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Summary 

 

As sessile organism plants are extremely plastic. This feature is due their 

ability to integrate external and internal signals to modulate development. Therefore, 

understand the molecular mechanism underlying this feature is of great importance. 

Signals such as light, hormones and the circadian clock contribute to this plasticity. 

During this Thesis we use the plant model Arabidopsis thaliana to address how the 

circadian clock and the DELLA proteins, negative regulators of the gibberellin (GA) 

signaling integrate environmental signals and relay this information to 

transcriptional networks. 

We have demonstrated that the circadian clock modulate transcriptional 

levels of the GAs receptors GIDs, which promote the degradation of DELLA proteins, 

this result in a daily oscillation of DELLA proteins, which reach a minimum at the end 

of the night. This oscillation is key to modulate hypocotyl rhythmic growth and to 

control transcription of many genes.  

In this Thesis we present mechanisms of cross-talk among GAs and two plant 

hormones; ethylene and cytokinin. These mechanisms of cross-talk relies on the 

interaction between DELLA proteins and two transcriptional factors involved in 

signaling of these two hormones. The interaction with RAP2.3, prevents the 

transcription factor activity, this inactivation contributes to the regulation of apical 

hook opening by ethylene and GAs. On the contrary, the interaction with ARR1, a 

transcription factor that promotes cytokinin signaling, is positive for the activity of 

ARR1, thus contributing to the regulation of some developmental processes which 

are antagonistically regulated by GAs and cytokinin, for example root growth and 

photomorphogenesis. This interaction defines a new mechanism of DELLAs action. 

Additionally, by chromatin immunoprecipitation followed by massive sequencing, 

allowed us to show that DELLA proteins are near the promoter of many genes, this 

indicated that this mechanism is broad extensive.  

Based in these results an in the identification of more than 50 transcription 

factors as interactors of the DELLA GAI, we propose that DELLAs act as “hubs” in 



signaling networks. In particular we propose that this is the mechanism by which 

these proteins are key for the integration of internal signals and developmental 

processes.  

 



 

Resumen 

 

Como organismos sésiles, las plantas son extremadamente plásticas. Esta 

característica se debe a la habilidad de integrar las señales internas y externas para 

modular su desarrollo. Por tanto, entender el mecanismo de esta integración es de 

suma importancia. Señales como la luz, las hormonas y el reloj circadiano 

contribuyen a conferir esta plasticidad. En esta tesis hemos abordado, en la planta de 

referencia Arabidopsis thaliana, cómo el reloj circadiano y las proteínas DELLA, que 

son los reguladores negativos de la señalización por las hormonas giberelinas (GAs), 

integran señales del entorno para modular redes transcripcionales. 

Hemos demostrado que el reloj circadiano regula los niveles de mensajero de 

los receptores de GAs GID1s, que promueven la degradación de las proteínas DELLA, 

lo que se traduce en una oscilación diaria en los niveles de las proteínas DELLA, que 

son mínimos al final de la noche. Esta oscilación es clave tanto para la regulación 

diurna del crecimiento rítmico del hipocótilo como para la regulación de muchos 

genes. 

En esta Tesis también mostramos dos mecanismos por el cual la vía de las 

GAs interacciona con otras dos vías hormonales de la planta, la del etileno y la de las 

citoquininas. Estos mecanismos se basan en la interacción física de las proteínas 

DELLA con dos factores de transcripción que participan en esas dos vías. La 

interacción con RAP2.3 previene la unión del factor de trascripción a los promotores 

de sus genes diana, esta inactivación contribuye a la regulación de la apertura del 

gancho apical por etileno y GAs. Por el contrario, la interacción con ARR1, que 

promueve la señalización por citoquininas, es positiva para la actividad del factor de 

transcripción, contribuyendo de esta manera a la regulación de ciertos procesos 

fisiológicos controlados de manera antagónica por GAs y citoquininas, como la 

regulación del crecimiento de la raíz o de la escotomorfogénesis. Esta interacción 

define un mecanismo nuevo de acción de las proteínas DELLA. Además, un análisis de 

inmunoprecipitación de cromatina seguido de secuenciación masiva, nos ha 



permitido mostrar que las proteínas DELLA se encuentran en los promotores de 

muchos genes, indicando que este mecanismo es extenso. 

Basándose en estos resultados y en la identificación de más de 50 factores de 

transcripción como interactores de la proteína DELLA GAI, proponemos que estas 

proteínas actúan como "hubs" en redes de señalización. En particular, proponemos 

que éste es el mecanismo por el que estas proteínas son clave para la integración de 

señales externas y respuestas de desarrollo. 

 



 

Resum 

 

Com a organismes sedentaris, les plantes són extremadament plàstiques. 

Aquesta característica es deu a l’habilitat d’integrar els senyals endògens i externs 

per tal de modular el seu desenvolupament. Per tant, entendre el mecanisme 

d’aquesta integració és de màxima importància. Senyals com la llum, les hormones i el 

rellotge circadià contribueixen a conferir aquesta plasticitat. En aquesta tesi hem 

adreçat, a la planta de referència Arabidopsis thaliana, com el rellotge circadià i les 

proteïnes DELLA, que són els reguladors negatius de la senyalització per les 

hormones giberel•lines (GAs), integren senyals de l’entorn per a modular xarxes 

transcripcionals. 

Hem demostrat que el rellotge circadià regula els nivells de missatger dels 

receptors de GAs GID1s, que promouen degradació de les proteïnes DELLA, el que es 

tradueix en una oscil•lació diària en els nivells d’aquestes, que són mínims al final de 

la nit. Aquesta oscil•lació és clau per a la regulació diürna tant de la velocitat de 

creixement del hipocòtil com de la regulació de molts gens. 

En aquesta tesi també mostrem el mecanisme pel que la via de les GAs 

interacciona amb altres dos vies hormonals de la planta, la de l’etilé i la de les 

citoquinines, mitjançant la interacció física de les proteïnes DELLA amb dos factors de 

transcripció que participen en eixes vies. La interacció amb RAP2.3 inactiva al factor 

de transcripció evitant la unió als gens diana, el que és un cas més de inactivació per 

segrest, i contribueix a la regulació de l’obertura del ganxo apical per etilé i GAs. Pel 

contrari, la interacció amb ARR1, que promou senyalització per citoquinines, és 

positiva per a l’activitat del factor de transcripció i es produeix als promotors diana, 

contribuint d’aquesta manera a la regulació antagònica de certs processos fisiològics 

per GAs i citoquinines, com la regulació del creixement de l’arrel o 

l’escotomorfogènesi. Aquesta interacció defineix un mecanisme nou de regulació de 

factors de transcripció per proteïnes DELLA. A més, un anàlisi per 

immunoprecipitació de cromatina seguit de seqüenciació massiva, ens ha permés 



mostrar que les proteïnes DELLA apareixen als promotors de molts gens, indicant 

que aquest mecanisme és extens. 

Basant-se en aquests resultats i en la identificació de més de 50 factors de 

transcripció que hem identificat que interaccionen amb la proteïna DELLA GAI, 

proposem que aquestes proteïnes actuen com a “hubs” en xarxes de senyalització. En 

particular, proposem que aquest és el mecanisme pel que aquestes proteïnes són 

claus integrant senyals externs i respostes de desenvolupament. 
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1.1 Plant hormones 

 

Contrary to other organisms, plants cannot run away from the environmental 

conditions that compromise their survival. Therefore they have evolved an 

interlocked mechanism to adjust their growth and developmental processes 

accordingly to environment. This characteristic, also called “plasticity”, provides 

plants with a big adaptability allowing them to survive. Among the factors that 

contribute to plasticity are hormones. 

Plant hormones are a group of natural substances able to influence 

physiological processes, and only small concentrations are needed to produce 

significant effects. Contrary to animal hormones, plant hormones can be produced 

within each cell, and they either act locally or are transported where needed. For the 

moment, eight classes of plant hormones have been identified: auxin, gibberellins 

(GAs), cytokinins (CKs), ethylene, abscisic acid (ABA), brassinosteroids (BRs), 

jasmonates and, more recently, strigolactones. 

Since their discovery, the role of each hormone has been extensively studied, 

especially to understand how their activity is integrated with environmental signals. 

Hormones participate in response to stimuli such as light and temperature. They also 

contribute during the response triggered by other types of external stimuli such as 

nutrient deficiency, salt stress and infection with pathogens (Achard et al.,2006; Bari 

and Jones, 2009; Jaillais and Chory, 2010). Due to this pervasive effect of plant 

hormones in plant development and physiology, big efforts have been made to 

elucidate their biosynthesis and signaling pathways. At present most components of 

signaling and biosynthesis are characterized, but the mechanism of action is not 

completely understood. Although each hormone has been attributed a different set of 

specific roles, it has also become clear that many of them share overlapping functions. 

So, one of the pressing questions that biologists are trying to answer is what is the 

molecular mechanism that underlies the interaction between the different hormones 

–or, more broadly, between the different environmental and endogenous signals. 
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1.2 An endogenous mechanism that regulates hormone signal 

transduction 

 

Plants are able to compensate and anticipate daily changes. The “circadian 

clock” is the core mechanism that modulates plant responses in a timely manner, for 

instance adjusting plant growth to the most suitable time of the day (Dodd et al., 

2005). This mechanism is widely conserved among organisms including algae, fungi, 

plants and animals. Its importance in plants can be perceived since one third of the 

Arabidopsis thaliana genes are regulated by the circadian clock (Pruneda-Paz and 

Kay, 2010), resulting in the control of many physiological processes such as cotyledon 

movement, hypocotyl elongation, stomata opening, photosynthesis, and seasonal 

processes such as flowering (Cumming and Wagner, 1968; McClung, 2006). 

Hormones modulate these developmental processes as well, and it is known that the 

clock has an influence in hormonal biosynthesis; for instance it controls the levels of 

ethylene, BRs, GAs, ABA and auxin related genes (Jouve et al., 1999; Blazquez et al., 

2002; Thain et al., 2004; Bancos et al., 2006; Covington and Harmer, 2007; Legnaioli 

et al., 2009). In addition to biosynthesis, the circadian clock regulates hormone signal 

transduction; for example, control of auxin regulated genes by the circadian clock 

modifies the sensitivity of the plant to the hormone (Covington and Harmer, 2007). 

This indicates that hormone signaling can be regulated by the circadian clock -a 

question that is not completely understood. 

The circadian clock can be entrained by external stimuli such as light and 

temperature, and one of the questions during this thesis was trying to integrate the 

circadian clock with GAs, since GAs play an essential role during temperature and 

light mediated growth (Alabadi and Blazquez, 2009; Stavang et al., 2009). During the 

next section we will introduce GAs. 

 

1.3 Gibberellins 

 

GAs were first discovered when the Japanese scientist Eiichi Kurisawa was 

studying the bakanae disease in rice. The pathogenic fungus Gibberella fujikuroi was 
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identified as the cause of the disease that produced big losses due to the exaggerated 

elongation and fall over of infected plants. Observations showed that a substance 

secreted by the fungus was responsible for this tallness (Yabuta and Sumiki, 1938), 

and soon thereafter this substance was identified as a form of GA. Since then, GAs 

have been widely identified in plants, and also in some fungi and bacteria (Phinney, 

1983). 

In plants, a large effort has been made to elucidate GA function, synthesis and 

signaling. The elucidation of the crystal structure of the fungus substance “gibberellic 

acid” help to classify GAs as a big family of diterpenoids carboxylic acids (Yabuta and 

Sumiki, 1938). Up to now, 130 GAs have been identified, however only a few of them 

are functional in plants (GA1, GA3, GA4 and GA7) (Hedden and Phillips, 2000). These 

functional GAs regulate several physiological processes such as germination, stem 

elongation, photomorphogenesis, pollen development, flowering, fruit induction, leaf 

expansion and root growth (Figure 1.1) (Wilson et al., 1992; Garcia-Martinez et al., 

1997; Peng and Harberd, 1997; Blazquez et al., 1998; Lee et al., 2002; Ogawa et al., 

2003; Alabadi et al., 2004; Yu et al., 2004; Achard et al., 2007; Ubeda-Tomas et al., 

2008; Achard et al., 2009; Nelissen et al., 2012).  

 

 

 

 

 

 

 

 

Figure 1.1 Gibberellin contribution during plant´s life cycle  
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The relevance of GA action for plant biology has been reflected in the 

numerous practical uses derived from GA application, the application of GA 

inhibitors, or the biotechnological manipulation of GA synthesis and signaling, like 

changing the stalk length of seedless grapes, or increasing sugar yield in sugarcane 

(Silverstone and Sun, 2000). Moreover the plants used during the so called “Green 

Revolution”, which were rice and wheat varieties selected for increased yield that 

decreased the losses caused by lodging, turned out to be GA insensitive mutants. 

 

1.4 Gibberellin metabolism 

 

In higher plants GAs are usually produced through the methylerythritol 

phosphate (MEP) pathway. In this pathway, GAs are synthesized in three stages, each 

in a different cellular compartment (Figure 1.2): in the plastid, geranylgeranyl 

diphosphate (GGDP), a common precursor for diterpenes and tetraterpenes 

(carotenoids) (Lange, 1998; Hedden and Phillips, 2000), is converted into ent-

kaurene in two steps catalyzed by two different enzymes: CPS (ent-copalyl 

diphosphate synthase) and KS (ent-kaurene synthase). ent-kaurene is then converted 

into GA12 or GA53 (inactive precursors) by hydroxylation carried out by two 

cytochrome P450 monooxygenases: KO (ent-kaurene oxidase) located in the 

membrane of the plastid, and KAO (ent-kaurenoic acid oxidase) located in the 

endoplasmic reticulum. GA12, considered as the common precursor for all GAs in 

plants (Hedden and Phillips, 2000). In the cytoplasm active GAs are produced when 

GA12 is submitted to two subsequent oxidations catalyzed by GA 20-oxidase (GA20ox) 

and GA 3-oxidase (GA3ox) (Hedden and Phillips, 2000). 

GAs can also be inactivated, and the best characterized mechanism is the 2β-

hydroxylation of GAs by GA 2-oxidases (GA2ox). Another inactivation mechanism is 

the formation of conjugates with glucose. The conjugating sugar is usually abundant 

in seeds, and the conjugates could be a storage form of GAs (Schneider and 

Schliemann, 1994), although this role has not been confirmed yet. Recently two 

additional mechanisms of inactivation have been reported. First, the cytochrome 

P450 mono-oxygenase, encoded by the ELONGATED UPPERMOST INTERNODE (EUI) 
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gene in rice, converts non hydroxylated GAs into 16α,17-epoxides, reducing the 

biological activity of GA4 (Zhu et al., 2006). And second, the enzymes GAMT1 and 

GAMT2 catalyze the formation of GA methyl-esters. Their overexpression causes a GA 

deficient phenotype (Varbanova et al., 2007). 

To respond effectively to environmental changes, plants need to be able to 

precisely regulate hormone homeostasis. GA levels can be regulated by several 

mechanisms. Most of the GA20ox and GA3ox genes are down-regulated through a GA-

mediated feedback mechanism (Hedden and Phillips, 2000; Yamaguchi and Kamiya, 

2000). In contrast, the genes encoding GA 2-oxidases are up-regulated by GA 

treatment (Thomas et al., 1999; Elliott et al., 2001). Apart from this mechanism of 

regulation, other hormones can alter GA levels. For instance, BRs promote the 

expression of the GA20ox1 gene in Arabidopsis seedlings (Bouquin et al., 2001). 

Auxins have also been proposed to increase GA levels by transcriptional regulation of 

GA20ox and GA3ox genes in several plant species (Ross et al., 2000; Frigerio et al., 

2006). In addition, the gaseous hormone ethylene promotes flowering through the 

regulation of GA metabolism (Achard et al., 2007). Moreover, there is also 

transcriptional regulation of GA metabolism genes triggered by environmental 

conditions. The seeds of some plant species require light to germinate, and this 

requirement can be overcome by external application of GAs, suggesting that light 

induces GA production during seed germination. In fact, it has been shown that light 

can induce transcript levels of GA3ox in seeds (Toyomasu et al., 1998). Interestingly 

however, the effect of light on seedlings stages is completely the opposite: it reduces 

the levels of GA20ox and GA3ox transcripts (O'Neill et al., 2000; Garcia-Martinez and 

Gil, 2001). Finally, temperature has been shown to have an impact: cold temperatures 

stimulate transcription of GA biosynthesis genes, whereas GA2ox genes are repressed, 

in species that require low temperatures for germination of dark imbibed seeds 

(Yamauchi et al., 2004). And again the effect of the temperature at seedling is the 

opposite (Stavang et al., 2009). 
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1.5 Gibberellin signaling 

 

The mechanism of GA action is widely conserved among dicots and 

monocots. Current information of GA signaling has been mostly gathered from 

genetic screenings in Arabidopsis and rice. In summary, the GA signaling pathway 

consists of three elements; the soluble receptors (GID1s), the transcriptional 

regulators DELLA proteins (DELLAs), and F-box proteins (GID2/SLY1) that 

mediate GA-dependent degradation of the transcriptional regulators.  

The GA-insensitive rice mutant gibberellin insensitive dwarf1 (gid1), led to the 

discovery of GA receptors (Ueguchi-Tanaka et al., 2005). In Arabidopsis there are 

three ortholog genes coding for GA receptors: GID1A, GID1B, and GID1C (Griffiths et 

Figure 1.2 Gibberellin metabolism.  

GGPP (geranylgeranyl diphosphate). Enzymes are represented in blue: CPS (ent-copalyl 

diphosphate synthase), KS (ent-kaurene synthase), KO (ent-kaurene oxidase), KAO (ent-

kaurenoic acid oxidase), GA20ox (GA 20-oxidase), GA3ox (GA 3-oxidase), GA2ox (GA 2-

oxidase), GAMT (gibberellin methyltransferase). 
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al., 2006; Nakajima et al., 2006). Single gid1 mutants develop normally, and only a 

triple knockout mutant displays the dwarf phenotype characteristic of GA signaling 

deficiency (Griffiths et al., 2006; Willige et al., 2007), it appears that the three 

receptors in Arabidopsis have overlapping biological functions. This is in concordance 

with the observation that the three paralogs are expressed in all tissues, but at 

different levels (Griffiths et al., 2006; Nakajima et al., 2006). 

DELLAs are considered as “the master negative regulators” of GA signaling, 

and were discovered through the study of the Arabidopsis gai-1 (gibberellic acid 

insensitive-1) mutant (Peng et al., 1997). GAI is one of the five DELLAs in Arabidopsis. 

Over the years all DELLAs in Arabidopsis have been identified, GAI, Repressor of ga1-

3 (RGA), RGA like1 (RGL1), RGL2, RGL3 (Silverstone et al., 1998; Lee et al., 2002). 

These proteins are able to downregulate all GA responses (Wilson and Somerville, 

1995; Peng et al., 1999). 

Basically all GA functions rely on promoting the degradation of these 

proteins; GA signaling starts when active GAs bind to the nuclear receptor GID1 

(Ueguchi-Tanaka et al., 2005). Crystal structure revealed that GID1 contains a GA-

binding pocket and a flexible N-terminal extension (Shimada et al., 2008). When the 

GA-GID1 complex is formed the flexible domain closes the pocket, and this 

conformational change allows GID1s to bind to the N-terminal part of DELLAs 

(Murase et al., 2008), this domain is necessary for interaction with GID1s (Willige et 

al., 2007). Once the GA-GID1-DELLA complex is formed, a SCF-dependent E3 

ubiquitin ligase complex involving the F-box proteins GID2/SLY1 binds to DELLAs 

(Griffiths et al., 2006; Ariizumi et al., 2011), leading to their polyubiquitination and 

subsequent degradation by the 26S proteasome (Griffiths et al., 2006; Ueguchi-

Tanaka et al., 2007; Willige et al., 2007; Schwechheimer, 2008) (Figure 1.3). 

 

 

 

 

 

 

Figure 1.3 Gibberellin signaling (Daviere and Achard, 2013). 
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1.6 Structural features of DELLA proteins  

 

DELLAs, the most extensively studied components of GAs signaling, are 

members of the GRAS protein family with nuclear localization (Bolle, 2004). Their 

ability to negatively regulate GA responses is based on the observation that della 

mutants in Arabidopsis and rice results in a constitutive GAs response (Dill and Sun, 

2001; Ikeda et al., 2001; Lee et al., 2002; Cheng et al., 2004; Tyler et al., 2004), and on 

the contrary, gain of function mutants display the characteristic phenotype of 

gibberellin deficiency (Wilson and Somerville, 1995; Dill et al., 2001). 

DELLAs are highly conserved among species (Peng et al., 1997; Peng et al., 

1999; Ikeda et al., 2001; Chandler et al., 2002; Marti et al., 2007; Gallego-Bartolomé et 

al., 2010). Moreover, unlike Arabidopsis where there are five DELLA genes, in some 

species like rice or tomato there is a single DELLA gene (Peng et al., 1997; Peng et al., 

1999; Ikeda et al., 2001; Chandler et al., 2002; Marti et al., 2007). Interestingly, the 

only DELLA is sufficient to regulate all GA responses in these species. In accordance 

with this, it has been proposed that functional diversification of DELLA genes, at least 

in Brassicaceae, is based on their differential expression pattern (Gallego-Bartolome 

et al., 2010). Therefore, the differential roles for the different DELLAs in Arabidopsis 

is caused by differential transcriptional regulation of the corresponding genes. In 

particular, RGA and GAI are the major GA repressors during vegetative growth and 

floral induction (Richards et al., 2001; Olszewski et al., 2002), RGA, RGL1 and RGL2 

together modulate flower development (Lee et al., 2002; Cheng et al., 2004; Tyler et 

al., 2004), and RGL2 is the main DELLA regulating seed dormancy (Lee et al., 2002). 

Besides, DELLAs present high sequence conservation, all DELLAs contain the 

intrinsically disordered N-terminal DELLA domain containing conserved amino acid 

sequences Asp-Glu-Leu-Leu-Ala (DELLA) and the TVHYNP and poly Ser/Thr domains 

(Figure 1.4). Deletions on DELLA or TVHYNP regions result in protein versions 

unable to interact with GID1 (Figure 1.3), and therefore are resistant to GA-promoted 

degradation, for example the Arabidopsis mutants rga-∆17 or gai-1 (Willige et al., 

2007). 
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On the other hand, the GRAS domain within the C-terminus contains two Leu 

heptads repeats (LR1 and LR2), a VHIID domain, and the subdomain SH2-like 

including PFYRE and SAW subunits (Hauvermale et al., 2012). The VHIID and LHRs 

domains have been implicated in dimerization of the protein (Itoh et al., 2002). While 

the function of PFYRE and SAW is still unknown. The C-terminal region interacts with 

the F-box protein SLY1 in Arabidopsis (and OsGID2 in rice) (Dill et al., 2004; Gomi et 

al., 2004). 

Since their discovery, DELLAs have been implicated in the regulation of 

development during the whole plant life. For instance, they restrict vegetative growth 

and root elongation; they promote photomorphogenesis and seed dormancy; and 

they delay flowering, especially under non-inductive photoperiodic conditions 

(Blazquez et al., 1998; Lee et al., 2002; Alabadi et al., 2004; Penfield et al., 2006; 

Achard et al., 2007). They are also involved in the response to stress, increasing the 

resistance to necrotrophic fungi and promoting the tolerance to certain abiotic stress 

factors like drought and cold (Achard et al., 2006; Achard et al., 2008; Navarro et al., 

2008).  

It is well established that DELLAs act as transcriptional regulators to control 

all these responses (Ogawa et al., 2003; Cao et al., 2006; Zentella et al., 2007; Hou et 

al., 2008; Gallego-bartolome et al., 2011). However, DELLAs do not possess a DNA 

binding domain, and the mechanism by which they control transcription has been 

elusive until the recent discovery that RGA interacts with PIF4 (PHYTOCHROME 

INTERACTING FACTOR 4) and PIF3, DNA-binding transcription factors (TFs) of the 

bHLH family that promote the expression of genes involved in cell elongation (de 

Lucas et al., 2008; Feng et al., 2008). Through this interaction, DELLAs would block 

the DNA binding capacity of PIF4 and PIF3 to their target genes, resulting in the 

Figure 1.4. The domain structure of DELLA proteins. 
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restriction of cell elongation (de Lucas et al., 2008). However since these interactions 

do not explain all processes regulated by DELLAs, a possibility is that the ability of 

DELLAs to interact with TFs could be extended to more than the two known at the 

beginning of my work. One of the goals of this thesis has been to explore this 

possibility.  
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2. Objectives 

 

As reviewed above, GAs contribute largely to the modulation of 

developmental processes through DELLA-mediated transcriptional regulation. All 

those processes are coincidentally regulated by additional signaling pathways (other 

hormones, light, the circadian clock, etc), and this Thesis addresses the molecular 

mechanisms by which DELLAs integrate environmental signals and relay this 

information to transcriptional networks. 

The two specific objectives pursued in this work are:  

1. To investigate the connection between the circadian clock 

and DELLA abundance. Previous evidence shows that DELLAs 

are essential regulators of cell expansion, while the circadian 

clock determines the timing for cell expansion during the day, so 

we hypothesized that the circadian clock could regulate GA 

signaling at one or several levels. This is the focus of Chapter 1. 

2.  To find additional transcription factors through which 

DELLAs control gene expression. Previous evidence indicates 

that DELLAs do not bind DNA directly, but modify the activity of 

other TFs with which they interact physically. The published 

interaction with PIF3 and PIF4 does not account for all the 

DELLA-dependent transcriptional changes, therefore we propose 

to screen for additional TFs and evaluate the biological 

significance of the partners found. This is the focus of Chapters 2, 

3, and 4.  

 





 

 
 

 

 

  

Chapter 1 

Circadian oscillation of gibberellin signaling in 

Arabidopsis 

María Verónica Arana, Nora A. Marín-de la Rosa, Julin N. 

Maloof, Miguel A. Blázquez, David Alabadí.  
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3.1 Abstract 

 

Circadian clocks are endogenous time-keeping mechanisms that allow 

organisms to anticipate rhythmic, daily environmental changes. Temporal 

coordination of transcription results in a set of gene expression patterns with peak 

levels occurring at precise times of the day. An intriguing question is how a single 

clock can generate different oscillatory rhythms, and it has been proposed that 

hormone signaling might act in plants as a relay mechanism to modulate the 

amplitude and the phase of output rhythms. Here we show that the circadian clock 

gates GA signaling through transcriptional regulation of the GA receptors, resulting in 

higher stability of DELLAs during daytime and higher GA sensitivity at night. 

Oscillation of GA signaling appears to be particularly critical for rhythmic growth, 

given that constitutive expression of the GA receptor expands the daily growth period 

in seedlings, and complete loss of DELLA function causes continuous, arrhythmic 

hypocotyl growth. Moreover, transcriptomic analysis of a pentuple della KO mutant 

indicates that the GA pathway mediates the rhythmic expression of many clock-

regulated genes related to biotic and abiotic stress responses and cell wall 

modification. Thus, gating of GA sensitivity by the circadian clock represents an 

additional layer of regulation that might provide extra robustness to the diurnal 

growth rhythm and constitute a regulatory module that coordinates the circadian 

clock with additional endogenous and environmental signals. 
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3.2 Introduction 

 

The pervasive role of the circadian clock driving plant physiology is reflected 

by the extensive regulation it exerts on gene expression, since more than one-third of 

Arabidopsis genes are under circadian control (Hasty et al., 2001). Remarkably, the 

expression of almost every single gene of Arabidopsis cycles when plants are grown 

under more realistic situations, for example combinations of thermo- and photocycles 

(Michael et al., 2008b). This suggests that the entrainment of the circadian clock by 

light and temperature signals might allow plants to adapt to the daily changes in the 

environment by timing every physiological pathway to the specific time of day when 

it is more advantageous. For instance, the concerted action of the circadian clock and 

phyB-mediated light signaling allows the expression of a set of hormone-related 

genes towards dawn (Michael et al., 2008a) which may provide robustness to the 

rhythmic patterns of growth of the seedling under diurnal conditions (Nozue et al., 

2007). Accordingly, a correlation exists between the oscillation of auxin-related genes 

and changes in the hypocotyl growth-rate of seedlings grown under free-running 

conditions (Nozue et al., 2007). Accordingly, a correlation exists between the 

oscillation of auxin-related genes and changes in the hypocotyl growth rate of 

seedlings grown under free-running conditions (Dowson-Day and Millar, 1999; 

Covington and Harmer, 2007) although the physiological significance of this 

correlation remains to be explored. In addition to light-mediated growth, the 

circadian clock controls the time of day that other environmental response pathways 

can be activated, often by triggering the oscillation of key signaling genes involved in 

these pathways (Harmer et al., 2000). This type of regulation is known as gating 

because the clock can be thought of as opening or closing a gate to control the flow of 

information through a signaling pathway. Through such gating the circadian clock 

regulates many physiological responses including the photoperiodic induction of 

flowering and stress responses (de Montaigu et al., 2010). 

GA has a prominent role in the regulation of several developmental programs 

also affected by light and the circadian clock, including the establishment of 
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photomorphogenesis (Alabadí et al., 2004; Achard et al., 2007; Alabadí et al., 2008) 

and cell expansion (Cowling and Harberd, 1999), and the question arises of whether 

GA activity might mediate circadian regulation of clock targets. Given that such a 

regulatory mechanism would impact the robustness and flexibility of circadian 

regulation of development, we decided to explore this possibility and its physiological 

relevance 

 

3.3 Results and discussion 

 

3.3.1 Expression of GA receptors is controlled by the circadian clock 

 

To investigate whether the circadian clock regulates GA signaling in 

Arabidopsis, we examined the daily expression pattern of all known GA signaling 

elements in the DIURNAL database (http://diurnal.cgrb.oregonstate.edu/) (Mockler 

et al., 2007; Michael et al., 2008b). Although a weak oscillation could be detected in 

some cases, mostly linked to temperature rhythms, only the GID1 receptor genes 

displayed robust cycling under short days (Figure. S3.1A). The cycling of GID1a and 

GID1b was validated by real-time RT-qPCR in independent time-course experiments, 

whereas we were not able detect oscillation for GID1c transcript (Figure. 3.1A). The 

anticipation of changes in transcript levels to the light-to-dark and dark-to-light 

transitions and the oscillation under continuous light in entrained seedlings (Figure. 

S3.1B) suggested circadian rather than diurnal regulation. This was confirmed by 

analyzing mRNA levels in mutants defective for clock function, toc1-1 (Boonsirichai et 

al., 2002) and lhy (Schaffer et al., 1998). The waveform of the oscillation in toc1-1 

seedlings was different from the wild-type, the peak was narrower and it was phased 

earlier The waveform of the oscillation in toc1-1 seedlings was different from the 

wild-type, the peak was narrower and it was phased earlier (Figure. 3.1F). The phase 

advance is typical of toc1-1 mutants, due to the deviation between their endogenous 

period (21 h) and the length of the day (24 h) (Strayer et al., 2000). Transcript levels 

of both genes were altered also in the arrhythmic mutant lhy (Figure. 3.1K). 

The expression of GA receptor genes is known to respond to endogenous GA 

levels through a DELLA-mediated feedback mechanism, i.e. their expression increases 
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when GA levels are low and decreases when hormone levels are high (Griffiths et al., 

2006). Hence, oscillation of GID1 transcript levels might be a direct consequence of 

the circadian clock activity or, alternatively, it might respond to a putative oscillation 

of GA levels. However, GID1a expression was not altered in seedlings of the quadruple 

della mutant (rga-t2 gai-t6 rgl1-1 rgl2-1) (Cheng et al., 2004; Achard et al., 2006) 

(Figure. S3.2), indicating that the circadian clock controls the expression of GID1 

genes independently of the status of the GA pathway. 

  

 

 

 

 

 

 

Figure. 3.1. The circadian clock controls the diurnal oscillation of DELLA proteins in 
the cell expansion zone of hypocotyls. (A,F,K) Expression of GID1a, GID1b, and GID1c in 
5-day-old Ler wild type seedlings (A), in toc1-1 (F) and in lhy (K) mutants grown under 
short-day photocycles (8-h light/16-h dark). In (B-E, G-J, L-O), seedlings carrying the 
35S::TAP-GAI and RGA::GFP-RGA constructs were grown for 5 days under short-day 
photocycles (8-h light/16-h dark). DELLA protein levels in the Ler WT (B) and in the toc1-1 
(G) and the lhy (J) mutants were determined by western-blot analysis. TAP-GAI and GFP-
RGA proteins were detected with commercial antibodies against the myc tag and GFP, 
respectively. DELLA levels were normalized against levels of DET3, which was used as 
loading control. Data are average of three independent experiments and plotted as mean ± 
s.e.m. Protein level at ZT0 was set to one and used as reference for all other time points. 
White and grey areas represent day and night, respectively. Fluorescence of GFP-RGA 
oscillates in the upper part of hypocotyls of Ler WT (C-E) and toc1-1 mutant seedlings (H-
J), but not in the lhy mutant (M-O). Fluorescence was detected by confocal microscopy. 
Images are representative of three independent biological repeats including 12-15 
seedlings per time point and per genotype. 
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3.3.2 Levels of DELLA proteins oscillate with a daily rhythm  

 

GID1 receptors are known to interact with DELLAs in a GA-dependent way, 

and promote their degradation (Griffiths et al., 2006). Thus, if the oscillation of GID1 

expression is physiologically relevant, it should cause coherent changes in DELLA 

accumulation with a daily rhythm. We focused our attention in two DELLAs, GA 

INSENSITIVE (GAI) and REPRESSOR OF ga1-3 (RGA), which are the most abundant 

DELLAs in young seedlings and shoots (Tyler et al., 2004). To monitor the level of 

these proteins we used lines that express either the RGA::GFP-RGA (Silverstone et al., 

2001) or 35S::TAP-GAI (Feng et al., 2008) transgenes. Consistent with the clock 

regulation of GID1 genes, both GFP-RGA and TAP-GAI protein levels oscillated in a 

diurnal manner, showing peak levels at the end of the light period (Figure. 3.1 B). 

Strikingly, GFP-RGA oscillation was detected in the growing region of the hypocotyls 

(Figure. 3.1 C-E and H-J). Fluorescence from the fusion protein accumulated in nuclei 

of the uppermost part of hypocotyls at ZT9, while it was below the detection limit late 

in the night, at ZT18 (Figure. 3.1 C-E), coinciding with a period of minimum and 

maximum growth rates, respectively (Nozue et al., 2007). The periodicity of RGA 

accumulation must largely be caused by the activity of GID1 receptors, as the RGA 

transcript did not show significant oscillation (Figure. S3.1C). Thus, given (i) the 

major role of RGA and GAI in controlling growth (Dill and Sun, 2001; King et al., 

2001), and (ii) that seedling growth under diurnal conditions is gated by the 

circadian clock (Nozue et al., 2007), this result suggests that DELLAs are regulatory 

components for the control of the clock output, such as daily growth rhythm in young 

seedlings (Nozue et al., 2007). 

The oscillation of GFP-RGA levels was affected also in clock mutants. The 

waveform of GFP-RGA oscillation in toc1-1 seedlings was slightly different from the 

WT, the amplitude was higher and the peak narrower because of an advance in the 

phase of the trough (Figure. 3.1 G-J), according to the phase advance observed in the 

expression of GA receptor genes (Figure. 3.1F). On the contrary, GFP-RGA protein 

levels were constant and low in the lhy mutant (Fig. 3.1 L-O), which correlates with 

the long hypocotyl phenotype observed in this mutant when grown in short days 

(Michael et al., 2008a). 
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3.3.3 The circadian clock gates GA signaling activity 

The observation that lower DELLAs levels coincide with higher growth rates 

at the end of the night suggests that they participate in the core mechanism that 

controls rhythmic growth of hypocotyls. To test this hypothesis, we examined the 

impact upon growth of an alteration of the normal rhythm of GA signaling with two 

complementary approaches. First, we used a transgenic line that expresses a 

dominant version of GAI under the control of a heat-shock inducible promoter, 

HS::gai-1D (Alabadí et al., 2008). This line allowed us to block GA signaling by 

applying a 10-min heat shock at 33ºC at two different times of the day: ZT5, when the 

growth rate is low and DELLA levels high, and ZT17, which coincides with the 

beginning of the growing phase and with the trough of DELLA levels (Figure. 3.2A). 

The effectiveness of the treatments was confirmed by expression analysis of gai-1 

and one of its known direct targets, AtGA20ox2 (Figure. 3.2B). Interestingly, blocking 

GA activity at ZT5 during four consecutive days did not have any effect upon 

hypocotyl growth (Figure. 3.2C). On the contrary, the heat treatment had a strong 

inhibitory effect on the hypocotyl growth of HS::gai-1D seedlings when applied at 

ZT17 (Figure. 3.2C).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 3.2 Blocking GA signaling at night 
affects hypocotyl growth. Seedlings of the 
HS::gai-1D line were grown under short-day 
photocycles (8-h light/16-h dark) and received 
heat treatments of 33ºC for 10 min at either 
ZT5 or ZT17 as explained in Materials and 
Methods. In (A), shaded areas mark the period 
of the day during which gai-1D accumulates. 
(B) Expression of gai-1D (bars) and its target 
gene GA20ox2 (circles, scale on the right) after 
heat treatments at ZT5 (white symbols) and 
ZT17 (dark symbols). (C) Hypocotyl length of 
Col-0 WT and HS::gai-1D seedlings that did not 
receive heat treatments (grey bars) or that 
received treatments at ZT5 (white bars) or 
ZT17 (black bars). The experiment was 
repeated three times with similar results. Data 
represent the mean ± sd (n ≥ 15 seedlings), 
and asterisks indicate p<0.0001. 
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Second, we examined how transient application of GA4 at two different times 

of the day would rescue the dwarfism caused by continuous incubation with 

paclobutrazol (PAC), a compound that causes accumulation of DELLAs (Figure. 3.3A 

and B). GA-application provoked rapid degradation of DELLAs that lasted for the next 

10 hours: between ZT1 and ZT10 when the GA treatment was applied at dawn, and 

between ZT13 and ZT22 when applied at ZT12 (Figure. 3.3B). Importantly, GA 

treatment applied at ZT12 during two consecutive days (fourth and fifth) significantly 

alleviated the growth-repressing effects of PAC, whereas it had no effect when 

applied at dawn (Figure. 3.3C). In summary, these results confirm that there is a 

DELLA-sensitive period that overlaps the growing phase of the night, and that under 

short-day conditions the circadian clock might allow growth by preventing 

accumulation of DELLAs during that particular period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 3.3 GA application at night 
releases the growth restrain imposed 
by DELLAs. RGA::GFP-RGA seedlings 
grown under short-day photocycles (8-h 
light/16-h dark) in the presence of 0.2 µM 
PAC were treated with 1 µM GA4 at either 
ZT0 or ZT12, or untreated, as explained in 
Materials and Methods. (A) Scheme of 
DELLA accumulation after GA4-treatments, 
deduced from the GFP-RGA fluorescence 
of seedlings grown under the same 
conditions (B). Confocal images taken at 
the time of GA4-treatment (ZT0 and ZT12), 
1 h (ZT1 and ZT13), and 10 h later (ZT10 
and ZT22), show that the maximum period 
with low DELLA levels spans less than 10 
h. Images are representative of three 
independent biological repeats including 
8-10 seedlings per time point. (C) 
Hypocotyl length of wild-type (Ler) 
seedlings grown in the presence of PAC 
that did not receive any additional 
treatment (mock) or that were treated 
with GA4 at ZT0 (day) or ZT12 (night). The 
wild-type seedlings contain the RGA::GFP-
RGA transgene. Data represent mean ± sd 
(n ≥ 15 seedlings). Asterisks indicate 
p<0.001 
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3.3.4 Oscillation of GA signaling refines rhythmic growth 

 

If the oscillation of GA signaling constitutes part of the mechanism that 

ensures rhythmic growth, a prediction of this model is that GA signaling mutants 

should display not only a defect in the final size of the hypocotyl (Cowling and 

Harberd, 1999), but also an altered rhythmic growth pattern. In agreement with this, 

transgenic plants that expressed GID1a under the control of the 35S promoter 

showed an expanded growth phase that started at the same time as in the wild type 

and extended well into daytime, almost spanning the whole light period (Figure. 

3.4A). In agreement with this, plants overexpressing GID1a, GID1b, or GID1c displayed 

longer hypocotyls compared to the wild type (P < 0.05, Student t test; Figure. S3.3A), 

and seedlings of gid1a-1, gid1b-1, and gid1c-1 loss-of-function mutants, and of the 

different double mutant combinations (Griffiths et al., 2006) had shorter hypocotyls 

than the WT (P < 0.05, Student t test; Figure. S3.3B). Taken together, these results 

indicate that GID1 expression is limiting for promotion of hypocotyl elongation under 

diurnal conditions and that oscillation of GID1 is necessary for the establishment of 

proper patterns of rhythmic growth. 

 

 

 

 

Nonetheless, seedlings overexpressing GID1a still exhibited robust rhythmic 

growth. Given that this behavior cannot be attributed to circadian regulation of GID1 

Figure. 3.4 GA activity regulates diurnal rhythms of hypocotyl elongation. Col-0 and 
35S::GID1a seedlings (A), and Ler and quintuple della mutant seedlings (B) were grown 
under short-day photocycles (8-h light/16-h dark) for three days before they were imaged 
under the same conditions for three additional days. Blue and red symbols and lines 
denote the WT and mutant/transgenic seedlings, respectively. Seedlings growth-rate was 
measured as described in Materials and Methods. White and grey areas represent day and 
night, respectively. Data represent the mean ± sd (n ≥ 10 seedlings). 
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protein stability (Figure. S3.4), it could be taken as an indication that GA levels 

oscillate in a diurnal or in a clock-controlled manner. In fact, expression of several 

genes encoding GA metabolic enzymes oscillate diurnally in Arabidopsis (Hisamatsu 

et al., 2005; Zhao et al., 2007), in a manner that would likely result in lower GA levels 

at dusk; and diurnal changes in GA levels has been described in sorghum (Lee et al., 

1998). 

More clear evidence for an integral role of GA signaling in the establishment 

of rhythmic growth was provided by the quintuple della KO mutant (Feng et al., 

2008). Growth of this mutant was completely arrhythmic under short days, showing a 

relatively high growth rate during the first day examined, that progressively 

decreased over the next few days (Figure. 3.4B). This arrhythmic phenotype is not 

likely due to a dysfunction of the core clock mechanism, since the expression of the 

clock genes TOC1 and CCA1 was not significantly affected in the mutant (Figure. S3.5). 

DELLAs have been proposed to regulate cell expansion through the inhibition of PIF’s 

activity (de Lucas et al., 2008; Feng et al., 2008). The observation that pif4 pif5 double 

mutants are impaired in rhythmic growth (Nozue et al., 2007) suggests that the 

DELLA-PIF interaction might thus constitute the main output pathway that controls 

rhythmic growth. However, given that DELLAs exert part of their action also through 

the HY5 transcription factor (Alabadí et al., 2008) and hy5 mutants display 

arrhythmic growth (Nozue et al., 2007) it is also possible that other components 

different from PIF might also be part of this regulatory module. 

 

3.3.5 DELLA proteins mediate daily rhythms of gene expression 

 

GA signaling participates in the regulation of multiple developmental and 

physiological processes other than cell expansion (Sun, 2010). It is therefore possible 

that the role of DELLAs as regulatory components of the output of the circadian clock 

extends beyond the control of rhythmic growth and affects other processes. To test 

this hypothesis, we performed a genome-wide search for genes that would oscillate in 

a circadian manner in WT seedlings, and whose oscillation would be affected in a 

della KO. For this purpose, we examined global gene expression in short-day-grown 

WT and della mutant seedlings at ZT9 (high DELLA levels) and ZT21 (low DELLA 



Chapter 1 

 

34 
 

levels). In this search, we found 5,087 genes whose expression varied between both 

time points in the WT. We found that this list was significantly enriched (66%; P < 2.2 

x 10-16 by Fisher exact test) for genes differential expressed across time points in a 

previously published full short-day data set (Mockler et al., 2007; Michael et al., 

2008b), indicating that our approximation to identify genes that oscillated with a 

specific diurnal phase was acceptable. To ask what role DELLA genes play in diurnal 

regulation of gene expression, we looked for genes that were differentially expressed 

when della mutants were compared to WT. We found 58 genes differentially 

expressed between della and WT; 37 of these were only found at ZT9 and four were 

found at ZT21, consistent with DELLAs being most important at ZT9 (Figure. 3.5A). 

Furthermore, the 37 genes affected by the della KO at ZT9 were significantly enriched 

for diurnally regulated genes (70%; P = 0.001 by Fisher exact test), whereas the 

remaining differentially genes were not enriched.  

Importantly, Gene Ontology analysis showed that, among the genes whose 

oscillation was altered in the della mutant, there was an enrichment in functional 

categories related to the response to stress and environmental signals, as well as in 

genes encoding proteins located in the cell wall and the endoplasmic reticulum 

(Figure. 3.5B). Although part of the genes represented in the “cell wall” category 

could include those with a function in growth and cell expansion, the enrichment of 

other growth-unrelated categories suggests that DELLAs mediate the regulation of a 

larger array of circadian-clock controlled processes. These results attribute a more 

general role to DELLAs in the modulation of the output of the clock. Moreover, meta-

analysis of the DELLA targets at ZT9 (Figure. 3.5C) indicated that only 43% of these 

genes were either direct targets for HY5 (Lee et al., 2007) or genes also regulated by 

the PIF transcription factors (Leivar et al., 2009; Shin et al., 2009). This implies that 

DELLAs control gene expression through the interaction with additional transcription 

factors, which is in agreement with the observation that DELLAs can interact with 

several members of the bHLH family of transcription factors other than PIFs (Arnaud 

et al., 2010; Gallego-Bartolome et al., 2010). 

 



Circadian oscillation of gibberellin signaling in Arabidopsis 
 

35 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Concluding remarks 

 

The enormous plasticity of plant growth and development is based on a web 

of interacting signaling pathways, which provides the plant with multiple entry 

points to adjust their physiology in response to frequent, unpredicted environmental 

changes (Casal et al., 2004). The circadian system, on the other hand, provides the 

plant with the ability to anticipate predictable, daily and seasonal environmental 

changes (Kirschner and Mitchison, 1986) and buffers plant responses against casual 

environmental variability (Troein et al., 2009). The circadian clock, therefore, 

provides stability to plant’s life. Then, can responses regulated by the circadian clock 

Figure. 3.5 DELLAs mediate circadian regulation of transcription. (A) Scatter plot of 
genes differentially regulated at ZT21 vs ZT9 in wild-type Ler and della mutants. Genes 
showing statistically significant (FDR<0.1) differential expression between Ler and della are 
displayed for each time point in blue and red. (B) Enrichment of Gene Ontology categories 
among genes regulated by DELLAs at ZT9 (p<0.0001 in all cases). (C) Venn diagram 
showing the overlap between genes regulated by DELLAs at ZT9; genes directly bound by 
HY5, as detected by ChIP-chip experiments in light-grown seedlings (Lee et al., 2007); and 
genes regulated by PIF transcription factors, as genes differentially expressed in the 
quadruple pif1 pif3 pif4 pif5 mutant in darkness and in the light, with respect to the wild 
type (Leivar et al., 2009). 
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be plastic? We suggest that the regulation of GA activity by the circadian clock might 

provide such ability, acting as a link between two properties critical for plant growth 

and development, robustness and plasticity (Alabadí and Blázquez, 2009). Thus, the 

concurrency of clock and GA regulation of certain processes guarantees a precise and 

robust response to unpredicted, transitory, and above-noise changes in the 

environment that have an impact on the GA pathway, such as nutrient availability 

(Stelling et al., 2004), salt stress (Achard et al., 2006), ambient temperature (Stavang 

et al., 2009), or flooding (Benitez et al., 2008). The observation that the functioning of 

the circadian clock does not seem to be affected significantly by GA (Hou et al., 2008 

and the present study), supports the suggested role of GA as a regulatory output 

module that fine-tunes clock-regulated gene expression in response to environmental 

signals. 

 

3.5 Materials and methods 

 

Plant material. Arabidopsis thaliana accessions Col-0 and Ler were used as 

wild-types. Seeds of gid1a-1, gid1b-1, gid1c-1, gid1a-1 gid1b-1, gid1b-1 gid1c-1, gid1a-

1 gid1c-1, toc1-1, lhy, rga-t2 gai-t6 rgl1-1 rgl2-1, rga-t2 gai-t6 rgl1-1 rgl2-1 rgl3-1, 

RGA::GFP-RGA, 35S::TAP-GAI, and HS::gai-1D have been previously described (Millar 

et al., 1995; Schaffer et al., 1998; Silverstone et al., 2001; Achard et al., 2006; Griffiths 

et al., 2006; Alabadí et al., 2008; Feng et al., 2008). RGA::GFP-RGA, toc1-1 and 

RGA::GFP-RGA, lhy lines were obtained by genetic crosses and isolated from a F3 

population. 

 

Plasmid constructs and transgenic plants. The preparation of transgenic 

lines expressing either 35S::GID1a-YFP-HA, 35S::GID1b-YFP-HA, or 35S::GID1c-YFP-HA 

was as follows. Coding sequences of GID1a-1c, excluding the stop codon, were PCR-

amplified with Pwo polymerase (Roche) from cDNA obtained from 7-day-old, light-

grown wild-type Col-0 seedlings. Oligonucleotides used as primers for PCR 

(Supporting Table I) included the attB sites needed for Gateway®-mediated cloning 

and were designed to allow expression of a C-terminal fusion. PCR products were 

first cloned into vector pDONR-221 (Invitrogen) by BP recombination, and then 
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transferred to the binary vector pEarleyGate-101 (Pierik et al., 2009) by LR 

recombination, to create a C-terminal fusion with YFP and HA-tag. The final 

constructs were transferred to wild-type Col-0 plants by Agrobacterium-mediated 

transformation. Primary transformants were selected in MS plates containing 50 mM 

glufosinate ammonium (Fluka). Transgenic lines with a 3:1 (resistant:sensitive) 

segregation ratio were selected and several homozygous lines were identified in the 

T3 generation for each construction. 

 

Seedling growth assays. All seeds were surface sterilized with 70% (v/v) 

ethanol and 0.01% (v/v) Triton X-100 for 5 min, followed by 96% (v/v) ethanol for 5 

min. Seeds were sown on plates of ½ MS medium (Duchefa), 0.8% (w/v) agar without 

sucrose, and stratified at 4°C in darkness for 5 d. Germination was induced by placing 

the plates under white fluorescent light (190–200 µmol m-2 s-1) at 22°C for 8 h. 

Seedlings were grown at 22°C under short-day photocycles, 8 h light (70–200 µmol 

m-2s-1, depending on the experiment)/16 h dark in a Percival E-30B growth cabinet 

(Percival).  

For heat shock experiments, wild-type Col-0 and HS::gai-1D (Alabadí et al., 

2008) seedlings grown in the same plate under short days (70 µmol m-2 s-1) 

received a heat treatment (10 min at 33°C in darkness) at either ZT5 or ZT17. Control 

seedlings of both genotypes were kept at 22°C. Heat treatments were applied at days 

3, 4, 5, and 6. Hypocotyl length was measured on day 7.  

For GA sensitivity assays, RGA::GFP-RGA seeds were sown on sterile filter 

papers placed on ½ MS, 0.8% (w/v) agar plates without sucrose, stratified, and 

induced to germinate as above. After induction of germination, filter papers 

harboring seeds were transferred to treatment plates containing 0.2 µM PAC 

(Duchefa) and grown under short days (190–200 µmol m-2 s-1) at 22°C for 3 d. Filter 

papers containing 4-day-old seedlings were transferred at either ZT0 or ZT12 for 1h 

to Petri dishes with 5 ml of ½ MS liquid media containing 0.1 µM GA4 (Sigma) plus 

0.2 µM PAC, or just 0.2 µM PAC. Filter papers containing seedlings were then rinsed 

three times for 20 min in Petri dishes containing ½ MS with PAC 0.2 µM. After 

washes, seedlings were transferred into a new sterile filter paper, placed on fresh 0.2 

µM PAC treatment-plate, and returned to short-day conditions. GA treatments were 
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given during two consecutive days (4th and 5th) and hypocotyl length was measured 

on day 6. Handling of seedlings during the dark period was performed under a safe 

green light.  

To measure hypocotyl length, seedlings were placed on an acetate sheet, 

scanned at a resolution of 600 dots per inch, and the length was measured with the 

ImageJ software (http://rsb.info.nih.gov/ij/). 

The time-lapse photography and image analysis to determine the hypocotyls 

growth-rate was performed as previously described (Nozue et al., 2007), except that 

the growth medium containted ½ MS and 1% sucrose. 

 

RNA extraction and gene expression analysis by RT-qPCR. Total RNA was 

isolated from whole seedlings grown as described above (190–200 µmol m-2 s-1) by 

using the E.Z.N.A. Plant RNA Mini Kit (Omega Bio-tek) according to the 

manufacturer´s instructions. cDNA synthesis and quantitative PCR conditions were as 

described (Alabadí et al., 2008). Primers used are listed in Supporting Table II. 

 

Microarray analysis. Wild-type Ler and rga-t2 gai-t6 rgl1-1 rgl2-1 rgl3-1 

pentuple della mutant seedlings were grown under short days (190–200 µmolm-

2sec-1) at 22°C, and seedlings were sampled at ZT9 and ZT12 of day 5. Total RNA 

from whole seedlings was extracted with RNeasy Plant Mini kit (Qiagen). RNA 

labeling and hybridization to Affymetrix ATH1 arrays were performed by the 

Nottingham Arabidopsis Stock Centre (NASC). Analysis was performed in R (Duek et 

al., 2004) and Bioconductor (Reimers and Carey 2006). Microarrays were normalized 

with the RMA procedure as implemented in the affy package (Gautier et al., 2004), 

and differential expression was determined using limma (Gentleman et al., 2005) 

with a FDR < 0.05). To determine genes whose expression varies in diurnal short day 

conditions, the previously published data set from (Mockler et al., 2007) was 

downloaded from array express (http://www.ebi.ac.uk/arrayexpress/; accession E-

MEXP-1304), RMA normalized, and analyzed in limma using a one-way ANOVA model 

with time as the grouping variable.  Samples from each of the two days of collection 

were used as replicates (so in total there were 2 replicates for each of 6 time points). 
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Gene annotations were based on the TAIR9 version of the Arabidopsis website 

(http://arabidopsis.org). 

 

Protein extraction and western blots analysis. Protein extraction and 

western blot analysis from whole 5 d old seedlings grown under short days (190–200 

µmol m-2 s-1) were performed as described (Stavang et al., 2009). The GFP, TAP, and 

HA fusion proteins were detected using anti-GFP (JL8, Clontech), anti-c-myc (9E10, 

Roche), and anti-HA (3F10, Roche) antibodies, respectively. Antibodies against DET3 

were used to check protein loading (Duek et al., 2004). Signal from bound antibodies 

was revealed using ECL Advance Western Blotting detection Kit (GE Healthcare) and 

visualized and quantified using the Luminiscence Image Analyzer LAS-3000 (Fujifilm) 

and Image Gauge v4.0 (Fujifilm), respectively.  

 

Confocal imaging. Fluorescence from the GFP-RGA fusion protein was 

detected using a Leica TCS SL confocal microscope (Leica Microsystems) as 

previously described (Stavang et al., 2009). 

 

Acknowledgments. We are indebted to the NASC, Stephen G. Thomas, Tai-

ping Sun, and Nicholas P. Harberd for providing us with seeds. M.V.A. was the 

recipient of a post-doctoral contract from the Spanish Ministry of Science and 

Innovation for the mobility of young researchers into Spanish Universities, and N.A.M. 

holds a CSIC Fellowship of the JAE-Pre program. Work in the authors’ laboratories 

was funded by grants from the Spanish Ministry of Science and Innovation (BIO2007-

60923, BIO2010-15071 and CSD2007-00057), the Generalitat Valenciana 

(ACOMP/2010/190), and the U.S, National Science Foundation (DBI0820854 and 

IOS0923752). 

 

 

 

 

http://arabidopsis.org/


Chapter 1 

 

40 
 

 

3.6 Supporting figures  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. S3.1 The circadian clock controls diurnal oscillation of GID1 genes in 
Arabidopsis. (A) Transcript levels of GID1 genes in short-day photocycles (8 h light/16 h 
dark). (B) Transcript levels of GID1 genes in continuous light after entrainment in short-day 
photocycles. (C) Expression of RGA in WT and lhy mutant seedlings in short-day 
photocycles. Data are taken from DIURNAL (http://diurnal.cgrb.oregonstate.edu/) and are 
normalized to the average value to facilitate comparison. 
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Figure. S3.2 Expression of GID1a in 5-d-old Ler WT and in quadruple della mutant 
seedlings grown under short-day photocycles (8 h light/16 h dark). Values are 
expressed relative to PP2a expression. Data represent mean±SD of three technical 
replicates. Experiments were repeated twice with similar results. White and gray areas 
represent day and night, respectively. 

 

 

Figure. S3.3 GID1 activity controls hypocotyl elongation under short-day conditions. 
(A) Normalized hypocotyl length of Col-0 WT and 35S::GID1a, 35S::GID1b and 35S::GID1c 
seedlings grown for 7 d in constant darkness and in short-day photocycles (8 h light/16 h 
dark). (B) Normalized hypocotyl length of Col-0 WT and gid1 mutant seedlings grown for 7 
d in constant darkness and in short-day photocycles (8 h light/16 h dark). Data are 
mean±SD (n≥15 seedlings, **P<0.001). Hypocotyl length under diurnal conditions was 
normalized to that in etiolated seedlings. Experiments were repeated twice with similar 
results; results from one representative experiment are shown. 
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Figure. S3.4 GID1s accumulate constitutively in the overexpressing lines 35S::GID1a, 
35S::GID1b, and 35S::GID1c. Seedlings were grown for 5 d in short-dayphotocycles (8h 
light/16 h datk). GID1-GFP protein levels were determined by Western blot with 
commercial antibodies against GFP. GID1 levels were normalized against levels of DET3, 
which was used as loading control. Data are the mean of two independent experiments. 
White and gray areas represent day and night, respectively. 
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Figure. S3.5 The core clock mechanism is not affected in the pentuple della mutant. 
WT Ler and pentuple della seedlings were grown under short-day photocycles (8 h light/16 
h dark) for 5 d. Expression of CCA1 (A) and TOC1 (B) clock genes is shown. Values are 
expressed relative to PP2a. Data represent mean and SD of three technical replicates. 
Experiments were repeated twice with similar results; results from one representative 
experiment are shown. White and gray areas represent day and night, respectively. 
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3.7 Supporting Tables  

3.7.1 Table I Primers for RT-qPCR 

 

3.8.2 Table II Primers for GATEWAY cloning 

 

Sequence in bold corresponds to attB recombination sites 
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4.1 Introduction 

 

The extraordinary plasticity that characterizes plant development is thought 

to rely in a complex network of interacting signaling pathways (Casal et al., 2004). 

Hormones play important roles in this network, acting in many instances as second 

messengers that connect environmental signals that represent cues to modify 

development or growth rate with the actual developmental and growth pathways 

(Lau and Deng, 2010; Rymen and Sugimoto, 2012). In addition, extensive cross-

regulation between hormone pathways usually adds an extra layer of regulation to 

this network (Depuydt and Hardtke, 2011). 

The GA pathway is very responsive to changes in the environmental 

conditions, both biotic and abiotic (Alabadí et al., 2004; Achard et al., 2006; Achard et 

al., 2007; Navarro et al., 2008; Stavang et al., 2009). Moreover, it is also modulated by 

endogenous factors such as the circadian clock (Arana et al., 2011), or other 

hormones like auxins, ethylene, or cytokinins (Jasinski et al., 2005; Frigerio et al., 

2006; Achard et al., 2007). This places GAs, and thus DELLAs, as central players in 

integrating environmental cues with growth and development. Our current view of 

DELLA action indicates that these proteins exert their pervasive control on plant’s life 

through regulating the activity of diverse TFs by physical interaction (Daviere and 

Achard, 2013). The identification of protein-protein interactions is key to understand 

from a mechanistic point of view the network of signaling cascades that governs 

plant’s life (Arabidopsis, 2011). The determination of the topology of the interactome 

network in Arabidopsis and other model organisms has allowed to identify proteins 

with many more interacting partners than the average; thus, the particular position of 

these proteins within the network suggests that they act as hubs, performing 

important roles in signaling or other cellular processes (Dietz et al., 2010). Here, we 

have determined the TF-interactome of the Arabidopsis DELLA protein GAI by yeast 

two-hybrid assays (Y2H). Our results show that DELLAs interact with many TFs 

suggesting that they act as central signaling hubs in the plant connecting different 

signaling cascades. As follow up of this approach, we have further investigated the 

interaction with a particular TF that has provided new insights about the mechanism 
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of cross-regulation between the GA and ethylene pathways in controlling apical hook 

development. 

 

4.2 Results and discussion 

 

4.2.1 The DELLA protein GAI interacts with multiple transcription 

factors 

In order to determine the TF-interactome of the DELLA protein GAI, we 

identified additional protein partners by screening by Y2H a normalized library 

containing 1,172 TFs from Arabidopsis (Castrillo et al., 2011), using the GRAS domain 

of GAI as bait (M5-GAI). After one round of testing all pairwise interactions between 

GAI and the TFs in the library, we identified 66 interactions that corresponded to 58 

unique TFs (Supporting Table I), including 2 known interactors, PIF3 and PIF4 (de 

Lucas et al., 2008; Feng et al., 2008). Figure 4.1 shows the GAI interactome visualized 

with Cystoscape. The interacting TFs belong to 15 out of the 39 families represented 

in the library (Supporting Table II). The overall diversity of interactors found in this 

study is in line with the variety reported in the literature (Supporting Table III), and 

suggests that there is not a clear, strong bias for any particular type. Nonetheless, 

20% of them belong to the TCP family (12 interactors out of 23 present in the 

library). TCPs share certain structural similarity with bHLHs that resides in their DNA 

binding domain (Aggarwal et al., 2010), and at least in the case of the bHLH PIF4, a 

region including this domain acts as interacting surface with DELLA proteins (de 

Lucas et al., 2008), suggesting that this structure might perform the same role also for 

the TCPs. 

Currently, GAI can be classified as a major hub (between 50-100 interacting 

partners) (Geisler-Lee et al., 2007). Nonetheless, the number of interacting partners 

identified in this work is an underestimation given that (i) the library we screened 

contains 1,172 TFs out of the more than 1,500 encoded in the Arabidopsis genome 

(Riechmann et al., 2000), and (ii) DELLA proteins perform cellular roles by 

interacting with proteins that are not TFs, such as PFD3 and PFD5 (Locascio et al., 

2013). Therefore, it is very likely that DELLA proteins are super hubs (more than 101 

interacting partners) within the network, according to the classification by Geisler-
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Lee et al. (2007). Indeed, only 11 out of 3,617 proteins were identified as super hubs 

in the predicted interactome for Arabidopsis, based in evolutionarily conserved 

interactions (Geisler-Lee et al., 2007). Interestingly, the GAI interactome network 

mostly held together when GAI was removed. This is similar to what happens when 

both major and super hubs are removed from the predicted Arabidopsis interactome 

network (Geisler-Lee et al., 2007) and indicates that it is sustained mainly by minor 

hubs that form a stratus structure, as coined for the yeast interactome (Batada et al., 

2006), indicating that other proteins in the network also form part of multiple 

complexes being shared by several signaling modules (see Figure 7.1 in the “General 

Discussion” section). 

The structural variety of the GAI-interacting TFs (Supporting Tables II and III) 

joins to the diversity of processes in which they are involved (Figure 4.1 and 

Supporting Table I) in supporting the notion that DELLA proteins act as signaling 

hubs, widely controlling plant’s life (Claeys et al., 2013). Remarkably, the fact the GA 

metabolism, and hence DELLA levels, is very sensitive to changes in the 

environmental conditions (Sun, 2010), places DELLA proteins as potential signaling 

hubs connecting many aspects of plant’s physiology with the ever changing 

environment. See the “General Discussion” section for a further discussion on the 

possible role of DELLA proteins as signaling hubs, including structural issues.  

These results provide us with testable hypotheses about the molecular 

mechanisms by which GAs control these processes and interact with other signaling 

pathways. Our investigations about the physiological relevance for one of the novel 

interactions found in the screening, RELATED TO APETALA2.3 (RAP2.3), are 

presented in the next sections. We chose to pursue this interaction further for two 

reasons: (i) this TF belongs the group VII ERFs of the AP2/EREBP superfamily 

(Nakano et al., 2006), unrelated to any of the reported DELLA interactors (Supporting 

Table III) (Locascio et al., 2013); and (ii) it participates in the ethylene signaling 

cascade (Buttner and Singh, 1997), so it might represent an additional cross-

regulatory point between both hormone pathways (An et al., 2012). 
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4.2.2 GAI interacts with RAP2.3  

 

First, we confirmed the interaction between GAI and RAP2.3 by Y2H (Figure 

4.2A). Assaying deleted versions of the TF may be informative about the possible 

effects on the TF’s activity that the interaction with the DELLA protein may cause. For 

instance, RGA interacts with PIF4 through a region encompassing its DNA binding 

domain, and accordingly the PIF4’s ability to bind DNA is impaired upon interaction 

(de Lucas et al., 2008). We prepared four deleted versions of RAP2.3 (see Figure 4.2A) 

and tested their ability to interact with the GRAS domain of GAI (M5-GAI). Strikingly, 

only del1 was able to interact with M5-GAI. These results suggest that both the N-

Figure 4.1 DELLA protein interactors. Cytoscape representation of protein-protien 
interaction among M5-GAI and all interactors found. Nodes were classified by transcription 
factors families (represented by different colors) and by biological function. Black edges 
represent reported interactions by other authors, while grey edges represent interactions 
found in our screening  
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terminal part and the AP2 domain are needed to support the interaction with M5-GAI. 

Other TFs also interact with DELLA through specific parts of the protein, for instance 

BZR1 (Gallego-Bartolomé et al., 2012), PIF4 (de Lucas et al., 2008), MYC2 (Hong et al., 

2012), or ARR1 (see Chapter 4 of this Thesis). It is tempting to speculate that the 

ability of the RAP2.3 to bind DNA might be affected upon interaction with GAI, since 

del1 includes the AP2 domain, responsible of DNA binding. Interestingly, M5-GAI was 

also able to interact with a RAP2.12 (Figure 4.2A), a close relative of RAP2.3 (Nakano 

et al., 2006), suggesting that this ability might extend to all other members of the 

group VII ERFs. 

Next, we investigated if the interaction also occurs in plant cells. For that 

purpose, we performed co-immunoprecipitation assays (co-IP) in Arabidopsis 

protoplasts co-transfected with myc-GAI and HA-RAP2.3. As shown in Figure 4.2B, 

HA-RAP2.3 was efficiently pulled down from extracts by anti-myc antibodies only in 

the presence of myc-GAI, indicating that both proteins are able to interact in plant 

cells as well.  

 

 

 

 

 

 

 

 

Figure 4.2 DELLA interact with RAP2.3. (A) Y2H assays analyzing the interaction between 
M5-GAI and full length of RAP2.12, RAP2.3, and truncated versions of RAP2.3 containing of 
not the DNA binding domain AP2 (H, Histidine; 3-AT, 5 mM 3-aminotriazol). (B) co-IP in 
Arabidopsis protoplasts expressing full length of GAI fusion with myc- tag and RAP2.3 fusion 
with HA-tag.  
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4.2.3 GAI inactivates RAP2.3 upon interaction 

 

As mentioned above, the ability of several TFs to bind their DNA targets is 

inhibited upon interaction with DELLA proteins. For instance, this is the case of 

several PIFs (de Lucas et al., 2008; Feng et al., 2008; Cheminant et al., 2011; Gallego-

Bartolomé et al., 2011) and BZR1 (Bai et al., 2012; Gallego-Bartolomé et al., 2012; Li 

et al., 2012). In other cases, the interaction with the TF occurs at the vicinity of the 

promoters of certain genes to grant their expression (Lim et al., 2013; Park et al., 

2013). Nonetheless, the contribution of DELLA proteins to the activity of the latter 

group of TFs is unknown. The RAP2.3 binds in vitro and in vivo to the GCC-box 

(Buttner and Singh, 1997; Yang et al., 2009; Gibbs et al., 2014) and it is able to 

activate transcription when transiently overexpressed in Arabidopsis leaves (Yang et 

al., 2009). In order to test the effect that the interaction with GAI may cause on the 

transcriptional activation ability of RAP2.3, we performed transactivation assays in 

leaves of Nicotiana benthamiana. As reporter, we placed the LUCIFERASE gene under 

the control of a synthetic promoter containing 5 copies of a 29-nucleotide fragment 

from the promoter of the ethylene-induced gene HOOKLESS1 (HLS1) that contains 

one GCC-box. A similar reporter construct has been used to demonstrate the ability of 

several RAP2.3-related TFs to activate or repress transcription (Fujimoto et al., 2000; 

Song et al., 2005). As shown in Figure 4.3, the luciferase activity strongly increased 

when HA-RAP2.3 was expressed together with the reporter construct, which is in 

agreement with previous results (Yang et al., 2009). Importantly, when YFP-GAI was 

co-expressed together with HA-RAP2.3 in the same leaves, the luciferase activity was 

significantly lower despite the TF accumulated to a higher level. Expression of YFP-

GAI alone caused a slight increase in the activity of the reporter. These results suggest 

that GAI prevents either the DNA binding ability of RAP2.3 or its capacity to activate 

transcription. 
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4.2.4 DELLAs prevent the binding of RAP2.3 to the promoter of its target 

genes in vivo 

 

Next, we sought to investigate the functional relationship between DELLA 

proteins and RAP2.3 in Arabidopsis. To identify genes potentially co-regulated by this 

Figure 4.3 DELLA interaction inactivates RAP2.3. Transient expression assays in leaves 
of N. Benthamiana by agroinfiltration. Results represent the ratio between the activity of 
three technical replicates firefly Luciferase that carry out the synthetic promoter 
containing 5 copies of the GCC box. Renilla LUC under 35S promoter and in the same 
construct was used as control. Western blots were performed to ensure that samples 
contain the same amount of each protein. 
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interaction, we first performed a meta-analysis between sets of genes regulated by 

the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) (Goda et al., 

2008) and those misregulated in the dellaKO mutant (Arana et al., 2011), and selected 

four of them that were up-regulated both by ACC and in the dellaKO background: 

At5g44120, At4g31940, At2g41260, and At4g19690. The effect of a conditional over-

accumulation of RAP2.3 on the expression of these genes was further assayed in 

dark-grown seedlings that accumulated high or low DELLA levels (see Figure 4.4A for 

the experimental design). To induce RAP2.3 we used a transgenic line from the 

TRANSPLANTA collection expressing its ORF under the control of a β-estradiol-

inducible promoter (Coego et al., 2014). The expression of the four target genes 

analyzed was higher when RAP2.3 accumulated in a context deprived of DELLA 

proteins, suggesting that DELLAs have a negative effect on the RAP2.3’s activity 

(Figure 4.4B). These results are in line with those obtained with the transactivation 

assays in N. benthamiana (Figure 4.3). 

To determine whether GAI affects RAP2.3’s ability to bind target promoters 

or to activate their transcription, we studied the binding of the TF to promoters in 

vivo by chromatin IP (ChIP). We used a transgenic line overexpressing an HA-tagged, 

mutant version of the RAP2.3 (MA-RAP2.3-HA) that is resistant to the nitric oxide 

(NO) and oxygen-induced degradation through the N-end rule pathway (Gibbs et al., 

2011; Gibbs et al., 2014). The four target genes used for the expression analysis 

contain at least one canonical GCC-box within the 1,500 nucleotides immediately 

upstream of their ATG (Figure 4.4C). We were not able to detect in vivo binding of the 

RAP2.3 to the region containing the GCC-box in the promoter of At2g41260 and 

At4g19690 in etiolated seedlings (data not shown). However, the two regions 

containing GCC-boxes in the promoter of At4g31940 and the region containing a 

cluster of four of them in the promoter of At5g44120 were efficiently co-

immunoprecipitated with MA-RAP2.3-HA (Figure 4.4D). Importantly, the enrichment 

of these regions in the immunoprecipitated was significantly higher when seedlings 

were grown in conditions that favor DELLA degradation (PAC+GA) than in seedlings 

that accumulate DELLAs (PAC). Thus, all these results together suggest that DELLA 

proteins inactivate the RAP2.3 upon physical interaction by preventing its DNA 

binding activity, in what seems a common mode of regulating the activity of TFs by 
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DELLA proteins (de Lucas et al., 2008; Feng et al., 2008; Bai et al., 2012; Gallego-

Bartolomé et al., 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 DELLAs prevent the binding of RAP2.3in vivo. (A) Graphical representation of 
the procedures performed to obtain the results observed in Figure 4.4B, seedlings were 
grown in darkness for 2 days, and then were transferred for the times indicated in liquid MS 
containing 10µMPAC + 1µM GA4 or 10µMPAC. Then β-estradiol was added to a final 
concentration of 5 µM before harvest. (B) Expression levels of some RAP2.3 targets in the 
presence or absence of DELLAs. (C) Graphical representation of GCC-elements on the 
promoter of RAP2.3 targets from figure B. (D) Chromatin immunoprecipitation of 
35S::MARAP2.3-HA followed by qRT PCR of the promoter of  selected genes, UBQ30 represent 
a control region not bound by RAP2.3.  



Chapter 2 

60 
 

 

4.2.5 The DELLA-RAP2.3 interaction mediates apical hook opening 

 

Besides the newly identified role of RAP2.3 as part of the NO and oxygen 

sensor mechanism (Gibbs et al., 2011; Licausi et al., 2011; Gibbs et al., 2014), it is 

known for several years to be an ethylene-induced gene (Buttner and Singh, 1997). 

The development of the apical hook typical of etiolated seedlings is regulated by GAs 

and ethylene (Abbas et al., 2013). In particular, both pathways jointly prevent 

premature apical hook opening in darkness (Gallego-Bartolomé et al., 2011). 

Recently, it has been demonstrated that DELLA proteins counteract the effect of 

ethylene during apical hook development by inhibiting EIN3 activity through physical 

interaction, providing therefore a mechanism for the co-regulation of this process by 

GAs and ethylene (An et al., 2012). Interestingly, EIN3 binds in vivo to the RAP2.3 

promoter (Chang et al., 2013) and activates its expression in etiolated seedlings 

(Figure 4.5A), suggesting that RAP2.3 could also participate in the mechanism 

regulating apical hook development by GAs and ethylene. To unambiguously 

demonstrate the involvement of RAP2.3 in this process, we investigated the hook 

phenotype in the loss-of-function, T-DNA insertional mutant rap2.3-1 

(WiscDsLox247E11). A combined treatment with GAs and ACC provokes the 

formation of hooks with an exaggerated curvature (Figures 4.5B and 4.5C) (Gallego-

Bartolomé et al., 2011; An et al., 2012). Remarkably, rap2.3-1 mutant seedlings were 

partially resistant to treatment with ACC + GAs, and the hook angle was significantly 

smaller in the mutant than in the wild type (Figures 4.5B and 4.5C). Hooks of mutant 

and wild type seedlings were equally responsive to mock, ACC, and GA treatments, 

suggesting that under these conditions RAP2.3 activity is not limiting, most likely 

because of the genetic redundancy with other members of the group VII ERFs is more 

remarkable (Nakano et al., 2006). In agreement, a β-estradiol treatment that 

enhanced RAP2.3 expression (Figure 4.5D) partially prevented PAC-induced hook 

opening (Figure 4.5E). All these results suggest that DELLA proteins might also 

regulate the apical hook development by inactivating the RAP2.3, in addition to EIN3. 
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Figure 4.5 Physiological relevance of RAP2.3- DELLA interaction. (A) Expression of 
RAP2.3 in 4days old dark grown seedlings of Col-0 in mock or with 12.5 µM ACC and 
EIN3ox. (B-C) Hook angle of Col-0 and rap2.3-1 insertional mutant in the presence of ACC, 
ACC+GA4, and GA4. (D) RAP2.3 expression in RAP2.3 estradiol inducible line. (E) Hook angle 
of 2 day old seedlings of Col-0 and RAP2.3 estradiol inducible line growing in MS medium 
containing 5µM of βestradiol with or without 0.2µM PAC. For C and E n=16; data are mean 
± SD. 
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4.3 Concluding remarks 

 

The identification of TFs that interact with DELLA proteins provides molecular 

mechanisms for the interaction between the pathways in which the TFs participate 

and the GAs, and at the same time mechanisms to explain the regulation of 

physiological processes by GAs. Our results add a novel piece to the mechanism that 

controls apical hook development by GAs and ethylene (Figure 4.6). RAP2.3 

represents an EIN3-dependent branch of ethylene signaling, as formerly exemplified 

by ERF1 (Solano et al., 1998), participating in the transcriptional cascade triggered by 

the hormone in the control of this developmental process. RAP2.3 might regulate sets 

of genes that may not be directly regulated by EIN3, as is the case of the four genes 

sown in Figure 4.4 (Chang et al., 2013). Interestingly, HLS1 that is a major target of 

EIN3 regulating hook development is not a target of RAP2.3 (Figures 4.4B-D) despite 

it binds to and regulates transcription from a fragment of its promoter (Figure 4.3). 

The interaction of DELLAs with EIN3 and RAP2.3 indicates that GAs impinge at 

various levels on the ethylene-triggered transcriptional cascade and that it could be 

relevant at several stages of hook development (Figure 4.6). For instance, low levels 

of DELLAs during skotomorphogenesis will ensure the proper activity of both EIN3 

and RAP2.3 to keep the hook closed. An additional scenario where the negative 

regulation of both TFs by DELLAs could be relevant is to promote hook opening 

during de-etiolation. DELLAs and EIN3 levels increase and decrease, respectively, 

during this transition (Achard et al., 2007; Zhong et al., 2009). Nonetheless, the 

kinetics of these changes is quite different, being the accumulation of DELLAs faster. 

Therefore, inactivating both TFs by interaction would be an efficient and rapid way to 

counteract the ethylene-dependent mechanism that maintains the hook closed.  

The role of RAP2.3 as a NO and oxygen sensor (Gibbs et al., 2011; Licausi et al., 

2011; Gibbs et al., 2014) opens up more physiological contexts in which the 

interaction with DELLAs might be relevant. RAP2.3 along with the other members of 

the group VII ERFs are degraded through the N-end rule pathway in response to the 

simultaneous presence of NO and oxygen (Gibbs et al., 2011; Licausi et al., 2011; 

Gibbs et al., 2014). Interestingly, DELLAs accumulation during de-etiolation is 
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dependent upon NO (Lozano-Juste and Leon, 2010), suggesting that under certain 

physiological conditions the plant ensures the proper inactivation and degradation of 

the RAP2.3. Thus, other aspects of skoto- and photomorphogenesis besides hook 

development might be also regulated by the DELLA and RAP2.3 interaction. 

Nonetheless, the functional relationship between DELLAs and RAP2.3 seems to be 

different under other physiological scenarios. For instance, both RAP2.3 and the 

DELLA protein RGL2 favor the ABA signaling in the endosperm that maintains the 

seed dormant (Lee et al., 2010; Gibbs et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Model proposed for the molecular mechanism of action of DELLAs to mediate 
hook formation.  
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4.4 Material and methods  

 

Plant Material. MARAP2.3-HA lines were gently provided by Michael 

Holdsworth. Heterozygous F2 T-DNA insertional mutant rap2.3-1 lines 

(WiscDsLox247E11) were genotyping using the primers 5´-

CCATCCCACCAACCAAGTTAACGTGA-3´ and 5´-GCAGATCTGGGAAGTTGAGCTTGGC-3´.  

 

Experimental Conditions. Seedlings were grown in MS at 22°C in darkness. 

For hook angle experiments 2days old seedlings of WT and RAP2.3 estradiol 

inducible were grown in MS agar containing 5µM of β-estradiol with or without 

0.2µM PAC.  For the experiment that show the partially resistance of GAs during hook 

formation. the insertional mutant rap2.3-1 Hook angle of Col-0 and rap2.3-1 

insertional mutant were germinated in MS agar and the transfer to medium 

containing 12.5 µM of ACC, 12.5µM ACC + 1 µM GA4 or 1 µM GA4.  

 

Y2H screening. The M5-GAI (Gallego-Bartolome et al., 2012) in pDEST32 

(Invitrogen) was used and to transform the haploid yeast strain YM4271. Then 

collection of TFs is in the haploid yeast strain PJ694α. The screening was performed 

by mating in liquid SD medium. Then positive clones were selected in medium 

without leucine, tryptophan and histidine, and with 1 µM of 3-Amino-1,2,4 triazole 3-

AT (Sigma-Aldrich). 

 

Y2H assays Full length and deletions of RAP2.3 were obtained by PCR 

amplification using the primers listed below to create pENTR the fragments were 

cloned into pCR8/GW/TOPO (Invitrogen), then transferred into pDEST22 (Invitrogen) 

to create Gal4DNA binding domain fusion. GAI deletions have been described before 

(Gallego-Bartolome et al., 2012). Subsequent cotransformation of the yeast strain 

AH109 (Clontech) were performed. To select the interaction, clones were grown in 

SD plates without Leu, Trp and His, and with 5 µM 3-AT (Sigma-Aldrich). Primers 

used for amplified RAP2.3 deletions were: 
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  Forward Reverse 

Rap2.3 5'-ATGTGTGGCGGTGCTATTATTTC- 3' 5'-CTCATACGACGCAATGACATCAT-3' 

del1Rap2.3 5'-ATGTGTGGCGGTGCTATTATTTCC-3' 5'-TTATGGGAAGTTGAGCTTGGCTTTATC-3' 

del2Rap2.3 5'-ATGAAATGGGCGGCTGAGA-3' 5'-TTACTCATACGACGCAATGACATCAT-3' 

del3Rap2.3 5'-ATGGATCTGCACCATCCTCCTCCTCC-3' 5'-TTACTCATACGACGCAATGACATCAT-3' 

del4Rap2.3 5'-ATGTGTGGCGGTGCTATTATTTCC-3' 5'-TTATCCCCATGGACGCTTACGTA-3' 

 

Nicothiana benthamiana  pENTR of RAP2.3 and GAI (Gallego-Bartolome et 

al., 2012) were transfer into pEarleyGate-201, pEarleyGate-104 respectively (Earley et 

al., 2006), then Nicotiana benthamiana leaves were infiltrated as explain before. 

Protein extraction was performed as described (Gallego-Bartolome et al., 2012). 

 

Reporter Construct and Transcriptional Assays. Five copies of the GCC-

box containing a 29 nucleotide flanking fragment of HOOKLESS1 (HLS1) 

(AGCCGCCATTTATGAGTTAACGCAGACAT) upstream of the minimal 35S promoter 

and the Ω translational enhancer containing the restriction sites PstI and NcoI 

respectively, were synthetized by GenScript. Then the fragment was cloned into 

pGreenII 0800-LUC vector (Hellens et al., 2005). For Transcriptional Assays. Leaves 

of 4 weeks-old Nicotiana benthamina were infiltrated with Agrobacterium 

tumefaciens C58 cells carrying the constructs, the ratio of Agrobacterium-carrying 

reporter and effector constructs was 1:4. Firefly and the control Renilla LUC activities 

were assayed from leaf extracts with the Dual-Glo Luciferase Assay System 

(Promega) and quantified with a GloMax 96 Microplate Luminometer (Promega). To 

verify that protein amounts were equal, Western Blot analysis were performed with 

proteins extracted from the same experiment, the HA-RAP2.3, YPF-GAI fusions were 

detected with anti-HA (3F10; Roche), anti-GFP (ab290; Abcam), antibodies 

respectively. 

 

Gene expression. For gene expression analysis, total RNA was extracted 

with E.Z.N.A. Plant RNA Mini Kit (Omega Bio-tek) according to the manufacturer´s 

instructions. cDNA synthesis was performed with SuperScript II First-Strand 

Synthesis System (Invitrogen). qRT-PCR was performed as describe before, and the 
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EF1-α gene was used for normalized (Frigerio et al., 2006). Primers used to amplified 

transcripts are listed below: 

 Forward Reverse 

AT3G16770 5'-CGATTATGCCCCTCTCGTCA-3' 5'-CCAGAGTTCCTCAGCCGTGA-3'  

AT5G44120 5'-CACAACACCCGGTGTAGCAC-3' 5'-AGTGGTTCCTGTCCGTCGTT-3' 

AT4G31940 5'-TTTTCGGGTTTGCCCCTTAT-3' 5'-CGATTTTACGCATCTCACGC-3' 

AT2G41260 5'-TTTCTCCGTCGCTGTTTTCG-3' 5'-TCATCGTGTGTGGCATCGTT-3' 

AT4G19690 5'-ATGTTCGAAGGCATGGGTCT-3' 5'-CGATCCCTAACGCTATTCCG-3' 

 

Chromatin immunoprecipitation. 4 days MARAP2.3-HA seedlings were 

grown at 22°C in with MS containing PAC 0.5µM with and without 1µMGA4, a Col-0 in 

the same conditions was used as control. ChIP was performed as described 

previously (Saleh et al 2008), using Dynabeads Protein A (Invitrogen) and an anti-HA 

(hemagglutinin) polyclonal antibody (ab9110; Abcam). Relative enrichment was 

calculated by normalizing the amount of target DNA, first to the internal control gene 

HSF (At4g17740) and then to the corresponding amount in the input. Data are mean 

and SD of two technical replicates from a representative experiment from two 

biological replicates. Primers used to amplified the GCC-elements of the selected 

targets were: 

 

 Forward Reverse 

AT5G44120 5'-GCCTATCTCAAAAGCTGATGTGT-3' 5'-CATTTCAATTTGCATGGCTTA-3' 

AT4G31940-a 5'-CTCTTTGTGGGCTTTTTGGA-3' 5'-TTTTATTCATGGAAGCCCATT-3' 

 AT4G31940-b 5'-CTGCTCTTTTTGTTCATTGTCA-3' 5'-CCCCAATTTTAATTTTTATTAATGC-3' 

UBQ30 5'-CAAATCCAAAACCCTAGAAACCGAA-3' 5'-AACGACGAAGATCAAGAACTGGGAA-3' 

HSF 5´-GCTATCCACAGGTTAGATAAAGGA-3´ 5´-GAGAAAGATTGTGTGAGAATGAAA-3´ 
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4.5 Supporting tables 

 

4.5.1 Supporting Table I List of DELLA interactors divided by biological 

function. 

Shoot development 

Gene Name         Biological process  

At5g60120 TOE2 (AP2-like) flowering 

At4g18390 TCP2 leaf differentiation 

At1g53230 TCP3 leaf differentiation 

At5g60970 TCP5 leaf differentiation 

At2g31070 TCP10 leaf differentiation 

At1g35560 TCP23 leaf differentiation 

At5g09460 AJAX3 vascular development 

At1g69690 TCP15 leaf differentiation 

At3g10480 ANAC050 shoot architecture 

At3g15270 SPL5 juvenile to adult shoot transition 

At2g33880 STIMPY/WOX9 meristem growth 

At1g58100 TCP8 leaf differentiation 

At5g06839 bZIP65/TGA10 floral development 

At3g02150 TCP13 leaf differentiation 

At5g53950 CUC2/ANAC098 meristem formation/leaf serration 

At2g28550 RAP2.7 (TOE1)  

At1g09540 MYB61 stomata closure 

At2g42280 Flowering bHLH4 flowerig 

   

Hormonal cross-regulation 

   

At2g41940 ZFP8                     Trichome initiation 

At1g67260 TCP1 BR biosynthesis 

At2g01760 ARR14 CK signaling 

At3g16770 RAP2.3 ethylene responses 

At5g21120 EIL2 ethylene signaling 

At5g64750 AtABR1 repression of ABA responses 
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Embryo, flower, pollen development 

   

At1g12980 DRN/ESR1 embryo development 

At3g45150 TCP16 pollen development 

At5g06839 bZIP65/TGA10 floral development 

At1g31630 AGL86 female gametophyte 

At1g06170 bHLH89 anther development 

At2g31210 bHLH91 anther development 

At4g03250 HDZIP  

At4g00050 UNE10  

 

Light signaling 

   

At1g09530 PIF3 skotomorphogenesis 

At2g31380 STH photomorphogenesis 

At4g17460 HAT1 shade avoidance 

At2g43010 PIF4 skotomorphogenesis 

 

Biotic and abiotic stress 

   

At3g57600 DREB cold acclimatation 

AT3G15510 AtNAC2/ANAC056 salt-induced senescence 

At5g10030 OBF4/TGA4 defence and flowering 

At5g29000 PHR1-like1 (PHL1) response to phosphate starvation 

At3g13040 myb-like HTH similar to PHR1, PHL1 

At1g19210 DREB  

At1g69170 SPL6 response to pathogens 

At4g16750 DREB  

 

Other processes or unknown 

   

At3g47620 TCP14 germination 

At3g29035 ANAC059 regulation of sensecence 

At2g43000 ANAC042/JUNGBRUNNEN1 regulation of senescence 

At2g28910 CXIP4 (CCHC-type Zn finger) Ca2+ signaling 
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At2g22750 bHLH18 ER body formation 

At5g65790 MYB68 lignification in root   
pericycle 

At5g51910 TCP19  

At2g02080 ATIDD4 (C2H2-type Zn finger) 

At4g36060 bHLH11  

At3g21330 bHLH87  

At3g12910 NAC/NAM  

At4g21040 DOF  

At1g70000 myb-type HTH  

At1g68920 bHLH49  

 

 

4.5.2 Supporting Table II Transcription factors families representation of 

DELLA interactors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TF family  

C2H2-type Zn finger 2 

double B-box-type Zn finger 1 

CCHC-type Zn finger 1 

Dof-type Zn finger 1 

TCP 12 

bHLH 11 

MADS 1 

NAC 6 

HD 4 

Myb 5 

AP2/EREBP 8 

SPB 2 

bZIP 3 

GARP/ARR 2 

EIN3-like 1 
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4.5.3 Supporting Table III Transcription factors that have been reported as 

DELLA interactors. 

 

TF Family Physiological context Reference 

PIFs bHLH Hypocotyl elongation, apical 
hook development, Chl synthesis 

De Lucas et al. 2008; Feng et al. 2008; 
Gallego-Bartolomé et al. (2010-2011); 
Cheminant et al. (2011)  

    

SPT bHLH Seed germination Gallego-Bartolomé et al. (2010); Josse 
et al. (2011) 

    
ALC bHLH Fruit development Amaud et al. (2010) 
    
MYC2 bHLH Gibberellin-jasmonic acid cross-

talk 
Hong et al. (2012) 

    

EIN3 EIL Gibberellin-ethylene cross-talk, 
apical hook development 

An et al. (2012) 

    
SPLs SBP-box Floral induction Yu et al. (2012) 
    

BES1, 
BZR1 

BES1/BZR1 Gibberellin-brassinosteroid 
cross-talk 

Bai et al. (2012); Gallego Bartolomé et 
al. (2012); Li et al. (2012) 

    

SCL3 GRAS Seed germination, hypocotyl 
elongation, root growth 

Zhang et al. (2011) 

    

IDD1/ENY C2H2 Zinc 
finger 

Seed germination Feurtado et al. (2011) 

    

JAZs JAZ Gibberellin-jasmonic acid cross-
talk, biotic stress, root growth 

Hou et al (2010); Wild et al. (2012); 
Yang et al. (2012) 

    

BOIs RING finger Seed germination, floral 
induction 

Park et al. (2012) 

ABI3/ABI5 bZIP Seed germination Lim et al.,2013 
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5.1 Introduction  

 

Plant hormones regulate developmental and stress-related responses mostly 

through the modulation of pre-wired gene regulatory networks. This type of 

regulation has been proposed as particularly important in short-term adaptation to 

changing environmental conditions (Casal et al., 2004). In the case of gibberellins 

(GAs), transcriptional regulation is based on the degradation of the nuclear-localized 

DELLA proteins, which act as negative elements in the GA signaling pathway. The role 

of DELLAs as transcriptional regulators is supported by the large changes in 

expression patterns observed in dellaKO mutants (Cao et al., 2006; Achard et al., 

2008; Arana et al., 2011; Cheminant et al., 2011) and after the conditional induction 

of stable DELLA alleles (Willige et al., 2007; Zentella et al., 2007; Hou et al., 2008; 

Gallego-Bartolome et al., 2011). Although it has been reported that the rose DELLA 

protein RhGAI1 can bind DNA in vitro (Luo et al., 2013), there is no evidence 

regarding the physiological relevance of this characteristic. On the contrary, other 

mechanisms have been proved relevant, all of which involve physical interaction 

between DELLAs and other transcriptional regulators. These mechanisms can be 

summarized in three different non-exclusive models: (i) DELLAs interact with DNA-

binding TFs and prevent them from binding their target promoters. This is the case of 

PIFs (de Lucas et al., 2008), EIN3 (An et al., 2012), BZR1 (Bai et al., 2012; Gallego-

Bartolome et al., 2012; Li et al., 2012), (ii) DELLAs modulate the activity of DNA-

binding TFs through the interaction of other transcriptional regulators, such as the 

JAZ proteins that mediate jasmonic acid (JA) signaling through MYCs (Hou et al., 

2010; Fernandez-Calvo et al.,2011). And (iii) DELLAs affect the activity of DNA-

binding TFs without impairing their target recognition, as shown for ABI3 and ABI5 

(Lim et al., 2013). 

This last mechanism of action does not explain the association of DELLAs 

with the promoter of some genes reported before such as SCARECROW-LIKE (SCL3), a 

gene that promotes GAs signaling, or XERICO that promotes accumulation of the 

hormone abscisic acid (ABA) (Zentella et al., 2007; Zhang et al., 2011; Lim et al., 2013; 

Park et al., 2013). Therefore it would be important to identify other TFs that mediate 
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the presence of DELLAs at the target promoters and find out how extensive this 

mechanism may be. To approach these questions, we decided to investigate the 

genome wide occupancy of DELLAs in Arabidopsis. 

 

5.2 Results and discussion 

 

5.2.1 Genome-wide regions bound by DELLAs 

 

To determine the in vivo binding sites of DELLAs, we performed chromatin 

immunoprecipitation (ChIP) followed by massive sequencing using the RGA::GFP-RGA 

line (Silverstone et al., 2001). Seedlings were grown in continuous light (~50 μmol 

m−2 s−1) for 10 days, and before cross-linking, with formaldehyde an 18-h treatment 

with 10µM PAC was performed to promote accumulation of GFP-RGA (See Materials 

and Methods). Sequences obtained from three biological replicates where mapped to 

the Arabidopsis genome (TAIR 10) using Bowtie 2 (Langmead and Salzberg, 2012) 

and the binding sites were determined by Model-based Analysis for ChIP-Seq (MACS) 

software (Zhang et al., 2008). A total of 842 reproducible binding sites were found, 

from which a surprisingly high proportion was found within a gene or in transposons 

(Figure 5.1A). All these binding sites were discarded for further analysis, which left us 

with 311 binding sites, a 36% of the total, within the proximal 2.5 kb of a 

transcriptional start site (TSS) (Figure 5.1A). Given the proximity between genes, it 

was not always possible to assign each peak to a single gene, so the number of genes 

with enrichment in "DELLA binding" in the final set was 421. This number of genes 

may seem low compared to other TFs (Winter et al., 2011), which could be caused by 

the circumstance that DELLAs do not bind DNA directly and all peaks must be due 

physical interaction with TFs.  

As observed in Figure 5.1B, binding sites were regularly distributed along the 

five chromosomes, indicating no preference for specific genomic regions. To 

investigate if DELLAs would preferentially bind the promoters of genes involved in a 

particular process, we performed a Gene Ontology (GO) enrichment analysis with 

agriGO (Du et al., 2010) and visualized it with REVIGO (Supek et al., 2011), which 

forms clusters of related terms and facilitates the identification of enriched 
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categories. As shown in Figure 5.1C, there was a very significant enrichment among 

DELLA-bound genes of those involved in the response to stimuli, including light and 

abiotic stress. This result fits the observed implication of DELLAs in all these 

processes (Alabadi et al., 2008; Hou et al., 2010). Responses to hormones like GAs and 

JA are also represented in the clusters.  

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 5.1 Genome wide occupancy of DELLAs. (A) Graphical representation of the 

location of the 842 peaks obtained, the peaks used for the analysis are represented in 

red. (B) Distribution of the 311 peaks within a promoter region. (C) GO for DELLA bound 

genes cluster by biological process. Each rectangle is a single cluster representative. 

Clusters were joined into “superclusters” of related terms, (visualized with different 

colors). Sizes of rectangles were adjusted to reflect  the p-value. 
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5.2.2 cis-element enrichment of DELLAs bound genes 

 

To search for TFs by which DELLAs are bound to each target sequence, we 

decided to find over-represented cis-elements within the peak region. Since most 

representative cis-elements are in a window of 200 bp next to the peak (Kaufmann et 

al., 2010; Winter et al., 2011), we extracted the sequence corresponding to 200 bp 

around each peak (100 bp on either side). Then we collected all the TF binding site 

matrices from the open-access libraries JASPAR and TRANSFAC (Matys et al., 2006; 

Portales-Casamar et al., 2010), as well the matrix available through the Spanish 

TRANSPLANTA consortium (Franco-Zorrilla et al., 2014). This provided us with 

access to more than 70 binding sites corresponding to 25 protein families, which we 

used to analyze the DELLA-bound regions with MotifLab (Klepper and Drablos, 

2013). Interestingly, our results indicated that there is an over-representation of only 

7 consensus binding sites, corresponding to 7 different TF families (ARR1, MYB46, 

DOF5, RAV1a, MYC4, SPL3 and KANADI4) (Figure 5.2A-B). It is important to remark 

that despite the cis elements were obtained for particular members of the TF families, 

proteins from the same family usually show similar DNA-recognition patterns 

(Franco-Zorrilla et al., 2014), then for now on we will refer each TF binding site by 

family. 

Remarkably, we found at least one positive interactor in our Y2H screening 

from each of the families that could bind these sequences (Supporting Table I, 

Chapter 2); so it is reasonable to think that these motifs were found because of the 

interaction of DELLA with these proteins. An intriguing result is that in many peak 

regions there is more than one over-represented binding site. It may therefore be 

possible that DELLAs regulate transcription of some genes by interacting with two 

proteins, either forming a complex with two TFs of by independent interaction with 

each of them. It has been recently reported that PIF4 and BZR1 (both of them DELLA 

interactors) heterodimerize to control a set of genes (Oh et al., 2012). Nevertheless 

more work need to be done to completely support this hypothesis. 
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5.2.3 Transcriptional regulation of genes bound by DELLAs 

 

To investigate the extent to which DELLAs affect the expression of their 

bound genes, we decided to compile the data of all the publicly available 

transcriptome data (Supporting Table III), that encompass conditions with either low 

or high levels of DELLAs (Locascio et al., 2013). Data also represent different 

developmental stages, seedlings grown in dark and light, embryos and endosperms, 

root tips and inflorescences. We searched for differential expression of bound genes, 

and among the 421 genes, 135 showed changes during at least one condition. Then 

we sorted each gene depending on the presence of the different TFs binding sites. Our 

results show that the transcriptional behavior of each set of genes is basically the 

same, indicating that there is no preference of DELLAs for any particular type of TF to 

up- or down-regulate their target genes (Figure 5.3A). Interestingly a big proportion 

of genes present in the data set do not change in any condition (Figure 5.3B), this is 

Figure 5.2. cis-element enrichment. (A)Position weight matrix (PWM) of each enriched 

cis-element (B) Representation of the of each cis-element found in the total of peak region.  
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maybe due the diversity of samples, so probably with tissue specific experiments a 

differential expression pattern could be observe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 5.3 Representation of bound genes by DELLA. (A) Representation of all genes 

found to be up- regulated, down-regulated or both in dataset. Genes were divided by 

presence of TFs binding sites. Some genes are present in more than one group. Numbers 

represent total of genes that show a change from the total (B) Percentage of the total genes 

that change or not corresponding to each TF binding site.  
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5.3 Concluding remarks 

 

During this section we have identified several DELLAs bound genes. 

Importantly, we have detected an enrichment of a low number of cis-element 

corresponding to 7 different TF families, providing a starting point to further 

investigate the association of DELLAs with DNA by one or more of TFs belonging to 

the families found. We also found that one third of the bounded genes are 

transcriptional regulated by DELLAs, however we could not attribute these changes 

to any particular TF. 

Remarkably as observe in Figure 5.1C there is a particular enrichment if 

functional categories involved in response to stimuli, and this is not surprising if we 

observe the identity of bound genes (Supporting Table I). Interestingly as 

represented in Figure 5.4 some of the genes could provide a mechanism of cross-talk 

between light and the circadian clock, and hormone signaling pathways, for instance 

SHY2, an AUX/IAA which is a repressor of auxin signaling activated by ARR1, a Type-

B response regulator that acts in cytokinin signaling pathway (Sakai et al., 2001;Dello 

Ioio et al.,2008). In Chapter 2 we show that DELLAs interact with ARR14, a Type-B 

response regulator, so it is reasonable to imagine that DELLAs interact with ARR1. 

Additionaly reports show that some developmental processes are controlled in 

common by GAs and CK (Chory et al., 1994; Alabadi et al., 2004; Jasinski et al., 2005; 

Dello Ioio et al., 2008; Ubeda-Tomas et al., 2008; Achard et al., 2009). 
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Figure 5.4 Examples of DELLA bound genes, visualized with IGV Browser (Thorvaldsdottir 

et al., 2012). The results of enrichment in the GFP -RGA line are shown in orange, while the 

results for Col-0 are in grey. The asterisks indicate the peaks corresponding to the next TSS 

(represented with arrows).  
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5.4 Material and methods 

 

Plant material and growth conditions. Seedlings of wild type (Ler) and 

RGA::GFP-RGA (Silverstone et al., 2001) were grown in solid MS for 10 days under 

continuous light (~50 μmol m−2 s−1); then seedlings were submerged in liquid MS 

PAC to a final concentration of 10µM for 18 hours. 

 

Chromatin Immunoprecipitation and sequencing Immunoprecipitation 

with anti-GFP (ab290;AbCam) was performed as described (Saleh et al., 2008). Before 

construction of the ChIP DNA library, quality of the precipitated DNA was checked by 

PCR amplification of SCL3, a reported DELLA bound gene (Zentella et al., 2007). Then 

libraries were generated following Illumina ChIP-Seq manufacturer’s instructions 

and subjected to ultra-high-through-put Solexa (Illumina) sequencing. All results 

represent three biological replicates. For sequence alignment bowtie2 (Langmead 

and Salzberg, 2012) was used, and enrichment were analyzed by Model-based 

Analysis (MACS) (Zhang et al., 2008).To visualize the sequence reads obtained among 

the chromosomes we use Integrative Genomics Viewer (IGV) (Thorvaldsdottir et al., 

2012).  

 

GO analysis For Gene ontology analysis only 421 genes corresponding to 

311 peaks within 2.5 kb of gene promoter were used, the web tool agriGO (Du et al., 

2010) was used to obtain biological function categories. Then to summarize, the GO 

terms and their p-values were extracted and analyzed with REVIGO (Supek et al., 

2011), for visualization the “TreeMap” option was selected. 

 

Gene expression analysis. For gene expression analysis raw data of 

microarrays listed in supporting table III (Chapter2) were collected. Statistical Z- 

score was calculated for each dataset (Cheadle et al., 2003).  
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Motif analysis. 200bp surrounding each peak was used to perform motif 

analysis. Marices from JASPAR, TRANSFAC (Matys et al., 2006; Portales-Casamar et 

al., 2010), and from Franco-Zorrilla et al., 2014 were imported into MotifLab (Klepper 

and Drablos, 2013), then motif scanning was performed using the MotifScanner 

method. For background noise a background model of order 2 was used. 

 
5.5 Supporting Table 

 

5.5.1 Table I Corresponding genes to the peaks within 2 kb of promoter 

region 

 

AT1G01060 LATE ELONGATED HYPOCOTYL (LHY) 

AT1G01490 Heavy metal transport/detoxification superfamily protein  

AT1G01500 Erythronate-4-phosphate dehydrogenase family protein 

AT1G03030 P-loop containing nucleoside triphosphate hydrolases superfamily protein 

AT1G03800 ERF domain protein 10 (ERF10) 

AT1G03810 Nucleic acid-binding, OB-fold-like protein 

AT1G04240 SHORT HYPOCOTYL 2 (SHY2) 

AT1G04990 Zinc finger C-x8-C-x5-C-x3-H type family protein 

AT1G07000 exocyst subunit exo70 family protein B2 (EXO70B2) 

AT1G07010 Calcineurin-like metallo-phosphoesterase superfamily protein 

AT1G07630 pol-like 5 (PLL5) 

AT1G07885 unknown protein 

AT1G07890 ascorbate peroxidase 1 (APX1) 

AT1G08100 nitrate transporter 2.2 (NRT2.2) 

AT1G09130 ATP-dependent caseinolytic (Clp) protease/crotonase family protein 

AT1G09140 SERINE-ARGININE PROTEIN 30 (ATSRP30) 

AT1G09380 nodulin MtN21 /EamA-like transporter family protein 

AT1G09390 GDSL-like Lipase/Acylhydrolase superfamily protein 

AT1G09520 LOCATED IN: chloroplast 

AT1G09570 phytochrome A (PHYA) 

AT1G10360 glutathione S-transferase TAU 18 (GSTU18) 

AT1G11180 Secretory carrier membrane protein (SCAMP) family protein 

AT1G12330 unknown protein 
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AT1G13260 related to ABI3/VP1 1 (RAV1) 

AT1G17420 lipoxygenase 3 (LOX3) 

AT1G17495 max) (SIRE1) (Ty1_Copia-family) 

AT1G18740 FUNCTIONS IN: molecular_function unknown 

AT1G19180 jasmonate-zim-domain protein 1 (JAZ1) 

AT1G19460 Galactose oxidase/kelch repeat superfamily protein 

AT1G19660 Wound-responsive family protein 

AT1G19870 IQ-domain 32 (iqd32) 

AT1G20890 unknown protein 

AT1G21080 DNAJ heat shock N-terminal domain-containing protein 

AT1G21100 O-methyltransferase family protein 

AT1G21410 SKP2A 

AT1G21975 unknown protein 

AT1G22275 ZYP1b 

AT1G22280 phytochrome-associated protein phosphatase type 2C 

AT1G22310 methyl-CPG-binding domain 8 (MBD8) 

AT1G22320 tRNA-Met (anticodon: CAT) 

AT1G22400 UGT85A1 

AT1G24265 Protein of unknown function (DUF1664) 

AT1G25560 TEMPRANILLO 1 (TEM1) 

AT1G27540 Protein of unknown function (DUF295) 

AT1G27540 Protein of unknown function (DUF295) 

AT1G28360 ERF domain protein 12 (ERF12) 

AT1G30110 nudix hydrolase homolog 25 (NUDX25) 

AT1G31358 
attenuating translation or by directing mRNA cleavage. Mature 
sequence:ATTAACGCTGGCGGTTGCGGCAGC 

AT1G31360 RECQ helicase L2 (RECQL2) 

AT1G31910 GHMP kinase family protein 

AT1G32920 unknown protein 

AT1G33250 Protein of unknown function (DUF604) 

AT1G34315 unknown protein 

AT1G34320 Protein of unknown function (DUF668) 

AT1G36030 F-box family protein 

AT1G36185 copia-like retrotransposon family 

AT1G36622 unknown protein 

AT1G39350 transposable element gene; 

AT1G39430 similar to unknown protein [Arabidopsis thaliana] (TAIR:AT3G43100.1) 

AT1G40097 Mutator-like transposase family 
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AT1G40113 gypsy-like retrotransposon family 

AT1G41755 CACTA-like transposase family (Tnp2/En/Spm) 

AT1G43145 unknown protein 

AT1G43150 non-LTR retrotransposon family  

AT1G43820 tRNA-Asp (anticodon: GTC) 

AT1G49160 WNK7 

AT1G49170 Protein of unknown function (DUF167) 

AT1G49200 RING/U-box superfamily protein 

AT1G49500 unknown protein 

AT1G50420 scarecrow-like 3 (SCL3) 

AT1G51172 unknown protein 

AT1G51510 Y14 

AT1G51520 RNA-binding (RRM/RBD/RNP motifs) family protein 

AT1G52710 Rubredoxin-like superfamily protein 

AT1G52720 unknown protein 

AT1G52905 unknown protein 

AT1G52960 similar to unknown protein [Arabidopsis thaliana] (TAIR:AT3G13250.1) 

AT1G53560 Ribosomal protein L18ae family 

AT1G53570 mitogen-activated protein kinase kinase kinase 3 (MAP3KA) 

AT1G53830 pectin methylesterase 2 (PME2) 

AT1G53840 pectin methylesterase 1 (PME1) 

AT1G56010 NAC domain containing protein 1 (NAC1) 

AT1G56140 Leucine-rich repeat transmembrane protein kinase 

AT1G56145 Leucine-rich repeat transmembrane protein kinase 

AT1G56630 alpha/beta-Hydrolases superfamily protein 

AT1G58440 XF1 

AT1G58450 Tetratricopeptide repeat (TPR)-like superfamily protein 

AT1G58602 LRR and NB-ARC domains-containing disease resistance protein 

AT1G59171 Inositol-pentakisphosphate 2-kinase family protein 

AT1G61190 LRR and NB-ARC domains-containing disease resistance protein 

AT1G63390 FAD/NAD(P)-binding oxidoreductase family protein 

AT1G63400 Pentatricopeptide repeat (PPR) superfamily protein 

AT1G67340 HCP-like superfamily protein with MYND-type zinc finger 

AT1G67960 
CONTAINS InterPro DOMAIN/s: Membrane protein,Tapt1/CMV receptor 
(InterPro:IPR008010) 

AT1G69490 NAC-like, activated by AP3/PI (NAP) 

AT1G69500 cytochrome P450, family 704, subfamily B, polypeptide 1 (CYP704B1) 

AT1G70080 Terpenoid cyclases/Protein prenyltransferases superfamily protein 
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AT1G70090 glucosyl transferase family 8 (LGT8) 

AT1G70520 cysteine-rich RLK (RECEPTOR-like protein kinase) 2 (CRK2) 

AT1G71030 MYB-like 2 (MYBL2) 

AT1G71080 RNA polymerase II transcription elongation factor 

AT1G71090 Auxin efflux carrier family protein 

AT1G71500 Rieske (2Fe-2S) domain-containing protein 

AT1G71520 Integrase-type DNA-binding superfamily protein 

AT1G72450 jasmonate-zim-domain protein 6 (JAZ6) 

AT1G72460 Leucine-rich repeat protein kinase family protein 

AT1G72920 Toll-Interleukin-Resistance (TIR) domain family protein 

AT1G74780 Nodulin-like / Major Facilitator Superfamily protein 

AT1G74790 catalytics 

AT1G75820 CLAVATA 1 (CLV1) 

AT1G76080 chloroplastic drought-induced stress protein of 32 kD (CDSP32) 

AT1G76430 phosphate transporter 1 

AT2G01160 tRNA-Asn (anticodon: GTT) 

AT2G01180 phosphatidic acid phosphatase 1 (PAP1) 

AT2G01180 phosphatidic acid phosphatase 1 (PAP1) 

AT2G01670 nudix hydrolase homolog 17 (NUDT17) 

AT2G04170 TRAF-like family protein 

AT2G04180 , member 30 (LINE-element) (Mus musculus) 

AT2G05210 Protection of Telomeres 1a (AtPOT1a) 

AT2G05210 Protection of Telomeres 1a (AtPOT1a) 

AT2G09830 copia-like retrotransposon family 

AT2G12320 similar to unknown protein [Arabidopsis thaliana] (TAIR:AT5G32169.1) 

AT2G18780 F-box and associated interaction domains-containing protein 

AT2G18790 phytochrome B (PHYB) 

AT2G19930 RNA-dependent RNA polymerase family protein 

AT2G19940 
oxidoreductases, acting on the aldehyde or oxo group of donors, NAD or NADP as 
acceptor 

AT2G20570 GBF's pro-rich region-interacting factor 1 (GPRI1) 

AT2G20580 26S proteasome regulatory subunit S2 1A (RPN1A) 

AT2G20875 EPIDERMAL PATTERNING FACTOR 1 (EPF1) 

AT2G20880 Integrase-type DNA-binding superfamily protein 

AT2G21655 Protein of unknown function (DUF784) 

AT2G25482 LOCATED IN: endomembrane system 

AT2G25490 EIN3-binding F box protein 1 (EBF1) 

AT2G28610 PRESSED FLOWER (PRS) 
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AT2G29080 FTSH protease 3 (ftsh3) 

AT2G30032 unknown protein 

AT2G30600 BTB/POZ domain-containing protein 

AT2G31560 Protein of unknown function (DUF1685) 

AT2G31570 glutathione peroxidase 2 (GPX2) 

AT2G39710 Eukaryotic aspartyl protease family protein 

AT2G41010 calmodulin (CAM)-binding protein of 25 kDa (CAMBP25) 

AT2G41640 Glycosyltransferase family 61 protein 

AT2G42420 tRNA-Gly (anticodon: GCC) 

AT2G42955 unknown protein 

AT2G42960 Protein kinase superfamily protein 

AT2G43240 Nucleotide-sugar transporter family protein 

AT2G43250 unknown protein 

AT2G44120 Ribosomal protein L30/L7 family protein 

AT2G45170 AUTOPHAGY 8E (ATATG8E) 

AT2G45180 
Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily 
protein 

AT2G45310 UDP-D-glucuronate 4-epimerase 4 (GAE4) 

AT2G46800 zinc transporter of Arabidopsis thaliana (ZAT) 

AT2G46970 phytochrome interacting factor 3-like 1 (PIL1) 

AT2G46980 unknown protein 

AT3G02140 TWO OR MORE ABRES-CONTAINING GENE 2 (TMAC2) 

AT3G02460 Ypt/Rab-GAP domain of gyp1p superfamily protein 

AT3G02470 S-adenosylmethionine decarboxylase 

AT3G02550 LOB domain-containing protein 41 (LBD41) 

AT3G03150 unknown protein 

AT3G03160 FUNCTIONS IN: molecular_function unknown 

AT3G03370 BEST Arabidopsis thaliana protein match is: DegP protease 7 (TAIR:AT3G03380.1) 

AT3G03380 DegP protease 7 (DegP7) 

AT3G03870 unknown protein 

AT3G04721 unknown protein 

AT3G05110 
CONTAINS InterPro DOMAIN/s: Molecular chaperone, heat shock protein, Hsp40, DnaJ 
(InterPro:IPR015609) 

AT3G05120 GA INSENSITIVE DWARF1A (GID1A) 

AT3G05810 FUNCTIONS IN: molecular_function unknown 

AT3G05820 invertase H (INVH) 

AT3G05830 FUNCTIONS IN: molecular_function unknown 

AT3G05936 unknown protein 

AT3G05937 unknown protein 
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AT3G07350 Protein of unknown function (DUF506)  

AT3G09590 
CAP (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 protein) 
superfamily protein 

AT3G10415 tRNA-Tyr (anticodon: GTA) 

AT3G10420 P-loop containing nucleoside triphosphate hydrolases superfamily protein 

AT3G11280 Duplicated homeodomain-like superfamily protein 

AT3G11285 tRNA-Arg (anticodon: CCT) 

AT3G11700 FASCICLIN-like arabinogalactan protein 18 precursor (FLA18) 

AT3G12100 Cation efflux family protein 

AT3G12110 actin-11 (ACT11) 

AT3G12920 SBP (S-ribonuclease binding protein) family protein 

AT3G13450 DARK INDUCIBLE 4 (DIN4) 

AT3G13460 evolutionarily conserved C-terminal region 2 (ECT2) 

AT3G13790 ATBFRUCT1 

AT3G13800 Metallo-hydrolase/oxidoreductase superfamily protein 

AT3G15320 similar to unknown protein [Arabidopsis thaliana] (TAIR:AT5G32620.1) 

AT3G15450 Aluminium induced protein with YGL and LRDR motifs 

AT3G15460 Ribosomal RNA processing Brix domain protein 

AT3G15518 unknown protein 

AT3G17390 METHIONINE OVER-ACCUMULATOR 3 (MTO3) 

AT3G17400 F-box family protein 

AT3G18524 MUTS homolog 2 (MSH2) 

AT3G18530 ARM repeat superfamily protein 

AT3G18535 tubulin-tyrosine ligases 

AT3G18815 tRNA-Thr (anticodon: AGT) 

AT3G18820 RAB GTPase homolog G3F (RAB7B) 

AT3G19690 
CAP (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 protein) 
superfamily protein 

AT3G19980 flower-specific, phytochrome-associated protein phosphatase 3 (FYPP3) 

AT3G20030 F-box and associated interaction domains-containing protein 

AT3G20820 Leucine-rich repeat (LRR) family protein 

AT3G21420 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein 

AT3G23250 myb domain protein 15 (MYB15) 

AT3G26520 tonoplast intrinsic protein 2 (TIP2) 

AT3G29595 Mutator-like transposase family 

AT3G29784 CACTA-like transposase family (En/Spm 

AT3G29787 CACTA-like transposase family (Ptta/En/Spm) 

AT3G30816 similar to unknown protein [Arabidopsis thaliana] (TAIR:AT5G28120.1) 

AT3G44400 Disease resistance protein (TIR-NBS-LRR class) family 
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AT3G44630 Disease resistance protein (TIR-NBS-LRR class) family 

AT3G44950 glycine-rich protein 

AT3G44950 glycine-rich protein 

AT3G45260 C2H2-like zinc finger protein 

AT3G45640 mitogen-activated protein kinase 3 (MPK3) 

AT3G45650 nitrate excretion transporter1 (NAXT1) 

AT3G45775 copia-like retrotransposon family 

AT3G45780 phototropin 1 (PHOT1) 

AT3G46630 Protein of unknown function (DUF3223) 

AT3G46640 PHYTOCLOCK 1 (PCL1) 

AT3G47240 similar to unknown protein [Arabidopsis thaliana] (TAIR:AT1G54926.1) 

AT3G47430 peroxin 11B (PEX11B) 

AT3G49790 Carbohydrate-binding protein 

AT3G50337 unknown protein 

AT3G50340 unknown protein 

AT3G50660 DWARF 4 (DWF4) 

AT3G50800 unknown protein 

AT3G52110 unknown protein 

AT3G52115 gamma response gene 1 (GR1) 

AT3G54440 glycoside hydrolase family 2 protein 

AT3G54450 Major facilitator superfamily protein 

AT3G56275 expressed protein 

AT3G58750 citrate synthase 2 (CSY2) 

AT3G58760 Integrin-linked protein kinase family 

AT3G59765 other RNA;Unknown gene 

AT3G59940 Galactose oxidase/kelch repeat superfamily protein 

AT3G60130 beta glucosidase 16 (BGLU16) 

AT3G60190 DYNAMIN-like 1E (DL1E) 

AT3G60200 unknown protein 

AT3G61150 homeodomain GLABROUS 1 (HDG1) 

AT3G61470 photosystem I light harvesting complex gene 2 (LHCA2) 

AT3G62090 phytochrome interacting factor 3-like 2 (PIL2) 

AT3G63006 tRNA-Ala (anticodon: TGC) 

AT3G63006 tRNA-Ala (anticodon: TGC) 

AT3G63010 GA INSENSITIVE DWARF1B (GID1B) 

AT3G63020 Protein of unknown function (DUF3049) 

AT4G00720 shaggy-like protein kinase 32 (SK32) 
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AT4G00893 unknown protein 

AT4G00895 ATPase, F1 complex, OSCP/delta subunit protein 

AT4G01250 WRKY22 

AT4G01720 WRKY47 

AT4G03840 gypsy-like retrotransposon family 

AT4G05616 similar to unknown protein [Arabidopsis thaliana] (TAIR:AT4G04155.1) 

AT4G06742 gypsy-like retrotransposon family (Athila 

AT4G07332 pseudogene, similar to putative AP endonuclease/reverse transcriptase 

AT4G08400 Proline-rich extensin-like family protein 

AT4G09466 Carbohydrate-binding X8 domain superfamily protein 

AT4G09620 Mitochondrial transcription termination factor family protein 

AT4G12420 SKU5 

AT4G13395 ROTUNDIFOLIA like 12 (RTFL12) 

AT4G13400 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein 

AT4G14310 Transducin/WD40 repeat-like superfamily protein 

AT4G14315 unknown protein 

AT4G14342 Splicing factor 3B subunit 5/RDS3 complex subunit 10 

AT4G14345 tRNA-His (anticodon: GTG) 

AT4G15545 unknown protein 

AT4G15550 indole-3-acetate beta-D-glucosyltransferase (IAGLU) 

AT4G15590 non-LTR retrotransposon family (LINE 

AT4G15610 Uncharacterised protein family (UPF0497) 

AT4G15755 Calcium-dependent lipid-binding (CaLB domain) family protein 

AT4G15760 monooxygenase 1 (MO1) 

AT4G17070 peptidyl-prolyl cis-trans isomerases 

AT4G17230 SCARECROW-like 13 (SCL13) 

AT4G19710 aspartate kinase-homoserine dehydrogenase ii (AK-HSDH II) 

AT4G20520 RNA binding 

AT4G20725 non-LTR retrotransposon family (LINE) 

AT4G22285 Ubiquitin C-terminal hydrolases superfamily protein 

AT4G23030 MATE efflux family protein 

AT4G23630 VIRB2-interacting protein 1 (BTI1) 

AT4G24110 unknown protein 

AT4G24204 RING/U-box superfamily protein 

AT4G24210 SLEEPY1 (SLY1) 

AT4G24570 dicarboxylate carrier 2 (DIC2) 

AT4G25490 C-repeat/DRE binding factor 1 (CBF1) 
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AT4G25500 arginine/serine-rich splicing factor 35 (RSP35) 

AT4G25640 detoxifying efflux carrier 35 (DTX35) 

AT4G26090 RESISTANT TO P. SYRINGAE 2 (RPS2) 

AT4G26240 unknown protein 

AT4G26250 galactinol synthase 6 (GolS6) 

AT4G26940 Galactosyltransferase family protein 

AT4G27300 S-locus lectin protein kinase family protein 

AT4G27300 S-locus lectin protein kinase family protein 

AT4G27730 oligopeptide transporter 1 (OPT6) 

AT4G27740 Yippee family putative zinc-binding protein 

AT4G27930 unknown protein 

AT4G27940 manganese tracking factor for mitochondrial SOD2 (MTM1) 

AT4G27970 SLAC1 homologue 2 (SLAH2) 

AT4G27980 
CONTAINS InterPro DOMAIN/s: Molecular chaperone, heat shock protein, Hsp40, DnaJ 
(InterPro:IPR015609) 

AT4G28180 unknown protein 

AT4G28181 unknown protein 

AT4G28230 unknown protein 

AT4G28240 Wound-responsive family protein 

AT4G28540 casein kinase I-like 6 (CKL6) 

AT4G29310 Protein of unknown function (DUF1005) 

AT4G30270 xyloglucan endotransglucosylase/hydrolase 24 (XTH24) 

AT4G31695 tRNA-Met (anticodon: CAT) 

AT4G31700 ribosomal protein S6 (RPS6) 

AT4G31800 WRKY DNA-binding protein 18 (WRKY18) 

AT4G32208 heat shock protein 70 (Hsp 70) family protein 

AT4G33050 embryo sac development arrest 39 (EDA39) 

AT4G33060 Cyclophilin-like peptidyl-prolyl cis-trans isomerase family protein 

AT4G33990 embryo defective 2758 (EMB2758) 

AT4G34000 abscisic acid responsive elements-binding factor 3 (ABF3) 

AT4G35110 Arabidopsis phospholipase-like protein (PEARLI 4) family 

AT4G35760 NAD(P)H dehydrogenase (quinone)s 

AT4G35770 SENESCENCE 1 (SEN1) 

AT4G36010 Pathogenesis-related thaumatin superfamily protein 

AT4G36970 Remorin family protein 

AT4G38600 KAKTUS (KAK) 

AT4G39070 B-box zinc finger family protein 

AT4G39080 vacuolar proton ATPase A3 (VHA-A3) 
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AT4G39080 vacuolar proton ATPase A3 (VHA-A3) 

AT4G39090 RESPONSIVE TO DEHYDRATION 19 (RD19) 

AT4G39140 RING/U-box superfamily protein 

AT4G39150 DNAJ heat shock N-terminal domain-containing protein 

AT4G39390 nucleotide sugar transporter-KT 1 (NST-K1) 

AT5G01849 unknown protein 

AT5G01850 Protein kinase superfamily protein 

AT5G02615 tRNA-Arg (anticodon: TCG) 

AT5G02620 ankyrin-like1 (ANK1) 

AT5G05440 PYRABACTIN RESISTANCE 1-LIKE 5 (PYL5) 

AT5G06390 FASCICLIN-like arabinogalactan protein 17 precursor (FLA17) 

AT5G06970 CONTAINS InterPro DOMAIN/s: Munc13 homology 1 (InterPro:IPR014770) 

AT5G06980 unknown protein 

AT5G08790 ATAF2 

AT5G09810 actin 7 (ACT7) 

AT5G11970 Protein of unknown function (DUF3511) 

AT5G12990 CLAVATA3/ESR-RELATED 40 (CLE40) 

AT5G13000 glucan synthase-like 12 (GSL12) 

AT5G13180 NAC domain containing protein 83 (NAC083) 

AT5G13700 polyamine oxidase 1 (PAO1) 

AT5G13710 sterol methyltransferase 1 (SMT1) 

AT5G13730 sigma factor 4 (SIG4) 

AT5G13740 zinc induced facilitator 1 (ZIF1) 

AT5G14110 Protein of unknown function (DUF 3339) 

AT5G14120 Major facilitator superfamily protein 

AT5G14800 pyrroline-5- carboxylate (P5C) reductase (P5CR) 

AT5G14810 retrotransposon family 

AT5G15260 Ribosomal protein L34e superfamily protein 

AT5G15265 unknown protein 

AT5G16560 KANADI (KAN) 

AT5G17340 Putative membrane lipoprotein 

AT5G18080 SAUR-like auxin-responsive protein family  

AT5G18085 tRNA-Trp (anticodon: CCA) 

AT5G18910 Protein kinase superfamily protein 

AT5G18920 Cox19-like CHCH family protein 

AT5G19110 Eukaryotic aspartyl protease family protein 

AT5G19120 Eukaryotic aspartyl protease family protein 
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AT5G19130 GPI transamidase component family protein / Gaa1-like family protein 

AT5G21940 unknown protein 

AT5G21940 unknown protein 

AT5G24470 pseudo-response regulator 5 (PRR5) 

AT5G24870 RING/U-box superfamily protein 

AT5G25290 CONTAINS InterPro DOMAIN/s: F-box domain, cyclin-like (InterPro:IPR001810) 

AT5G27505 Mutator-like transposase family 

AT5G28460 Pentatricopeptide repeat (PPR) superfamily protein 

AT5G28463 unknown protein 

AT5G28928 pseudogene, hypothetical protein 

AT5G30545 CACTA-like transposase family (Ptta/En/Spm) 

AT5G31807 
Mutator-like transposase family, has a 1.4e-05 P-value blast match to GB:AAA21566 
mudrA of transposon="MuDR" (MuDr-element) (Zea mays) 

AT5G32520 pseudogene, expressed protein, predicted proteins, Arabidopsis thaliana and others 

AT5G32525 gypsy-like retrotransposon family 

AT5G34560 
pseudogene, uridine kinase/uracil phosphoribosyl transferas -related, similar to uridine 
kinase/uracil phosphoribosyl transferas, putative 

AT5G35065 copia-like retrotransposon family 

AT5G35880 similar to unknown protein [Arabidopsis thaliana] (TAIR:AT1G32680.1) 

AT5G37250 RING/U-box superfamily protein 

AT5G39640 Putative endonuclease or glycosyl hydrolase 

AT5G39645 Defensin-like (DEFL) family protein 

AT5G40260 Nodulin MtN3 family protein 

AT5G41060 DHHC-type zinc finger family protein 

AT5G41220 glutathione S-transferase THETA 3 (GSTT3) 

AT5G43755 BEST Arabidopsis thaliana protein match is: Polynucleotidyl transferase 

AT5G43760 3-ketoacyl-CoA synthase 20 (KCS20) 

AT5G45576 Mutator-like transposase family 

AT5G45920 SGNH hydrolase-type esterase superfamily protein 

AT5G46050 peptide transporter 3 (PTR3) 

AT5G46060 Protein of unknown function, DUF599 

AT5G46325 tRNA-Leu (anticodon: TAG) 

AT5G46330 FLAGELLIN-SENSITIVE 2 (FLS2) 

AT5G46770 unknown protein 

AT5G46780 VQ motif-containing protein 

AT5G47610 RING/U-box superfamily protein 

AT5G47620 RNA-binding (RRM/RBD/RNP motifs) family protein 

AT5G50380 exocyst subunit exo70 family protein F1 (EXO70F1) 

AT5G51060 ROOT HAIR DEFECTIVE 2 (RHD2) 
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AT5G51070 EARLY RESPONSIVE TO DEHYDRATION 1 (ERD1) 

AT5G53550 YELLOW STRIPE like 3 (YSL3) 

AT5G55920 OLIGOCELLULA 2 (OLI2) 

AT5G57550 xyloglucan endotransglucosylase/hydrolase 25 (XTH25) 

AT5G58090 O-Glycosyl hydrolases family 17 protein 

AT5G58100 unknown protein 

AT5G58570 unknown protein 

AT5G58575 CONTAINS InterPro DOMAIN/s: Sgf11, transcriptional regulation (InterPro:IPR013246) 

AT5G59230 transcription factor-related 

AT5G59730 exocyst subunit exo70 family protein H7 (EXO70H7) 

AT5G60260 unknown protein 

AT5G60270 Concanavalin A-like lectin protein kinase family protein 

AT5G61590 Integrase-type DNA-binding superfamily protein 

AT5G62090 SEUSS-like 2 (SLK2) 

AT5G62090 SEUSS-like 2 (SLK2) 

AT5G62100 BCL-2-associated athanogene 2 (BAG2) 

AT5G62100 BCL-2-associated athanogene 2 (BAG2) 

AT5G63870 serine/threonine phosphatase 7 (PP7) 

AT5G63880 VPS20.1 

AT5G65165 succinate dehydrogenase 2-3 (SDH2-3) 

AT5G65305 tRNA-Met (anticodon: CAT) 

AT5G65445 tRNA-Ser (anticodon: GCT) 

AT5G65450 ubiquitin-specific protease 17 (UBP17) 

AT5G66310 ATP binding microtubule motor family protein 

AT5G66380 folate transporter 1 (FOLT1) 

AT5G66631 Tetratricopeptide repeat (TPR)-like superfamily protein 

AT5G66640 DA1-related protein 3 (DAR3) 

AT5G67300 myb domain protein r1 (MYBR1) 
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6.1 Introduction 

 

A unique feature of plant development is the highly plastic behaviour that it 

displays with respect to a changing environment. Depending on the environmental 

conditions, plants are able to trigger specific differentiation programs, promote 

growth over differentiation, or favour defense strategies over growth. Although the 

molecular mechanism by which plants integrate environmental and endogenous 

signals is not completely established, the high degree of connectivity between plant 

signaling pathways is undoubtedly a very useful feature, with certain unique 

signaling elements playing decisive roles in the coordination between multiple 

signaling pathways (Casal et al., 2004). One of such elements are DELLA proteins. 

These are nuclear-localized transcriptional regulators whose accumulation depends 

on the cellular levels of GAs, in such a way that higher GA levels promote the GID1 

receptor-mediated polyubiquitination of DELLAs and their subsequent degradation 

by the proteasome (Sun, 2011).  

Over the past 15 years, evidence has indeed accumulated on the multiple roles of 

DELLAs all along development and in the response to biotic and abiotic stress. For 

instance, genetic and genomic studies in Arabidopsis show that DELLAs: (1) promote 

the maintenance of seed dormancy (Penfield et al., 2006; Piskurewicz et al., 2008); 

(2) restrict cell elongation and division in almost all plant tissues and organs (Dill and 

Sun, 2001; King et al., 2001); (3) promote the gravitropic response in shoots and 

roots (Gallego-Bartolome et al., 2011; Lofke et al., 2013); (6) enhance the resistance 

to cold temperatures (Achard et al., 2008); (7) set up the program to prevent photo-

oxidative damage (Achard et al., 2008); and (8) activate the defense against 

necrotrophic fungi (Navarro et al., 2008). These observations reinforce the idea that 

DELLAs are key elements that impinge on –and modulate– multiple cellular pathways 

(Claeys et al., 2013). 

A likely explanation for the multiplicity of DELLAs’ roles is their promiscuous 

ability to interact with many of TFs (Schwechheimer, 2011; Daviere and Achard, 

2013; Locascio et al., 2013). In Arabidopsis, the DELLA proteins GAI and RGA were 
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first found to interact physically with PIF3 and PIF4, two bHLH TFs of the PIF family 

(de Lucas et al., 2008; Feng et al., 2008), and since then several additional TFs have 

been found as partners of DELLA proteins (Hou et al., 2010; Gallego-Bartolome et al., 

2011; Josse et al., 2011; Zhang et al., 2011; An et al., 2012; Bai et al., 2012; Gallego-

Bartolome et al., 2012; Li et al., 2012; Yu et al., 2012). Interestingly, this molecular 

mechanism can simultaneously explain two important features: the regulation of 

gene expression by DELLAs, and the long-standing observation of physiological 

crosstalk between GAs and other signaling pathways. However, in all these cases, 

physical interaction with DELLAs impairs the ability of the corresponding TF to bind 

the target genes, a mechanism that does not explain the observed enrichment of 

DELLA proteins at some loci (Zentella et al., 2007; Park et al., 2013). 

Cytokinins and GAs are known to exert antagonistic regulation of multiple 

developmental processes (Weiss and Ori, 2007). For instance, shoot apical meristem 

activity (Jasinski et al., 2005), hypocotyl elongation in etiolated seedlings (Chory et 

al., 1994; Alabadi et al., 2004; Argyros et al., 2008) and root growth (Argyros et al., 

2008; Achard et al., 2009; Ubeda-Tomas et al., 2009) are promoted by GAs and 

repressed by cytokinins. At least two mechanisms have been proposed to account for 

this antagonistic action: a marginal repression by GAs of the expression of type-B 

ARRs (the cytokinin-responsive TFs that mediate cytokinin signaling) (Moubayidin et 

al., 2010); and independent transcriptional regulation of common targets (Gan et al., 

2007). However, the validity of these mechanisms to explain the antagonistic 

modulation of gene expression by GAs and cytokinins all along development has not 

been demonstrated. Here we identify a novel regulatory module involving physical 

interaction between DELLAs and ARR1 in which ARR1 mediates the presence of 

DELLAs in transcriptionally active target loci, and DELLAs act as transcriptional 

coactivators.   

 

6.2 Results and discussion  

 

6.2.1 DELLA proteins GAI and RGA interact with type-B Arabidopsis 

response regulators 
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In order to identify additional DELLA partners responsible for the crosstalk 

with other hormone signaling pathways, we screened several Arabidopsis cDNA 

libraries by the yeast two-hybrid (Y2H) approach, using the GRAS domain of both GAI 

and RGA as bait (see Experimental Procedures for details). Several cDNA clones 

encoding type-B ARABIDOPSIS RESPONSE REGULATORS (ARR) ARR1 (Figures 6.1A) 

and ARR2 were recovered (data not show). Type-B ARRs are TFs of the GARP family 

that mediate changes in gene expression in response to cytokinins (CKs) (Mason et 

al., 2005; Sakai et al., 2001). Further analysis by Y2H showed that complete removal 

of the LHR1 motif of GAI (del1) does not impair interaction with ARR1, whereas it 

was prevented by further deletion of the VHIID motif (del2; Figure 6.1A). These 

results contrast with the requirement of the LHR1 to sustain interaction of GAI or 

RGA with BZR1, PIF4, and JAZ1 (de Lucas et al., 2008; Hou et al., 2010; Bai et al., 

2012), indicating that DELLAs show certain degree of differential specificity for each 

partner. On the other hand, this part of the protein was not sufficient to sustain the 

interaction (Figure 6.1A), as occurs with BZR1 (Gallego-Bartolome et al., 2012), in 

agreement with the requirement for the region close to the C-terminus to support 

DELLA interactions (Hong et al., 2012). Indeed, point mutations in DELLA genes that 

create a premature stop codon close to the very end of the coding sequence and that 

produce truncated proteins represent loss-of-function alleles (Silverstone et al., 1998; 

Ikeda et al., 2001; Chandler et al., 2002; Gubler et al., 2002; Dill et al., 2004), most 

likely because of their incapacity to interact with downstream partners. 

Contrary to what has been observed for other DELLA interactors, the DNA 

binding (M) domain of ARR1 was not involved in the interaction, while the glutamine-

rich region responsible for the transactivation activity of ARR1 (Sakai et al., 2000) 

was necessary and sufficient to sustain the interaction with GAI (Figure 6.1B). The 

modular nature of ARR1, demonstrated by the ability of the isolated M domain to 

bind DNA (Sakai et al., 2000) and by the hyperactivity of the DDK-deleted version of 

ARR1, would be compatible with the idea that the interaction with GAI does not 

interfere with the regulation of ARR1 by CKs through the DDK domain or with the 

binding of ARR1 to the promoters.  
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To confirm that the interaction between GAI and ARR1 also occurred in plant 

cells, we performed both Bimolecular Fluorescence Complementation (BiFC) and co-

immunoprecipitation (co-IP) assays. The BiFC analysis showed that the fluorescence 

from the reconstituted YFP decorated nuclei of epidermal cells of leaves of Nicotiana 

benthamiana co-infiltrated with YFN-GAI and YFC-ARR1, whereas fluorescence in the 

control leaves was below the threshold level (Figures 6.1C). It is interesting to note 

that the fluorescence from the YFP presented a pattern of punctate speckles over a 

uniform and weak background. This particular pattern might be a consequence of the 

Figure 6.1. ARR1 and GAI interact physically in plants. (A) Yeast 2-hybrid assay of the 

interaction between ARR1 and truncated versions of GAI. (H, Histidine; 3-AT, 5mM 3-

aminotriazol). (B) Yeast 2-hybrid assay of the interaction between M5-GAI and truncated 

versions of ARR1. (H, Histidine; 3-AT, 5 mM 3-aminotriazol). (C) Bimolecular Fluorescence 

Complementation assay of the interaction between GAI and ARR1 in agroinfiltrated N. 

benthamiana leaves. (D) Analysis of the interaction between HA-ARR1 or HA-ARR1∆DDK 

with GFP:GAI by co-immunoprecipitation (co-IP) with anti-GFP in agroinfiltrated leaves of 

N. benthamiana. (E) Co-IP assay of the interaction between myc-GAI and HA-ARR1 in 

Arabidopsis protoplasts. 
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interaction, given that either type-B ARRs or DELLAs show a nuclear, uniform 

distribution (Silverstone et al., 1998; Sakai et al., 2000; Hwang and Sheen, 2001; 

Lohrmann et al., 2001; Mason et al., 2004).  

The co-IP experiments performed in leaves of N. benthamiana showed that HA-

tagged versions of both full-length ARR1 and a deleted version lacking the DDK 

domain (ARR1ΔDDK) were pulled down by an anti-GFP antibody when YFP-GAI was 

co-expressed in the same leaves (Figure 6.1D). Similarly, HA-ARR1 was also pulled 

down by an anti-myc antibody in Arabidopsis protoplasts co-transfected with myc-GAI 

(Figure 6.1D). These results demonstrate that the interaction between GAI and ARR1 

occurs in plant cells, and that the DDK domain of ARR1 is dispensable for the 

interaction, as shown by the Y2H assays (Figure 6.1B). 

 

6.2.2 GAI enhances the transactivation ability of ARR1 

 

Given that GAs are responsible for DELLA degradation and they antagonize 

the effect of CKs, a reasonable hypothesis is that the interaction with DELLAs would 

promote the activity of the CK-activated type-B ARRs. This idea is supported by the 

observation that the expression of a reporter construct in Arabidopsis roots 

harbouring GFP under the control of the type-B ARR responsive TCS synthetic 

promoter (Muller and Sheen, 2008; Chickarmane et al., 2012) was enhanced by an 

18-h treatment with 0.5 μM of the CK trans-zeatin, but not when the plants had been 

pretreated with 1 μM GA4 (Figures 6.2A). Therefore, to test if DELLAs act as 

transcriptional co-activators of ARR1, we prepared a reporter construct containing 

the firefly LUCIFERASE (LUC) gene under the control of the TCS synthetic promoter 

and assayed its activity by transient expression in leaves of N. benthamiana. As 

previously reported (Sakai et al., 2000; Muller and Sheen, 2008), HA-ARR1 increased 

the expression of the wild-type, but not a mutated version of the TCS::LUC reporter 

(Figure 6.2B). Remarkably, the expression of TCS::LUC resulted significantly higher 

when YFP-GAI was co-expressed with HA-ARR1 in the same leaves, but not when 

YFP-GAI was expressed by itself (Figure 6.2B). This result suggests that the 

transactivation ability of ARR1 is enhanced upon interaction with the DELLA protein.  
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Interestingly, DELLA proteins are endowed with transactivation ability that 

resides in the N-terminal part of the protein, including the DELLA and TVHYNP motifs 

Figure 6.2.  DELLAs promote ARR1 activity. (A) Expression in Arabidopsis roots of GFP 

under the control of the CK- and ARR1-responsive TCS element, after treatments with 0.5 

µM zeatin and 1 µM GA4. (B) Luciferase assays in N. benthamiana leaves agroinfiltrated with 

HA-ARR1, GFP:GAI, and myc-M5-GAI, using the Luc gene under the control of the wild-type 

and mutant versions of the TCS element. The lower panel contains the western-blot analysis 

of the samples used for the Luciferase assay. 
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(Ogawa et al., 2000; Hirano et al., 2012). To test whether the enhanced activity of the 

TCS:LUC reporter when YFP-GAI and HA-ARR1 are co-expressed was due to the 

intrinsic transactivation of the DELLA protein, we decided to co-express a truncated 

version of GAI, M5-GAI, that lacks its N-terminal part but that still interacts with 

ARR1 (Figures 6.1A and 6.1B). As seen in Figure 6.2B, the activity of the reporter was 

enhanced when HA-ARR1 was co-expressed with myc-M5-GAI, indicating that the 

enhanced transactivation is not due to the N-terminal part of the DELLA protein. 

These results also suggest that either the DELLA protein recruits additional 

transcriptional co-activators to the complex or other regions of the DELLA acquire 

transactivation ability upon interaction with ARR1. 

 

6.2.3 ARR1 mediates the presence of GAI at target promoters 

 

CKs have been shown to regulate the expression of hundreds of different 

genes depending on the tissue and the developmental stage (Brenner and Schmulling, 

2012). To identify putative targets for coregulation by ARR1 and DELLAs, we chose to 

perform a microarray analysis on seedlings that conditionally expressed the 

ARR1∆DDK:GR allele under the 35S promoter (Sakai et al., 2001) in the presence and 

in the absence of PAC. In these seedlings, a treatment with dexamethasone (DEX) 

causes translocation of ARR1∆DDK to the nucleus, where it regulates the 

transcription of its target genes even in the absence of CKs. Therefore, we searched 

for genes displaying differential expression after a 3 hour treatment with 5µM DEX 

depending on the presence of 10µM PAC (see experimental Procedures for details). In 

parallel, we also examined transcriptomic changes induced by 5µM benzyladenine 

(BA) both in the presence and in the absence of PAC, to identify those targets in which 

regulation by CKs would be primarily dependent on ARR1. 

Statistical analysis of the transcriptomic data by Z-score (Cheadle et al., 2003) 

revealed a total of 638 and 1070 genes up- and downregulated by CKs irrespective of 

DELLA levels. From those, only 99 were upregulated both in high and in low DELLA 

levels, and included well-known targets of CK signaling, like ARR genes, CK Response 

Factors, or SHY2/IAA19 (Supporting Table I). More importantly, 140 genes were 

identified whose expression was induced by ARR1∆DDK only when DELLA levels 
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were high, while 99 genes were repressed in those conditions (Figure 6.3A). Gene 

Ontology analysis of the genes induced by ARR1 in the presence of DELLAs indicates 

an statistically significant enrichment of several categories, with a preference for 

ribosome biogenesis, translation, and protein metabolism (Figure 6.3B). Given that 

ARR1 has been shown to act as a transcriptional activator, we selected six of the 

induced genes to further test the functional and molecular relationship between 

ARR1 and DELLAs. First we examined the consequence of short-term activation of 

ARR1∆DDK:GR in seedlings that had high or low levels of DELLA proteins. Four of the 

six genes showed a much stronger induction by ARR1∆DDK in seedlings with high 

DELLA levels (Figure 6.3C), in tune with the previous transcriptomic analyses in 

similar conditions. Then we did the reciprocal test in which we examined the 

influence of an activated CK pathway on the ability of gai-1 to induce gene expression 

using HS::gai-1 seedlings (Alabadí et al., 2008). In this case, five of the six genes 

displayed a stronger induction by gai-1 in seedlings that had been pretreated with 5 

µM BA, than in the untreated plants (Figure 6.3D), which supports the idea that type-

B ARRs and DELLAs jointly promote transcription of the target genes. 

If the coregulation of the target genes by DELLAs and ARR1 is mediated by 

physical interaction between those two proteins, DELLAs should be present at the 

target promoters. To test this prediction, we performed Chromatin 

Immunoprecipitation (ChIP) of the DELLA protein RGA in RGA:GFP-RGA seedlings. In 

fact, the presence of RGA was significantly enriched in the promoters of the six genes 

tested (Figure 6.3E) and, what is more important, the presence of GFP-RGA at the 

promoters of three of the six genes tested was much higher in seedlings when 

ARR1∆DDK:GR is forced to accumulate in the nucleus with a DEX treatment (Figure 

6.3F). The requirement for ARR1 in the binding of GFP-RGA was further supported by 

the loss of enrichment in the arr1 arr12 double mutant (data not shown). Altogether, 

all the results shown here strongly suggest that ARR1 mediates the binding of 

DELLAs to the target promoters, and together they regulate their expression. 
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Figure 6.3. ARR1 and DELLA act as transcriptional co-regulators in Arabidopsis. (A) Heat 

map representation of the Arabidopsis gene set that is regulated by ARR1∆DDK:GR in the 

presence, but not in the absence of DELLA proteins. The colour scale represents Z-scores. 

(B) Enrichment of Gene Ontology categories of direct ARR1 target genes in the presence of 

DELLAs(C) Gene expression analysis by RT-qPCR in response to short-term 

ARR1∆DDK:GR induction with or without PAC. (D) Gene expression analysis by RT-qPCR 

in response to short-term induction of HS::gai-1 with or without benzyladenine. (E) ChIP 

analysis of RGA::GFP-RGA at the promoters of six representative common targets for 

ARR1 and DELLAs. (F) Fold enrichment of GFP-RGA at selected target promoters in the 

presence (+DEX) vs the absence (-DEX) of ARR1∆DDK:GR, in F1 seedlings of a cross 

between RGA::GFP-RGA and 35S::ARR1∆DDK:GR. For (C-F), data correspond to single 

biological samples analyzed in triplicates. A second biological sample showed very similar 

results. 
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6.2.4 DELLA-ARR1 interaction is necessary for proper root meristem 

maintenance and skotomorphogenesis 

 

Physical interaction between ARR1 and DELLAs provides a likely mechanism 

for the antagonistic effect of CKs and GAs in the regulation of gene expression, but to 

test the physiological relevance of this particular mechanism in the control of plant 

development we decided to test the impact of altering this interaction on two 

processes known to be regulated both by CKs and GAs. DELLA accumulation has been 

shown to reduce cell division at the root meristem (Achard et al., 2009) resembling 

the arrest caused by ARR1 overproduction (Dello Ioio et al., 2007; Dello Ioio et al., 

2008). Indeed, it has been shown that ARR1 mediates the reduction of cell division by 

DELLAs, and the proposed mechanism involves the promotion of ARR1 gene 

expression by DELLAs (Moubayidin et al., 2010). Therefore, to test the relevance of 

the interaction between the ARR1 and DELLA proteins in this context and separate 

the possible effect on ARR1 expression, we examined the ability of a constitutively 

expressed version of ARR1 (35S::ARR1∆DDK:GR) to block root meristem growth 

depending on the presence of DELLAs. In agreement with previous reports, induction 

of ARR1∆DDK:GR translocation into the nucleus after DEX treatment caused a 

reduction in meristem size (Figure 6.4A). And, more importantly, this effect was 

completely reverted by a GA treatment that depletes DELLAs from roots (Figure 

6.4A), indicating that DELLAs are required for full ARR1 function, rather than for 

ARR1 expression.  

At a different developmental stage, CKs have been found to promote de-

etiolation (Chory et al., 1994), while GAs repress photomorphogenesis in darkness 

(Alabadi et al., 2004; Achard et al., 2007; Alabadí et al., 2008). Accordingly, nuclear 

accumulation of ARR1∆DDK:GR in dark-grown seedlings resulted in cotyledon 

opening and expansion, a well known photomorphogenic trait, but this effect was 

milder in GA-treated seedlings (Figure 6.4B), indicating that DELLAs enhance the 

photomorphogenic activity of ARR1. Conversely, DELLA-induced cotyledon opening 

in darkness was completely suppressed in the arr1 arr12 double mutant (Figure 
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6.4C), supporting the idea that ARRs and DELLAs jointly regulate various 

physiologically relevant developmental processes. 

 

 

 

 

 

 

 

 

 

 

Taken together, our results expand the mechanism by which DELLA proteins 

regulate transcriptional programs in plants. The observation that DELLAs modulate 

not only the binding, but also the activity of TFs at target loci, together with the 

indications that they may also regulate chromatin remodelling through their 

interaction with SWI/SNF complexes (Sarnowska et al., 2013) delineates a landscape 

in which DELLA proteins act as  molecular hubs in signaling networks, with a very 

Figure 6.4. Physical interaction between ARR1 and DELLAs regulates division at the 

root meristem and photomorphogenesis. (A) Root meristem size of 35S::ARR1∆DDK:GR 

seedlings grown for 4 days with and without GA. (n=20; data are mean ± SD; ***p<0.001). 

(B) Angle between cotyledons of 35S::ARR1∆DDK:GR seedlings grown for 4 days with and 

without GA in darkness. (n=18; data are mean ± SD). (C) Angle between cotyledons of 

wild-type and arr1 arr12 seedlings grown for 4 days with and without PAC in darkness. 

(n=18; data are mean ± SD) 
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broad effect on development. Equivalent central roles have been found in other 

systems only for Mitogen-activated Protein kinases (MAPKs). For instance, 

mammalian p38 kinases and their yeast ortholog Hog1 modulate gene expression in a 

very wide sense by regulating the activity of DNA-binding TFs, transcriptional 

elongation, chromatin remodelling, and mRNA stability in response to environmental 

stress (de Nadal et al., 2011). However, the activity of DELLA proteins seems to rely 

on their intrinsic ability to interact with elements of the transcriptional regulation 

machinery. 

Under this perspective, at least two relevant issues would need to be solved: the 

molecular features of DELLA proteins that allow them to display such a promiscuous 

set of interactors and activities; and the spatial requirements that may constrain the 

different DELLA interactions to specific cell-types. 

 

6.3 Material and methods  

 

Plant Material. Arabidopsis thaliana accessions Col-0 and Ler were used as 

wild type. The transgenic lines 35S::ARR1∆DDK-GR, TCS::GFP, RGA::RGA-GFP, HS::gai-1 

and the mutant arr1-3;arr12-1 have been described previously (Sakai et al., 2001; 

Silverstone et al., 2001; Alabadi et al., 2008; Argyros et al., 2008; Muller and Sheen, 

2008). 

 

Experimental Conditions. Seedlings were grown on MS at 22°C in 

continuous light (~50 μmol m−2 s−1) unless otherwise indicated. For TCS::GFP activity 

6 days old seedlings growing in MS were transfer to liquid MS containing the 

chemicals for the indicated times, and at the next concentrations, PAC 1µM, GA4 1µM 

and trans-zeatin 0.5 µM. For RAM growth 5day old seedlings were treated in liquid 

MS for 16 hours with the chemicals at the specified concentrations, dexamethasone 

30 µM and GA4 1 µM and then transfer to MS agar for 2 days. For cotyledon opening 

assays, seedlings were germinated for 8 hours in MS agar and then transfer to 

darkness in MS with 0.1 µM dexamethasone with or without 1 µM GA4 for 7 days. 
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Y2H Assays. A GAL4AD fusion library prepared from cDNA f 3-days old de-

etiolated seedlings (CD4-22, ABRC) was used to screen for GAI interactors using a 

GAL4BD-M5-GAI fusion (Gallego-Bartolome et al., 2012), clones were selected with 

5mM 3 AT. 

Full length and deletions of ARR1 were obtained by PCR amplification using 

the primers listed in bellow were used to create pENTR the fragments were cloned 

into pCR8/GW/TOPO (Invitrogen), then transferred into pDEST22 (Invitrogen) to 

create GAL4DNA binding domain fusion. GAI deletions have been described before 

(Gallego Bartolome et al., 2012). Subsequent cotransformation of the yeast strain 

AH109 (Clontech) were performed. To select the interaction, clones were grown in 

SD plates without Leu, Trp and His, and with different concentrations of 3-

aminotriazol (3-AT) (Sigma).  

 

Bimolecular Fluorescence Complementation. pENTR containing the full 

length of ARR1 and GAI were transferred into pMDC43-YFC and pMDC43-YFN vectors 

(provided by Dr Alejandro Ferrando-IBMCP) respectively, then introduced into 

Agrobacterium tumefaciens C58. For BiFC experiments, 4-week-old Nicotiana 

benthamiana leaves were coinfiltrated with Agrobacterium tumefaciens C58 as 

describe before (Sparkes et al., 2006), then after 2 days confocal imaging was 

performed.  

 

Co-Immunoprecipitation in Nicothiana benthamiana pENTR of ARR1, M5-

GAI and GAI (Gallego-Bartolome et al., 2012) were transfer into pEarleyGate-201, 

 Forward Reverse 

   

ARR1  5´-ATGATGAATCCGAGTCACGGAAGAG-3´  5´-AACCGGAATGTTATCGATGGAGTATG-3´ 

   

Ad2 5´-ATGGTTAGGAAGAGGAGAAGTG-3´ 5´-AACCGGAATGTTATCGATGGAGTATG-3´  

Ad3 5´-ATGAAACCGCGTGTCGTCTGGTC-3´ 5´-AACCGGAATGTTATCGATGGAGTATG-3´  

Ad5 5´-ATGATGAATCCGAGTCACGGAAGAG-3´  5´-CTGCGATACCCCTCCAAGCC-3´ 

Ad9 5´-ATGAGAAGTGGTTTCTCTGGAAGG-3´ 5´-AACCGGAATGTTATCGATGGAGTATG-3´  
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pEarleyGate-203 pEarleyGate-104 respectively (Earley et al., 2006), then Nicotiana 

benthamiana leaves were infiltrated as explain before. Protein extraction and IP was 

performed as described (Gallego-Bartolome et al., 2012). 

 

Reporter Construct and Transcriptional Assays. The Type-B binding site 

(TCS) (AAAATCTACAAAATCTTTTTGGATTTTGTGGATTTTCTAGC) upstream of the 

minimal 35S promoter and the Ω translational enhancer were amplified from the 

construct in pUC18 vector using the primers 5´-AACTGCAGGTAAAACGACGGCCAGT-3´ 

and 5´-GGCCATGGTGTAATTGTAAATAGTAATTG-3´containing the restriction sites PstI 

and NcoI respectively, this was cloned into pGreenII 0800-LUC vector (Hellens et al., 

2005). To obtain the mutated version of the reported (TCS*) 

(AAAATGTACAAAATGTTTTTGCATTTTGTGCATTTTCTAGC) and overlapping PCR 

were performed to fusion the Ω translational enhancer and the TCS* with the minimal 

35S promoter. The Ω translational enhancer was amplified by PCR from TCSpUC18 

(provided by Bruno Müller) using the primers 5´-

ATTTCATTTGGAGAGGTATTTTTACAAC-3´ and 5´-

GGCCATGGTGTAATTGTAAATAGTAATTG-3´, meanwhile the TCS*m35S was amplified 

with the primers 5´-AACTGCAGGTAAAACGACGGCCAGT-3´ and 5´-

CCTCTCCAAATGAAATGAACTTCCTTAT-3´ the fusion was cloned into pCR8/GW/TOPO 

(Invitrogen) and then into pGreenII 0800-LUC vector. For Transcriptional Assays. 

Leaves of 4 weeks-old Nicotiana benthamina were infiltrated with Agrobacterium 

tumefaciens C58 cells carrying the constructs, the ratio of Agrobacterium-carrying 

reporter and effector constructs was 1:4. Firefly and the control Renilla LUC activities 

were assayed from leaf extracts with the Dual-Glo Luciferase Assay System 

(Promega) and quantified with a GloMax 96 Microplate Luminometer (Promega).To 

verify that protein amounts were equal, Western Blot analysis were performed with 

proteins extracted from the same experiment, the ARR1, GAI and M5-GAI fusions 

were detected with anti-HA (3F10; Roche), anti-GFP (ab290; Abcam), and anti-c-myc 

(9E10; Roche) antibodies respectively. 

Microarray Analysis. Seedlings were grown under continues light (50 

μmolm-2S-1) for 5 days before treatments. RNA was extracted with RNeasy Plant Mini 
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kit (Qiagen). Two biological replicates were labeling and hybridization to Affymetrix 

ATH1 arrays. Analysis was performed in R (Duek et al., 2004) and Bioconductor 

(Reimers and Carey 2006). Microarrays were normalized with the RMA procedure as 

implemented in the affy package (Gautier et al., 2004), and differential expression 

was determined using limma (Gentleman et al.,2005) with a Z score (Cheadle et 

el.,2003). 

 

Gene expression. For gene expression analysis, total RNA was extracted 

with E.Z.N.A. Plant RNA Mini Kit (Omega Bio-tek) according to the manufacturer´s 

instructions. cDNA synthesis was performed with SuperScript II First-Strand 

Synthesis System (Invitrogen).And RT-PCR was performed as describe before, the 

EF1-α gene was used for normalized (Frigerio et al., 2006). Primers used to amplify 

transcripts were: 

 

 Forward Reverse 

AT5G11630 5´-TCCCAAATCGGCTTCATCAT-3´ 5´-GAAAATCCAGGCGAAGGAGG-3´ 

AT4G39070 5´-TTCCTCCTTACCGGCGTTAA-3´ 5´-TCTTGGGTAGGCTGACGGG-3´ 

AT1G07830 5´-CTTCAGAGCTGCGTCTCAAGTC-3´ 5´-CGTACCACAGCTTCTGAAGATCAT-3´ 

AT2G15970 5´-CTTCACACTCACTGGTTTAGGCTTT-3´ 5´-GCAACCCATTCGAGGACAGA-3´ 

AT1G69530 5´-AAGCGATGGCCAAACCATT-3´ 5´-GACCAGCCTGCGTTAGCAAC-3´ 

AT1G14620 5´-ATGCCGAGATCATCTTTGCG-3´ 5´-CCTGCTCTCCAAGAGAGGCTT-3´ 

 

Chromatin immunoprecipitation 10 days seedling of Ler and RGA::RGA-

GFP growing at 22°C in continues light (~50 μmol m−2 s−1) were treated with PAC 

10µM for 18 hours after this, benzyladenine was added to a final concentration of 5 

µM for 6 hours, a mock treatment was used as control. ChIP was performed as 

described previously (Saleh et al 2008), for immunoprecipitation Dynabeads Protein 

A (Invitrogen) and an anti-GFP (hemagglutinin) polyclonal antibody (ab290; Abcam) 

was used. Relative enrichment was calculated by normalizing the amount of target 

DNA, first to the internal control gene HSF (At4g17740) and then to the 

corresponding amount in the input. The same was done with 35S::ARR1∆DDK:GR- 
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RGA::RGA-GFP  F1 crosses. Data are mean and SD of three technical replicates from a 

representative experiment from two biological replicates. 

 

 

 Forward Reverse 

AT5G11630 5´-AGACGTCGTGTGGTTTTTGG-3´ 5´-AACGACGACGTTATCAAACAAA-3´ 

AT4G39070 5´-CCCGGTATGCTTTTGTTTAAG-3´ 5´-CCCCCAAATTGACTTGTTTT-3´ 

AT1G07830 5´-TGCGTTGATCCGTGTGATTT-3´ 5´-CATTGGATCAGTAATCAACGGTTG-3´ 

AT1G69530 5´-ACAACAGATTCTCATAATCATCTC-3´ 5´-AGATCACATTTTGTGAAGCTAAA-3´ 

AT1G14620 5´-GAATGCATAGCAAACCGGAT-3´ 5´-ATTGGTTTACATAACCAGAATCCG-3´ 

HSF 5´-GCTATCCACAGGTTAGATAAAGGA-3´ 5´-GAGAAAGATTGTGTGAGAATGAAA-3´ 

UBC30 5´-CAAATCCAAAACCCTAGAAACCGAA-3´ 5´-AACGACGAAGATCAAGAACTGGGAA-3´ 

 

6.4 Supporting Table I 

https://www.dropbox.com/s/5rtcdnmbwxft111/GO%20DELLA%2BARR1.xlsx 
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7. General discussion 

 

As outlined in the Introduction of this Thesis, a characteristic feature of GA 

action is the participation of this hormone in the regulation of a surprisingly large 

array of processes all along plant development, triggering different responses in an 

organ- and tissue-specific manner. Therefore, to understand the role of GAs in a 

plant's life, at least three outstanding questions need to be solved at the molecular 

level: 

- How can a single hormone exert so many different actions in the 

same and in different cells? Or, expressed in molecular terms, how can a single 

molecule activate different transcriptional programs in different situations? 

- How do GAs interact with other hormones to regulate gene 

expression? Through which molecular mechanism? 

- How is GA activity regulated by environmental and other 

endogenous signals that modulate plant development?  

The work presented in this Thesis, together with the important contributions 

made by other laboratories during the past few years, defines a molecular mechanism 

in which DELLA proteins act as hubs of a signaling network that modulates plant 

development in response to the environment. And, more importantly, this molecular 

mechanism provides a likely answer to the three questions stated above.  

One of the key findings that explain the molecular activity of DELLA proteins 

is the observation that they are able to interact with an unexpectedly high number of 

DNA-binding TFs. Although most of the interactions found in this work have not been 

confirmed with techniques different to the yeast-two hybrid approach, the fact that 

many of them have been reported as relevant in different contexts in vivo 

(Supporting Table III and Figure 7.1) suggests that the final number of bona fide 

interactors will be high in any case.  

The simplicity of a molecular mechanism based on the interaction between 

DELLAs and multiple TFs should not distract from the strong regulatory potential of 

such a mechanism. In fact, it may explain how DELLAs regulate different sets of genes 

in different contexts: by interacting with a different TF in each case. And it also 
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explains at the molecular level several physiological observations that connected GAs 

with many other hormones. For instance, we have shown here that DELLA-ARR1 

interaction would underlie the antagonistic relationship between GAs and CKs, while 

DELLA-RAP2.3 interaction would be partly responsible for the crosstalk between GAs 

and ethylene, which also occurs through the interaction between DELLAs and EIN3 

(An et al.,2012).  

 

 

 

 

 

The extraordinary capacity of DELLAs to interact with other proteins is an 

unusual feature for the average protein, and thus they can be considered as “hubs” in 

a transcriptional network. Interestingly, the GAI-interactome network is mostly 

maintained even in the absence of GAI (Figure 7.2), which is a behavior shared with 

the network of the predicted Arabidopsis interactome when major and super hubs are 

removed (Geisler-Lee et al., 2007), and that indicates that interactions between minor 

hubs also maintain the network together.  This means that several proteins in the GAI 

interactome participate in different complexes that are likely shared by different 

signaling cascades, as described for the yeast interactome (Batada et al., 2006).  

 

Figure 7.1 Mechanism of DELLA action to control development. DELLAs interact with 

diverse transcription factors to regulate transcription. However DELLAs also interact with 

no transcriptional means. For instance control microtubules disposition by the interaction 

with the chaperone Prefoldin 5 (PFD5) (Locascio et al., 2013).  
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Thanks to the study of signaling networks in different organisms, functional 

hubs have been attributed a series of properties (Gunasekaran et al., 2003), some of 

which can indeed be found in DELLAs. For instance, yeast hub proteins show a high 

importance in the control of regulatory networks. Accordingly, deletion of a hub 

protein is lethal in some cases, or at least causes an extremely pleiotropic phenotype 

(Fraser et al., 2002). The elimination of DELLA genes in different species has not been 

found to be lethal in any case, but the knockout mutants are strongly incapable of 

producing a correct response under stress. Plants have developed a defense 

mechanism that coordinates a general growth arrest when subjected to life threats 

like higher salinity or cold temperatures, while the appropriate defense response is 

triggered; however the dellaKO mutants continue growing under stress conditions 

and reduce their chance to survive (Achard et al.,2006).  

Figure 7.2 (A) Cytoscape representation of network formed by DELLA interactors 

(yellow), without DELLAs. (B) Network formed by DELLA interactors (yellow), including 

DELLAs (red edges). Blue nodes represent reported proteins that interact with each 

transcription factor. 
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A second feature of hub proteins is that they usually display structural 

characteristics that allow the physical recognition of many partners which do not 

share common structural domains between them. It has been proposed that some 

hub proteins lack a fixed tertiary structure and contain extensive intrinsically 

disordered regions (IDR), which serve as the basis for promiscuity and provide them 

with extraordinary flexibility. Bioinformatic analyses indicate that approximately 

23% of Arabidopsis proteins are mostly disordered (Oldfield et al., 2005). In fact, the 

N-terminal part of DELLAs is intrinsically disordered, and its structure undergoes a 

conformational change upon binding to the GA- receptor GID1 (Sun et al., 2010; Sun 

et al., 2011). However, the region in DELLAs that interacts with their partners is the 

central and C-terminal domains, in which no IDR index is sufficiently high (Figure 

7.3). How can DELLAs then recognize so many structurally different partners? At 

least two complementary possibilities can be taken into consideration. The first one 

is that the small “linkers” that connect the structured domains (indicated as * in 

Figure 7.3A) could probably favor globular domains to twist freely and recruit 

binding partners. In agreement with this, these regions are less structured (Figure 

7.3A). In some cases these linkers could be as short as a few amino acids (Reddy 

Chichili et al., 2012). 

The second possibility is that DELLAs act as structured hubs, as exemplified 

by 14-3-3 hub proteins, in which case the partners are the ones that contain IDRs 

(Oldfield et al., 2008). Taking into account the study presented by Liu et al., 2002 

transcription factors usually contain extended disorder regions, we are able to 

observe a high propensity to contain IDRs (Figure 7.3C). However not all DELLA 

partners contain IDRs (Figure 7.3B). Thus, experimental structural analysis for 

several DELLAs-partner complexes will be necessary to answer solve this issue. 
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A question that still remains to be solved is the biological advantage that can 

be conferred by DELLAs as hubs. One possibility is that when the interaction with 

several partners is possible within a single cell, DELLAs will establish differential 

interactions depending on the respective affinities. In this model, any alteration of 

DELLA levels will be not be translated equally into different transcriptional programs, 

Figure 7.3 IDRs of GAI and some DELLAs partners. We use IUPRED to predict IDRs, 

scores above 0.5 indicates disorder. Protein domains are indicated above each plot. 
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providing an extra level of plasticity to transcriptonal programs governed by DELLAs. 

Today, techniques like FLIM (Fluorescence-Lifetime Imaging Microscopy) could help 

us to better understand the dynamics of DELLA proteins interactions within living 

cells (Truong and Ikura, 2001).  

In any case, it is already clear that the activity of DELLAs is dependent on a 

large array of signals and temporal and spatial constrains. The major input pathway 

of environmental information has been shown to eventually modify GA levels 

(Yamaguchi et al., 1998; Oh et al., 2006; Seo et al., 2006; Yamauchi et al., 2007), which 

in turn will determine DELLA levels. In a different layer of regulation, the expression 

patterns of GID1 and DELLA genes (Griffiths et al., 2006; Gallego-Bartolome et al., 

2010) also determine the extent to which each tissue will respond to the 

environment, and GA transport over the phloem can also establish big differences in 

DELLA accumulation in different organs. Finally, the activity of the circadian clock 

adds a temporal control to GA sensitivity, altering DELLA levels in a rhythmic fashion 

(Chapter 1). This is why DELLAs can be defined as hubs not only from a topological 

point of view within an interactome network, but also as a functional hub that relays 

environmental signals to already pre-established transcriptional networks (Figure 

7.1). 

The view that emerges with the results presented here makes it more 

difficult to consider GA signaling as a single classical pathway with GA-specific 

transcriptional programs. On the other hand, it provides a very clear strategy for the 

biotechnological manipulation of agronomically important traits, without the side 

effects characteristic of GA or paclobutrazol applications. Such a strategy consists in 

the selection of edgetic DELLA alleles that disrupt one or only a few of the 

interactions, without affecting the rest of them (Figure 7.4).  

Selection of such edgetic alleles using molecular approaches (Dreze et al., 2009), or 

screening for compounds that preferentially affect one of the interactions may 

represent a powerful agronomical tool in the next future.  
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8. Conclusions  

 

The main conclusion of this Thesis is that DELLA proteins act as genuine hubs that 

integrate environmental information and control transcription through the 

interaction with a large array of transcription factors. In more detail: 

1. The level of DELLA proteins is temporally controlled by the circadian clock 

through the circadian oscillation of the expression of the genes encoding the 

GA receptors. This mechanism helps restrict the growth period to the end of 

the night. 

2. DELLA proteins interact with DNA-binding transcription factors of very 

different structural families. In some cases, such as RAP2.3 and other 

partners reported in the literature, interaction with DELLAs prevents the 

binding of the transcription factor to the target promoters. A novelty in this 

work is that in several other cases DELLAs are recruited to the target loci. In 

the case of ARR1, for instance, DELLAs act as transcriptional co-activators.





 

 
 

 

 


