyzer
among other devices, showing errors of 2.2% . This is higher than previous reference
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methods, and also better than the rest of the analyzers evaluated.

In order to obtain a time series of the same sample size, YSI data were linearly
interpolated in the late postprandial period in order to obtain a 5 minutes periodic
consistent dataset, and be able to compare it with the CGM data. Although
interpolation of reference data can introduce undesired dynamics when modeling, in
this case interpolation only occurs in the late postprandial period, where dynamics
of both the glucose and the monitor were slower. In addition, linear interpolation
were used in literature before, in the context of glucose modeling of sensor signals
[9, 30] where reference measurements were sparse (15 minutes).

The signal analyzed was the CGM error calculated as:

E(k) = CGM(k)− Y SI(k) (5.1)

where E(k) is the error at time k, CGM(k) is the CGM signal and Y SI(k)
the reference blood glucose, both at the same time k. Some issues were taken
into account in the analysis. First, the existence of a physiological delay between
subcutaneous and plasma glucose, which could be patient-speci�c [57]. Second,
�lters included in the CGM devices may introduce additional delays (signal-
processing delays). Both types of delays represent a confounder factor of CGM
accuracy and should be compensated prior to further study of the error. Third,
stationarity of the error time-series should be investigated since non-stationarity
may yield misleading probability distributions. Indeed, when �tting probability
distribution and time-correlation of a signal, stationarity of the process is assumed.
In the event of having a time varying stochastic process, non-linear transformations
must be applied to the signal so that it becomes as time unvarying as possible [8]. The
choice of the non-linear transformation to be used usually depends on the problem
and the data available.

The analysis described in Figure 5.1 was followed for both CGM devices:

1. The delay of the CGM signal with respect to reference glucose was computed
as the lag with maximum CGM versus YSI cross-correlation for each patient.
A probability distribution function was �tted to the delay’s histogram
using a classical maximum likelihood (ML) estimator from Matlab Statistics
Toolbox. Error time-series were then shifted by the corresponding delay for
compensation prior to next analysis thus “synchronizing” CGM and reference
glucose signals.

2. Stationarity of the shifted error time-series was analyzed. A signal was
considered to be stationary if time invariance of the statistical moments held.
Mean and standard deviation of the error signal were calculated across the
population of sensors in every instant of the postprandial period in order to
obtain a time dependent signal. Time dependence of the mean and the standard
deviation was analyzed. Besides graphical inspection, datasets were �tted to
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Figure 5.1: Summary of stepwise statistical analysis process.

autoregressive (AR) models and the presence of a unit root was investigated
(random walk process in the case of �rst order models). A stationary process
should have no unit roots.

3. Finally, the sample probability distribution for the error was analyzed and an
AR model �tted to reproduce time correlation and for simulation purposes.
A set of candidate probability distribution functions was de�ned and ML
estimators in Matlab Statistics Toolbox were used for data �tting for every
distribution. A simple quadratic error index was used to measure the �t for
comparison purposes.

When performing a linear regression or just a simple correlation between
variables, correlations were tested to be statistically signi�cant using a t-statistic
testing the null hypothesis of non-correlation

5.2 CGMModelling

Both CGM devices were �rst compared to the reference measurements in order to
get a general error magnitude of each error. For this comparison, the MARD (Mean
Absolute Relative Deviation) was computed, following the next formula:

MARD :=

∑n
i=1 |(CGMi − Y SIi)/Y SIi| · 100

n
(5.2)
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where n is the number of samples, CGMi stands for the sensor glucose reading
at time i and Y SIi is the reference glucose at time i. The SEVEN® PLUS monitor
showed a MARD of 17.28%, and the VEO monitor 20.12%, for the whole dataset.

Figure 5.2: Clarke error grid (EGA) and rate error grid from continuous glucose-
EGA plots for both monitors. Top row shows Clarke EGA plots, observed glucose
reference measurements versus the prediction of the monitors, SEVEN® PLUS on the
left and VEO on the right. On the bottom row, the rate error grid from continuous
glucose-EGA is displayed, for the SEVEN® PLUS on the left and VEO on the right.

Clinical accuracy for both datasets is illustrated in Figure 5.2 using two
complementary error grid analysis (EGA) methods: the Clarke-EGA [16] and the
glucose-rate grid proposed by Kovatchev et al. [64]. Regarding the Clarke grid, both
monitors show very similar behavior. The SEVEN® PLUS monitor placed 73.04% of
the data pairs in zone A, and 26.41% in zone B, while Veo system had 66.23% of the data
pairs in zone A, and 33.25% in zone B. Both monitors had less of 1% of the monitoring
data within the zones C, D or E. Regarding the glucose rate grid, the SEVEN® PLUS
monitor had 80.96% of data points in zone A, 14.89% in zone B, 2.41% in zone C, 1.42%
in zone D and 0.32% in zone E. Veo monitor showed 83,37% of the data points within
the zone A, 13.53% in zone B, 0.67% in zone C, 2.10% in zone D, and 0.31% in zone E.

A representative CGM trace from each device is shown in Figure 5.3. The YSI
signals shown correspond to di�erent patients following the detailed experiments. In
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the SEVEN® PLUS monitor sample, a rapidly increasing glucose concentration after
the meal is observed, followed by a slow decreasing glucose in the late postprandial
period. The VEO monitor sample shows a rapidly increasing glucose response
right after the meal and a rebound increase in the late postprandial period. It can
be appreciated that both monitors have trends similar to the YSI signal they are
estimating.

Figure 5.3: Representative sample of two di�erent postprandial periods for the two
monitors. The left panel shows the SEVEN® PLUS monitor sample and the right
panel shows the VEO monitor sample.

5.2.1 Analysis of delay

The delay histogram for all the available datasets is shown in Figure 5.4. This
delay was consistent throughout the entire postprandial period, and no signi�cant
di�erence on the calculated delays was achieved by considering only the �rst two
hours (transient) of the entire postprandial period. Observing the time correlation of
the datasets, in the SEVEN® PLUS monitor, 28 showed no signi�cant delay between
the two signals (i.e, delay was less than �ve minutes due to the CGM resolution), and
19 for the Paradigm® Veo™ .

The histogram analysis hinted that the delay follows an exponential probability
distribution:

f(x) =
1

µ
e−

x
µ (5.3)

where µ is the exponential parameter. The exponential parameter was adjusted
for each monitor. For the SEVEN® PLUS monitor the parameter was τsevenplus =
1.08 with a 95% con�dence interval [0.82, 1.46] and for the Paradigm® Veo™ τveo =
1.69 with a 95% con�dence interval [1.28, 2.35], resulting in the curve �tting shown
in red in Figure 5.4.

The observed delay for the SEVEN® PLUS device was consistent with previous
works [103] for the SEVEN® system, where an average value of 5 minutes is reported
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Figure 5.4: Delay-time histograms for the SEVEN® PLUS monitor (left) and the
Paradigm® Veo™ (right).

as the lag for maximum cross-correlation. However, no probability distribution for
the delay was reported for comparison. Compared with the Dexcom system, the
Paradigm® Veo™ showed a signi�cant (p=0.007) larger average delay (8 minutes).
Our results were slightly larger than those reported by Keenan et al. [58], but
neither these values nor the SEVEN® Plus values were comparable due to the
di�erence in computation methods. Therefore, measurement of the delay should be
standardized in order to enable comparisons between di�erent studies. Additionally,
the Paradigm® Veo™ exhibited a slower decay in the �tted exponential distribution,
indicating higher variability of the delay value up to 30 minutes.

5.2.2 Analysis of Stationarity

The statistical moments of the data analyzed after delay compensation were not time
invariant, as shown in Figure 5.5. For both monitors, the mean and standard deviation
of the error were non-stationary. Our goal was to �nd a transformation of the signal
in order to make it as close to stationary as possible. This transformation had to
be invertible for simulation purposes. This means that the transformation had to be
based on available information in the simulation context, e.g., plasma glucose from
a glucoregulatory model, or equivalently, the YSI signal from the experimental data.

In general, stationarity of the error time-series is assumed when �tting
probability distributions to a stochastic signal. However, it can be observed that
these assumptions were not correct when interpreting the error of CGM in the
postprandial state. Mean and standard deviation after delay compensation were both
time-varying, especially for the �rst two hours after a meal intake. This may be
related to the performance of the real-time calibration algorithm after the high rise
of glucose following the intake up to its peak value.

Despite the standardization of the initial conditions by means of an insulin
feedback phase, both monitors had an initial mean underestimation of glucose of 10
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Figure 5.5: Top panels show the meal error and standard deviation of the error
after delay compensation for the SEVEN® PLUS and the Paradigm® Veo™ monitors.
Bottom panels show the same signals after the standardization process. The left
�gures show the mean error for both monitors while on the right the standard
deviation of the error signals is represented. Notice the di�erent scales on all four
plots.

mg/dL. Surprisingly this value was equal to both devices. It is unknown to the author
whether it may correspond to a setting of the manufacturers. An initial standard
deviation of 20-25 mg/dL was observed yielding signi�cant errors.

Both monitors were worn simultaneously by the patient and calibrated with the
same calibration points obtained in fasting state the same day of the experiment.
Calibration points have been recognized as crucial factors in�uencing the accuracy
of CGM readings [10, 102]. In this case, the calibration performed was done 4-5
hours before the experiment in fasting state, and it did not seem to induce di�erences
between both devices.

After meal intake, both devices were unable to follow the high rise of glucose,
increasing the initial underestimation up to a peak value (approximately 20 mg/dL
for SEVEN® Plus and 30 mg/dL for the Paradigm® Veo™) about 50 minutes later. The
particular sensor delay should be additionally considered for a correct interpretation.
During this time, the error standard deviation increased steadily, having a similar
peak time as the mean error, with a peak value of 35 mg/dL for both monitors.
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After this initial period, the glucose underestimation decreased. The CGM
glucose estimation recovered slowly towards the glucose reference value. A faster
recovery was observed by the SEVEN® PLUS. It is noteworthy that approximately
zero mean error was observed for the SEVEN® PLUS monitor after peak time, in
contrast to VEO signal, which appears to be showing a bias in the mean error. This
bias converged slowly to zero, but the 5 hours postprandial monitoring window we
used here was insu�cient for capturing the whole stabilization of the mean error in
the VEO monitor.

If variability of CGM readings were reduced, our results suggest that CGM
would allow for a good representation of postprandial glucose. Regarding the
standard deviation, a plateau at 35 mg/dL was reached for the SEVEN® PLUS, while a
slight increasing trend was obtained for the Paradigm® Veo™. Thus, the meal event
represented a big challenge for both devices producing a signi�cant variability, which
is still a major issue in CGM performance. Certainly, sources of this variability should
be investigated in future studies to con�rm whether it is due to variability of the
physiological delay, the intensity signal produced by the sensor or the calibration
algorithm itself.

A positive correlation between the YSI signal and the standard deviation of the
error was found. This is an indication of the variability of the sensor to capture the
postprandial peak. In addition, a negative correlation of the YSI rate of change and
the mean of the error re�ects that sensor readings were falling behind the reference
glucose in the rising trend (the error becomes more negative in average), in spite of
delay compensation.

The second moment of the error signal closely resembled the YSI blood glucose
measurements for both monitoring systems. The correlation coe�cient for the
SEVEN® PLUS monitor was rsevenplus = 0.93 (range95% = [0.90, 0.96]) and
for the Paradigm® Veo™ rveo = 0.82 (range95% = [0.72, 0.89]), both signi�cant
(p < 0.005). The regression lines for these correlations were:

SEVEN PLUS: STD(k) = 0.3142 · Y SI(k)− 12.9056 (5.4)
VEO: STD(k) = 0.2711 · Y SI(k)− 3.7679 (5.5)

where STD(k) is the standard deviation of the error at time k.

As for the mean of the error signal, the correlation with the raw YSI signal did
not show a signi�cant correlation coe�cient. The correlation with the gradient of
the YSI signal was better, with a coe�cient of rsevenplus = −0.79 (range95% =
[−0.87,−0.68]) and rveo = −0.54 (range95% = [−0.70,−0.33]), both being
statistically signi�cant (p < 0.005). This correlation was not as evident as the one
with the second moment, but it was much better than the correlation found to any
other signal derived from the YSI. Regarding to the correlations found we can guess
that stationarity achieved with these transformations was better in the SEVEN® PLUS
monitor than in the Paradigm® Veo™. The regression line for the correlation of the
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�rst moment was:

SEVEN PLUS: Mean(k) = −2.0046 · dY SI(k)/dt− 1.0628 (5.6)
VEO: Mean(k) = −1.323 · dY SI(k)/dt− 10.517 (5.7)

where Mean(k) is the average error at time k. Again, as it happened with the
delays, these regressions were consistent throughout the entire postprandial period.
Considering these regressions as good characterizations of the statistical moments
of the signals, the error signal can be transformed as follows, so that it becomes
(quasi-)stationary:

Ē(k) =
E(k)−Mean(k)

STD(k)
(5.8)

In case of perfect estimation of the mean and standard deviation at time k, the
transformed error signal Ē(k) will have zero mean and unity standard deviation
throughout the postprandial period.

Stationarity of the signal was improved after this transformation, as shown by
the roots of the AR models �tted before and after the “standardization”. The error
signals were tested to �t AR models, looking for the lowest-order model with random
uncorrelated residuals. The transformed statistical moments along time can also be
seen in Figure 5.5, where a clear improvement on stationarity of both signals can be
appreciated comparing top and bottom panels.

The SEVEN® PLUS time-series showed a good �tting to a �rst order AR model
before and after the transformation. The model root was z = 0.9892 before the
transformation, and z = 0.9249 after. The transformation moves the dynamics
of the data away from those of a random walk (unit root), thus making it more
stationary. The Paradigm® Veo™ time-series adjusted well to a �rst order AR model
before the transformation and to a third order model after. The model root before
the transformation was z = 0.9977, rea�rming the non-stationarity of the process.
After the transformation, the model root closer to unity was z = 0.9846, showing
some improvement towards stationarity, but not as much as in the SEVEN® PLUS.
Correlations were weaker in the case of the Paradigm® Veo™ which translated into
a worse compensation for non-stationarity.

5.2.3 Distribution �tting

The datasets used for distribution and auto-correlation �tting were already
transformed following the delay compensation and the standardization processes
explained before. Kurtosis was high for both datasets, so leptokurtic distributions
were used for �tting. Asymmetry was very low in the data, but some non-symmetric
distributions were also tested. Four di�erent statistical distributions were �nally
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considered:

Weibull: f(x) =
k

λ

(x
λ

)k−1

e−(x/λ)k (5.9)

Normal: f(x) =
1√

2πσ2
e−(x−µ)2/2σ2

(5.10)

Log-Normal: f(x) =
1

xσ
√

2πσ2
e−(logx−µ)2/2σ2

(5.11)

Logistic: f(x) =
1

1 + e
x−µ
s

(5.12)

Five Paradigm® Veo™ sensors showed unusual behaviors with very big mean
absolute errors (over 50 mg/dL), even though their calibrations were correct. These
o�sets produced a multimodal histogram (see Figure 5.6). Given that this behavior
was only observed in 5 sensors, those monitoring periods were not used to �t a
probability distribution, remaining a total of 37 datasets. Given that the SEVEN®

PLUS did not register faulty monitoring periods, the Paradigm® Veo™ seems to be
more prone to abnormal sensor behaviors. This should be con�rmed with larger
studies.

Figure 5.6: Histograms of the standardized error (top) and scaled cumulative
distribution (bottom) plots for the SEVEN® PLUS monitor (left) and the Paradigm®

Veo™ (right).
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The Log-Normal and Weibull distributions are only de�ned for positive values. To
cope with this problem, data were transformed by adding its absolute minimum value
(equal to 4.3069 for the SEVEN® PLUS and 2.4439 for the Paradigm® Veo™), thus
making all errors positive and not centered in zero. The estimates are shown in Table
5.1. The best estimator was given at the normal distribution for the Paradigm® Veo™
(µV EO = 2.435 and sveo = 0.5415) and the logistic distribution for the SEVEN®

PLUS (µsevenplus = 4.297 and ssevenplus = 0.587). Probability plots for the logistic
and normal distribution are shown in Figure 5.6. However, the di�erence between
the �t of the logistic distribution and the normal distribution for the SEVEN® PLUS
was almost negligible (1.92× 10−3 vs 2.02× 10−3). Normality assumption after all
the transformations seems thus sensible.

Distribution Parameters Fit×10−3 Parameters Fit×10−3

SEVEN® PLUS Paradigm® Veo™

Normal µ σ 2.02 µ σ 1.394.27 1.057 2.282 0.693

Weibull a b 2.49 a b 2.564.652 4.329 2.515 3.412

Logistic µ s 1.92 µ s 1.844.297 0.587 2.289 0.387

Log-normal µ σ 42.6 µ σ 42.611.402 0.764 0.751 0.866

Table 5.1: Parameters of the distribution �tting results for the SEVEN® PLUS and the
Paradigm® Veo™ monitors.

Finally, a �rst order AR model explains appropriately the error data for the
SEVEN® PLUS, which is consistent with Breton et al. [9]. However, a third
order AR model was needed for the Paradigm® Veo™. This may be due to distinct
�ltering algorithms for the raw signal since both monitors use linear regression based
calibration algorithms. Based on the previous analysis a model for each monitor
was derived. This model incorporated time-varying statistical characteristics of the
error for their integration into in silico tests for controller validations. These models
are detailed in the next chapter, along with the full CGM simulation model of each
monitor.

5.3 Validation

Following the error signal analysis, simulation models were built for the SEVEN®

PLUS and Paradigm® Veo™ consisting on the following steps:

1. A time series was generated from the �tted AR model.

2. Transformations applied to get (quasi-)stationarity were inversely applied
reproducing time varying characteristics of error mean and variance.
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3. A realization for the delay following the identi�ed probability distribution was
computed and applied.

The SEVEN® PLUS transformed error time-series followed a �rst order AR model

Ē(k) = α1 · Ē(k − 1) + β · w(k), Ē(0) = w(0) (5.13)

where Ē(k) is the correlated standardized error (output of the AR system), w(k)
is a white noise signal, α1 = 0.9249 is the AR parameter, and β = 0.3756 is the
correction of the variance factor, chosen in order to get the desired characteristics of
the normal distribution for the data after �ltering. The Paradigm® Veo™ time-series
followed a third-order model:

Ē(k) = α1 · Ē(k − 1) + α2 · Ē(k − 2) + α3 · Ē(k − 3) + β · w(k)

Ē(0) = w(0), Ē(1) = w(1) (5.14)

with : α1 = 0.9471, α2 = −0.1936, α3 = 0.2271 and β = 0.2198.

The white noise used as input of the AR models follows the normal distribution
�tted to the data in the previous chapter. Normality was assumed for both monitors.
For the SEVEN® PLUS the mean was µSEV ENPLUS = 4.27 and the standard
deviation σSEV ENPLUS = 1.057, considering a shift of 4.3069. For the Paradigm®

Veo™ the parameters were: µV eo = 2.282 σV eo = 0.693, and a shift of 2.4439.

In order to reproduce the time-variance of the error mean and standard deviation,
we had to invert the standardization applied to the CGM error data during the
analysis process, i.e.:

E(k) = STD(k) · Ē(k) +Mean(k) (5.15)

STD(k) and Mean(k) were calculated as:

SEVEN PLUS: STD(k) = 0.3142 · P̃G(k)− 12.9056 (5.16)

VEO: STD(k) = 0.2711 · P̃G(k)− 3.7679 (5.17)

SEVEN PLUS: Mean(k) = −2.0046 · dP̃G(k)

dt
− 1.0628 (5.18)

VEO: Mean(k) = −1.323 · dP̃G(k)

dt
− 10.517 (5.19)

where P̃G(k) is the plasma glucose given by the virtual patient simulator, or in
case of using real patient data, the plasma glucose measurements. The CGM readings
were then calculated by adding the error to the simulator glucose output, and shifting
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d steps, where d is a realization of an exponential distribution Exp(µ):

CGM(k) = P̃G(k − d) + E(k − d), d = Exp(µ)

µsevenplus = 1.08, µveo = 1.69 (5.20)

An illustration of several simulation runs for both models is shown in Figure 5.7.
Average MARD for the simulated SEVEN® PLUS was 18.72%, and for the simulated
Paradigm® Veo™ was 18.38%.

Figure 5.7: Three simulation of each monitor with the proposed models for the
postprandial period of a virtual diabetic patient. Top panel shows the SEVEN® PLUS
response while bottom panel corresponds to the Paradigm® Veo™ simulations.

For validation purposes a virtual dataset a hundred times larger than the original
dataset was created (the model was run a hundred times for each YSI trace), to better
simulate the �tted distributions in their entire domain. The YSI samples used for
the calculation non-stationarity of the error were extracted from the same dataset
used for the model �tting. For this validation, the Paradigm® Veo™ data used for



5.3. VALIDATION 113

comparison only comprehends predictions from the 37 sensors than showed no
unusual behavior. In Figure 5.8 validation of the signal delay is shown, comparing
the probability distribution of the real dataset versus the simulated data. Figure 5.9
shows the comparison of the statistical properties of the data and the simulation, as
well as illustrates the time variation of the simulated data.

Figure 5.8: Real and simulated delay distribution for both monitors. The left panel
shows the delay of the SEVEN® PLUS monitor, against the simulation distribution
using the proposed model. In the right panel the distributions for the Paradigm®

Veo™ is shown.

Computer simulations of the adjusted model for both monitors show very similar
delay distribution as the original data, as shown in Figure 8. The histograms of both
simulated models are much more uniform than the original data, following closely
the original exponential distribution that generated them.

Validation of the statistical moments and non-stationarity of the error can be
extracted from Figure 5.9. Time variant mean and standard deviation were obtained
for the simulated data, with similar dynamics than the original data. Mean signal
was almost identical for the SEVEN® PLUS device, but it showed an o�set for the
late postprandial period in the Paradigm® Veo™ simulation (approx. 15 mg/dL). This
was expected since the correlations for the Medtronic monitor were much lower than
those of the Dexcom device. Standard deviation time variation was also very similar
to that of the original error, presenting small o�sets at the end of the postprandial
period (approx. 5 mg/dL for the SEVEN® PLUS and 7 mg/dL for the Paradigm® Veo™).
These o�sets did not contribute negatively on the clinical accuracy of the simulated
error, since the overall MARD was similar for the simulated dataset and the real data,
especially for the SEVEN® PLUS. Indeed, simulated MARD for the Dexcom monitor
was 18.72%, compared to the 17.28% of the real monitor. For the Paradigm® Veo™ the
simulated MARD was 18.38%, being somewhat higher than the observed error from
only 37 sensors, which was 14.98%.

In conclusion, both models were successfully validated reproducing the same
statistical properties than the original data. Importantly, although the models
have been tested only against postprandial data, additional inconveniences are
not expected when analyzing data in the fasting state since postprandial control
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Figure 5.9: Top row shows time variation of the mean error for both monitors and
for the simulated error. In the bottom row the standard deviation of the error and
the simulation is plotted against time. Left column shows the SEVEN® PLUS data
and model, and the right column illustrates the statistical behavior of the Paradigm®

Veo™ and its representing model.

is considered by far the major challenge in developing the arti�cial pancreas.
Meal intake was a big challenge for both devices, which were unable to follow
the high rise of glucose. The high observed variability in both cases threatened
postprandial performance. Compared to the SEVEN® PLUS device, the Paradigm®

Veo™ device seemed to exhibit longer delays and higher probability of abnormal
sensor behaviors in postprandial conditions. Certainly, further improvements in
calibration algorithms are needed to reduce variability in CGM.



CONCLUSIONS

This part of the thesis consisted on parallel work to that of the identi�cation problem
in the diabetes context. Foundations for both virtual and experimental identi�cation
have been established, and the main contribution of this thesis is now at hand.

Many of the proposed models for diabetic patients su�er from low identi�ability.
A modi�cation of a literature model was proposed in Chapter 2.5, but the goal of
this model was not to increase current identi�ability of the diabetes models but to
�t better the physiological properties of the endogenous glucose system of a diabetic
patient. Identi�ability can be improved in models which have identi�ability issues
by tuning the conditions of the experiment for better data acquisition properties.

In Chapter 4 a classic optimal experiment design approach was followed
for identi�ability enhancement. To cope with the inherent problem of model
dependance on the experiment results, the procedure was repeated on two di�erent
models: the Bergman minimal model and the modi�ed Panunzi’s model. The
models chosen were amongst the simplest of all the models in literature in order
to help in the computation process, which is extremely heavy for the optimal
experiment methodology. From the outputs of the experiment design for both models
qualitative results were extracted and merged into diabetes experiments guidelines
for identi�ability optimization.

Three days of monitoring were considered optimal for the current state of CGM.
Monitoring sensors are often replaced every week. Considering three days of
monitoring for identi�cation, and three or four days for validation, the full lifespan
of a sensor is used and more coherent results are expected. Two di�erent pro�les
were used for the identi�cation days: advance of the meal with respect to the insulin
delivery, and delay of the meal. The meal was smaller when advanced and larger
when delayed, for patient’s safety. The insulin delivery before meal pro�le was found
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to enrich the data more than the other pro�le, being this case repeated twice in the
three days experiment.

In the ambulatory environment, the experiments were slightly modi�ed for easier
application. The preprandial glucose level and trend were taken into consideration
when deciding which of the pro�les to apply. Two scenarios were considered:

• If preprandial glucose was greater than 150mg/dL or between 100− 150 and
rising, the insulin bolus was delivered in advance, followed by a 100 CHO
grams meal.

• If preprandial glucose was lesser than 100mg/dL or between 100 − 150 and
decreasing, the insulin bolus was delayed 2 hours to a meal of 40 CHO grams.

This protocol was used for gathering CGM data from 12 diabetic patients in real-
life conditions in an experiment in the Clinic University Hospital of Valencia [91].
Data obtained from those 12 patients in an in-clinic experiment is used later on in
this thesis for identi�cation purposes. The same data was used for the development
of a simulation model for CGM devices.

The results obtained from the experiment design were tested on two minimal
models for sake of simplicity in the design process, and in order to yield results non-
dependent on the model. There is no limitation to apply the experiments designed
in here to more complex models, such as those used in the patient simulations suites
introduced in Chapter2. In the following chapters, identi�cation experiments are
performed using pre-made interval models based on the Cambridge model. Extensive
studies of the properties of this interval version of the Cambridge model can be found
in literature, easing the process of simulation. Also, the Cambridge model has been
already used in successful closed-loop studies even under domiciliary conditions,
which included patient individualization, proving its value for this task.

Two CGM devices were analyzed and modeled in Chapter 5. The model proposed
is stochastic in nature, and can be used for simulation purposes and for testing
controllers. Three di�erent characteristics were used for the construction of the
model:

• Delay of the CGM signal to blood glucose.

• Stationarity of the error of the CGM.

• Autocorrelation and probability distribution of the error.

Delay along the population was found to follow an exponential distribution.
Contrary to the general opinion, the error signal of the CGM was found to be non-
stationary, and as such much more di�cult to model. Very simple correlations were
found between the error signal and the blood glucose pro�le and its derivative.
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Quasi-stationarity was achieved when using those correlations to transform the
error signal. Finally, simple AR models and probability distributions were used for
characterization of the stationary signal.

Identi�cation trials on the diabetes context are historically found challenging.
Virtual data identi�cation, for example using virtual patient’s data from any of
the simulators described, is of great importance as an introduction to the real
experiments. The CGM model developed in this part of the thesis helps in the
completion of virtual identi�cations for the diabetes context. Compared to other
models in literature, the proposed model tackles with the non-stationarity issue as
compared to existing models. As for the delay and distribution characterization, the
�ndings of this thesis are in accordance with the results of other publications.





Part III

Interval identi�cation
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CHAPTER 6

A NEW PARADIGM FOR MODEL
INDIVIDUALIZATION IN T1DM

All the mathematical models for T1DM reviewed in this thesis su�er from problems
that lead to not mimicking the real patient’s physiology. Virtual patient’s
identi�cation is de�ned as an identi�cation procedure analog to the experimental
data �tting, where the virtual data are generated with the same model used for
identi�cation. Uncertainty can be then arti�cially added to the virtual patient’s data
to challenge the identi�cation method. The aim of this experiment is to test the
methodology of identi�cation in the diabetes context.

Interval models were used for consideration of uncertainty within the diabetic
patient, and for the identi�cation �tting. Virtual patients were simulated with
inherent variations in their physiologic parameters in order to simulate intra-patient
variability. Interval bounding of all the possible outputs of the patients has to be
performed for the complete characterization of the patient’s data, but overestimation
of the uncertainty has to be considered and penalized when using interval models for
identi�cation. From this point of view, we devised another point of view to interval
identi�cation. In this thesis, dual objective minimization is used to accomplish
interval identi�cation of diabetic patients. the two objectives to be optimized are:
1) the interval data bounding, 2) the glucose interval width. Both objectives are
competing in the sense that maximizing the interval output of the model surely will
bound more data samples, but the prediction capabilities of the model are worsened.

Multiobjective optimization was then applied to both simulated gold reference
data and simulated CGM data of the same patient’s, and the results compared.
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6.1 Optimization Set-up

Classic parametric identi�cation results in a single point in the parameter space,
being insu�cient for the case of a time-varying model based on poor prediction
capabilities. Bounding all glucose measurements by means of an interval model,
with time-varying parameters considered as intervals, may help identifying both
the patient and the intra-patient variability, increasing the robustness of the derived
therapies or control algorithms. However, in the case of home monitoring where
large measurement errors may appear (especially due to CGM) some relaxation may
be needed to avoid large intervals for parameters that loosely �t the physiological
variability.

Identi�cation of interval models has been traditionally addressed under the
framework of bounded-error identi�cation (see Chapter 1.3.1 and references therein).
However, when large intra-patient variability is present no parameter values
consistent with the error will generally be found. Robust predictions for therapeutic
decisions can be achieved if the interval model is able to bound the patient’s response,
i.e., the experimental measurements should be included in the output envelope
predicted by the model at each time instant ti

y∗(ti) ∈ y(ti;P), ∀i ∈ I (6.1)

where y(ti;P) = [y(ti;P), y(ti;P)] stands for the interval prediction at time
instant ti for the to-be-identi�ed parameter set P and I = {1, ..., n} is the index
set of the available measurements. In practice, a relaxation of the above problem
may be needed, allowing for small errors with respect to the inclusion envelope due
to noise in the measurements and compensation for non-modeled dynamics.

Interval parameter values P must be found so that the model output envelope
bounds the measurements. Denoting as G∗(ti) the glucose measurement at time
instant i, equation (6.1) can be rephrased as:

G∗(ti) ∈ [G(ti;P), G(ti;P)], ∀i ∈ I (6.2)

where G(ti;P) and G(ti;P) (onward G and G) are the lower and upper bounds
of the glucose intervalG.

In Figure 6.1 a possibility of hybrid identi�cation ranging form classic to interval
is hinted. Given the fact that neither the classic identi�cation point of view is
valid for the current diabetic patient models (due to parameter variability), and also
considering that the pure interval bounding is ine�cient due to large measuring
errors, a compromise is required for the appropriate characterization of real patient
variability. The hypothetical trade-o� point in between the two identi�cation
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Figure 6.1: Ranging from classic to interval identi�cation.

paradigms has never been investigated in literature (to my knowledge). Should this
point exist, the compromise errors that are derived from this methodology will be
characterized in the following lines.

Multi-objective identi�cation is the process of simultaneously optimizing two or
more con�icting objectives subject to certain constraints. The solution of this kind of
problems is not a single optimal point in the objectives search space, but a family of
solutions called a Pareto Front (PF). Each individual in the family is non-dominated
by the other individuals, i.e. they cannot be replaced by other point in the objective
space for improving an objective, without worsening another one. Evolutionary
algorithms are popular solvers for this kind of problems. The ε-MOGA evolutionary
algorithm [43] was used in this work.

Optimization requires the objectives to be de�ned as minimization indexes.
The �rst objective considered for minimization of the �tting error. The error was
computed here as the sum of squares of the Hausdor� distance dH between the
samples and the predicted envelope:

Je(P) :=

n∑
i=1

d2
H (G∗(ti),G) (6.3)

dH (G∗(ti),G) :=


0 if G∗(ti) ∈ G
G∗(ti)−G if G∗(ti) > G

G−G∗(ti) if G∗(ti) < G

(6.4)

where i denotes the sample index, n is the number of measurements, G∗(ti) the
i-th glucose measurement and G :=

[
G,G

]
the glucose interval predicted for time

sample i given by the interval model. This is computed by means of a guaranteed
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interval simulator as proposed in [11]. Thus, if
∣∣G−G∣∣ = 0 (null interval width)

then Je corresponds to the classic sum-of-squares cost index. If Je = 0, the envelope
given by [G,G], encloses all the measurements.

The other objective, by de�nition of multi-objective optimization, must be
con�icting with the �rst one in the minimization. Given that when working
with intervals the error is minimized by simply increasing the size of the interval
(trivial solution at maximum width), the other objective to be pursued must be a
minimization of the interval width. The following index is then considered:

Jw(P) := max
i∈I

(width (G)) = max
i∈I

(
G−G

)
(6.5)

Maximum width was chosen for the minimization because variability in the width of
an interval model response can be very high in the postprandial period. Minimizing
average widths for example may lead to very wide glucose intervals in the early
postprandial period which translate in wide interval parameters. Instead, limiting
the maximum width narrows the interval more consistently throughout all the
postprandial period.

Both objectives can be shown in a cartesian plot, in order to visually characterize
the PF. An example of a PF is shown in Figure 6.2. The extremes of the PF correspond
to the classic (right) and interval approach (left). In between, every point in the PF
is a relaxation of the interval approach.

The selection of the “best” solution in the PF will depend on the nature of
the measurements and the desired degree of robustness. When using reliable
measurements (e.g. reference BG measured with a YSI 2300 STAT Plus™ Glucose
Analyzer), and assuming there is no model mismatch, it is desired that all the data
points are predicted by the glucose envelope generated by the model, i.e. Je = 0.
This is equivalent to choosing the pure interval solution of the problem.

As already said, identifying with CGM data is much more challenging due
to the accuracy limitation of these devices, but home monitoring is undoubtedly
more feasible for clinical practice. The optimization method works the same way
independently of the data source, but choosing one point or another in the PF does
not. The zero-error solution only makes sense when identifying from reference BG
since it encloses robustly all the data available, which are reliable. When CGM is
used, data cannot be trusted as much as reference BG, so a tradeo� solution has to
be chosen.

A relaxation is thus needed in order to identify an interval model representing
actual patient’s variability. Two solutions can be devised:

• Choosing an “acceptable” error, and �nding the closest PF individual for that
error.

• Estimating an appropriate maximum width for the glucose envelope, and
choosing a PF individual accordingly.
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Figure 6.2: Example of a Pareto Front exploring all optimal possibilities from a zero-
width problem (classic identi�cation) to a minimum-width problem with zero error
(interval approach).

The second approach is used here. Indeed, the optimal width of the pure interval
solution for the BG-based identi�cation may be a good approximation of intra-
patient variability. Thus, a method is needed to estimate this optimal width from
CGM data. This is explored further in later sections of this chapter.

Even though identi�cation in a domiciliary environment can only be performed
reasonably with a CGM, reference BG is the variable that the model attempts to
predict, and as such it is the signal to be used for the validation of the identi�cations
performed. In order to calculate the prediction abilities of the identi�ed model, the
Mean Absolute Relative Error referred to a glucose envelope (MARDI ) was used:

MARDI [%] :=

n∑
i=1

∣∣∣dH(BGi,G)
BGi

∣∣∣ ∗ 100

n
(6.6)

dH (BGi,G) :=


0 if BGi ∈ G
BGi −G if BGi > G

G−BGi if BGi < G

(6.7)

whereBGi is the reference BG measurement at time i, n is the number of data points,
and dH is the Hausdor� distance from the point BGi to the intervalG representing
the glucose envelope at time i given by the interval model.
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All statistical signi�cances were calculated using Student’s t-test for the
correlation values.

6.2 Identi�cation from reference glucose

A cohort of 14 virtual patients was generated by means of the Cambridge’s model.
Three postprandial periods were simulated for each patient, according to the optimal
experiment design described in Chapter 4: on Day 1 and Day 3 a meal with 100
grams of carbohydrates (CHO) was ingested and the insulin bolus was advanced 30
minutes; on Day 2 the patient ate a 40-gram CHO meal and delayed the bolus for
120 minutes. For all simulated days the patient was considered at euglycaemic before
the meal intake (model initial conditions). This experimental set-up was shown to be
bene�cial for model identi�cation due to the separation of insulin and meal dynamics.

The virtual patients were considered to have intra-patient variability (time-
varying model parameters). Input errors were also considered for the insulin infusion
rate and the estimation of carbohydrate intake. The parameters considered time-
varying are listed next:

• SiT : insulin sensitivity on glucose transport from blood to interstitium.

• SiD : insulin sensitivity on glucose utilization.

• SiE : insulin sensitivity on endogenous glucose production.

• ke: insulin elimination rate.

• k12: rate of glucose transport from interstitium to blood.

Given that the uncertainty in the meal and insulin subsystems was considered in
arti�cial aggregated parameters (described later), the following parameters were
treated as patient-dependent and time-invariant:

• tmaxG: time constant for glucose absorption in the gut.

• tmaxI : time constant for insulin absorption.

Additionally, the following input errors were introduced:

• β: a random time-varying error for the insulin infusion rate from the insulin
pump.

• α estimation: a repeated bias plus a random time-varying error for the
carbohydrates estimation given by the patient.
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The identi�cation algorithm considered that every uncertain parameter was
characterized by its lower and upper bounds. The �nal parameter identi�cation
vector results:

θ = [SiT , SiT , SiD, SiD, SiE , SiE , k12, k12, ke, ke, α, α, β, β, tmaxI , tmaxG] (6.8)

where SiT , SiT are the lower and upper bounds of the parameter SiT . Similar
notation is used for the rest of the interval parameters. β and α stand for errors
in pump infusion and meal estimation respectively. tmaxI and tmaxG are the only
real-valued parameters.

Variability in the meal absorption is characterized by uncertainty in the
meal estimation and variability in insulin pharmacokinetics is characterized by
the parameter ke and uncertainty in the insulin pump infusion. For the sake
of simplicity, the time-varying parameters and errors considered were assumed
constant throughout a postprandial period for the virtual data generation. However,
they were changed from one day to another of monitoring following a random
process with mean equal to the nominal value of the parameter (0 for the errors) and
a standard deviation of 10% of the nominal value. As demonstrated by Calm et al.
[12] using optimal interval simulation methods, the consideration of 10% uncertainty
in the model parameters may produce glucose trajectories di�ering in 100 mg/dL, so
it is considered a sensible value for the reproduction of variability.

When interval parameters are considered, the simulation of the model must
produce a glucose envelope representing the set of possible glucose trajectories that
the patient may exhibit according to the de�ned intra-patient variability. To this end,
the interval simulators for the Cambridge model developed in [11] and [24] were used
in this work.

Measurement errors induced by a CGM device during home-monitoring were
simulated. In this work the model presented in Chapter 5 was used for simulation of
the real-time CGM Dexcom® SEVEN® PLUS (Dexcom®, San Diego, CA), due to more
accurate modeling results produced.

An example of identi�cation for one representative patient is shown in Figure
6.3. This patient is an illustrative example, but little di�erences are found from one
patient to another. For this patient two simulations, corresponding to both ends
of the PF in Figure 6.2, plus the BG data are plotted. As expected, the output of
the interval model robustly encloses all the simulated days, successfully �nding the
global minimum of the interval identi�cation problem. As for the rest of the patients,
the identi�ed interval models covered completely the data for all the postprandial
periods. As expected, the method does not encounter any di�culty on reproducing
noise-free data. However, identi�cation from BG reference data is very limited due
to the requirement of in-patient studies. Further investigation is required on the
presence of uncertainty in the measurements introduced by CGM.

The pure interval extreme of the PF is in the following considered the real
variability of each patient, and the width associated (error is zero for all cases) is
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Figure 6.3: Comparison of classic and interval identi�cation. Three 5-hour
postprandial periods in consecutive days are shown. The �rst and third days
correspond to identical meals and insulin infusion. Black dotted lines represent
the interval solution, enclosing all the monitoring days. The cyan line (classic
identi�cation) behaves as an average glucose pro�le for the three days.

considered the optimal width to be identi�ed in each case.

6.3 Identi�cation from CGM

Figure 6.4 shows the BG-based and CGM-based Pareto Fronts for the sample patient.
For the same error, all the models identi�ed from the CGM have wider intervals than
the ones from reference BG. This is also true in the rest of the patients, especially as
it gets closer to the pure interval solution (zero error). The top left solution in the
PF for CGM identi�cation has a much larger width that any other individual in the
solution. Such a large width is necessary to cover all the CGM excursions especially
due to the error present in the �rst time instants of every postprandial period, where
the glucose envelope given by the model is very thin, but the CGM measurements
may be very noisy. From a practical point of view this solution can be discarded.

The CGM-based identi�cation results for both ends of the PF are shown in
Figure 6.5. As with the glucose reference �tting, classic identi�cation shows only
an average behavior. The interval model covers all the data provided by the CGM
but patient’s actual intra-patient variability is overestimated since it is confounded
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Figure 6.4: Both PF for the identi�cation of a patient, using CGM and BG data. CGM
identi�cation shows larger width and error for most patients. CGM pure interval
identi�cation requires too wide prediction envelopes.

by CGM measurement error. As stated earlier, a method for estimation of the
“optimal width” (width for pure interval identi�cation on BG data) for each patient
is needed. Correlation between the optimal width and the so-called “experimental
width” obtained from the overlapping of responses for similar days was investigated.
Experimental data was used to further understand correlations between BG and CGM
widths in real patients. The possibility of estimating the BG-based experimental
width from the CGM signal, and thus the optimal width for the identi�cation,
was investigated with the analysis of clinical data from 12 patients who underwent
clinical mixed meal studies as described in detail in [91]. Postprandial variability was
analyzed after two predetermined meals containing 40 g or 100 g of carbohydrates
with normalized initial conditions through an insulin feedback procedure. Each
patient was evaluated in 4 di�erent occasions, twice with each meal. Frequent YSI
measurements were taken simultaneously to a Dexcom® SEVEN® PLUS monitor.
The BG-based optimal maximum width is highly correlated to the maximum width
observed by overlapping the BG signal (experimental width) for days 1 and 3 where
the patient ate the same meal (r=0.848,p<0.005). This is also true for the average
width for all the days of the postprandial period (r=0.797,p<0.005).

In practice neither the optimal width nor the possibility of overlapping several
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Figure 6.5: Comparison of classic and interval identi�cation from CGM. Black dotted
lines are too wide to be considered useful. Three 5-hour postprandial periods in
consecutive days are shown. The �rst and third days correspond to the same meal
and insulin infusion to the patient.

BG postprandial periods is available. To cope with this, experimental correlations
between BG and CGM width were investigated using the experimental dataset
introduced before. Table 6.1 shows the results obtained demonstrating the existence
of high correlation between the CGM-based and the BG-based width computations
from the experimental cohort. Table 6.1 also shows the correlation among the
BG-based and CGM-based widths for an in silico study with the virtual patients’
cohort reproducing the clinical study design in [91]. Correlations are very similar,
reinforcing the CGM model used and the �ndings of Chapter 5.

CGM
Max width Avg width

BG Max width 0.67 (0.72) 0.75 (0.66)
Avg width 0.79 (0.87) 0.86 (0.88)

Table 6.1: Correlations of postprandial BG-based vs. CGM-based widths for the
experimental patients’ cohort. The in silico counterparts of the same correlations
are shown within parenthesis.

Table 6.2 shows the correlations of the BG-based optimal width (both maximum
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and average) with the experimental width from the CGM. These correlations were
found on the virtual patients’ cohort. Out of the three days of monitoring, maximum
and average widths of CGM overlapping signals are studied as estimators for the
optimal width found in the identi�cation from reference glucose. Max3 and Avg3 are
the maximum and average width from the three days of the experiment, respectively.
Max2 and Avg2 correspond to the maximum and average width from 2 equal days
(days 1 and 3), respectively.

CGM experimental width
Max3 Avg3 Max2 Avg2

Optimal maximum width 0.565 0.781 0.775 0.832
Optimal average width 0.588 0.8 0.707 0.78

Table 6.2: Correlations of optimal widths in the virtual patients vs. CGM model-
based experimental widths. The best estimators (best correlations) of optimal widths
are highlighted.

All correlations shown in Table 6.2 are signi�cant (p<0.005). The best
correlations are obtained for the average CGM experimental width, either for 3 or
2 days. This better correlation is due to the in�uence of the averaging computation
in the CGM noise, which is alleviated throughout the postprandial period. The
corresponding regression lines to both estimators corresponding to the average of
CGM signals are:

OptimalMaxWidth = 0.6617 ∗Avg2 + 60.4569 (6.9)
OptimalAvgWidth = 0.3979 ∗Avg3 + 27.2764 (6.10)

Finally, equation (6.9) or (6.10) will de�ne the individual in the CGM-based PF to
be chosen as optimal identi�cation. This is equivalent to launching a constrained
optimization problem with J1 as cost index and �xed glucose envelope maximum
width given by (6.9) or �xed average width given by (6.10). This sort of optimization
should then include non-linear constraints on the output of the optimization model,
which may be di�cult depending on the optimization algorithm.

As an illustration, the identi�cation results for the sample patient are shown
in Figure 6.6, where Avg2 and Avg3 estimators are compared. The use of CGM
experimental widths over a number of days for predicting the “optimal” width of a
particular patient is then justi�ed. However, the predictive capability of the identi�ed
model is still to be checked.

Results of the BG prediction errors are shown in Table 6.3 for the virtual patients’
cohort. The mean error for the samples not enclosed by the glucose envelope (dH>0)
is also computed for comparison purposes, and denoted as ErrOut. In order, the
table shows the median for the population of the estimated width, the number
of samples enclosed in the glucose envelope, the relative error considering only
the samples outside the glucose envelope, and the MARDI (%). The two width
estimators that showed better correlations, as highlighted in Table 6.2, were tested.
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Figure 6.6: Comparison of Avg2 and Avg3 estimators for the optimal width in the
identi�cation from CGM data. There is little di�erence between estimators, but there
is a big di�erence between the use of optimal width estimation and pure interval
identi�cation from CGM data (see �gure 6.5). Three 5-hour postprandial periods in
consecutive days are shown. The �rst and third days correspond to the same meal
and insulin infusion to the patient.

Avg2
MaxWidth[mg/dL] Predicted[%] ErrOut[%] MARDI [%]

Median 83.3 67.8 7.5 3.3
Min/Max 67.6/163.3 34.3/97.9 1.9/38.3 0.1/11.9

Avg3
Median 61.4 52.8 8.3 4.6

Min/Max 42.4/96.4 35/97.9 2.4/30.9 0.1/15.6

Table 6.3: Widths and prediction errors for the selected (best) optimal width
estimators. Top row shows the performance of the identi�cation if the maximum
glucose envelope width for each patient is predicted from the width of two identical
days. Bottom row displays the case when the average glucose envelope width for
each patient is estimated from the width if the 3-day CGM registries.
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A long-term simulation of a 15-day monitoring period for a sample patient was
analyzed in order to test the method’s strength when coping with longer monitoring
periods and outliers. The same procedure described before for virtual patient data
generation was used for the generation of this dataset. In this case a total of 7 meals
with 40-gram CHO content and 8 meals with 100-gram CHO content were given as
input to the model. Variability of the uncertain parameters remained at 10% of the
nominal value of the parameters.

Visual representation of four out of the 15 simulated days are shown in Figure
6.7. Optimal width (computed from BG-based model identi�cation) is compared
against Avg3 width estimator, consisting in equation (6.10) applied to the average
width of the 15-day simulation. The four days selected represent “worst-case” results
and illustrate the performance of the method against large CGM measurement error
(days 1, 3 and 15) and outlier patient behavior (day 11). For the rest of days similar
results than those shown in Figure 6.6 were obtained.

Figure 6.7: Comparison of Avg3 width estimator and the optimal width for the 15-day
identi�cation experiment. Top right (Day 1), top left (Day 3) and bottom right (Day 15)
panels show cases of CGM monitoring errors with satisfactory BG prediction from
the model. The bottom left panel (Day 11) shows the only case where BG was not
enclosed by the predicted glucose envelope for most part of the postprandial period
due to the outlier patient behavior (extreme parameter values).

Reviewing the characteristics of the outlier day from the 15-day simulation,
a special combination of glucose lowering power is hinted, which seems not to
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be present in any other day of the experiment. To check this, Figure 6.8 shows
the variation of the most relevant parameters for each simulated day in the 15-
day experiment. Only the insulin-related parameters are displayed for the sake
of clarity even though parameters were subject to variability as stated earlier. In
the �gure, variation is calculated as relative to the nominal parameter, and it is
considered positive if it induces a decrement of glucose concentration (e.g. larger
insulin sensitivities), and negative if it causes glucose to increase (e.g. larger insulin
elimination rate). Displaying the parameters deviation in a stacked form as in Figure
6.8 provides helpful information on the �nal in�uence of variability on the model’s
output for a particular day. However, variation magnitude does not directly correlate
to the magnitude of the e�ect since not all the model parameters have the same
sensitivity.

Figure 6.8: Depiction of the parameter variation within the 15-days experiment.
For the sake of simplicity, only the insulin-related parameters are shown here.
Parameter deviation is positive if it produces a decrement of glucose levels and
negative otherwise.

6.4 Discussion

Identi�cation from virtual data supposes a much lighter challenge than experimental
identi�cation, but very interesting �ndings are extracted from this chapter,
considered as the basic previous work before facing the problems of experimental
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data management.

The identi�cation from reference BG data was successful, as illustrated in Figure
6.3. The identi�ed interval model was able to capture patient’s variability with
minimum width when no measurement error is present in the data. Day 1 and day
3 correspond to the same meal, but patient’s behavior is very di�erent, as typically
observed in the clinical experience. Nonetheless, the model was able to capture this
variability. It is likely that the use of interval models may help in deriving more
robust glycaemic control strategies.

Width estimation prior to identi�cation is required for CGM-based
identi�cations. Very strong correlations were found between the experimental
widths from reference glucose and CGM data for real type 1 diabetic patients.
Therefore the estimation of the optimal width from CGM measurements seems
feasible. The maximum correlation was obtained among average widths, as
illustrated in Table 6.1. Very similar correlations were calculated for the virtual
patient cohort, encouraging the use of the CGM model proposed. As Table 6.2
shows, the average widths of the overlapped patient’s CGM postprandial traces were
better correlated and thus they were better estimators of the optimal width of each
patient. This may be due to the fact that averaging CGM widths can �lter outliers in
the CGM signal width, while maximum width values do not. Noisy outliers in the
CGM signal width do not correlate well with BG widths, which are considered to be
noise-free. Note that Avg2 computes the average from two identical days while the
optimal average width corresponds to the whole identi�cation period so they are
not directly comparable. Finally, the optimal width estimation was computed from
virtual CGM data from successive days using linear regression models.

Overlapping of two identical days (Max2 and Avg2) yielded much better
estimations of the patient’s optimal width, as data in Table 6.2 shows. This can
be explained by the fact that the glucose variability observed in two days with
the same meal and insulin therapy is a more accurate description of the patient’s
physiological variability, since there is no uncertainty in the model inputs. In future
data acquisition experiments, repeating of identical days should be a priority. In
reality though, obtaining two identical monitoring days for a patient can be very
di�cult. So, two di�erent optimal width estimation methods were provided giving
more �exibility independently of the data available.

The validation of the model and its prediction ability was satisfactory, as
shown in Table 6.3. The model was able to predict about 60% of the reference
samples in the postprandial period, with a slightly better performance of Avg2
estimator. The non-predicted samples showed relative errors below 10% in both
cases. Regarding MARDI an error below 5% was obtained. Thus, the proposed
method allows identifying satisfactorily interval models characterizing intra-patient
variability from CGM data.

Regarding the 15-day simulation study, all the simulated days were well predicted
within the model’s boundaries except day 11 (see Figure 6.7), despite the error
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introduced by considering the CGM measurement as initial condition at each
postprandial period. Day 11 gathers several factors that make it very di�cult to
predict. As shown in Figure 6.8, at day 11 all the parameters pulling glucose
concentration down to hypoglycemic range concur with maximum values, i.e.,
it can be considered an outlier behavior. This is likely to happen in rather
large experiments, where extreme variability at particular days may be found.
Unfortunately, outlier behavior is unpredictable, and cannot be separated in the
identi�cation process from CGM malfunctions, which are much more common.

As shown in Figure 6.7, days 1, 3 and 15 are a good representation of the ability of
the model to �lter CGM malfunctions. On days 1 and 3 the monitor glucose readings
were larger than reference glucose, at the risk of overestimating the glucose envelope
width during the identi�cation process. However, optimal width estimators are able
to cope with this problem successfully predicting the actual BG values without width
overestimation. Similarly, BG at day 15 was greatly underestimated by the CGM for
the whole postprandial period. Nonetheless, this did not a�ect the predicted glucose
envelope, which successfully enclosed BG except for the e�ect of the error in the
initial conditions. It is deduced that the method is robust when confronted to outliers.
Good prediction in most days of monitoring is achieved even in presence of extreme
patient variability (day 11) or CGM malfunctions (days 1 and 15).

Ultimately, the selection of the PF individual in the identi�cation process will
determine the degree of �ltering of outlier behaviors and CGM malfunctions.
Accurate prediction of outlier behaviors will imply larger glucose envelope widths
in detriment of �ltering of CGM malfunctions and general performance. Thus
a compromise solution is required. An alarm system can be devised when the
CGM signal runs out of the predicted envelope dangerously towards hypoglycemia
requiring a con�rmation capillary glucose measurement. Such alarm system may
prevent undesired hypoglycemic events and it may enhance CGM accuracy if the
capillary measurements are used to recalibrate the monitor.

Apart from the validation of the interval models, Pareto Fronts can provide
insightful information for model identi�cation under variability, both in an
engineering environment as well as in the clinic. Physicians can use width index
in the PF as a direct estimation of patient variability which currently is calculated
heuristically



CHAPTER 7

IDENTIFICATION FROM IN-PATIENT REFERENCE
DATA

Feasibility of uncertainty identi�cation from virtual data has already been
established, but validation on clinical data is required for the implementation of
model-based controllers, which depend on the accuracy of the individual model
obtained for each patient. However, model individualization has been proven di�cult
for data-based models [94, 79, 32] or physiology-based models [76]. Furthermore,
suitability of classical metrics such as Mean Square Error for model evaluation has
recently been questioned in the context of diabetes [25] where clinical implications
of prediction errors must be considered.

Genetic algorithms for multiobjective optimization have been proven useful, but
the computation times of this sort of optimizations are very long. In the virtual
identi�cation paradigm described in Chapter 6, where only one optimization was
needed for each patient, the use of multiobjective optimization was a�ordable and
given that these techniques provide much more information of the optimization
indexes that a single objective optimization, its use was encouraged. In this chapter
however, several optimizations are needed for each patient in order to complete a full
cross-validation study. From a practical point of view, there is no need to compute
all individual possibilities in the Pareto Front to complete the cross-validation study.
Therefore, the use of a composite index optimization is explored in this chapter, based
on the paradigm described in the previous chapter

137
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7.1 Optimization and index de�nition

The dataset used for identi�cation has been quickly introduced before in this thesis,
and further details can be found in [91]. This data consisted in four monitored
postprandial periods for twelve subjects with type 1 diabetes under CSII. On
two occasions the patients received a mixed meal containing 40 g of CHO. On
the other two occasions they ate a meal with the same relative macro-nutrients
composition but with greater CHO content (100 g). For each meal, either a standard
bolus or a computer-generated bolus-basal combination was administered following
randomization. Pre-prandial plasma glucose was set around 100 mg/dL by means of a
manual feedback intravenous insulin infusion. Hypoglycemia was avoided by using
intravenous glucose infusion in case the patient’s glucose levels were decreasing
rapidly towards hypoglycemic levels. Plasma glucose was measured for 5 hours after
the meal, every 5 minutes the �rst two hours after the meal and every 10 minutes
afterwards, using a reference method (YSI 2300 STAT Plus Glucose analyzer, Yellow
Springs Instruments, Ohio, USA). Plasma insulin was also measured periodically
(every 15 minutes the �rst two hours, and every 30 minutes afterwards) along all
the duration of the experiment.

Due to the di�erent sampling periods of the measurements, cubic spline
interpolation was applied in order to get sample-per-minute data on all variables.
Due to the high accuracy of YSI measurements [74] uncertainty modeling e�ort can
be focused only in model inaccuracies and within-patient variability, disregarding
uncertainty in the initial measurements.

As in the previous chapter, the interval version of the Cambridge model [11, 24]
was used. They provide a tight guaranteed envelope [G,G] for uncertain model
inputs and model parameters P. Plasma insulin was available for all the experiments
in the dataset, so the insulin absorption model was not used in this identi�cation
for sake of simplicity. This reduces the identi�cation and simulation of results to
only 2 sub-models: the Cambridge endogenous model and the Cambridge glucose
absorption model.

Following the notation introduced in the previous chapter, the cost index to be
minimized is thus de�ned as:

Jwe(P) := Jw(P) + γ · Je(P) (7.1)

where γ is a weighting factor between the minimization of the envelope width
(Jw(P)) and the �tting error (Je(P)), resulting in the compound index (Jwe(P)).
A very small value for γ yields to very small intervals for the identi�ed model
parameters P with loose data �tting, while large values of γ provide good coverage of
the data with large intervals for P. The weight γ has to be tuned a priori and it will
de�ne the degree of relaxation given to the optimization problem. In this chapter,
a battery of in-patient identi�cations was run using several di�erent weighting
factors γ. Then, the authors decided to set γ=100 considering that the �tting results
displayed a good compromise between the envelope width and data compliance.
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Minimization of the cost index was performed with the global optimization
algorithm Evolution Strategy with Covariance Matrix Adaptation (CMAES) (chapter
1.4.2). The optimization to be performed is a non-linear single objective minimization
with linear restrictions in the parameters (intervals). CMAES performs very fast
optimizations on a single objective, with quadratic increment in the computation
time with the number of parameters. Unfortunately, the build released by Hansen
et al. [41] does not implicitly consider restrictions neither in the outputs nor in the
inputs, so they have to be integrated in the cost index. Interval parameters consist of
two independent parameters, upper and lower bounds, where obviously all the lower
bounds must be smaller than their respective upper bounds. These greater-or-equal
restrictions were checked �rst in the evaluation of the optimization index. If any of
the lower bounds were superior to its upper bound, the index was declared invalid
(set to NaN), and penalized greatly in the search [41]. The �nal cost index is shown
next:

J(P) :=

{
NaN if pi < pi

Jwe(P) otherwise
(7.2)

where pi and pi represent the upper and lower bounds of the parameter pi.

Meal absorption is a highly complex physiological process as demonstrated by
dual and triple tracer studies. However, to date, only relatively simple models �tted
for speci�c meals are available. Besides, estimation of carbohydrates intake by the
patient is a big source of uncertainty. It is thus expected a great extent of uncertainty
in model parameters Bio, tmaxG and model input Dg .

As the experimental data were taken under controlled conditions, it can be
justi�ed here to consider no misestimation of the grams of CHO ingested (real-valued
Dg) eliminating a big confounder of uncertainty.

Besides, two di�erent time constants tmaxG40 and tmaxG100 were considered for
the meals of 40 and 100 grams of carbohydrates, respectively, to account for possible
non-linearity with respect to meal size. However, since only one meal of 40 g or
100 g would remain for identi�cation considering that one day is left for validation
purposes, variability in tmaxG40 and tmaxG100 cannot be expressed adequately by
the available data, thus making their identi�cation as intervals questionable. For this
reason they were also considered real-valued. Uncertainty in the gastrointestinal
system was then considered as an interval scale factor α multiplying the glucose
absorption rate Gex(t). This means that an envelope is produced from the rate
of appearance resulting from an identi�ed gastrointestinal model with real-valued
parameters. Pilot simulations suggest that this aggregation of uncertainty into a
single parameter α may be considered equivalent to parametric uncertainty in Bio
and tmaxG and similar data �tting capabilities are expected. Indeed, looking at Figure
7.1, little di�erence between the simulation bands of either parameter is observed.
Furthermore, this allows a signi�cant reduction in the number of interval parameters
in the identi�cation problem, and thus in the computational cost.

Description of uncertainty in the insulin and endogenous subsystems was
considered in the insulin sensitivity parameters SIT , SID and SIE , and the glucose
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Figure 7.1: Simulation of a postprandial period considering a 15% uncertainty either in
the parameter tmaxG (in blue) or in the aggregated parameter α (green). Parameter
Bio is directly proportional to the aggregated parameter α, so the uncertainty in the
simulation is equivalent for both parameters.

transport among compartments k12.

Identi�cation of physiological models in diabetes often su�ers from identi�ability
issues, especially when no tracer data is available and meal intake and insulin
delivery is concomitant, as in this case. In order to test the ability of the method to
properly characterize the source of uncertainty from only insulin and glucose data,
two di�erent scenarios were considered:

1. In Scenario 1 implicit uncertainty in the gastrointestinal (interval value for α),
insulin and endogenous subsystems was considered.

2. In Scenario 2 only uncertainty in the insulin and endogenous subsystems was
considered (α=1).

This is illustrated in Table 7.1. Parameters marked as “Interval” were identi�ed
as uncertain (interval values), while parameters marked as “Real” were identi�ed as
real-valued parameters. Parameters not listed or, listed as “Fixed” were not identi�ed
and maintained in their nominal values throughout the identi�cation and validation
process.

Out of the 4 days of monitoring available, only 3 were used for identi�cation,
while one day was kept apart for validation purposes (“leave-one-day-out” cross-
validation). A few pilot optimizations showed that identi�cations were much more
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Parameters Scenario 1 Scenario 2
SIT Interval Interval
SID Interval Interval
SIE Interval Interval
k12 Interval Interval
α Interval Fixed

tmaxG40 Real Real
tmaxG100 Real Real

Vg Real Real

Table 7.1: List of parameters to be identi�ed in each scenario. “Interval” stands for
parameters identi�ed with uncertainty. “Real” are traditional parameters identi�ed.
“Fixed” stands for parameters not being identi�ed.

accurate when the �rst 30 minutes of each postprandial period were excluded for
�tting the data, which may be due to non-modeled dynamics.

All possible permutations for the identi�cation-validation days were used,
obtaining a full cross-validation study for all the patients and all the postprandial
periods. Henceforth, the di�erent permutations are denoted by the validation day
number. Thus, permutation 3 uses days 1, 2 and 4 for identi�cation, and validates
with day 3. All the permutations of identi�cation-validation days were performed
twice for testing the repeatability of the results.

Six di�erent measures were computed from the identi�cation and validation days
in order to evaluate the �t quality and model prediction ability, respectively:

1. Width [mg/dL]: maximum width of the glucose envelope generated by the
identi�ed interval model. It represents the patient’s uncertainty for the
postprandial period

2. Predictions [%]: number of glucose measurements included inside the
predicted glucose envelope.

3. MARDout [%]: relative error of the samples that were not well predicted and
fell out of the glucose envelope. It complements the Predictions measure. For
example, if Predictions is low but MARDout is also low, the data may follow
the dynamics of the model, but with an o�set that forces the data out of the
prediction band.

4. MARDtot [%]: relative error for all the glucose measurements. The glucose
samples correctly predicted count as error zero, according to the error
de�nition in equation (6.4).

5. gMARDout [%]: clinically-penalized relative error of the samples out of the
glucose envelope. The clinical penalization was performed following the
indications detailed by del Favero in [12] (see below).
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6. gMARDtot [%]: clinically-penalized relative error for all the glucose
measurements. Correctly predicted samples count as error zero. The
penalization used was also the one proposed by del Favero.

MARDout and MARDtot are relative errors based on the Mean Absolute Relative
Di�erence with respect to the glucose envelope, de�ned as:

MARD :=
1

N

N∑
i=1

∣∣∣∣dH(G∗(ti),G)

G∗(ti)

∣∣∣∣ · 100 (7.3)

where dH is the Hausdor� distance previously de�ned, and N is the number of
samples considered in the computation. For MARDout N is equal to the number
of samples outside the envelope, and for MARDtot N is equal to the total number of
samples in the postprandial period.

gMARDout and gMARDtot are modi�ed versions of MARDout and MARDtot
so that they gain on clinical interpretability. Del Favero et al. [25] proposed
a penalization on identi�cation indexes where danger of hypoglycemia and
hyperglycemia is associated with larger weights in the index. The index assignes
a neutral penalization for accurate measurements of the sensor used, it penalizes
greatly (2.5 times the optimization index) overestimations in the sensor’s readings
when actual glucose values are in the hypoglycemic zone, and it also penalizes (2
times the optimization index) underestimations of the sensor when the patient is in
the hyperglycemic range. In this work, an extension of this index to deal with glucose
envelopes was de�ned as:

gMARD :=
1

N

N∑
i=1

∣∣∣∣iPen (G∗(ti),G)
dH(G∗(ti),G)

G∗(ti)

∣∣∣∣ · 100 (7.4)

where

iPen (G∗(ti),G) :=


Pen (G∗(ti), G) if G∗(ti) < G

Pen
(
G∗(ti), G

)
if G∗(ti) > G

1 otherwise
(7.5)

and Pen : R × R → R is del Favero’s penalization function (for further
information on the penalization introduced by del Favero’s index the reader is
referred to [25]). As in the previous case, for gMARDout N is equal to the number
of samples outside the envelope, and for gMARDtot N is equal to the total number
of samples in the postprandial period.

Comparison between gMARD and MARD indexes provides information on the
medical risk of inaccurate model predictions. No di�erence between the indexes
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means no risk associated to the patient by de�nition, since it implies a unity value
for the penalization function Pen in equation (7.5).

In order to consider an identi�cation successful, it has to present good prediction
capabilities resulting in a high percentage of samples predicted and consequently a
small MARD for validation data. Clinical indexes should also not di�er from their
classical counterparts.

Besides, in order to discard trivial solutions, small envelope widths are expected
in a successful identi�cation, since a large enough band will always predict all the
samples. Nonetheless, large widths are not discouraged if the variability of the
patient is also large. In order to account for this fact, an envelope �tness measure
was computed as

f(ti) := max

[
min
d

∣∣G∗(ti)−G∣∣ ,min
d
|G∗(ti)−G|

]
(7.6)

env_fit :=
1

N

N∑
i=1

f(ti) (7.7)

where G∗(ti) is the measured data, G and G the lower/upper bound of the
glucose envelope, all of them at time ti for day d. The rationale of this envelope
�tness measure is that the envelope width is considered non-overestimated when the
upper and lower interval glucose bounds actually �t the data for some postprandial
period of the experiment. In this case, it is assumed that the variability of the patient
was well captured. This is depicted in Figure 7.2 for a three-days experiment. For
every ti the minimum distance from the data to the upper bound among all the
postprandial periods d is computed, and similarly for the lower bound, considering
�nally the worst case. The average with respect to time ti of worst-case distances
is then considered as an indicator of the �tness of the envelope width to data. As
illustration, env_�t=10 mg/dL indicates that for any time instant ti, there exists a
day d such that the discrepancy between the data and the upper/lower bound is less
than or equal to 10 mg/dL in average.

All measures listed above have to be considered simultaneously when evaluating
an identi�cation experiment. An identi�cation with low predicted samples does not
mean a bad identi�cation result if it simultaneously presents a very low relative error.
Similarly, an identi�cation with many predicted samples (on the validation day) but
poor envelope �tness (on the identi�cation days) may correspond to a trivial solution
of the identi�cation problem.

Mean, median, standard deviation and maximum/minimum values of the above
measures for all the patients are reported. All signi�cances were calculated using
non-parametric Fisher’s resampling test.
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Figure 7.2: Graphic description of the envelope �tness index. Three postprandial
periods are displayed for both YSI data (green) and glucose envelopes (blue).
Distances of the data to the envelope are displayed, and the minimum distances to
the upper and lower bounds are highlighted. The average distance along time de�nes
the envelope width �tness to data.
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7.2 Validation Results

The di�erent evaluation measures for the cross-validation study are reported in Table
7.2 for identi�cation and validation days. Evaluations on the identi�cation days are
used to test the �tting quality, while the evaluation on the validation set is a good
representation of the predictability of the method and thus the overall performance of
the identi�cations. The identi�ed interval and real-valued parameters are reported
in Table 7.3. Mean and median values for the midpoint and width of the intervals
are shown, for the sake of simplicity. Median values are a good estimation of the
magnitude of the identi�cation results as they better �lter outlier and are better
estimators of the distribution expectancy for skewed distributions, but mean values
of the evaluation measurements are useful for comparison between scenarios and
datasets.

The mean value of the envelope �tness function for scenario 1 was 19.35 mg/dL
(median 14.59 mg/dL) while for scenario 2 was 21.7 mg/dL (median 15.98 mg/dL).
Fitness value per patient and scenario is reported in Figure 7.3. Patient 12 presents
very poor envelope �tness value on both scenarios, and can be considered as an
outlier.

Figure 7.3: Envelope �tness for every patient and scenario.

Analyzing the results in Table 7.2 it can be observed that envelope widths for
the three identi�cation days were greater than those shown in the validation day
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(scenario 1: 87.7 vs. 78.8 mg/dL, p<0.005; scenario 2: 94.8 vs. 83.9 mg/dL, p<0.005).
Identi�ed widths were large, but the uncertainty registered resembled the observed
intra-patient variability, given that the envelope �tness measure on both scenarios
was good in average (14.59 vs. 15.98 mg/dL). This yields to an expectancy of the
maximum separation of the prediction boundaries from the actual data in accordance
to current criteria for glucose measuring devices accuracy. This result is valid
throughout all the postprandial periods, implying that the method accurately �ts the
provided data even though prediction bands are wide. Besides, errors for validation
days were (as expected) larger than those for identi�cation days for both scenarios
7.2.

There were no great di�erences in the overall performance comparing validation
results between scenarios. No statistically signi�cant di�erence in the prediction
error was found (7.61 vs. 8.09, p=0.237) despite smaller envelope maximum widths
in favor of scenario 1 (78.79 vs. 83.9, p<0.005). This is so because maximum width
tends to happen at the end of the postprandial period when data are more likely to
be enclosed (contributing with zero error to the MARD), not having an impact in
the overall prediction error. Nevertheless, the di�erence in the envelope maximum
width (5.11 mg/dL) was not considered clinically relevant.

This equivalence between scenarios may suggest identi�ability issues (as
commonly observed in identi�cation studies) and di�culties to properly detect
the physiological source of uncertainty due to the nature of data used. Indeed,
uncertainty sources were found in repeated patterns all across the identi�cations
when looking at the identi�ed parameters (see Table 7.3). In this regard, Table 7.4
shows the number of identi�cations for each scenario that showed uncertainty in
each of the interval parameters considered. If both limits of the interval parameter
were identi�ed to be the same, that parameter was considered real-valued and no
uncertainty was assumed to exist in that case.

SIT SID SIE k12 α
Scenario 1 95.8% 4.2% 33.3% 41.7% 6.3%
Scenario 2 93.8% 4.2% 29.2% 35.4% �xed

Table 7.4: Percentage of identi�cations in which each parameter presented
uncertainty.

Values in Table 7.3 are related to the widths of the intervals in Table 7.4. If
the interval is identi�ed in many occasions as a real-valued parameter, the average
width of that parameter will be very low. Parameters SIT and k12 were the most
uncertain parameters in both scenarios, which are interestingly both related to
glucose transport between plasma and interstitial �uid. However, the gastrointestinal
system contributed to uncertainty for scenario 1 only in 6% of the trials despite the
variability expected a priori according to tracer studies. This may be due, at least
in part, to the consideration of two di�erent tmaxG parameters dependent on the
meal size, which were found statistically signi�cantly di�erent for both scenarios (see
Table 7.3), and the few instances available of repeated meals during cross-validation
(only two of the days used for each identi�cation permutation were subject to pure
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gastrointestinal variability, i.e., the two days with identical meal input). This resulted
in small widths for the common parameter α. Richer (more repeated meals, tracer
studies) data would most probably lead to larger variability in the gastrointestinal
system. This is considered a limitation of the current data and further investigation
is required. However, prediction ability of the method was demonstrated and no
technical limitations exist should tracer data or longer time series be available.

As an illustration, identi�cation results for two patients are shown in �gures
7.4 and 7.5, for each identi�cation-validation day permutation. Even though four
simulated postprandial periods are displayed per identi�cation, the simulations were
not consecutive. Every day was simulated separately considering steady-state initial
conditions in order to account for the pre-prandial stabilization period of the patients.
Then the simulation pro�les were concatenated for better illustration of the overall
identi�cation performance. Results are shown for scenario 1, although both scenarios
reported very similar outcomes.

Figure 7.4: Patient 2 identi�cation and validation results for the scenario 1. Day 1
validation is shown top left. Top Right graph shows validation for day 2. Bottom left
validates day 3. Bottom right shows validation for day 4.

Figure 7.4 (patient 2) poses an example of an average patient’s identi�cation
outcome. Results correspond to scenario 1 because of physiological soundness,
although both scenarios reported very similar outcomes. For the �rst permutation
(top left), validation was not successful (MARDtot = 7.39%). Most of the postprandial
data was overestimated, even though 5-hour glucose value was well captured.
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Though, in clinical terms, the identi�cation implied no danger for the patient
(gMARDtot = 7.39%), since the clinical index was exactly the same than the prediction
error. For the second permutation (top right), dynamics were modeled correctly, but
postprandial peak was greatly underestimated (MARDtot = 6.03%), and the e�ect of
glucose infusion in the last hour to avoid hypoglycemia was overestimated. Since
no dangerous zones were left unmodelled, clinical validation was also successful
(gMARDtot = 6.03%). Third permutation (bottom left) captured perfectly the
dynamics of the postprandial period, even though no similar behaviors are observed
in the identi�cation days, only leaving out of prediction the last part of the 5-hour
period (MARDtot = 2.29%). However, clinical validation was not so good in this case,
with gMARDtot = 3.58% due to the last part of the simulation not being able to follow
the rapid rise of glucose, missing thus the hyperglycemia risk. Fourth permutation
(bottom right) showed some not predicted samples (MARDtot = 9.18%), but no clinical
risk was involved (MARDtot = 9.2%).

Figure 7.5: Patient 9 identi�cation and validation results for the scenario 1. Day 1
validation is shown top left. Top Right graph shows validation for day 2. Bottom left
validates day 3. Bottom right shows validation for day 4.

Figure 7.5 presents a case of a better identi�cation, corresponding to patient 9.
Day 1 prediction envelope (top left) covered almost all the blood glucose samples,
and the overall error was very small (MARDtot = 1.03%). Clinical error was not much
higher (gMARDtot = 1.8%) in this validation because most part of the postprandial
period is spent in hyperglycemic region, and the model fails to predict a small part
of it, although with very small error. The patient was well predicted when validating
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with day 2 (top right) except in the 5-hour horizon (MARDtot = 4.93%). Validation
was also really good for day 3 (bottom left), with a MARDtot of 1.88%. Dynamics
were well captured when validating with day 4 (bottom right), with some lack of
predictability from 3 hours onward in the postprandial period (MARDtot = 6.88%). As
happened with the �rst day, the clinical error is a little bit higher because the model
fails to predict the hyperglycemic peak, but with very small error. As result, the
patient was successfully identi�ed for every permutation, capturing the dynamics of
the patient independently of the days used for identi�cation for an average envelope
�tness function value of about 11.87 mg/dL (see Figure 7.2).

7.3 Best-case permutation

Figure 7.6: Patient 11 identi�cation and validation results for the scenario 1. Day 1
validation is shown top left. Top Right graph shows validation for day 2. Bottom left
validates day 3. Bottom right shows validation for day 4.

Figure 7.6 represents a patient with very good prediction for only one validation
day, corresponding to patient 11. As with the other examples, results are shown for
scenario 1, although both scenarios reported very similar outcomes. This is most
illustrative case for the best case of a particular patient. We can see how only when
days 1, 2 and 4 were used for identi�cation (bottom left), dynamics of the validation
day was well characterized. In all the other cases, the identi�cation was unsuccessful.
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Envelope width for the best-case day was also wider than in the other cases (without
width overestimation). This fact leads to think that variability of this particular
patient showed its maximum for that particular permutation of monitoring days.
Maximization of predictability is then straightforward if interval model identi�cation
works best when maximum variability is present in the data: the more days available
the higher the variability, thus the better the prediction.

As it may be observed from patient 11, validation results are dependent on the
permutation considered due to the di�erent representativeness of the identi�cation
days with regard to the exhibited intra-patient variability. In the general case, out of
the four permutations of the identi�cation, usually one or two of them presented a
very small error, while the rest did not capture correctly the behavior of the patient
mainly due to lack of representativeness of the identi�cation data with regard to
the exhibited intra-patient variability. Indeed, it cannot be expected to predict a
behavior in the validation day signi�cantly di�erent than the ones present in the
identi�cation data. The inclusion of more days for identi�cation would reduce this
problem. In this regard, a best-case permutation was de�ned as the permutation
with minimum clinical error gMARDtot, thus minimizing both the �tting error and
the danger to the patient. When two of the permutations showed similar results, the
solution with the minimum width was considered the best one. Table 7.5 shows the
evaluation measures for the validation days considering the best-case permutation.
Mean envelope �tness for the best cases in scenario 1 was 19.87 mg/dL (median 15.55
mg/dL), and for scenario 2 was 26.74 mg/dL (median 19.98 mg/dL).

Table 7.5 shows the evaluation metrics for the best-case permutation for each
patient. As expected, errors for the validation days were signi�cantly smaller
for the best cases with respect to results in Table 7.2 (scenario 1: 1.24 vs.7.61 %
p<0.005; scenario 2: 0.8 vs. 8.09 %, p<0.005). Widths were signi�cantly larger for
scenario 1 (104.6 vs.78.8 mg/dL, p=0.034) but not signi�cantly larger for scenario
2 (103.8 vs. 83.8 mg/dL, p=0.075), although we assume this lack of signi�cance
is due to the small sample size of 12 patients, and should the number of patients
be larger, the di�erence in widths is expected to increase. This increment in
the width was due to the increment of variability present in the identi�cation
data, improving representativeness of the patient’s behavior, and thus validation
results. No additional envelope width overestimation was found for scenario 1
(mean/median: 19.87/15.55 mg/dL versus 19.35/14.59 mg/dL for the whole data set). It
was not so for scenario 2 (mean/median: 26.74/19.98 mg/dL versus 21.70/15.98 mg/dL
) which compensated the non-physiological consideration of lack of variability in
the gastrointestinal model with envelope width overestimation. Indeed, median
Predictions value was over 95% (mean value over 85%) for both scenarios. This
implied errors virtually equal to zero, and complete coverage of the validation data.
No di�erence in the width between the scenarios was found (see Table 7.5). However,
the observed envelope width overestimation for scenario 2 leads to the conclusion
that scenario 1 better represents intra-patient variability without incurring in model
over�tting.

Finally, comparing Tables 7.2 and 7.5, clinical indexes were statistically
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signi�cantly larger than their pure error counterparts, both for the whole dataset
(scenario 1: 8.51 vs.7.61 %, p<0.005; scenario 2: 8.95 vs. 8.09 %, p<0.005) and for
the best-case permutations (scenario 1: 1.41 vs. 1.24, p<0.005; scenario 2: 1.06 vs.
0.8, p<0.005). However, di�erences between gMARDtot and MARDtot were reduced
from approximately 1% for the whole dataset to approximately 0.2% (corresponding
to underestimated mild hyperglycemia according to [25], Fig. 2) for the best-case
permutation. Hypoglycemia risk was not at stake.

7.4 Discussion

Identi�cation from experimental data supposes a great challenge. The case exposed
in this chapter is the simplest situation of identi�cation with real patient’s data the
author was aware of, and yet identi�cation procedures turned out very complex.
A complete identi�cation study with implicit consideration of uncertainty in the
system has been presented. Identi�cation was performed using a hybrid cost
index minimizing both the envelope width of the interval prediction model so
that uncertainty is minimal, and �tting error to the data. Only the endogenous
and gastrointestinal models where considered in this chapter, as an in-patient
identi�cation study.

Identi�cation of the 12 patients showed good prediction capabilities in average
and especially when the maximum variability, or uncertainty for that particular
patient, was represented in the identi�cation days (best-case permutation). A larger
number of monitoring days of the same patient would increase the probability of
extreme variations of the metabolism of the patient, thus easing the identi�cation
and increasing the predictability of the data. A limitation of the study was precisely
the nature of the data that prevented to draw conclusions on the source of the
identi�ed uncertainty. Contrary to tracer studies, the results here exposed did not
show signi�cant uncertainty in the gastrointestinal system compared to the insulin
and endogenous subsystem, most probably due to data limitations.

The existence of best-case permutation and the possibility of predicting the
behavior of the patient using this combination is the most important contribution
of this chapter, and one of the main �ndings of the thesis. Although it is well known
that patient variability in diabetes is very high, this work is the �rst successful
identi�cation process performed on real data including variability. The best-case
permutation for each patient is still impossible to predict, and apparently appears
at random in the dataset used for this chapter. Further work can be done on
investigating the characteristics of the patient on the days of maximum variability,
using for example pattern search on physiological variables.

The proposal of interval envelope �tness measures has been found of great use
throughout all the identi�cation study. Using a hybrid index for optimization limits
the parameter possibilities that multiobjective optimization presents, and because
of that, trivial solutions must be discarded using the �tness index. Envelope �tness
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seems to have much greater potential for the interval identi�cation problem, and
further investigations are required for its potential applications.

Only YSI data was used in this work, and it was assumed that plasma insulin
values were available all throughout the postprandial period. The next logical step
will be to evaluate the in�uence of the subcutaneous insulin route on the prediction
capabilities. Further investigation has to be done on the in�uence of CGM to the
identi�cations, instead of using YSI references, which are much more accurate. These
issues will be addressed in next chapter.





CHAPTER 8

IDENTIFICATION UNDER DOMICILIARY CONDITIONS

Exploring the feasibility of full patient characterization is the main objective of
this thesis, and the results of the in silico and in-patient in-clinic experimental
identi�cation were encouraging. However, many of the premises of the previous
chapters are not realistic in the consideration of an ambulatory patient identi�cation
for the arti�cial pancreas. For practical purposes, a home-made patient identi�cation
must be performed over the information that a patient obtains in daily routine. This
requires the use of CGM measurements for the glucose estimation signal, and either
pump or periodic injections, as well as meal estimation.

The Identi�cation methodology and the diabetic patient data for this chapter has
already been presented in previous chapters. CMAES optimization algorithm was
used for the minimization of the hybrid cost index explained in the study in Chapter
7. The hybrid index is not di�erent from that explained previously, and the only
di�erence remains in the vector of parameters to be optimized.

8.1 Optimization settings and parameters

In this chapter identi�cation is performed realistically on a full physiologic model of
a diabetic patient. The model used for the identi�cation included, unlike the previous
chapter, a system for the subcutaneous insulin absorption. This subsystem is known
to su�er from enormous variability, and as such it is well suited for characterization
from interval models. The insulin absorption model used was the one included in the
Cambridge simulator, in order to keep coherence with the rest of the models used.
The parameter ka de�ned in Chapter 2.2.2 is referred here as tmaxI in order to keep
the same notation for both the insulin and glucose absorption models.

157
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In the case of insulin pump usage, which is the case of the dataset used, there
is also the possibility of pump-induced errors (in terms of deviations of the actual
delivered insulin dose from the programmed dose, as can be caused by total or partial
occlusions of the infusion set), probably caused by total or partial occlusions. This
type of errors is very similar to the estimation errors present in the amount of CHO of
a meal. A very similar approach to that of the multiplicative aggregated parameter α
in the gastrointestinal system was used here to gather all uncertainties in the insulin
model input into one single multiplicative parameter, de�ned β. This parameter
was treated as an interval parameter and tested for identi�cation capabilities in the
following.

The other parameter in�uencing the insulin absorption is the insulin elimination
rate from plasma ke. This parameter was identi�ed considering variability. Exactly in
the same way as with the gastrointestinal model (in the tmaxG parameter), the �ux
constant tmaxI was identi�ed on every patient, but due to the already mentioned
interval model implementation limitations, no uncertainty was considered for it, so
it was considered a constant value on each patient for the whole duration of the
experiment. In practice, little di�erence exists when considering the uncertainty in
the parameter β or in the tmaxI parameter when �tting experimental data, similarly
to what happened when comparing tmaxG and α in the gastrointestinal model. Very
simple simulations of uncertainty are displayed in Figure 8.1 for both the β parameter
and tmaxI .

Figure 8.1: Simulation of a postprandial period considering a 15% uncertainty in the
parameter tmaxI (in green) or in the aggregated parameter β (blue).

Both parameters have virtually no in�uence in the envelope width of the
glucose pro�le in the 45 minutes following the meal intake. Beyond that time
tmaxI may present larger uncertainty, but its in�uence is negligible, even being
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the glucose envelopes very similar in the late postprandial period (two hours after
ingestion). Even though the simulation shown in the gastrointestinal model showed
better similarities between the parameters under comparison, the simulations for
the model of subcutaneous insulin infusion are still considered to be very similar
from a practical point of view. Again, it is worth mentioning that these models
will be used for data �tting, so the envelopes shown in Figure 8.1 are but a
qualitative representation of the uncertainty related to each parameter throughout
the postprandial period.

Finally, the complete set of parameters for identi�cation is:

θ = [SiT , SiT , SiD, SiD, SiE , SiE , k12, k12, ke, ke, α, α, β, β, tmaxI , tmaxG] (8.1)

The parameter set proposed is equivalent to that used in the in silico.
identi�cations.

The selection of the value for γ is one of the most important discussions in
the completion of any identi�cation with the proposed hybrid index. The selection
of an appropriate γ is dependent on the type of the data being �tted, and of the
error expected in the measurements in particular. The larger the error on the
measurements is, the less importance is assigned to the �t part of the composite
index. This approach is the opposite to the error-bound estimation explained in
Chapter 1.3.1, where the parameter set searched was of those parameters that are
consistent with the data and its error. That approach leads to larger parameter sets as
the uncertainty grows in the measurement. In the approach used here works exactly
on the opposite way, ensuring a minimum set of parameters that are consistent
with the physiology of the patient and the uncertainty in the patient, not on the
measurements. Excessive width in the glucose envelope must be avoided, so the
physiologic set of interval parameters must reduce its width for CGM experiments.

In the last chapter, a γ value of 100 was considered appropriate for the data
being �tted. In the case at stake now, the data available is less similar to the
mathematical model output because physiologic approximations are introduced in
the subcutaneous insulin model. Therefore, less accurate predictions are expected
from the model used and �tting error may be desired to be �t more loosely to the
broader set of data that CGM monitoring is (in comparison with glucose reference.
In order to account for this, two di�erent γ values are tested for every combination of
parameters considered in the identi�cations: γ = 100 and γ = 50. Having γ = 100
allows for comparison with previous results, because the error weighting is the same
as in Chapter 7. In the case that γ = 50, reduces the in�uence of the �tting error for
accounting with the exposed model mismatches.

For the selection of identi�cation parameters, several identi�cations were
performed on reference glucose for di�erent parameter vectors. A total of eight
di�erent parameter sets were considered. The scenarios are detailed in Table 8.1. Note
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that the complete set of parameters being identi�ed is detailed in equation (8.1), and
Table 8.1 only shows the three interval parameters that were used in the permutations
for the construction of the scenarios.

Scenario α β ke
A 3 3 3
B 3 3 7
C 3 7 3
D 3 7 7
E 7 3 3
F 7 3 7
G 7 7 3
H 7 7 7

Table 8.1: List of parameters to be identi�ed in each scenario.

The described scenarios were repeated for two di�erent γ values, resulting in
a total 16 identi�cation trials. The three parameters that de�ne each scenario are
identi�ed as interval parameters. Parameters tmaxI and tmaxG are identi�ed as
real-valued parameters, and two di�erent tmaxG values are identi�ed in the same
way as in the previous chapter, considering that the tmaxG parameter for the 100
grams meals is forced to be larger than the 40 grams parameter, re�ecting a slower
absorption of a much larger meal.

Identi�cation boundaries for the parameters were the same for all the scenarios,
for the sake of comparison between scenarios. Repeatability of the results was
found to be lower when introducing the new set of parameters corresponding
to the subcutaneous insulin model. In order to improve the convergence of the
identi�cation solution, the CMAES optimization algorithm allows the tuning of
several parameters. It was decided to increase the size of the initial population of
individuals for better coverage of the parameter space, which is now signi�cantly
larger. Nevertheless, 2 identi�cations of each scenario with the exact same
optimization parameters were performed for repeatability testing, and solution with
the best index was chosen.

Finally, for the desired scenario chosen from the identi�cation of a full patient
model using YSI measurements, CGM identi�cation is to be performed. Identi�cation
settings are exactly the same as in the YSI reference framework, but the data used
is not trusted to be as accurate. Indeed, it has been discussed before in this thesis
(Chapter 5) how the CGM estimations can be as far o� as 20% from the glucose
reference signal. This lack of trust on the data translates in a smaller γ in the
optimization index. In order to search for the most satisfactory scenario, several
identi�cations are performed for di�erent gamma values, decreasing from the value
of 100 stated in the �rst identi�cations with the YSI data. Six di�erent γ values
were considered in intervals of 15: 100, 85, 70, 55, 40 and 25. The combination of all
the results for di�erent γ values results in a pseudo-PF that provides a selection of
identi�cation results suitable for the data available.
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For evaluation of the results several metrics already introduced are used:

• Width [mg/dL]: Maximum width of the envelope resultant from the simulation
of the postprandial periods. It is one of the parts of the composite index in the
optimization.

• Prediction [%]: Percentage of samples predicted within the envelope.

• MARD [%]: Mean relative deviation of the envelope form �tting or validation
data data.

• gMARD [%]: Mean relative deviation weighted depending on the danger to the
patient, following the index proposed by del Favero [25].

• env_�t [mg/dL]: Envelope �tness measure de�ned in Chapter 7. Describes the
maximum separation of the envelope to the �tting data, and quanti�es the
overestimation of the envelope width.

Optimal scenario selection is done by analyzing the described metrics and also
the optimization results in the parameter space. Although in the previous chapter
it was concluded that the characterization of the uncertainty is very di�cult for the
models used now in literature, identi�cations performed with the full model, and
especially considering the new introduced parameters, are understood to be faulty if
parameters are �xed to the optimization boundaries in most of the permutations.

8.2 In�uence of the Lack of Plasma Insulin
Measurements

The �rst results for the identi�cation of the full model are displayed in Table 8.2.
Only the results from the identi�cation days (�tting data) are displayed in the table.
Computation times vary on the number of parameters being �t. The larger number
of parameters was 18 for the A scenario and the computation time for all the patients
was over 70 hours on a workstation Intel ®Xeon ®CPU 2.67 GHz with 4 GB of RAM
memory running under Windows 7. For the fastest identi�cation, which consisted
on 12 parameters, the computation time was approximately 50 hours on the same
computer, which responds to the quadratic cost reported for the algorithm.

The results metrics show very similar �t for the use of the full model to the �t
of the in-patient identi�cation (Table 7.2). This fact suggests that �tting capabilities
are mainly dependent on the quality of the data being �t, although it is assumed
that the quality of the predictions is lower. Comparison between di�erent γ values
is as expected: smaller widths are identi�ed for γ = 50 than in the larger γ =
100 scenario, but at the cost of larger �tting errors, re�ected in the MARD metric.
Comparing envelope �tness to the scenarios of the in-patient study reveals that no
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Scenario A B C D E F G H
γ = 100

Width mean 80.4 85.9 86.9 98.8 87.6 92.2 92.9 105,2
(mg/dL) median 71.6 78.2 77 101.8 82.7 88 87.1 109.5

Prediction mean 76.6 75.8 77.3 74.8 77.2 77.6 78 77
(%) median 78.2 76.8 78.8 77.6 77.6 79.1 79.2 77.7

MARD mean 0.9 0.97 0.88 1.12 0.85 0.87 0.85 1.01
(%) median 0.76 0.95 0.76 1.08 0.77 0.83 0.77 1

gMARD mean 0.93 1 0.91 1.14 0.88 0.9 0.88 1.05
(%) median 0.79 0.96 0.79 1.08 0.8 0.86 0.8 1.02

env_�t mean 16.2 18.7 17 19.9 17.5 18.7 18.2 20.7
(mg/dL) median 14.4 16.5 15 16.7 15.1 17.1 17.8 18

γ = 50
Width mean 70.9 77.2 77.9 89.1 79 81.7 84.3 95.9

(mg/dL) median 63.4 69.6 70.1 90.3 71.3 75.8 80.4 98.5
Prediction mean 67.1 67.7 68.8 66 69.7 69.4 70.4 69

(%) median 70.4 70.4 72 70.9 70.8 72.1 72.2 71.3
MARD mean 1.6 1.54 1.51 1.79 1.49 1.52 1.47 1.64

(%) median 1.29 1.45 1.26 1.67 1.28 1.45 1.34 1.59
gMARD mean 1.67 1.61 1.59 1.87 1.57 1.6 1.55 1.73

(%) median 1.35 1,5 1.3 1.74 1.34 1.53 1.38 1.65
env_�t mean 14.6 16.1 15.7 17.3 15.6 16.4 16.3 18.2
(mg/dL) median 11.4 13.5 12.5 14.8 12.7 14.8 15.4 15.9

Table 8.2: Results for all the scenarios for the 3 identi�cation days considering all the
possible permutations of days from the dataset.

further overestimation is introduced by adding the subcutaneous insulin route to the
model, because the env_�t values are very similar to those of the scenario 1 in the
in-patient study (see Table 7.2).

The prediction capabilities of the models identi�ed and the envelope widths
related to the validation days are listed in Table 8.3. Even though widths of
identi�cation and validation days have high correlations, the reproduction of a
pseudo pareto front with the data from the validation days is the best visual
representation of the results for scenario selection.

Samples predicted by the scenarios considered are very similar to those presented
in the in-patient study, but MARD values are larger, meaning a poorer prediction of
the results. This prediction is not a consequence of over�tting the data since it was
already stated that the envelope �tness values are similar. This fall of prediction
capabilities is then assumed to be a consequence of poor physiology modeling of the
subcutaneous route, and the less information present in the data for identi�cation,
especially in the insulin input data, which now only comes from the piecewise
function of insulin infusion through the pump.
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Scenario A B C D E F G H
γ = 100

Width mean 77.2 78.7 82.4 90.1 81.5 83.5 87.6 95.3
(mg/dL) median 67.3 65.6 72.7 80.3 72.2 69.7 81 84

Prediction mean 51.3 53 53.6 48.1 52.9 53 55.6 56.2
(%) median 56.5 56.3 56.8 49.5 57.3 57.8 57.8 61.5

MARD mean 10 9.4 9.6 10.9 9.8 10.8 9.9 9.3
(%) median 4.8 5.2 4.3 5.5 5.7 4 4.1 3.7

gMARD mean 11.6 11 11.2 12.7 11.4 12.4 11.5 10.9
(%) median 5.8 5.2 4.6 5.7 5.7 4.2 4.1 3.7

γ = 50
Width mean 67.1 71.1 74.1 80.3 74 73.4 79.7 87.4

(mg/dL) median 55.8 59.8 69.8 68.8 62.2 63.1 76.5 78
Prediction mean 45.7 45.5 48.8 42.2 49.8 46.3 51.4 51.1

(%) median 46.3 46.7 52.7 40.2 55.2 51 56.2 56.2
MARD mean 11.9 10.8 10.7 12.2 11.3 12.5 10.8 10.2

(%) median 5.9 7.3 6.4 7.2 6.5 6.2 5.4 5
gMARD mean 13.7 12.6 12.4 13.9 12.9 14.2 12.4 11.9

(%) median 7 7.8 6.9 7.4 6.5 6.4 5.5 5.1

Table 8.3: Results for all the scenarios for the validation day considering all the
possible permutations from the dataset.

The results of the cross-validation study are more clearly displayed in Figure 8.2.
Only mean values are plotted since comparison is better applied to average values
where outliers are more easily �ltered.

It is clear that some combinations of parameters yield better predictions than
others. γ gradient clearly displaces the validation results towards the top left
direction, even though the results displayed do not correspond to the direct
application of the weighting index, but rather the validation of those. Out of each
pair of points in the graph, the top left point correspond to the γ = 100 experiment
of each identi�cation scenario, and the γ = 50 is located in the bottom right of the
pair. It is worth noting that two points hardly de�ne a pareto front and as such, no
assumptions of the optimality of one scenario or the other must be taken by looking
at the pair of points as a whole. Each scenario, taking into account the parameter
vector identi�ed and γ must be regarded separately for the selection of a better case
in the full model identi�cation paradigm.

Scenario B seems at a �rst glance to be closer to the ideal solution than the
rest of the scenarios (being the ideal solution the best of both objectives for all the
individuals). However, this scenario presents a much larger env_�t value than the
other solutions close to the ideal (mean env_�t B100>A100; 18.73>16.24; p<0.005 and
B100>C100; 18.73>16.95; p=0.041). Other solutions close to the ideal point are the
scenarios A and C. All of these cases include the identi�cation of the parameter α,
thus reinforcing the hypothesis drawn in the in-patient study on the importance of
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Figure 8.2: Representation of the validation space of the results for the identi�cation
of all the scenarios considered. Two identi�cations for di�erent γ value are displayed,
and the approximate direction of the γ increment is plotted.

this parameter.

The ruled out scenario B considers the newly introduced parameter β for the
identi�cation of the subcutaneous insulin subsystem. This parameter is identi�ed
in almost every patient and permutation to the optimization boundary, hinting a
problem with identi�ability even though the formal identi�ability analysis proved it
sensible for identi�cation. This problem with parameter β is not only a matter of
scenario B; scenario A, which also identi�es parameter β, identi�es this aggregated
parameter to the optimization boundary 87% of the experiments. Simulations of the
identi�ed sets of parameters proved that plasma insulin levels were being identi�ed
too low for the data available.

In order to �nally discard scenario A from identi�cation feasibility, a
comparison to the competing scenarios is to be performed on the prediction
capabilities. Envelope width for the validation days is smaller of the scenario
A100 (77,1 mg/dL) than in scenario C100 (82,4 mg/dL) with a signi�cance p<0.005.
However, no di�erence in the envelope �tness is appreciated (mean env_�t
A100=16.24>C100=16.95 p=0.078) meaning that no overestimation is assigned into
the width di�erence. Also, MARD values are very similar, with no signi�cance
(p=0.226) on the error of the scenario C100 being better than scenario A100.
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Scenario C50 can be also taken into consideration as the optimal solution. Every
comparison of the metrics of validation for the identi�cations results statistical
signi�cant when comparing same parameter vectors but di�erent γ values. Therefore
scenario C50 can be compared to scenario C100 taking into account that envelope
�tness and widths of the simulations of the validation days is lower, but the MARD
and predicted samples are worse. A γ value of 100 is preferred for the sake of
coherence with the in-patient study since the same reference glucose data is used
(being equally trustful), where the weighting factor was the same, and considering
that the quality of the �tting data is the same, an equal value of γ is preferred for
comparison purposes.

Considering �nally scenario C100, prediction capabilities are very good, with an
average MARD of 9.63% (median 4.34%). These MARD values are consistent with
the previous �ndings an represent a degree of error equal or lower than those of
CGM devices currently in the market. gMARD metric for scenario C100 displays an
average of 11.24% (median 4.59%) posing relatively small danger to the patient.

Using scenario C100, patients that were considered good identi�cations on the
in-patient study do not behave so well in the case of introducing the subcutaneous
insulin subsystem. That is the case of patient 9, which was reported as an example
of good identi�cation independently of the permutations in the in-patient study, but
when plasma insulin is removed of the identi�cation it does not work so well. Patient
9 identi�cation is shown in Figure 8.3.

By looking at the permutations of patient 9, it can be clearly seen that
plasma insulin dynamics in the in-patient study contained information for the
identi�cation of glucose that helped the model to predict the patient easier. The
subcutaneous model of insulin absorption can simulate very simple dynamics (even
with uncertainty), but physiology of the subcutaneous route is more complex. Loss
of predictability with respect to the in-patient study is attributed to this unmodelled
dynamics.

Nevertheless, patient predictability is considered acceptable in most of the
patients. In Figure 8.4, simulation of all the permutations available for patient 1 are
displayed.

Patient 1 is considered to be an average case of identi�cation for this set of
identi�cations. Two of the permutations show very good prediction capabilities,
validating day 1 and day 2. The other two permutations fail at capturing the full
variability of the patient and over (day 3) or underestimate (day 4) the postprandial
response of the patient almost completely. The identi�cation performed using the
second permutation is considered the best case for this patient.

Best cases metrics of all the scenarios are presented in Table 8.4 (for validation
days). Best cases are calculated by selecting the best gMARD permutation for each
patient.
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Figure 8.3: Patient 9 identi�cation and validation results for the scenario C100. Day
1 validation is shown top left. Top Right graph shows validation for day 2. Bottom
left validates day 3. Bottom right shows validation for day 4.

As it happened with the in-patient study, there is always a minimum of one
permutation per patient that predicts with accuracy the validation day postprandial
response. Best cases statistics are calculated from the 12 best days of the 12 patients
under study, and being a small population, they are much more sensible to outliers.
Despite this fact, it can be observed again that widths are always larger for the best
case of each scenario than for the full cross-validation study. gMARD is obviously
smaller since it is the decision metric to select each permutation to be the best case.
MARD is also very small, at around 1% error for every scenario.

A representative case of the best case permutation is presented in Figure 8.5.

In patient 6 case only 1 day is well validated while the rest of days show no
prediction capabilities. Note that patient 6 presented tendency to hypoglycemia at
the moment of the monitoring, and IV glucose infusion was delivered in days 1 and
2. This intravenous glucose infusion prevented the patient to go into hypoglycemia
but introduced a new perturbation to be modeled and identi�ed. While the choice
of this hypoglycemia prevention method was to use IV glucose infusion in order
to minimize the in�uence of further glucose absorption dynamics (e.g intestinal
absorption), the endogenous model still may use this information in the parameter
tuning routine. This is the case on the validation of day 2, where glucose infusion
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Figure 8.4: Patient 1 identi�cation and validation results for the scenario C100. Day
1 validation is shown top left. Top Right graph shows validation for day 2. Bottom
left validates day 3. Bottom right shows validation for day 4.

was delivered throughout the whole postprandial period. If this infusion is left out
of the identi�cation days, as in the second permutation, the validation is much more
di�cult than in case of including this information, as happens in permutation 1, even
though envelope validation widths may be larger (validation width permutation 1 =
32 mg/dL vs 39.2 mg/dL in permutation 2). Also, days 3 and four represent clearly
the extremes of variability of the patient, given that when both are included in the
identi�cation set, the width is much larger.

The hypothesis of best cases introduced in the in-patient study seems to be
valid in this case as well. MARD in the best cases is virtually zero and there is no
di�erence between scenario. Concerning scenario C100, which has been chosen as
the optimal parameter set, widths associated to the best case are larger (mean 114.5
mg/dL) than the widths for the whole dataset (mean 82.4 mg/dL) and this di�erence
is signi�cant with a factor p=0.0272. This does not translate however into a poor
�tting of the identi�cation data, since envelope �tness is not signi�cantly di�erent
in the best case set and in the whole dataset (mean best case env_�t=21 > cross-
validation env_�t=17; p=0.074). gMARD di�erence for the best cases in comparison
to the MARD is virtually non-existent, posing these identi�cation no danger to the
patient’s safety.
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Scenario A B C D E F G H
γ = 100

env_�t mean 17.8 23.8 21 21.3 19.7 22 21 22.9
(mg/dL) median 18.4 17.6 19.7 17.3 18.7 18.4 20.9 18.9
Width mean 93.6 107.8 114.5 112.4 100.2 102 104.6 113

(mg/dL) median 93.2 95.6 99.1 113 97.1 103.7 98.9 120.9
Pred. mean 77.7 83.6 84.6 82.6 82.8 86.8 87.8 85.9
(%) median 86.2 88.2 94.5 91.3 89.5 92.3 92.8 88.8

MARD mean 1.26 0.96 1.25 1.25 0.83 0.83 0.66 0.73
(%) median 0.65 0.46 0.11 0.53 0.46 0.29 0.12 0.28

gMARD mean 1.43 0.99 1.27 1.28 0.89 0.84 0.73 0.8
(%) median 0.72 0.5 0.11 0.58 0.48 0.29 0.12 0.29

γ = 50
env_�t mean 16.7 19.4 18.4 19.7 19.6 19.3 19.4 20.9
(mg/dL) median 16.3 15.2 16.3 15.5 18.5 15.7 19.4 17.8
Width mean 83.4 89.8 99.3 100.9 94.7 94.8 96.6 105.3

(mg/dL) median 85.2 85.6 90.5 98.4 93 96.7 94.3 111.6
Pred. mean 72.2 79.4 79.6 74.1 81.9 82.1 84.9 82.8
(%) median 83.2 86.8 85.5 85.7 86.7 87.2 92 86.7

MARD mean 1.81 1.35 1.6 1.96 0.99 1.05 0.91 0.99
(%) median 0.85 0.68 0.75 0.78 0.59 0.55 0.21 0.57

gMARD mean 1.91 1.42 1.61 2.02 1.08 1.18 0.98 1.10
(%) median 1.05 0.83 0.81 0.79 0.67 0.55 0.22 0.63

Table 8.4: Results for all the scenarios for best case permutation of each patient.

The number of patients available is a very important issue and should be focus
of the discussion in this type of analysis. It is clear that 12 patients is hardly enough
to draw conclusions in a matter that a�ect very large populations, as is the case of
diabetes modeling. It is very di�cult however to �nd datasets open for research
groups to access and experiment with. The reason for this conservative behavior
from large research groups is of course that gathering real patient data from type 1
diabetic patients is extremely di�cult and costly. Considering di�erent sample sizes,
some of the treats exposed in this thesis may become signi�cant where now are not,
or viceversa.

However, interval identi�cation poses a major tool for characterization of
patient’s postprandial behavior, even when great di�culties are tested against it such
as the uncertainties of daily life in a diabetic patient, or the lack of reliable models
for subcutaneous insulin infusion. This methodology is yet to be tested to one of
the greatest di�culties in the process of diabetes modeling: the continuous glucose
monitor signals, which will be accounted for in the following lines.
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Figure 8.5: Patient 6 identi�cation and validation results for the scenario C100. Day
1 validation is shown top left (best case). Top Right graph shows validation for day
2. Bottom left validates day 3. Bottom right shows validation for day 4.

8.3 Identi�cation from CGM data

CGM error has been proven signi�cant in the measurements of glucose, and
ultimately one of the main problems in full patient identi�cation in diabetes. Previous
e�orts were performed on this thesis in the analysis and modeling of the error signal
produced by this type of devices (see Chapter 5), proving very useful for simulation
purposes and for virtual identi�cation studies. The same CGM signals used for
the deduction of the models for the Dexcom® SEVEN® PLUS and the Medtronic®
Paradigm® Veo™ were included in the patients dataset for the �nal identi�cation
procedure.

By default the signal from the SEVEN® PLUS monitor was used for the
identi�cation of the whole dataset, given that there were more postprandial periods
provided by this monitor than with the Paradigm® Veo™, and also regarding at the
results of the error analysis performed before, where the monitor from Dexcom
provided signi�cantly better glucose estimations for this particular dataset.

Data �tting methodology is exactly the same as in the works with YSI reference
glucose measurements. From all the scenarios considered in the previous chapter,
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only the settings of scenario C are used for CGM data �tting, given that the results
with YSI hinted a superior capacity of prediction of data samples than in the
other con�gurations. The �nal set of parameters identi�ed, separating the interval
parameters as their upper and lower bounds, is as follows:

θ =[SiT , SiT , SiD, SiD, SiE , SiE , k12, k12, ke, ke, α, α,

tmaxI , tmaxG40, tmaxG100, Vg]
(8.2)

The total number of optimization variables is 16, including 6 interval parameters.
Initial interval glucose is not identi�ed, despite the uncertainty introduced by the
CGM, due to the fact that only CGM measurements are used to �t the data. If
uncertainty was introduced to the initial glucose of the identi�ed model, the �tting
algorithm would force the interval to resemble the CGM measurement as much as
possible (as CGM is the only available information available to the algorithm), leading
to low uncertainty in the initial condition. If uncertainty was included in the initial
glucose of the simulation, it would have to be added a priori. This a priori uncertainty
in the initial conditions may be a focus of study in the future, but it is not considered
here for the sake of simplicity of the identi�cation problem.

The weighting factor γ of the identi�cation index is considered to be an
estimation of the researcher of the con�dence that is entrusted in the data used for
the �tting. CGM is known to introduce signi�cant errors in the glucose pro�les of
diabetic patients, especially in the postprandial period, and this is logically translated
in a mistrust attitude to this type of data. γ is then supposed to be lower than the
values used for the identi�cation of YSI data, but the values to be used is not known.
In here, 6 di�erent values of γ are considered in order to create an approximately
continuous front in the pareto space from where to extract a desired scenario which
related to a de�ned γ value. The six values of γ are, decreasing from the value of the
YSI identi�cation: 100, 85, 70, 55, 40, 25.

CGM in�uence on the identi�cation experiment is enormous. Out of the 12
patients available in the dataset, 2 were discarded due to CGM malfunctions. An
example of CGM malfunction that nulli�es the patient’s identi�cation is displayed
in �gure 8.6, corresponding to patient 7.

Even though the CGM devices were calibrated before the experiment and new
sensors were inserted the day before to the experiment, several cases of monitors
starting the experiment in saturation levels are reported (lower saturation level = 40
mg/dL). Examples of this faulty behavior are patients 7, 9 and 11. All of these patients
wore 2 di�erent sets of CGM as explained before. Unfortunately, for patients 7 and
11 both monitors failed in the same days, yielding the data for those patients useless
for the cross-validation study. These fails are in accordance to failure rate of these
CGM devices, which can be up to 20%. It is worth remembering that all the patients
were successfully trained in the use of CGM and were long-term users of the insulin
pump technology.

Patient 9 was saturated in one postprandial period for the Dexcom® SEVEN®



8.3. IDENTIFICATION FROM CGM DATA 171

Figure 8.6: One of the permutations of patient 7 where two of the CGM monitoring
signals are faulty at the beginning of the postprandial period. YSI signal is plotted in
green and CGM estimation is plotted in black.

PLUS monitor, but Medtronic® Paradigm® Veo™ performed correctly in that day.
Patient 9 CGM data was modi�ed to include the use of the Paradigm® Veo™ in the
identi�cation for the postprandial period where the SEVEN® PLUS failed. The �nal
resulting set of patients is then reduced to 10.

The evaluation of the identi�cations is performed following the same metrics
that were applied in the previous section, with di�erent application focus. CGM
signal is the data to be �t in the optimization process, and all the identi�cation
metrics and the identi�cation composite index are evaluated in the CGM data of
each patient. Therefore, performance of the methodology in the identi�cation data
for each permutation of the cross-validation study is applied to the corresponding
CGM data. However, for prediction of the glucose behavior, it is the “real” blood
glucose which wants to be predicted, not the CGM estimation. YSI data is thus the
correct data to be used for the evaluation of the performance metrics in the validation
days. It is worth noting that envelope �tness estimates makes more sense if evaluated
to the same data used to �t, therefore the env_�t values are always reported on CGM
data.

Computation cost on the CGM optimization was very similar to that of the YSI
optimizations. Computation times for the algorithm used in this work are highly
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dependent on the number of parameters being tuned, and given that the number
of parameters is �xed to 16, no di�erence between all the optimizations reported
here is appreciated. Average optimization time was approximately 60 hours on a
workstation Intel ®Xeon ®CPU 2.67 GHz with 4 GB of RAM memory running under
Windows 7.

Results of the identi�cation days for all the possible permutations are shown in
Table 8.5.

γ 100 85 70 55 40 25
Width mean 104.8 102.4 99.5 94.1 88.2 76.4

(mg/dL) median 96.5 94.2 90.6 85.5 80.1 69.5
Prediction mean 77.4 75.6 73.4 69.4 65.1 56.6

(%) median 79.9 78 75.8 72.7 68.6 60.9
MARD mean 1.24 1.37 1.59 2 2.53 3.69

(%) median 1.11 1.24 1.43 1.74 2.31 3.34
gMARD mean 1.67 1.85 2.16 2.73 3.44 4.93

(%) median 1.49 1.67 2.07 2.39 3.21 4.65
env_�t mean 22.5 22 21.5 20.2 19 17.7
(mg/dL) median 21 20.2 19.2 18 16.1 15.9

Table 8.5: Results for all the γ values for the three identi�cation days considering all
possible permutations of days from the dataset.

Fitting statistics and envelope widths are worst than those obtained from YSI
identi�cation, as expected. When looking at the γ = 100 case, for the sake of
comparison, average width for the identi�cation days goes from 86.9 mg/dL in the
YSI identi�cation in section 8.2 to 104.8 mg/dL. env_�t is also worsened going from
17 mg/dL up to 22.5 mg/dL. This results in an overestimation of the width of the
interval model, responding to the much inaccurate data source of the CGM. MARD
is also larger (note that in identi�cation data MARD is evaluated against CGM), going
from 0.88% of the YSI identi�cation up to 1.24%, even though prediction samples are
very similar (YSI 77.3% vs CGM 77.4%).

Validation data is displayed in Table 8.6.

Calculation of signi�cance between the data of the CGM identi�cations and
YSI identi�cations is not straightforward. Given that CGM identi�cations are only
performed on 10 patients, paired permutation signi�cance tests are not possible,
unless the faulty CGM patients are removed from the YSI dataset. It is also possible to
perform unpaired signi�cance tests, but it is more reasonable to use the information
available from the patient to perform the test. To do so, patients 7 and 11 are discarded,
and the permutations tests performed as usual.

Validation widths for the γ = 100 scenario of the CGM identi�cation are larger
than those of the identi�cation with blood glucose reference (101.2 mg/dL > 82.4
mg/dL; p<0.005), but MARD values are very similar (YSI MARD = 9.63% vs. CGM
MARD = 9.6%). Only γ value of 100 is tested for this comparison, because it is the
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γ 100 85 70 55 40 25
Width mean 101.2 99.6 95.9 90.1 84.8 73

(mg/dL) median 91 84.5 85.6 79.6 73.9 62.4
Prediction mean 61.1 60.7 58.4 54.8 54.5 48.3

(%) median 69.3 67.8 62.5 57.7 61.8 49.7
MARD mean 9.6 9.68 10.04 11.16 11.8 14.21

(%) median 4.32 4.68 5.14 6.1 6 7.07
gMARD mean 11.63 11.75 12.17 13.38 14.14 16.74

(%) median 4.35 4.71 5.18 6.53 6.34 8.16

Table 8.6: Results for all the γ values for the validation day considering all possible
permutations of days from the dataset.

same as in the YSI experiment. Results for di�erent γ values are displayed in �gure
8.7 for easier visualization.

Figure 8.7: Representation in the validation Pareto Space of the results for the
identi�cation of all the γ values considered.

The range of γ considered seems appropriate for the problem at stake, since the
range covers from the same MARD level of the YSI identi�cation (MARD=9.6% at
γ=100) up to very similar envelope widths from both identi�cations at γ = 25
(YSI width 74.1 mg/dL vs CGM width 73 mg/dL). Looking at the whole set of
identi�cations, γ = 70 is closer in the pareto space to the much better solution
that YSI identi�cation poses than any other identi�cation performed by CGM. Also,
width decreases signi�cantly from γ = 100 to γ = 70 for very similar MARD results,
which makes this solution to be preferred. For lower γ values, improvements on the
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envelope width come at the cost of dramatically increasing the average MARD for
the whole dataset. All simulations onward are presented for the γ = 70 scenario.

An example of identi�cation with CGM is shown in �gure 8.8.

Figure 8.8: Patient 5 identi�cation and validation results for the scenario C100. Day
1 validation is shown top left. Top Right graph shows validation for day 2. Bottom
left validates day 3. Bottom right shows validation for day 4. Black lines represent
the CGM signal. YSI measurements are displayed in green for the identi�cation days,
and in magenta for the validation day.

Patient number 5 shows very clearly the inconvenient of CGM identi�cation.
Even though the CGM was not considered faulty for the postprandial periods of this
patient, several days present clear over or underestimations of the blood glucose
signals. This behavior is very common on any CGM device and is part of the
assumed error of the sensor’s estimations. It does, however, a�ect greatly on the
identi�cations performed. Disregarding the possibilities of inherent variability of the
patient, it can be observed how overestimation of the signal causes the validation of
the model to also overestimated the blood glucose reference signal. For example,
in the validation of day 2 for patient 5, in two of the days used for identi�cation
the CGM rises approximately 50 mg/dL over the blood glucose reference, causing
the envelope width to grow much larger and misplaced in the patient’s average
postprandial behavior. This problem is diminished in situations like the validation
of day 1, where overestimation and underestimation occur in separate days of the
identi�cation set, causing the envelope width to be larger than required, but centered
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in the average postprandial behavior of the patient, thus including the validation
data within the envelope. The larger envelopes identi�ed in average for the CGM
identi�cation are explained by the performance of the identi�cation of patient 5,
which is a representative sample of an identi�cation for this section.

Patient 9, for whom the Dexcom® SEVEN® PLUS monitor presented �at
estimations, also is a very good example of identi�cation with CGM. The
identi�cation performed for patient 9 is plotted in Figure 8.9.

Figure 8.9: Patient 9 identi�cation and validation results for the scenario C100. Day
1 validation is shown top left. Top Right graph shows validation for day 2. Bottom
left validates day 3. Bottom right shows validation for day 4. Black lines represent
the CGM signal. YSI measurements are displayed in green for the identi�cation days,
and in magenta for the validation day.

This patient supposes a good identi�cation for all possible identi�cations
paradigms: it was the best example of identi�cation for the in-patient study, and
although the introduction of the subcutaneous insulin model in the identi�cation
scenario worsened the outcome of the optimizations, it was yet a good example of
identi�cation with YSI for a full model of a patient. CGM performs reasonably well
for this patient leading to a very similar performance in the identi�cation to that
obtained from YSI identi�cation.

Permutations 1 and 2 (validation days 1 and 2) cover completely the validation
data on the model’s envelope. Permutation 3 does not present a good validation
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even though the data �tting is satisfactory. The last permutation represents a failed
validation but also a poor �tting of the glucose signal in day 3 mostly caused by a
bad CGM estimation.

The �nal example is patient 6, whose identi�cation is displayed in �gure 8.10.

Figure 8.10: Patient 6 identi�cation and validation results for the scenario C100. Day
1 validation is shown top left. Top Right graph shows validation for day 2. Bottom
left validates day 3. Bottom right shows validation for day 4. Black lines represent
the CGM signal. YSI measurements are displayed in green for the identi�cation days,
and in magenta for the validation day.

.

Patient 6 can be categorized as a patient with very low variability. Envelope
widths are much lower that with the rest of the patients. Also, glucose excursions
for this patient are smaller than the rest of the dataset. This permits a clearer
observation of the best case scenario of the patient. CGM readings are satisfactory
for all the postprandial periods of this patient, resulting in good identi�cation for
the CGM identi�cation too. The �rst permutation is the best example of satisfactory
identi�cation, where all the prediction band encloses the YSI measurements, even
though the initial point of the model simulation is taken from the CGM signal (it
is the only known data to the model). Permutation 2 is a very similar case of
very good prediction, but in this case it is improved by the larger envelope widths
caused by CGM identi�cation, because this particular permutation of this patient did
not perform as well with YSI identi�cation due to the small width (therefore small



8.3. IDENTIFICATION FROM CGM DATA 177

variability) of the patient’s identi�cation days. The two last permutations’ validation
days are a clear example of both patient’s extremes of variability within the 4-day
experiment, falling both of them out of the prediction bands

Patient’s 6 example hints that the best case permutation hypothesis that was
proved valid in the previous chapters is still possible for the CGM identi�cations.
Best case validation metrics and envelope �tness measure are listed in table 8.7.

γ 100 85 70 55 40 25
env_�t mean 27.3 26.8 25.8 25.4 24.9 22.5
(mg/dL) median 22.1 21.8 20 19.4 20 16
Width mean 130.4 127 122.5 112 112.3 91

(mg/dL) median 115.4 110.8 113.1 102.9 95.1 67.6
Prediction mean 90.9 90.6 88.3 82.1 89.9 80.1

(%) median 97.8 97.3 96.7 97.2 97 96.2
MARD mean 0.58 0.59 0.74 1.82 0.81 2.06

(%) median 0.14 0.15 0.19 0.19 0.2 0.27
gMARD mean 0.59 0.6 0.75 1.83 1.02 3.15

(%) median 0.14 0.15 0.19 0.19 0.2 0.27

Table 8.7: Results for all the γ values for the best case permutation in each patient.
env_�t values correspond to identi�cation days, and the rest of metrics to the
validation days

MARD measures are very small, comparable in magnitude with those of the
previous chapters. gMARD di�erence form the MARD counterpart is no relevant and
supposes no danger to the patients. Average predicted samples is approximately 90%
for all γ values considered, therefore consideration of full coverage of the validation
days for the best case identi�cation is valid.

When comparing the metrics of the best cases with the whole dataset, even
though widths appear to be larger for the best cases (122,5 mg/dL > 95,95 mg/dL) this
di�erence is actually no signi�cant(p=0.109) because of the small number of best case
samples available. It was discussed before in this section how the small number of
patients is one of the main problems for the validation of the methodology at stake in
this thesis. This problem gets aggravated by the removal of the two patients whose
CGM was faulty, e�ectively reducing the samples size 16%. Signi�cant di�erences in
the metrics are much more di�cult to �nd in smaller samples of the diabetic patient’s
population. Nevertheless, envelope �tness of the best cases at stake was not di�erent
from that of the whole dataset (21.75 mg/dL > 21.49 mg/dL; p=0.457), validating the
�tting process.
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8.4 Discussion

Full model patient identi�cation considering uncertainty has been performed in this
chapter, from both YSI and CGM data sources, displaying the decreasing prediction
capabilities of the models involved as the complexity of the system is increased and
the data source loses quality (the associated error increases).

For the identi�cation including the subcutaneous insulin route, 8 di�erent
scenarios were tested for identi�cation feasibility composing di�erent parameter
vector to be used in the identi�cation. Even though all the parameters in the
model were identi�able following the theoretical identi�ability tests performed,
each parameter was left out of the identi�cation sequentially in order to test the
practical identi�ability of the others, along with the prediction capabilities of the
model with each combination of parameters. Only parameter β, corresponding to
the aggregated error parameter of the subcutaneous insulin route, was discarded
due to identi�ability problems.

The inclusion of CGM supposed a great set-back for the prediction power of the
models identi�ed. The width associated for the selected optimum scenario was in
average 95.9 mg/dL (median 85.6 mg/dL), far away of the average 82.4 mg/dL (median
72.7 mg/dL) necessary for the YSI study that included the subcutaneous route of
insulin. When these �gures are compared to the 78.8 mg/dL (median 66.4 mg/dL)
width obtained in the in-patient study, it is possible to view the error introduced by
the CGM devices (di�erence of 13.5 mg/dL) in comparison to the model mismatch
introduced by the subcutaneous insulin route of 3.6 mg/dL.

Prediction error increased with the inclusion of the subcutaneous route and
the CGM measurements. Starting with a MARD of 7.61% (median 5.56%) in the
in-patient study, this error metric increased up to 9.63% (median 4.34%) with the
subcutaneous insulin route inclusion in the model, and even larger error was reported
for with the inclusion of continuous monitoring technology, up to 10.04% (median
5.14%). When comparing the increment of envelope width and MARD, it can be
appreciated that most of the uncertainty from the CGM inclusion is translated into
envelope width by the prediction algorithm, while the inclusion of the input model
for subcutaneous insulin contributes to the methodology by increasing the MARD.
This is a consequence of the choice of a γ = 100 for both experiments involving
YSI data, weighting the envelope width similarly in the optimizations for both
experiments. γ value was smaller for the CGM experiment, giving more importance
to error minimization and therefore increasing the envelope width.

Best case permutations are identi�ed for both YSI identi�cations and CGM
identi�cations. The inclusion of more complex models (subcutaneous insulin route)
or inaccurate measurements (CGM) does not a�ect the outcome of the maximum
variability identi�cation, which always presents a very good solution to each patient.
Best case validation bands cover almost all the validation data, reinforcing the utility
of the method for variability predictions.
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Finally, the number of patients is the great limitation to the �ndings here exposed.
CGM errors and model mismatches suppose a great challenge to the identi�cation
techniques available, introducing relevant misestimation in the �nal performance
metrics used for evaluation of the identi�cation methodologies, which will only be
palliated if large databases of patients’ information are available to the scienti�c
community.





CONCLUSIONS

Interval identi�cation gets more challenging in each chapter of the third and �nal
part of this thesis. Experimental data identi�cation is especially di�cult, and the
progression of the validation results for the experimental set can be seen in Table
8.8.

In-patient Study YSI Ident CGM Ident
Width [mg/dL] 78.8 82.4 95.9
Prediction [%] 53.5 53.6 58.4

MARD [%] 7.61 9.63 10.04

Table 8.8: Results for the identi�cation experiments of increasing complexity and
di�culty. All results are mean values of the prediction capabilities of the complete
dataset evaluated in the validation days.

In silico identi�cation proved that the model identi�cation including variability
was feasible. It also was concluded that the interval model chosen for simulation
did not su�er of great identi�ability problems. CGM was proven to be a great
problem even when simulated. From the CGM identi�cations on virtual patient
data, it was concluded that pure interval identi�cation is not plausible for home
monitoring periods. A compromise is achieved by estimating the patient’s variability,
and successful validation of the method is presented for the whole dataset.

Multiobjective optimization was used in the �rst chapter of the identi�cation
experiments that led to the computationally more e�cient method introduced in the
experimental identi�cations. The computation weight of the genetic optimization
algorithms used for the minimization of multiple objectives renders the method
too heavy to be used on experimental data, where multiple permutations of
the identi�cation days must be evaluated, increasing the number of optimization
experiments to be performed for each patient by a factor of 4.
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The setup used in the in silico identi�cation (Chapter 6) was slightly di�erent
than the one used on the identi�cations used on experimental data. The in silico
tests were designed for focusing on the home monitoring stages of the experiment
where the data was collected from. In this previous experiment [91], 2 weeks of home
monitoring for each patient were recorded using CGM. In these ambulatory periods
the patients followed the optimal experiment design and the protocol proposed in
Chapter 4. However, no blood glucose reference data was available for validation of
the identi�cation trials, and if validation were to be performed, CGM data would have
to be used. It has been proven in this thesis that even the most up to date monitors are
subject to great monitoring errors, and it was concluded that patient identi�cation
had to be contrasted against real blood glucose data. Only the in-patient part of the
study described in [91] reported YSI data, and it was decided to use this data for
validation instead.

Many of the conclusions extracted from Chapter 6 were of utility in the
later chapters. Pareto fronts indeed provide a very concrete and information-rich
visualization of the prediction capabilities of the identi�cation method used in real
data. Pseudo-PF were used for evaluating the di�erent scenarios of the experimental
identi�cations, and also used for comparing the predictability of the model when
increasing the model’s complexity.

Envelope �tness metric was introduced and used throughout this part of the
thesis. It is considered an important �nding, and especially one of the most useful
tools here exposed. By measuring the envelope �tness, overestimation of the
envelope width is discarded, since envelope �tness is contrary to the over�tting
of interval model. Identi�ability of the original model is assessed in previous
chapters, but identi�ability applied to the interval models is yet to be researched.
Identi�ability of the interval parameters was assumed to be extended from the
original non-interval model. However, the possibility of intervals being too large
for the description of experimental data was not explicitly described in the previous
chapters of this thesis. Envelope �tness index was created as a �rst approximation
to analyzing this potential problem. Low envelope �tness indexes found throughout
all identi�cations in this part of the thesis denote a tight �tting of the envelope to
the experimental data throughout all the postprandial periods used for identifying
each patient, thus validating the �tting process and hinting good identi�cations of
the interval parameters.

The main �nding from the results of the identi�cations here exposed is the fact
that the model predictions work best for a determinate combination of monitoring
days. This combination of days is also identi�ed using larger envelopes than the
average, and the prediction band include virtually all the samples of the validation
days. The main point of this best case permutation however, is that the data �tted
does not present worse envelope �tness measures than the average, discarding the
possibility of trivial solutions (larger widths yield larger coverage of glucose). This
best case scenario for each patient was de�ned as the case of maximum variability
of each patient for all the monitoring days considered, and several patient cases
are displayed in each chapter reinforcing this �nding. The best case permutation
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however, appear at random, and no repeated patterns have been identi�ed that can
help with the prediction of this situations. The only solution to the maximization of
variability relies in increasing the number of days in the identi�cation of each patient
for increasing de possibility of maximum variability of the patient’s physiology.

Finally, it is concluded that identi�cation from experimental data is feasible
including daily variability, even with the large excursions of the postprandial period
of a diabetic patient. However, due to the relatively small number of subjects included
in the studies, results may not be relevant to the whole diabetic population





CHAPTER 9

FINAL CONCLUSIONS AND FUTURE WORK

In this thesis, the problem of experimental identi�cation of type 1 diabetic patients
has been assessed. Data from a crossover experiment was used in several chapters.
This dataset consisted on postprandial monitoring of 12 patients in four occasions
each, for both CGM and blood glucose reference.

First, the issue of identi�ability and identi�cation issues was analyzed. In
Chapter 4, simple models were used for the exploration of new experiment setup
that increase the identi�ability of physiologic patient parameters. Parameters of
the experiments were optimized so that identi�ability of two minimal models was
maximized while ensuring patient’s safety. A 3-day experiment was found optimal
for identi�ability optimality, where the meal and insulin delivery where separated
in time, thus isolating the two main disturbances of the endogenous glucose system.
These experiments were translated into a clinical protocol approved by clinicians to
be applied at home experiments. I believe this contribution directly responds the �rst
objective planned in this thesis, consisting in the improvement of the data acquisition
techniques.

The simple minimal models used for the optimal experiment design were not
used in the actual identi�cation experiments used in the last chapters. Minimal
models were chosen for the experiment design due to the optimization algorithms
involved in this process being very computationally requiring. Two di�erent minimal
models were used for approaching a less model-dependent point of view. As for the
identi�cation of a model itself, it is desired of the model to be physiologically sound.
Cambridge’s model [99] was chosen for the identi�cation experiments for the reasons
listed next:

• The model is physiologically based on diabetic patients, and it describes many
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of the dynamics on the insulin and glucose subsystems.

• Validation of population-based predictions generated by this model was
demonstrated by comparison with a clinical study with T1DM patients.

• It was the �rst model used for a domiciliary closed loop study using CGM,
providing the foundations of the �rst arti�cial pancreas algorithm.

• It has been tested to simulate inter and intra-patient variability, considering it
in its published parameters.

As for the CGM model, basic statistic analysis was performed on the dataset
already described. Even though there are some reviews of CGM models in literature
(reviewed in the state of the art), no real correspondence between the dynamics
of those models and the real data was appreciated. It was decided to develop
a completely new model using basic statistical tools derived from the properties
observed on the data. The resulting models were valid for two di�erent monitoring
devices, even though the model structure was the same. Basic model characteristics
like average signal delay or standard deviation of the error were very similar to
reported values of similar devices in literature. The error model extracted was of
great utility in the following chapters of the thesis in order to successfully simulate
CGM signals. This contribution is a re�ection of the second objective of this work as
described in the motivation’s chapter.

Identi�cation of interval models is explored in the last part of the thesis.
Feasibility of the multiobjective identi�cation methodology is explored, along
with practical identi�ability of the intervalization of the Cambridge’s model.
Both issues are discussed using simulated data of virtual diabetic patients in a
controlled environment. Multiobjective optimization results in a very helpful method
for exploring the identi�cation space between interval identi�cation and classic
identi�cation, providing a good visualization tool such as the pareto front, for aiding
the medical and technical experts in the decisions related to the patients. However,
multiobjective optimization was concluded to be a very costly tool in terms of
computation time, and it was decided to follow the identi�cation experiments with
single objective methods, such as CMAES [40, 41].

Experimental data identi�cation was overall successful, with very good
predictions obtained for the whole dataset in a cross-validation study (leave-one-
day-out protocol). Prediction capabilities are severely reduced with every level of
complexity added to the problem, from identi�cation of blood glucose reference and
plasma insulin as an input, to full model identi�cation using CGM data. On the
simplest identi�cation experiment, predictions of 53.5% of the samples are achieved
for a mean envelope width of 78.8 mg/dL and a MARD of 7.61% for the full dataset
evaluated in a cross-validation paradigm. Envelope width grow as more uncertainty
is added to the problem, as well as MARD predictions increase. For the most complex
identi�cation width was 95.9 mg/dL while MARD was 10.04%. Considering this
contribution to the diabetes identi�cation research topic, all the objectives listed in
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this thesis set-up are discussed in depth, leading to satisfactory conclusions in the
goals of this work.

The widths required for identifying the patients and their variability can be
regarded as too wide for being useful. However, it is widely accepted that physiologic
variability in the postprandial period of a type 1 diabetic patient can be very large,
even larger than the 95.9 mg/dL obtained for the identi�cation with CGM. Also,
let us remember that each envelope width described in the identi�cation periods
correspond to the maximum width registered in the postprandial periods of a patient.
In order to discard overestimation in the �tting of the identi�cation sets, a new index
to measure the envelope �tness was designed. The index measured the maximum
separation of the data from either frontier of the envelope used for the data �tting.
If the data was not close to overlapping either of the frontiers of the band for every
instant of the postprandial periods being �t, the index increased, resulting in a good
metric for measuring the overestimation of the real uncertainty present in the patient.
For all the identi�cations performed, the envelope �tness obtained for the cross-
validation study was considered acceptable, measuring a maximum deviation of the
data to the band of approximately 20 mg/dL.

Analysis of each patient results within the cross-validation study showed very
interesting possibilities; one combination of identi�cation days for each patient
resulted in optimal prediction results. It was concluded that each patient presented
maximum variability within 3 speci�c days in the monitoring datasets, and that
including that variability in the identi�cation days resulted in almost perfect
prediction of the last day (which was assumed to present close to average patient
behavior than the extremes present in the identi�cation set). This conclusion was
drawn out of the fact that average width for the best case of each patient was
signi�cantly larger than widths of the whole dataset, without incurring in worse
envelope �tness. The �nding of an optimum combination of days for each patient
reinforces the models used in the identi�cation because they accurately �t both
model dynamics (good envelope �tness) and variability (larger widths). For the same
reasons, the optimization algorithms used were considered successful and useful for
future work on diabetes.

The main setback found throughout the work in this thesis was repeatedly the
few data available for research in the �eld of diabetes. Only data from twelve patients
was used in the core research that resulted in this thesis, and even such small dataset
represented two years of work and large money investments from the research group.
If the work presented in this thesis is to be expanded in the future (and the authors
intend to do so) the �rst point to be improved is the number of patients involved in
the study. In the following lines, the future work to be done in relation to this thesis
is detailed:

• Larger number of patients are required to closely resemble the diabetic
population. One solution would be sharing of datasets among the few study
groups involved in the arti�cial pancreas research. However, competition
for funding and protection of potentially exploitable results limit information
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exchange.

• Patient variability can be predicted using di�erent methodologies, and this is
yet to be applied for experimental identi�cation. We believe that the results
in the chapter corresponding to in silico identi�cation are easily applied to
experimental data. The predictions were validated on the experimental dataset,
but no width-�xed identi�cation was performed using this methodology. It
may reduce the computation cost and simplify the choice in the tradeo�
between width and performance, and it may even reduce the width and
envelope �tness of the identi�cation experiments.

• Multiobjective optimization applied to experimental data. The computation cost
may be large, but multiobjective optimization remains to be tested against real
patient’s data. If the optimization speed can be boosted, very informative data
can be drawn for in-clinic diagnostics. Also, it was proven that multiobjective
optimization resulted in very accurate predictions of the data, assuming that
the model used closely resembles the patient’s dynamics.

• Initial glucose uncertainty. In this thesis, the initial conditions were disregarded
as uncertain values. This is not strictly true, specially for CGM identi�cation
studies. There are studies of uncertainty in the initial conditions that can be
performed for enhancing the identi�cations presented in this thesis.

• Envelope �tness integrated in the optimization algorithm. The use of the
envelope �tness metric on the identi�cations performed in this thesis is only
for analysis of the results. However, this index potential may be much larger,
and it can be used as part of the �tting process, working on the possibility
of reducing both objectives of the optimization into maybe just 1. Further
research is required on this matter, as well as in the exploration of gMARD
as a part of the �tting process.

• Validation of the optimal experiment clinical protocol. Results from optimal
experiment design in Chapter 4 were translated into a medical-approved
clinical protocol that was applied in the data acquisition of a pilot study.
However, the clinical protocol optimality for identi�ability is strictly not
guaranteed and remains to be validated.

• Tuning of the CGM model to obtain optimal predictions out of identi�cations.
With the availability of simple CGM models such as the one developed in
Chapter 5 the CGM accuracy can be varied for in silico studies in order to �nd
optimum predictions out of the interval identi�cation. This type of study may
yield accuracy thresholds for CGM devices that assure the e�cacy of current
identi�cation methodologies in diabetes.

• Focus on control. Finally, all the work done here aims at the integration of the
interval models in control strategies for diabetes, and better understanding
of the physiology related. This is also the ultimate objective of the research
involving physiologic characterization in diabetic patients. No study to control
the models identi�ed in the core of this thesis has yet been addressed, although
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it is very likely that automatic control of interval models results in very reliable
robust controllers.
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