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 Resum 

Phenacoccus peruvianus (Hemiptera: Pseudococcidae) és un cotonet 

invasor d’origen Neotropical que va ser observat per primera vegada en la 

Conca Mediterrània a Almeria (Espanya) en l’any 1999. Durant els següents 

anys la seua presència es va estendre per altres àrees del Mediterrani, 

detectant-se també a Portugal i França, a més de les illes de Sicília, Còrcega 

i Balears. Phenacoccus peruvianus és una espècie polífaga que ocasiona 

danys rellevants en plantes ornamentals d’alta importància econòmica. 

Degut al desconeixement d’aquesta espècie, durant els primers anys del 

procés d’invasió  la seua gestió és va portar a terme mitjançant l’ús de 

tractaments químics amb matèries actives d’ample espectre. Amb tot, la 

nova directiva europea sobre l’ús sostenible de productes fitosanitaris ha 

qualificat les àrees verdes urbanes com zones d’ús reduït o nul de 

plaguicides i insta a la utilització d’estratègies de gestió més sostenibles 

com el control biològic. En aquesta tesi es presenten les bases per a la 

introducció del control biològic en un programa de gestió de P. peruvianus 

en àrees verdes urbanes, centrant-se en la seua caracterització, mostreig, 

biologia i control.  

Amb l’objectiu de facilitar la identificació d’aquesta i altres especies de 

pseudocòccids, es van caracteritzar 33 poblacions de cotonets presents en 

cultius i plantes ornamentals a l’est d’Espanya mitjançant la combinació de 

tècniques morfològiques i moleculars. Aquesta caracterització va permetre 

el reconeixement de deu espècies de pseudocòccids, facilitant la seua 

futura identificació rutinària mitjançant la seqüenciació d’ADN o l’ús 

d’altres ferramentes moleculars. A més, les dades obtingudes contribueixen 

al coneixement filogenètic de la família Pseudococcidae i proveeixen 

informació sobre el procés d’invasió d’algunes d’aquestes especies com P. 

peruvianus. 

L’abundància de les poblacions de P. peruvianus en plantes de 

buguenvíl·lia en àrees verdes urbanes va ser alta a primavera i estiu, 

disminuint fins a nivells quasi imperceptibles durant la tardor i l’hivern. Pel 

que fa a la distribució en la planta, el cotonet va mostrar preferència per 

situar-se en les bràctees i no es van observar importants migracions entre 
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els diferents òrgans. Phenacoccus peruvianus es va distribuir de manera 

agregada en bràctees, fulles i branques. Per a la seua gestió en àrees verdes 

urbanes es recomana un mostreig binomial de 200 fulles amb un llindar de 

tractament del 55% de fulles infestades. 

Els enemics naturals de major rellevància associats a P. peruvianus van 

ser els parasitoides primaris Acerophagus n. sp. prox. coccois i Leptomastix 

epona Walker (Hymenoptera: Encyrtidae). A més s’identificaren diferents 

espècies de depredadors de les famílies Anthocoridae, Coccinellidae, 

Chamaemyiidae i Chrysopidae. Les poblacions de P. peruvianus van 

disminuir en gran mesura durant el segon i tercer any de l’estudi coincidint 

amb l’augment del parasitisme per part d’Acerophagus sp. Aquest 

parasitoide d’origen desconegut va desplaçar al natiu L. epona. Entre les 

raons d’aquest desplaçament, s’observaren diferències en el nombre de 

femelles en la descendència i l’anticipació en l’ús de recursos.  

Per a ampliar el nostre coneixement sobre la biologia del nou 

parasitoide Acerophagus sp. es varen estudiar alguns caràcters de les seues 

estratègies reproductives i alimentàries. El nombre d’ous disponibles va ser 

màxim quan el parasitoide va assolir els 5 dies d’edat amb quasi 30 ous 

madurs. El segon i tercer estadi nimfal, així com l’estadi adult de P. 

peruvianus van ser adequats per al parasitisme, mostrant Acerophagus sp. 

una major preferència pels estadis de major edat. En tots aquests estadis es 

va observar un baix percentatge d’encapsulació eficient (10.76 ± 0.31 %). 

Per altra banda, el parasitoide, es va desenvolupar com a solitari en nimfes 

de segon estadi i com a gregari en estadis majors (2-4 parasitoides per 

hoste). A més, es va reproduir de manera partenogenètica amb la completa 

absència de mascles en la descendència. El temps de desenvolupament dels 

estadis immadurs del parasitoide fou de 20-22 dies a 25°C i 65% HR. Amb 

aquestes mateixes condicions, els adults van viure més de 20 dies quan 

s’alimentaren de mel, però menys de tres dies quan s’alimentaren de fonts 

de sucre presents en àrees vedes urbanes com melassa de P. peruvianus o 

flors de Bougainvillea glabra. 
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Resumen 

Phenacoccus peruvianus (Hemiptera: Pseudococcidae) es un cotonet 

invasor de origen Neotropical que fue observado por primera vez en la 

Cuenca Mediterránea en Almería (España) en el año 1999. Durante los años 

siguientes la presencia del cotonet se extendió por otras áreas del 

Mediterráneo detectándose también en Portugal y Francia, así como en las 

islas de Sicilia, Córcega y Baleares. Phenacoccus peruvianus es una especie 

polífaga que ocasiona daños en plantas ornamentales de alta importancia 

económica. Debido al desconocimiento de esta especie, durante los 

primeros años de la invasión la gestión del cotonet se llevó a cabo mediante 

el uso de tratamientos químicos con materias activas de amplio espectro. A 

pesar de ello, la nueva directiva europea sobre el uso sostenible de 

productos fitosanitarios ha calificado las áreas verdes urbanas como zonas 

de uso reducido o nulo de plaguicidas, instando a la utilización de 

estrategias de gestión más sostenibles como el control biológico. En esta 

tesis se presentan los fundamentos necesarios para introducir el control 

biológico en un programa de gestión de P. peruvianus en áreas verdes 

urbanas, centrándose en su caracterización, muestreo, biología y control.  

Con el objetivo de facilitar la identificación de esta y otras especies de 

pseudocóccidos, se caracterizaron 33 poblaciones de cotonet presentes en 

cultivos y plantas ornamentales en el este de España mediante la 

combinación de técnicas morfológicas y moleculares. Esta caracterización 

permitió el reconocimiento de diez especies de pseudocóccidos, facilitando 

su futura identificación rutinaria mediante la secuenciación de ADN o el uso 

de otras herramientas moleculares. Además, las secuencias obtenidas 

contribuyen al conocimiento filogenético de la familia Pseudococcidae y 

proveen importante información sobre el proceso de invasión de algunas 

de estas especies como P. peruvianus. 

La abundancia de las poblaciones de P. peruvianus en plantas de 

buganvilla en áreas verdes urbanas fue alta en primavera y verano, 

disminuyendo hasta niveles casi imperceptibles durante otoño e invierno. 

En cuanto a su distribución en la planta, el cotonet mostró preferencia por 

situarse en las brácteas y no se observaron importantes migraciones entre 
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los diferentes órganos. Phenacoccus peruvianus se distribuyó de manera 

agregada en brácteas, hojas y ramas. Para su gestión en áreas verdes 

urbanas se recomienda un muestreo binomial de 200 hojas y un umbral de 

tratamiento del 55% de hojas infestadas.  

Los enemigos naturales más importantes asociados a P. peruvianus 

fueron los parasitoides primarios Acerophagus n. sp. prox. coccois y 

Leptomastix epona Walker (Hymenoptera: Encyrtidae). Además, se 

identificaron diferentes especies de depredadores de las familias 

Anthocoridae, Coccinellidae, Chamaemyiidae y Chrysopidae. Las 

poblaciones de P. peruvianus disminuyeron en gran medida durante el 

segundo y tercer año del estudio coincidiendo con el aumento del 

parasitismo de Acerophagus sp. Este parasitoide de origen desconocido 

desplazó al nativo L. epona. Entre las razones del desplazamiento se 

observaron diferencias en el número de hembras en la descendencia y la 

anticipación en el uso de los recursos.  

Para ampliar nuestro conocimiento de la biología del nuevo parasitoide 

Acerophagus sp. se estudiaron algunos aspectos de sus estrategias 

reproductivas y alimentarias. El número de huevos disponibles fue máximo 

cuando el parasitoide alcanzó los cinco días de edad con aproximadamente 

30 huevos maduros. El segundo y tercer estadio ninfal, así como el estado 

adulto de P. peruvianus fueron adecuados para el parasitismo, mostrando 

Acerophagus sp. mayor preferencia por los estadios más adultos. En todos 

estos estadios se observó un bajo porcentaje de encapsulación eficiente 

(10.76 ± 0.31 %). Por otra parte, el parasitoide se desarrolló como solitario 

en las ninfas de segundo estadio y como gregario en los estadios más 

grandes (2-4 parasitoides por hospedero). Además se reprodujo de manera 

partenogenética con la completa ausencia de machos en la descendencia. El 

tiempo de desarrollo de los estadios inmaduros del parasitoide fue de 20-

22 días a 25°C y 65% HR. Con estas mismas condiciones, los adultos vivieron 

más de 20 días cuando se alimentaron de miel, pero menos de 3 días 

cuando se alimentaron de fuentes de azúcar comunes en áreas verdes 

urbanas como melaza de P. peruvianus o flores de Bougainvillea glabra. 
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Abstract 

Phenacoccus peruvianus (Hemiptera: Pseudococcidae) is an invasive 

mealybug of Neotropical origin, first reported in the Mediterranean Basin in 

Almeria (Spain) in 1999. In the following years the mealybug spread into 

other Mediterranean regions and has also been recorded in Portugal and 

France, as well as in Sicily, Corsica and the Balearic Islands. Phenacoccus 

peruvianus is a polyphagous species and damages economically important 

ornamental plants. Since this was a relatively unknown species, during the 

first years of invasion, the mealybug was managed by the application of 

chemical treatments with wide-spectrum pesticides. However, the latest 

European directive on pesticide use reduces or even forbids pesticide 

applications in a wide range of urban green areas, giving significant priority 

to biological control (European Parliament and Council 2009). This thesis 

sets the basis for introducing biological control into a P. peruvianus 

management program in urban landscapes, focusing on its characterization, 

sampling, biology and control.  

In order to facilitate the identification of this and other mealybug 

species, we characterised 33 mealybug populations infesting crops and 

ornamental plants in Eastern Spain, using a combination of molecular and 

morphological techniques. This characterisation led to the identification of 

ten mealybug species and made routine identification possible through 

DNA sequencing or the use of derived species-specific molecular tools. The 

sequences obtained also add to the phylogenetic knowledge of the 

Pseudococcidae family and provide insight into the invasion history of some 

species. 

Phenacoccus peruvianus populations were high in bougainvillea plants 

during spring and summer, declining to almost undetectable levels in 

autumn and winter. The mealybug was mainly found in bracts and there 

were no significant migrations between plant strata. Phenacoccus 

peruvianus showed a high aggregated distribution on bracts, leaves and 

twigs. We recommend a binomial sampling of 200 leaves and an action 

threshold of 55% infested leaves for IPM purposes in urban landscapes. 
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Its most abundant natural enemies were found to be the primary 

parasitoids Acerophagus n. sp. near coccois and Leptomastix epona Walker 

(Hymenoptera: Encyrtidae). We also identified several predator species 

from the Anthocoridae, Coccinellidae, Chamaemyiidae, and Chrysopidae 

families. Phenacoccus peruvianus populations were lower during the 

second and third year of the survey, coinciding with an increase in the 

parasitoid Acerophagus sp. populations, which displaced the native L. 

epona. Differential female offspring and resource preemption are discussed 

as the main reasons for this displacement. 

To obtain further information on the biology of the new parasitoid 

Acerophagus sp. we determined some traits of its reproductive and feeding 

strategies. Acerophagus sp. egg load reached its maximum when it was 5 

days old with almost 30 mature eggs. Phenacoccus peruvianus second and 

third nymphal instars and adults were suitable for parasitism and efficient 

encapsulation was low (10.76 ± 0.31 %). The parasitoid always preferred 

older instars when different host instars were available. Acerophagus sp. 

developed as a solitary parasitoid in the second instar and as a gregarious 

parasitoid in older instars (2–4 parasitoids per host). Moreover, it 

reproduced parthenogenetically and all the emerged offspring were 

females. Immature development lasted between 20 and 22 days at 25°C 

and 65% HR. Under these conditions, adults lived for longer than 20 days 

when fed on honey, but fewer than 3 days when fed on naturally occurring 

sugar sources (host honeydew and Bougainvillea glabra flowers).  
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1.1 Pest management in urban landscapes 

1.1.1 Urban landscapes 

The urban population has grown considerably over the last 50 years. It is 

estimated that the global urban population surpassed that of rural areas for the 

first time in human history in 2008, reaching more than 3000 million people (UN 

2008). This trend is still continuing and in 2030 six out ten people are expected to 

be living in cities (UN 2008). Urban landscapes are thus becoming the natural 

environment for most of the world’s population and thus play a major role in the 

quality of life and health of city dwellers, providing ecosystem services such as air 

filtering, micro-climate regulation, rain-water drainage, sewage treatment and 

recreational and cultural values (Bolund and Hunhammar 1999; Tratalos et al. 

2007; Liu et al. 2010). For these reasons, the conservation and protection of urban 

ecosystems have capital relevance beyond the aesthetics of urban arboriculture.  

Urban ecosystems constitute an anthropic harsh environment to which 

plants are not adapted, so that urban vegetation is particularly susceptible to 

insect outbreaks (Herms et al. 1984). The ecological relationships between plants, 

insects and the urban environment are specific for these ecosystems and an 

understanding of them is crucial to designing effective management strategies 

(Frankie and Ehler 1978; Raupp et al. 2010). Among the biotic attributes that 

influence insect populations, we can highlight the diversity of plants and natural 

enemies and the evolutionary relationships between plant and insect pests 

(Tallamy 2004; Shrewsbury and Raupp 2006). Other abiotic factors have a 

significant role in these interactions, especially impervious surfaces, habitat 

fragmentation and thermal regimes (Frankie and Ehler 1978; Faeth et al. 2005). 

Finally, the human impact on pollution and plant management due to fertilizers, 

pesticides, etc. is particularly relevant (Herms 2002; Jones et al. 2004). These 

factors favor infestations of small insects with limited mobility and the ability to 

produce multiple generations in the same plant, including mites, scale insects, 

lacebugs, adelgids or dipterous leafminers, which are particularly abundant in 

urban areas (Raupp et al. 2010). 
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1.1.2 Urban pest management 

 Urban pest management has traditionally relied on chemical applications 

(Jetter and Paine 2004). However, the evolution of pesticide resistance in some 

insect species, the proliferation of secondary pests, and the growing social 

awareness to pesticide use has led to the introduction of integrated pest 

management (IPM) practices in urban landscapes (Olkowski et al. 1976; Olkowski 

et al. 1978; Nielsen 1989; Raupp et al. 1992; Jetter and Paine 2004). These 

practices start with the identification and establishment of key pests and 

systematize regular samplings of insects and tree damage. They thus provide 

relevant information that optimizes decision making and enables the introduction 

of more sustainable management tools (Raupp et al. 1985; Ball 1987; Dreistadt 

and Dahlsten 1988; Raupp et al. 1988; Raupp et al. 1992). The fundamentals of 

IPM in urban landscapes are close to those of agricultural or forest ecosystems, 

but give special attention to the concept of aesthetic qualities in decision making 

and use thresholds based on Aesthetic Injury Levels (AILs) which reflect the 

minimum infestation level that causes aesthetic damage (Olkowski et al. 1978; 

Raupp et al. 1989; Klingeman III et al. 2001; Sadof and Sclar 2002). 

In recent years there has been an evolution towards more sustainable 

pest management systems such as IPM in European urban landscapes. However, 

the process is slow and the use of wide-spectrum toxic pesticides such as 

organophosphates and carbamates in urban areas is considered a usual practice. 

Recent studies report similar pesticide concentrations in the air of Spanish and 

French cities as in rural areas in which intensive agriculture is practiced (Coscollà 

et al. 2010; Hart et al. 2012; Coscollà et al. 2013). Therefore, European legislation 

has now become more restrictive to pesticide use in sensitive urban areas: public 

parks and gardens, sports and recreation grounds, school grounds and children’s 

playgrounds, and in close vicinity to healthcare facilities (European Parliament and 

Council 2009). The 2009/128/EC Directive on the sustainable use of pesticides 

stipulates that insecticide applications in these areas should be minimized or even 

forbidden, and alternative measures such as biological control should first be 

considered (European Parliament and Council 2009). This regulation opens up 

new horizons for pest management, particularly for insects that cause mainly 

aesthetic damage, such as mealybugs. 
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1.2. Mealybugs  

1.2.1. General characteristics 

Mealybugs (Hemiptera: Pseudococcidae) are oval soft-bodied insects 

covered with a cottony wax secretion. They are members of the superfamily 

Coccoidea, and after armored scales, constitute the second most important family 

in number of species, with over 2000 belonging to 268 genera (Ben-Dov et al. 

2013). They are widely distributed in different habitats in all the zoogeographical 

regions of the world (McKenzie 1967; Ben-Dov 1994). The Paleartic Region has the 

highest number of recorded species, followed by the Oriental and Australasian 

Regions (Ben-Dov et al. 2013). 

Their host range is broad, including herbaceous plants, woody shrubs and 

trees. However, unlike other scale insect families such as diaspidids, mealybugs 

occur predominantly in herbaceous plants (Miller 2005). The most relevant hosts 

belong to the Poaceae, Compositae and Fabaceae families, followed by Cactaceae 

and Rosaceae (Fig. 1) (Ben-Dov 1994). Many mealybug pests, such as Planococcuss 

citri (Risso), Pseudococcus viburni (Signoret) and Phenacoccus madeirensis Green 

are polyphagous species which feed on over 100 different host families (Ben-Dov 

et al. 2013). However, there are also oligophagous species such as Planococcus 

vovae Nasonov, which feed exclusively on Cupressaceae (Francardi and Covassi 

1992), and numerous mealybugs present in natural ecosystems are monophagous 

that feed on native plants (Ben-Dov et al. 2013). 

These insects cause significant losses in the crops they infest and harm the 

aesthetic quality of ornamental plants (McKenzie 1967). In the Mediterranean 

Basin, they cause serious damage to fruit trees such as citrus and vines, 

horticultural Solanaceae and Cucurbitaceae crops, and a wide range of 

ornamental plant families (Panis 1977a; Panis 1977b; Godinho and Franco 2001; 

Ben-Dov 2005; Tsolakis and Ragusa 2008; Beltrà and Soto 2011; Moreno 2011; 

Tena and Garcia-Marí 2011). Their feeding reduces plant vigor and the honeydew 

secreted promotes the growth of a black sooty mold that interferes with 

photosynthesis and affects fruit quality (Woodside 1936; McKenzie 1967; Franco 

et al. 2009; Gullan and Martin 2009). High population densities may also cause 

leaf fall, fruit loss or even the death of the plant (Franco et al. 2000). Other 
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mealybug species can also transmit virus to commercial crops, causing serious 

damage even when their populations are low (Engelbrecht and Kasdorf 1990; 

Charles 1993; Cabaleiro and Segura 1997, Petersen and Charles 1997; Sforza et al. 

2003). In addition, some species such as Hypogeococcus pungens Granara de 

Willink inject toxins that distort plant tissues (McFadyen 1979) (Fig. 2). 

 
Figure 1. Most relevant host families for mealybugs (Ben-Dov et al. 2013). 

     

 Figure 2. Leave fall and organ deformation caused by mealybugs on ornamental plants. 
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After hatching, females go through three immature instars before 

reaching maturity, while males have four immature instars, including two pupae 

stages (McKenzie 1967; Gullan and Martin 2009). Population dynamics differs 

according to mealybug species and environmental conditions. In Central Europe, 

native species generally complete one to three generations per year (Kosztarab 

and Kozár 1988), while other species with an agricultural impact complete a 

higher number of overlapping generations, two to seven per year, in the 

Mediterranean Basin (Franco et al. 2000). 

Mealybugs spread over almost all strata within a plant and can feed on 

leaves, herbaceous stems, fruits and roots. Due to their cryptic habits, they 

usually settle in small depressions or protected areas of plants such as 

Planococcus ficus (Signoret) under the bark of the vine or P. citri in the calyx of 

citrus fruits (Geiger et al. 2001; Martínez-Ferrer et al. 2003). Other species such as 

Phenacoccus solani Ferris or Pseudococcus comstocki (Kuwana) can be found 

inside sweet peppers and apples, respectively (Woodside 1936). 

Although all female stages are mobile, these insects have sedentary 

habits. Crawlers show the greatest mobility, seeking for suitable feeding sites, but 

when conditions are favorable they settle in a plant close to their mothers, 

resulting in a clumped spatial distribution in colonies (Nestel et al. 1995; Gullan 

and Kosztarab 1997) (Fig. 3). They are also influenced by their host phenology 

moving to different plant strata for overwintering, feeding, mating, and 

ovipositing (McKenzie 1967; Geiger et al. 2001; Martínez-Ferrer et al. 2003; 

Franco et al. 2009; Cid et al. 2010; Haviland et al. 2012). Their dispersion over 

longer distances occurs mainly by human and wind action (Grasswitz and James 

2008; Vitullo 2009).  
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Figure 3. Aggregated distribution of mealybugs in citrus fruit.  

1.2.2. Mealybugs as invasive pests 

Invasive species can pose a major risk to biodiversity and agricultural 

ecosystems, causing significant ecological and economic impacts (Williamson 

1996; Pimentel et al. 2001; Kenis et al. 2009). The recent increase in the 

worldwide trade of horticultural and ornamental plants has facilitated the 

introduction and spread of several insect pests (Kenis et al. 2007; Roques et al. 

2009). Within Europe, the Mediterranean Basin is especially susceptible to insect 

invasions, due to its climatic conditions being favorable for the establishment of 

tropical and subtropical non-native species (Roques et al. 2009; Walther et al. 

2009).  

Mealybugs are common invasive species, in that their small size and 

cryptic behavior allows them to pass quarantine controls unnoticed (Miller et al. 

2002; Pellizzari and Germain 2010). They have been involved in serious pest 

outbreaks in tropical and subtropical regions, such as Phenacoccus manihoti 

Matile-Ferrero and Rastrococcus invadens Williams on cassava and fruit trees, 

respectively, throughout Africa (Herren and Neuenschwander 1991; Han et al. 

2007); Maconellicoccus hirsutus (Green) on crops and ornamental plants in the 

Caribbean and South America (Matile-Ferrero et al. 2000; Culik et al. 2013) 

(Matile-Ferrero et al. 2000); Paracoccus marginatus Williams and Granara de 

Willink on several crops in America and Pacific region, and more recently in 

Southeast Asia (Matile-Ferrero et al. 2000; Muniappan et al. 2008); and 

Phenacoccus solenopsis Tinsley on cotton in India, Pakistan and China (Hodgson et 

al. 2008; Wang et al. 2010).  
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In their review of European alien scale insects, Pellizzari and Germain 

(2010) classified a quarter of the mealybug species recorded in Europe as exotic. 

They are thus among the families responsible for the highest number of 

infestations, after aphids and diaspidids. These authors found that the 

commonest pathway was the horticultural and ornamental trade, and most of 

these species are native to America. In mainland Spain, this proportion is even 

higher and forty percent of the known species are invasive pests in crops and 

ornamental plants (Ben-Dov et al. 2013). The rest, on the other hand, are native 

species, found mainly in natural ecosystems.  

 
Figure 4. Zoogeographical origin of mealybugs in mainland Spain. 

(Pellizzari and Germain 2010; Ben-Dov et al. 2013) 

1.2.3. Taxonomy  

Systematics is essential to solve ecological and agricultural problems 

caused by insect pests. Taxonomy is required in the recognition of insect species 

by quarantine services and in the early detection of new invasions (Danks 1988). 

As pest management relies on accurate identification, the combination of 

ecological and systematic studies can facilitate the selection of appropriate 

control measures (Smith et al. 2011). Mealybug management is currently 

challenged by frequent species misidentification, which reduces the efficiency of 

crop protection methods and increases pesticide use. Accurate insect 

Native 24 

Neotropical 6 

Neartic 4 

Afrotropical 1 

Oriental 3 

Australasia 1 Paleartic 1 Cryptogenic 1 
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identification is essential when applying biological control programs to mealybug 

species, as some of their most important natural enemies are host and habitat 

specific (Bartlett 1978; Neuenschwander 2001; Charles 2011). 

Taxonomy and identification of the Pseudococcidae family has been 

traditionally achieved by comparing morphological characters of adult females 

(Miller and Kosztarab 1979). Very few attempts have been made to classify adult 

males and immature females (Afifi 1986; Gimpel and Miller 1996; Gullan 2000; 

Hodgson 2002; Wakgari and Giliomee 2005). However, morphological 

identification entails certain difficulties, as it can be a time-consuming process and 

needs to be applied by taxonomic specialists. Some environmental conditions can 

induce morphological variations in mealybugs, and sometimes it is impossible to 

differentiate between complexes of cryptic species (Cox 1983; Charles et al. 

2000). All these difficulties have awakened an interest in applying molecular 

techniques to complement mealybug taxonomy (Beuning et al. 1999; Downie and 

Gullan 2004; Demontis et al. 2007; Cavalieri et al. 2008; Hardy et al. 2008; Rung et 

al. 2009; Park et al. 2010; Pieterse et al. 2010; Daane et al. 2011; Correa et al. 

2012). Among their advantages are high accuracy and the feasibility of identifying 

nymphal and male stages, which have thus become very important in quarantine 

controls. DNA barcoding and multiplex PCR are currently the two most commonly 

used molecular techniques of mealybug identification (Daane et al. 2011; Malausa 

et al. 2011; Park et al. 2011). 

DNA barcoding ensures accurate identification by employing short, 

standardized fragments of DNA (Jinbo et al. 2011). An unknown specimen can be 

identified by comparing its DNA with a barcode database library of reference 

sequences from previously known individuals. Different gene regions have been 

used for DNA barcoding, among which cytochrome c oxidase subunit 1 (COI) has 

been established as a standard region to barcode all living organisms (Hebert et 

al. 2003a; Hebert et al. 2003b). However, this region may not be suitable for 

barcoding families like mealybugs, and so other alternative genomic regions have 

been proposed (Malausa et al. 2011; Park et al. 2011). DNA barcoding also 

provides information on phylogenetic and population studies (Hajibabaei et al. 

2007). Barcoded sequences can be used to create identification tools such as 

multiplex-PCR kits for systematic and rapid identification of certain species. 

Several kits have been created for the identification of mealybugs in vineyards in 
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the Mediterranean, South Africa and USA (Cavalieri et al. 2008; Saccaggi et al. 

2008, Daane et al. 2011), citrus in South Africa (Pieterse et al. 2010) and pear 

trees in South Korea (Park et al. 2010). 

The main contributions to mealybug fauna in Spain were carried out by 

Gómez-Menor (1937, 1946, 1960, 1965, 1968) and Martín-Mateo (1985), who 

provided a wide inventory of the native fauna and the first alien species, while the 

mealybug fauna specific to the Canary Islands was later inventoried by Carnero 

and Pérez-Guerra (1986). New invasive pest species have been discovered in 

recent years (Beltrà et al. 2010; Beltrà and Soto 2011). However, given the highly 

variable number of mealybug species officially registered in the Mediterranean 

countries, it is highly likely that several species remain unrecorded in many parts 

of this geographical area (Ben-Dov et al. 2013) (Table 1). This seems to be the case 

in Spain where so far less than 50 species have been identified. Due to the 

incomplete information on this fauna, field misidentifications are frequent and 

often lead to reduced efficiency in biological control and increased pesticide 

applications. 

 

 

 

 

 

  Figure 5. Mealybug DNA barcoding. Modified from Hajibabaei (2007). 
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Table 1. Mealybug species recorded in Mediterranean countries and islands (Ben-Dov et al. 2013). 

 Geographic area 
Species 

identified 

France 124 
Italy 110 
Turkey 77 
Egypt 49 
Sicily 48 
Spain 41 
Israel 39 
Corsica 30 
Crete 22 
Balearic Islands 21 
Algeria 19 
Greece 18 
Portugal 17 
Morocco 16 
Tunisia 13 

1.2.4. Sampling  

Sampling population dynamics is essential to understand the biology and 

ecology of arthropods and establish integrated pest management programs (Stern 

1973; Binns and Nyrop 1992). Mealybug monitoring has been widely developed 

using direct and indirect sampling techniques. However, very few attempts have 

been made to establish thresholds for the management of these pests (Walton et 

al. 2004; Martínez-Ferrer et al. 2006; Martínez-Ferrer et al. 2008; Mudavanhu et 

al. 2011). 

Direct sampling strategies are based on counting mealybug populations in 

different plant strata. Enumerative and binomial samplings have been broadly 

used in integrated pest management of species such as P. citri, P. ficus, 

Pseudococcus maritimus (Ehrhorn), Pseudococcus longispinus (Targioni-Tozzetti), 

Saccharicoccus sacchari (Cockerell), and M. hirsutus in crops and ornamental 

plants (Furness 1976; Meyerdirk 1981; Allsopp 1991; Nestel et al. 1995; Geiger 

and Daane 2001; Martínez-Ferrer et al. 2006; Roltsch et al. 2006; Mgocheki and 

Addison 2009; Francis et al. 2012). In addition, the use of timed counts has also 

been carried out to study population dynamics in vineyards (Geiger and Daane 

2001). 
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Among indirect monitoring strategies, mealybugs can be sampled with 

corrugated cardboard trunk bands (DeBach 1949; Browning 1959; Furness 1976) 

and sticky tapes (Hill and Burts 1982; Vitullo 2009; Cid et al.2010). The 

development of pheromones in recent years for several species such as P. ficus, P. 

citri, P. viburni, M. hirsutus, P. longispinus or P. madeirensis has simplified 

sampling (Millar et al. 2002; Zada et al. 2004; Francis et al. 2007; Vitullo et al. 

2007; Martínez-Ferrer et al. 2008; Franco et al. 2009; Mudavanhu et al. 2011; 

Waterworth et al. 2011). 

1.2.5. Management  

Mealybug management has been traditionally carried out by chemical and 

biological methods. However, pheromone-based tactics such as mate disruption 

and mass trapping, which are currently in experimental development stage, are 

increasingly attracting interest (Franco et al. 2009).  

Insecticides have been widely used to control mealybugs (Daane et al. 

2006; Castle and Prahbaker 2011), particularly on species of unknown taxonomy 

and biology. However, insecticide efficacy can be reduced by some of this family’s 

morphological and ecological characteristics. Their waxy cover and cryptic 

behavior protect them against contact insecticides, while systemic insecticides are 

not effective in stages in which the insects do not feed, such as eggs, adult males, 

and some gravid females (Moore 1988). Chemical control also has other 

drawbacks and the overuse of some active ingredients has led to resistance in 

some species (Charles et al. 1993). Pesticide use is also one of the most harmful 

practices for natural enemies and pollinators (Meyerdirk et al. 1982; Croft 1990; 

Anand and Ayub 2000; Campos and Martínez-Ferrer 2008; Szczepaniec et al.2011; 

Henry et al. 2012; Whitehorn et al. 2012). However, there is an increasing interest 

in the application of short-life insecticides respectful with natural enemies 

(Mgocheki and Addison 2009; Mansour et al. 2011). Restrained application of 

environmentally safe insecticides in mealybug hot-spots is also used so as not to 

disturb biological control in greenhouses (Protasov et al. 2010).  
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1.2.6. Biological control 

The biological control of mealybugs has been widely studied since the 

early twentieth century, due to the economic importance and invasive habits of 

this family (McKenzie 1967). They have a wide variety of predators, including: 

Coccinellidae coleopterans, lacewings of the families Chrysopidae, 

Coniopterygidae and Hemerobiidae, flies of the families Cecidomyiidae and 

Chamaemyiidae, Anthocoridae bugs, Lycaenidae lepidopterans, and Phytoseiidae 

mites (Franco et al. 2000). Additionally, encyrtids are the most important 

mealybug parasitoids and species belonging to the genera Anagyrus Howard, 

Leptomastix Förster, Leptomastidea Mercet, Gyranusoidea Compere, 

Coccidoxenoides Girault or Acerophagus Smith are worldwide used in biological 

control (Moore et al. 1988). 

Most of the predators are generalist and their relation with their prey is 

not density dependent. Although the efficiency of generalist predators against 

mealybugs remains essentially unknown (Franco et al. 2009), they may play an 

important role during the first infestations, when mealybug populations are low 

and specific natural enemies are not present (Symondson et al. 2002). On the 

other hand, some coccinellids show specificity for mealybugs and are commonly 

used in classical and inundative biological control (Bartlett 1978; Iperti 1999). 

Among them, Cryptolaemus montrouzieri Mulsant, of Australian origin, has been 

introduced in a large number of countries, including Spain, with the aim of 

controlling different mealybug species (Moore et al. 1988; Jacas et al. 2006) (Fig. 

6). This coccinellid is also mass reared by several biological control companies and 

is widely used in augmentative biological control. 

 Encyrtids are very important natural enemies of mealybugs and have a 

major influence on their population dynamics. They establish host-specific 

relationships with mealybugs and consequently have been broadly used in 

classical biological control (Charles et al. 2011). Serious mealybug outbreaks have 

been solved by the introduction of encyrtid parasitoids from their area of origin, 

such as P. manihoti by Epidinocarsis lopezi (De Santis) (Neuenschwander 2001), M. 

hirsutus by introducing Anagyrus kamali (Roltsch et al. 2006) or R. invadens by 

introducing Anagyrus mangicola Noyes and Gyranusoidea tebygi Noyes (Agricola 

et al. 1989; Neuenschwander et al. 1994). Encyrtids are also used in augmentative 
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biological control of mealybugs. In Spain this is a relatively widespread practice 

and parasitoids are mass-released to control P. citri in citrus orchards and 

ornamental plants, P. ficus in vineyards, and P. solani in crop-protected 

ecosystems (Lucas 2002; Villalba et al. 2006; Campos 2009; Calvo and Belda 2011; 

Beltrà and Soto 2012). 

 
Figure 6. Cryptolaemus montrouzieri feeding on Planococcus citri. 

Besides applying insecticides, the efficiency of mealybugs’ natural 

enemies can be limited by other factors, such as food sources and the absence of 

alternative hosts (Moore 1988; Davies et al. 2004). Reducing pesticide 

applications or manipulating the environment to enhance the populations of 

natural enemies and increase their effectiveness can play an important role in 

mealybugs’ management (Barbosa 1998; Landis et al. 2000). Predators and adult 

parasitoids require food sources other than their hosts, such as nectar, pollen or 

insect honeydew to increase their longevity and fertility (Landis et al. 2000; Gurr 

et al. 2005; Heimpel and Jervis 2005). Numerous laboratory experiences show 

that mealybug parasitoid longevity and offspring increase when they feed on 

sugar (Sagarra et al. 2000b; González-Hernández et al. 2005; Chong and Oetting 

2006; Sandanayaka et al. 2009). Further research is still being carried out on the 

use of groundcovers in improving mealybug biological control (Addison and 

Samways 2006). 

Mealybug and ant mutualism also have an important and complex role in 

biological control (Fig. 7). Ants feed on mealybug honeydew and in return provide 
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protection against predators and parasitoids, transporting them to new areas, and 

cleaning up excess honeydew, which can kill mealybug nymphs (McKenzie 1967; 

Franco et al. 2004). Several studies have shown that ants control or their exclusion 

by physical barriers increases the action of natural enemies and improves 

biological control (Nechols and Seibert 1985; Campos et al. 2006; Mgocheki and 

Addison 2010). 

 
Figure 7. Ant attending Phenacoccus peruvianus. 

1.2.7. Mealybugs in urban landscapes 

 Mealybugs use ornamental plants as a pathway of introduction in new 

areas, so that urban landscapes and nurseries are the first habitats in which they 

become established (Pellizzari and Germain 2010). In general, they are well 

adapted to different environments (McKenzie 1967) and some of their biological 

traits favor their adaptation to urban ecosystems: sucking mouthparts, limited 

mobility and multiple generations on the same plant (Raupp, 2010). They are 

mostly found in flowering herbaceous plants, grasses, bulbs, succulents and cacti, 

shrubs, palms, and trees (McKenzie 1967). Important polyphagous species, such 

as P. citri, P. madeirensis, P. marginatus, and M. hirsutus are key pests in nurseries 

and urban landscapes worldwide (Kairo et al. 2000; Miller and Miller 2002; Sadof 

et al. 2003; Chong et al. 2003; Laflin and Parrella 2004; Culik et al. 2013). They 

cause direct damage to ornamental plants by reducing plant growth and causing 

leaf fall and indirectly by their honeydew, which drips on urban furniture and 
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makes it unsightly (McKenzie 1967; Kairo et al. 2000; Dreistadt et al. 2004; Villalba 

2005; Franco et al. 2009).  

Although mealybugs are common in ornamental plants, the high 

complexity and number of hosts present in urban landscapes means that specific 

programs for their management are absent. On the other hand, general guidelines 

for monitoring, decision making and control are based mainly on previous 

experience in agricultural ecosystems (Buss and Turner 1993), and thus in urban 

landscapes they have traditionally been countered by chemical methods. 

1.3. The Bougainvillea mealybug Phenacoccus peruvianus 

1.3.1. Genus Phenacoccus 

Phenacoccus Cockerell is one of the largest genera of the Pseudococcidae, 

accounting for 206 species (Ben-Dov et al. 2013). This genus is a member of the 

Phenacoccinae subfamily, which includes 69 genera such as Geococcus Green, 

Rastrococcus Ferris and Rhizoecus Kunckel d'Herculais (Hardy et al. 2008).  

Phenacoccus species are widely distributed throughout the world’s 

zoogeographical regions and most of its species originate from Paleartic, Nearctic 

and Neotropical areas (Danzig 2003; Downie and Gullan 2004; Granara de Willink 

and Szumik 2007). In the Mediterranean Basin 30 species have been recorded, of 

which five are American invaders: Phenacoccus gossypii Townsend and Cockerell, 

Phenacoccus peruvianus Granara de Willink, P. madeirensis, P. solani, and P. 

solenopsis (Beltrà et al. 2010; Kaydan et al. 2013). Some species of this genus have 

been involved in serious pest outbreaks: Phenacoccus manihoti devasted cassava 

crops in Africa, leading to a food shortage in some countries (Herren and 

Neuenschwander 1991), and more recently P. solenopsis spread through Asia to 

become a key pest of cotton (Wang et al. 2010). Likewise, the dispersion of other 

Phenacoccus species such as P. solani and P. peruvianus in the Mediterranean 

Basin is causing significant problems in crops and ornamental plants (Ben-Dov 

2005; Beltrà et al. 2010; Beltrà and Soto 2011).  
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1.3.2. Phenacoccus peruvianus  

The bougainvillea mealybug P. peruvianus is a species of Neotropical 

origin that was described by Granara de Willink in 2007 from different populations 

of Peru and Argentina.The author found small morphological differences between 

these populations but they were finally grouped in the same species (Granara de 

Willink and Szumik 2007).  

The presence of P. peruvianus in Europe was reported for the first time in 

Almeria (Spain) in 1999 and it was subsequently observed in other European areas 

such as the Madeira Islands (2001), Sicily (2002), the UK and Corsica (2005), 

Portugal (2006), France and the Canary Islands (2008) and Majorca (2010) (Beltrà 

et al. 2010; Franco et al. 2011) (Fig. 8). 

 
Figure 8. Invasion of Phenacoccus peruvianus in Europe (Beltrà et al. 2010). 

The bougainvillea mealybug is a polyphagous species. In South America, 

where it is native, it has only been responsible for small infestations in ornamental 

plants and natural ecosystems (Granara de Willink personal communication). 

However, in Europe this insect has been observed in several host species, showing 

some preference for Solanaceae family plants (Beltrà et al. 2010) (Table 2). In a 

recent study, different important Mediterranean crops were tested for hosts of P. 
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peruvianus, but only tomato and tobacco were found to be suitable (A. B. et al. 

unpublished data). Phenacoccus peruvianus is an important pest of several 

ornamental plants, causing problems in nurseries and urban landscapes in the 

Mediterranean Basin. It settles on bougainvillea leaves, twigs and bracts, where it 

feeds on the sap (Fig. 9). Its feeding reduces plant growth and highly infested 

leaves and bracts become yellowish and fall off. The honeydew secreted 

promotes the growth of a black sooty mold that interferes with photosynthesis 

and spoils urban furniture. 

Table 2. Host list of Phenacoccus peruvianus (Beltrà et al. 2010). 

Family Species 

Acanthaceae Justicia suberecta 

Amaranthaceae  Alternanthera sp. 

Asclepiadaceae  Araujia sericifera 

Asclepiadaceae  Eupatorium sp. 

Asteraceae  Baccharis sp. 

Aucubaceae Aucuba japonica 

Juglandaceae Juglans jamaicensis 

Lamiaceae Solenostemon blumei 

Malvaceae Hibiscus rosa-sinensis 

Myoporaceae Myoporum laetum 

Myrtaceae Psidium guaiavita 

Nyctaginaceae Bouganvillia spp. 

Rubiaceae Coffea sp. 

Scrophulariaceae  Buddleja sp. 

Solanaceae  Cestrum sp. 

Solanaceae  Lycopersicon esculentum 

Solanaceae  Solanum vespertillo 

Verbenaceae Lantana camara 

 
             Figure 9. Colony and damage of Phenacoccus peruvianus in bougainvillea plants. 
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1.4. Justification and objectives 

The recent introduction of new species into the Mediterranean 

Basin has caused serious problems for crops and ornamental plants. 

Deficient information on the fauna in some areas of Southern Europe is the 

cause of species misidentification, limiting the application of efficient 

specific management strategies. Among the newly introduced mealybugs, 

P. peruvianus is spreading around Mediterranean countries damaging 

plants in urban landscapes and ornamental nurseries. No information on its 

biology, behavior, and natural enemies in Europe is currently available.  

The management of this pest in the Mediterranean Basin, and 

specifically in Eastern Spain, has relied mainly on insecticides. However, the 

new European directive on pesticide use stipulates the reduction or even 

the prohibition of chemical control in urban landscapes, limiting the 

management strategies of P. peruvianus. The development of alternative 

management strategies requires a better understanding of the taxonomy, 

biology and ecology of this mealybug and its natural enemies.  

Therefore, with the aim of integrating biological control into the 

management of P. peruvianus in urban landscapes in the Mediterranean 

Basin, we propose the following objectives: 

i) Provide a multi-criterion characterization of mealybug populations in 

Eastern Spain to be used as a basis for their routine identification through 

DNA sequencing or the use of derived species-specific molecular tools. 

ii) Study the seasonal phenology and spatial distribution of P. peruvianus. 

iii) Establish a sampling plan for P. peruvianus in Bougainvillea plants. 

iii) Study the natural enemy complex of P. peruvianus in Eastern Spain and 

its influence on mealybug populations. 

iv) Evaluate biological and ecological traits of the most important biological 

control agents of P. peruvianus to optimize the biological control of this 

pest.  
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Abstract 

Mealybugs (Hemiptera: Pseudococcidae) are common invasive pests in 

Europe, causing major problems on crops and ornamental plants. However, 

very few data are available concerning the mealybug fauna of Southern 

Europe. This lack of data and the difficulty of identifying mealybugs 

morphologically by traditional techniques currently limit the perspectives 

for efficient specific pest management. The aim of this study was to provide 

multi-criterion characterization of mealybugs surveyed in Eastern Spain in 

order to facilitate their routine identification through DNA sequencing or 

the use of derived species-specific molecular tools. We characterised 33 

mealybug populations infesting crops and ornamental plants in Eastern 

Spain, using a combination of molecular and morphological techniques, 

including the sequencing of the universal barcode DNA region cytochrome c 

oxidase subunit I (COI). This characterisation has led to the identification of 

ten species and provides sequence data for three previously unsequenced 

species, contributing to the phylogenetic knowledge of the family 

Pseudococcidae. In addition, the intraspecific variations found in the 

populations of five mealybug species provide insight into their invasion 

history. 
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2.1 Introduction 

Invasive species constitute a major threat to biodiversity and 

agricultural ecosystems and may have a significant ecological and economic 

impact (Williamson 1996; Pimentel et al. 2001; Kenis et al. 2009). Scale 

insects are typical invasive pests; due to their small size and cryptic 

behaviour, they often remain undetected during quarantine inspections 

(Miller et al. 2005; Hulme et al. 2008; Pellizzari and Germain 2010). One 

particular group of scale insects, mealybugs (Hemiptera: Pseudococcidae), 

constitutes the third most common family of alien insects in Europe, with 

about 40 new established species (Roques et al. 2009; Pellizzari and 

Germain 2010). Mealybugs are common pests of a wide range of 

agricultural and ornamental plants (Ben-Dov 1994) and may cause serious 

problems if they become established in new environments lacking natural 

enemies (Miller et al. 2002). They damage the plant by sucking its sap and 

transmitting viruses. Furthermore, the honeydew they produce may also 

favour the development of mould fungi and decrease ornamental plant 

quality (Williams 1985; Kosztarab and Kozár 1988; Franco et al. 2000).  

Mealybug management is currently challenged by frequent species 

misidentification that decreases the efficiency of crop protection methods 

and increases pesticide use. This situation can be explained by the lack of 

reliable surveys and characterisations of mealybug species, mainly because 

their identification has been difficult or even sometimes impossible until 

recently. Indeed, taxonomy and identification of members of the family 

Pseudococcidae have generally been based on comparisons of the 

morphological characters of adult females. However, there are several 

drawbacks to this method. Firstly, it is a time-consuming process requiring 

specialized taxonomic knowledge, which is not available on a daily basis for 

most practitioners. Secondly, some environmental conditions may induce 

morphological variation in mealybugs, making it impossible in some cases 

to differentiate between complexes of cryptic species (Cox 1983; Charles et 

al. 2000). Thirdly, mealybug morphological identification is generally 

impossible when specimens are collected at larval stage (a common 

situation in the field and of special concern in quarantine controls). 
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These difficulties can be dealt with by taking profit from the 

complementarities between morphological and molecular characterization 

to identify the species. Indeed, once a reference specimen is taxonomically 

identified by morphological examination and characterized by DNA 

sequencing, any new sample displaying the same DNA sequence can be 

identified quickly without the need of any competence in taxonomy. For 

taxonomists, such an approach also avoids repetitive identification of the 

most common species. This method is the basis of the so-called DNA 

barcoding international projects (Hebert et al. 2003a). The main barcode 

region used in international projects is a 648bp region of the cytochrome c 

oxidase subunit I (COI) (Hebert et al. 2003b). However, despite COI having 

been used in various taxonomic studies of mealybugs (Gullan et al. 2003, 

2010; Demontis et al. 2007; Cavalieri et al. 2008; Rung et al. 2008, 2009; 

Saccaggi et al. 2008; Ashfaq et al. 2010; Pieterse et al. 2010; Park et al. 

2011), the universal primers used to amplify this region do not work well in 

several species of this family (Malausa et al. 2011). Therefore, new primers 

for this region have been recently designed (Malausa et al. 2011; Park et al. 

2011). Moreover, the use of combinations of different DNA markers as 

nuclear DNA, mitochondrial DNA and endosymbiont DNA (from Tremblaya 

Princeps) proved to be successful not only for DNA barcoding but also to 

better estimate the genetic distance between species and for disentangle 

complexes of cryptic taxa (Malausa et al. 2011). 

In this study, we coupled the morphological examination of slide-

mounted samples and their DNA sequencing at five markers to generate 

multi-criterion identification of 33 mealybug populations infesting crops 

and ornamental plants in Eastern Spain. This work provides a 

comprehensive characterisation of ten species found in Eastern Spain and 

will be used as basis for the routine identification of mealybugs in Spain and 

more generally in Southern Europe, by DNA sequencing or with molecular 

identification tools derived from DNA sequences. 
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2.2 Materials and methods 

2.2.1 Sample collections 

Thirty-three mealybug populations damaging crops and ornamental 

plants were sampled in Eastern Spain between the years of 2007 and 2009 

(Table 1). An additional sample of Phenacoccus peruvianus Granara de 

Willink was collected from Southern France, for comparison of the 

populations of this new invasive species in the two countries. The samples 

consisted mostly of adult females and immature instars, which were just 

taken when adults were not available. Individuals were checked under a 

stereoscope and discarded if any parasitoids were detected. The collected 

insects were preserved in 70% ethanol and stored at 20°C for molecular 

analysis and morphological identification. 

2.2.2 DNA extraction and amplification 

DNA was extracted from 239 specimens by using the DNeasy Tissue 

Kit (QIAGEN). The extraction was performed without crushing the insect 

body, which enabled us to recover the specimen for its posterior 

morphological identification. Therefore, the process followed the 

manufacturer’s guidelines with two small variations to improve DNA 

extraction: cell lysis was carried out over a period of six to eight hours and 

two elution steps (2×50μl of AE buffer) (Malausa et al. 2011).  

DNA was amplified from five different loci, chosen for analysis on 

the basis of their suitability for DNA barcoding, population genetics and 

phylogenetic studies: two regions of mitochondrial mealybug DNA (the 

2183–2568 and LCO regions of COI), two regions of nuclear DNA (28s-D2 

and the entire ITS2 region) and one region of DNA from the bacterium 

Tremblaya princeps (leuA-16 s) (Malausa et al. 2011). PCR was performed 

with a 23μl reaction mixture and 2μl of diluted DNA (1–20 ng). The reagent 

concentrations were 1×Phusion HF buffer (Phusion High-Fidelity DNA 

polymerase 530 (FINNZYMES, Espoo, Finland)), 0.01Uμl1 Phusion enzyme, 

200μM dNTPs and 0.5μM of each primer (Table 2). 
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Table 1. List of the material sampled: Population codes, geographic origin and host origin of the samples and number of individuals used for DNA 
extraction and morphological identification. 

Pop # Region City GPS coordenates Host 
Collection 
date 

N Identification 

1 Comunitat Valenciana Valencia 39.480998 N, 0.349395 W Coronilla sp.  03/06/08 8 Phenacoccus madeirensis 

2 Comunitat Valenciana Ibi 38.622584 N, 0.575401 W Cupressus sempervirens 10/09/08 6 Planococcus vovae 

3 Comunitat Valenciana Valencia 39.472218 N, 0.351524 W Cupressus sempervirens 15/07/08 8 Planococcus vovae 

4 Comunitat Valenciana Valencia 39.476822 N, 0.386716 W Dyospiros duclouxii 12/09/08 8 Planococcus citri 
Phenacoccus madeirensis 

5 Comunitat Valenciana Valencia 39.476822 N, 0.386716 W Erytrina bogotensis 12/09/08 8 Phenacoccus madeirensis 

6 Comunitat Valenciana Altea 38.602324 N, 0.045092 W Lantana camara 23/08/08 8 Phenacoccus madeirensis 

7 Comunitat Valenciana Altea 38.602324 N, 0.045092 W Unknown host 23/08/08 8 Phenacoccus madeirensis 

8 Comunitat Valenciana Valencia 39.467628 N, 0.344121 W Lantana camara 22/09/08 4 Phenacoccus madeirensis 

9 Comunitat Valenciana Valencia 39.482109 N, 0.343475 W Saccharum officinarum 02/03/08 8 Dysmicoccus boninsis 

10 Comunitat Valenciana Altea 38.608801 N, 0.041615 W Ceratonia siliqua 23/08/08 6 Planococcus citri 

11 Comunitat Valenciana Algimia d’Alfara 39.753015 N, 0.360651 W Solanum lycopersicum 21/07/08 8 Planococcus citri 

12 Comunitat Valenciana Valencia 39.485907 N, 0.362367 W Ocimum basilicum 22/09/08 8 Planococcus citri 

13 Comunitat Valenciana Valencia 39.476822 N, 0.386716 W Cleistocactus strausii  13/11/07 8 Planococcus citri 

14 Comunitat Valenciana Valencia 39.482109 N, 0.343475 W Acalipha wilkesiana 02/03/08 8 Planococcus citri 

15 Comunitat Valenciana Valencia 39.482109 N, 0.343475 W Aucuba japonica 18/04/08 8 Phenacoccus peruvianus 

16 Catalunya Blanes 41.676872 N, 2.801936 E Bougainvillea glabra 24/09/08 8 Phenacoccus peruvianus 

17 Catalunya Blanes 41.676872 N, 2.801936 E Cordilyne stricta 24/09/08 3 Pseudococcus longispinus 

18 Comunitat Valenciana Valencia  39.476364 N, 0.357291 W Unknown host 10/06/08 5 Phenacoccus peruvianus 

19 Comunitat Valenciana Valencia 39.478956 N, 0.367683 W Myoporum sp. 10/06/08 8 Phenacoccus peruvianus 

20 Comunitat Valenciana Altea 38.608801 N, 0.041615 W Malva parviflora 23/08/08 8 Phenacoccus madeirensis 

21 Comunitat Valenciana Valencia 39.482109 N, 0.343475 W Cereus peruvianus 02/03/08 8 Hypogeococcus pungens 

22 Comunitat Valenciana Valencia 39.482109 N, 0.343475 W Olla carnosa 03/06/08 5 Planococcus citri 

23 Comunitat Valenciana Altea 38.602324 N, 0.045092 W Euonymus japonicus 23/08/08 8 Pseudococcus longispinus 

24 Comunitat Valenciana Valencia 39.482109 N, 0.343475 W Salvia sp. 15/07/08 8 Pseudococcus viburni 

25 Comunitat Valenciana Altea 38.602324 N, 0.045092 W Pittosporum tobira 23/08/08 8 Pseudoccus longispinus 

26 Comunitat Valenciana Altea 38.602782 N, 0.047820 W Hibiscus rosa-sinensis 23/08/08 5 Pseudoccus longispinus 

27 Comunitat Valenciana Valencia 39.482109 N, 0.343475 W Bougainvillea glabra 12/03/08 7 Phenacoccus peruvianus 

28 Comunitat Valenciana Valencia 39.482109 N, 0.343475 W Parietaria judaica 12/12/08 8 Planococcus citri 

29 Andalucia El Ejido 36.719749 N, 2.789198 W Capsicum annum 20/12/08 8 Phenacoccus solani 

30 Catalunya Deltebre 40.724924 N, 0.839764 W Myoporum laetum 18/08/08 8 Phenacoccus peruvianus 

31 Comunitat Valenciana Valencia 39.482109 N, 0.343475 W Chamaedorea sp.   30/01/08 8 Pseudococcus longispinus 

32 Alps Maritimes  Antibes  43.575327 N, 7.125707 E Bougainvillea glabra 25/09/08 8 Phenacoccus peruvianus 

33 Comunitat Valenciana Faura 39.732309 N, 0.269403 W Citrus reticulata 19/09/09 4 Delottococcus aberiae 

34 Illes Balears Soller 39.764619 N, 2.709765 W Justicia suberecta 22/10/09 4 Phenacoccus peruvianus 
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Table 2. Molecular markers and annealing temperatures used in the study. 

Locus  Primer name Primer sequence 
Annealing 
temperature 

PCR product 
length (bp) 

Reference 

28s 
None(D2) (F) AGAGAGAGTTCAAGAGTACGTG 

60°C ∼ 320 Belshaw and Quicke (1997) 
None(D2) (R) TTGGTCCGTGTTTCAAGACGGG 

COI 
LCO-M-2d-F (F) ATAACTATACCTATYATTATTGGAAG 

50°C  491 Malausa et al. (2011) 
LCO-M-2d-R (R) AATAAATGTTGATATAAAATTGG 

COI 
C1-J-2183 (F) CAACATTTATTTTGATTTTTTGG 

56°C  385 Gullan et al. (2003) 
C1-N-2568 (R) GCWACWACRTAATAKGTATCATG 

ITS2 
ITS2-M-F (F) CTCGTGACCAAAGAGTCCTG 

58°C ∼ 800 Malausa et al. (2011) 
ITS2-M-R (R) TGCTTAAGTTCAGCGGGTAG 

rpS15-
16ST 

leuA (F) GTATCTAGAGGNATHCAYCARGAYGGNG 
60°C ∼ 1050 Baumann et al. (2002) 

U16S (R) GCCGTMCGACTWGCATGTG 

PCR was carried out as follows: initial denaturation at 98°C for 30 s, 

followed by 35 cycles of denaturation at 98°C for 10s, annealing for 15 s at a 

temperature of 48°C–60°C, depending on the primer (Table 2), and 

elongation at 72°C for 5 min. The final products were separated by 

electrophoresis in a 2% agarose gel, to check their quality. They were then 

sequenced in both directions, by capillary electrophoresis on an ABI 3130XL 

automatic sequencer (Applied Biosystems, Foster City, CA, USA) at 

Genoscreen (Lille, France). Consensus sequences were generated and 

analysed with Seqscape v2.5 (ABI), and alignments were manually edited 

with Bioedit (Hall 1999). When a sequence of a specimen displayed a 

genetic variation at one or more nucleotide(s), it was considered as a 

different haplotype. The analysed sequences were deposited in GenBank to 

ensure future access and use (accession numbers JF714157–JF714210). 

2.2.3 Morphological identification 

Mealybug populations were identified on the basis of 

morphological characters. All the individuals sequenced were recovered 

after the DNA extraction, preserved in 70% ethanol and stored at 20°C. 

Individuals were posteriorly mounted on slides as described by Williams 

and Granara de Willink (1992), with the modifications described by Malausa 

et al. (2011) and a few additional changes: a small ventral incision was 

made behind the back leg, with a micro scalpel (BioQuip Products Inc., 

Rancho Dominguez, CA, USA). The specimen was heated at 60°C in 10% 

KOH for 20 min and washed in distilled water for 20 min. It was then 

stained with a 1:1:1 acid fuchsin (1% solution), lactic acid and glycerol. 
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Specimens were then immersed in acetic acid for one hour and transferred 

to lavender oil for an additional one hour. Finally, the insects were mounted 

on a slide in Heinze Mounting Medium (Heinze 1952) and covered with a 

coverslip. Slides were then heated at 30°C for 48 h. 

Specimens were identified principally with the keys of Williams and 

Granara de Willink (1992), Gimpel and Miller (1996), Williams (2004) and 

Granara de Willink and Szumik (2007). For nymph voucher specimen 

identification, some species for which immature instars have never been 

described were identified to genus level only. The slides are available from 

the Polytechnic University of Valencia (Valencia, Spain). 

2.2.4 Phylogenetic analysis 

Phylogenetic studies were performed by merging our populations 

with other samples for which the same loci had been sequenced by 

Malausa et al. (2011). Bayesian inference was carried out with Bayes 

Phylogenies (Pagel and Meade 2004). Interspecific variability was too high 

for the alignment of ITS2 sequences. Thus, for this region, we inferred the 

phylogenetic relationships from a mixture model based on the other four 

loci. Analyses were carried out with nQ+C mixture models, with n varying 

between one and six independent rate matrices (Qs). The best model was 

chosen by comparing Bayes factors. We also applied a general time-

reversible model, as recommended by Pagel and Meade (2004). Four 

Markov chains were used for ten million iterations and a print frequency of 

1000 iterations. The length of the burn-in period was determined by 

plotting likelihood across iterations. All iterations corresponding to the 

burn-in period (around one million iterations) were removed from the 

output of Bayes Phylogenies before subsequent analyses. We used the 

sump command of MrBayes (Ronquist and Huelsenbeck 2003) to obtain a 

summary of Bayes Phylogenies outputs and to calculate Bayes factors. 

Majority rule consensus trees were then drawn with PAUP 4.0b10 

(Swofford 2003) (‘contree/Majrule’ command) from the output of the 

Bayes Phylogenies analysis (9000 trees) using the best model selected. 

Phenacoccus species was used as outgroups because they are the most 

divergent taxa of this study (Hardy et al. 2008). 
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2.3 Results 

We surveyed a total of 33 mealybug populations from Eastern Spain 

and one from Southern France between 2007 and 2009. We identified 239 

specimens from these samples morphologically, and DNA was sequenced, 

when possible, at five loci. 

This resulted in the occurrence of 16 multi-locus haplotypes (Table 

3), which corresponded to ten species in terms of taxonomic identification: 

Delottococcus aberiae (De Lotto), Dysmicoccus boninsis (Kuwana), 

Hypogeococcus pungens Granara de Willink, Phenacoccus madeirensis 

Green, P. peruvianus, Phenacoccus solani Ferris, Planococcus citri Risso, 

Planococcus vovae (Nasonov), Pseudococcus longispinus (Targioni Tozzetti) 

and Pseudococcus viburni (Signoret). DNA sequences from the species D. 

aberiae, P. peruvianus and P. vovae were obtained for the first time in this 

study, and the universal barcode region cytochrome c oxidase subunit I 

(COI) was also sequenced for the first time from D. boninsis and P. 

madeirensis (Table S1, supporting information). The genetic markers of the 

various DNA regions studied generated sequences that distinguished 

successfully between all the taxa studied. 

Table 3. Summary of the mealybug species identified, populations sampled (see Table 1) and different 
haplotypes obtained for each genetic marker. Haplotype numbers are as in the paper by Malausa et 
al. (2011) and are based on Genbank accession number. The rpS 15-16ST is expected to fail in 
Phenacoccus spp. because T. princeps is absent from these species. Different haplotypes obtained for 
the same species are shown in bold. 

Multilocus 
haplotypes 

Species Populations sampled 
LCO 
COI 

2183-
2568 COI 

28S-
D2 

ITS2 
rpS15
-16ST 

1 Delottococcus aberiae 33 E014 A018 C013 D014  
2 Dysmicoccus boninsis 9 E015 A017 C001 D003 B003 
3 Hypogeococcus pungens 21 E009 A015 C012   
4 Phenacoccus madeirensis 1,4,5,6,7,8,20 E012 A013 C004 D013 - 
5 Phenacoccus peruvianus 15,16,18,19,27,30,32,34 E007 A010 C002 D008 - 
6 Phenacoccus solani 29 E010 A011 C003 D009 - 
7 Planococcus vovae H1 2 E011 A008 C006 D010 B002 
8 Planococcus vovae H2 3 E011 A009 C006 D011 B002 
9 Planococcus citri H2 10,11,28 E003 A001 C007 D012 B001 

10 Planococcus citri H5 12 E004 A003 C007 D012 B001 
11 Planococcus citri H6 13,22 E001 A004 C007 D012 B001 
12 Planococcus citri H7 14 E002 A002 C007 D012  
13 Pseudococcus longispinus H1 17,25,26 E006 A005 C009 D004 B006 
14 Pseudococcus longispinus H2 23 E006 A005 C009 D005  
15 Pseudococcus longispinus H3 31 E006 A005 C009 D006 B006 
16 Pseudococcus viburni H2 24 E016 A012 C008 D001 B005 
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For five mealybug species, we could sequence more than one 

population. Among those five species, three species displayed intraspecific 

variations among or within populations. Four different multi-locus 

haplotypes were recovered from six populations of P. citri, three multi-locus 

haplotypes were recovered from five populations of P. longispinus and two 

multi-locus haplotypes were recovered from two populations of P. vovae 

(Table 3). The distribution of these different haplotypes did not follow any 

obvious geographic pattern (Fig. 1). Other species, such as P. peruvianus 

and P. madeirensis, displayed high levels of genetic homogeneity, even 

though several populations from different hosts and geographic regions 

were studied. Intraspecific differences were observed at the sequences 

obtained from both regions of COI and ITS2. The regions rpS15–16s and 

28s-D2 displayed no intraspecific variation. 

The phylogenetic tree revealed that the genera Phenacoccus and 

Planococcus formed monophyletic groups. On the contrary, the genus 

Pseudococcus appeared paraphyletic. Indeed, in the topology, the 

Pseudococcus species are found in two separate clusters, each containing 

several Pseudococcus species and one Dysmicoccus species (Fig. 2). In 

addition, the species for which no DNA sequence was previously available 

were positioned in the topology with good support: P. peruvianus was 

located close to Phenacoccus parvus Morrison populations of Neotropical 

origin. Planococcus vovae differed slightly from the other three species of 

the genus Planococcus. Delottococcus aberiae was found in a cluster with 

Vryburgia rimariae Tranfaglia located inside part of the tree corresponding 

to the tribe Pseudococcini. 
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Fig 1. Distribution of the mealybug populations surveyed in Eastern Spain and France. The different symbols indicate the population 
species and colors denote the haplotypes. 
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Fig 2. Bayesian phylogenetic tree of mealybug multilocus haplotypes generated by this study (shown in bold) or by Malausa et al. (2011) for multilocus haplotypes 
including information for at least three loci: 2183–2568 and LCO regions of COI, 28s-D2 and rpS15-16 s when possible. The majority-rule consensus tree was calculated 
from the Bayesian analysis, based on the best selected mixture model (three matrices). Bayesian posterior probabilities are represented beyond the nodes (9000 trees, 
values <70% not shown). Haplotypes are named according to Genbank accession numbers. 
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2.4 Discussion 

 The main interest of this study is probably to provide a solid basis 

for further works focusing on mealybug management. For researchers or 

practitioners with an access to DNA sequencing facilities, our data makes it 

possible to quickly identify taxa based on simple DNA sequence 

comparisons. This study also provides the raw data to design rapid 

identification kits based on the use of species-specific PCR: the large set of 

sequences available makes it possible to design species-specific PCR 

primers annealing to regions displaying variations among species but not 

among populations or individuals of the same species. One additional piece 

of information directly relevant for pest management is the occurrence of 

two species (P. peruvianus and D. aberiae) that represent two cases of 

recent introductions in Europe. 

 However, such a survey using multi-criteria sample characterisation 

also generates valuable data for researches on the evolutionary history of 

Pseudococcidae. 

 First, by generating DNA data for various species that had not been 

sequenced before (P. peruvianus, P. vovae and D. aberiae), this study gives 

insights into the phylogenetic relationships inside the family 

Pseudococcidae. Phenacoccus peruvianus appears more closely related to 

P. parvus than P. solani or P. madeirensis. This result is in conflict with the 

findings of Granara de Willink and Szumik (2007), whose morphological 

phylogenetic studies placed P. peruvianus closer to P. madeirensis. 

Planococcus vovae mapped close to the other species of the same genus, 

but did not come between P. ficus and the cryptic species P. citri and P. 

minor (Rung et al. 2008; Saccaggi et al. 2008). Moreover, the South African 

species D. aberiae was located close to V. rimariae on the phylogenetic 

tree, providing further evidence for the existence of a Southern African 

clade, as proposed by Hardy et al. (2008). In addition, the phylogenetic tree 

computed in this study confirms several trends observed in previous studies 

(Hardy et al. 2008; Malausa et al. 2011): (i) the genera Phenacoccus and 

Planococcus were found monophyletic, although few closely related species 

of other genera were in this study; (ii) the presence of two Dysmicoccus 
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species among the Pseudococcus species suggests that these two genera 

are paraphyletic, as proposed by Downie and Gullan (2004), Hardy et al. 

(2008) and Malausa et al. (2011). 

 Second, the contrasted patterns of intraspecific variability found in 

P. vovae, P. citri, P. longispinus, P. peruvianus and P. madeirensis may be 

explained by the species histories. Indeed, the extent of intraspecific 

variation observed in those species does not display any geographic pattern 

and may rather be accounted for by the time elapsed since these species 

first began their invasion of Europe. Substantial divergences were observed 

in the populations of the native species P. vovae, as well as in the exotic 

species P. citri and P. longispinus. These two exotic species have been 

present in the Mediterranean Basin for more than a century (Pellizzari and 

Germain 2010), long enough for population divergence to have occurred in 

the new area or for repeated introductions from different regions of the 

world (Thompson 1998; Dlugosch and Parker 2008). By contrast, the 

invasive species P. peruvianus and P. madeirensis displayed little or no DNA 

variability in the multilocus analysis. This suggests (i) that the populations 

experienced a genetic bottleneck, probably caused by their recent 

introduction into Europe and specifically in Spain (Marotta and Tranfaglia 

1990; Beltrà et al. 2010; Beltrà and Soto 2011), and (ii) that the invasive 

populations came from the same geographic region or spread in Spain and 

France from a single introduced population. 

 In conclusion, this study provided a molecular characterisation at 

several DNA markers and a taxonomic identification for a set of 239 

mealybug samples from 33 populations of Eastern Spain. Among them, ten 

different species were identified, and this study provided the first molecular 

data for three species. In addition, this multi-criteria characterization 

produced new data for the study of the Pseudococcidae phylogeny and 

revealed various patterns of intraspecific variations among populations of 

five mealybug species that may be related to their invasion histories. 
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2.6. Supplementary material 

Table S1. Number of identified mealybug species in Mediterranean countries and islands (Ben-Dov et 
al. 2011). 

Geographic area Mealybug species 

France 130 

Italy 114 

Turkey 76 

Sicily 49 

Egypt 47 

Israel 40 

Spain 33 

Corsica 31 

Algeria 21 

Morocco 18 

Greece 18 

Crete 15 

Tunisia 14 

Portugal 14 
 

Table S2. Complete list of samples with corresponding haplotypes: code of individual, Genbank 
accession numbers for haplotypes, codes of voucher slide-mounted specimens, population code (see 
Table 1). 

ind # 
Genbank Accession numbers 

Voucher slide # Pop 
LCO COI 28S ITS2 16S 

001 JF714207 JF714167 JF714179 JF714196 - 465 

1 

002 - JF714167 JF714179 - - 466 

003 JF714207 JF714167 JF714179 JF714196 - 467 

004 - - JF714179 - - 468 

005 - - - JF714196 - 521 

006 - JF714167 JF714179 - - 522 

007 - JF714167 - JF714196 - 523 
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008 - JF714167 JF714179 - - 524 

009  JF714162 JF714180   698 

2 

010  JF714162 JF714180 JF714193 JF714172 699 

011  JF714162 JF714180 JF714194  700 

012 - JF714162 JF714180 - - 701 

013 JF714206 JF714162 JF714180 JF714193 JF714172 702 

014 JF714206 JF714162 JF714180 JF714194 - 703 

015 JF714206 - - - - 457 

3 

016 JF714206 JF714163 JF714180 JF714194  458 

017 - - JF714180 - - 459 

018 - - - - - 525 

019 JF714206 JF714163 JF714180 JF714194 JF714172 526 

020 JF714206  JF714180 JF714194 JF714172 527 

021 - - JF714180 JF714193 - 528 

022 JF714206 JF714163 - - - 529 

023 JF714207 JF714167 JF714179 JF714196 - 657 

4 

024 JF714200 JF714157 - JF714195 JF714171 658 

025 JF714207 JF714167 JF714179 JF714196 - 659 

026 JF714200 JF714157 JF714181 JF714195 JF714171 660 

027 JF714200 JF714157 JF714181 JF714195 JF714171 661 

028 - JF714157 - JF714195 JF714171 662 

029 - - JF714181 - JF714171 663 

030 JF714200 - - - JF714171 664 

031 - - - - - 469 

5 

032 - - - - - 470 

033 - JF714167 JF714179 - - 471 

034 - - JF714179 - - 472 

035 JF714207 JF714167 JF714179 JF714196 - 530 

036 - - - - - 531 

037 - JF714167 - - - 532 

038 - - - - - 533 

039 - - JF714179 - - 473 

6 

040 - JF714167 - - - 474 

041 - - - - - 475 

042 - - - - - 476 

043 JF714207 JF714167 JF714179 JF714196 - 537 

044 - JF714167 JF714179 - - 538 

045 - - JF714179 - - 539 

046 - - - - - 540 

047 - - JF714179 - - 581 

7 

048 JF714207 JF714167 JF714179 JF714196 - 582 

049 - - JF714179 JF714196 - 583 

050 - JF714167 JF714179 - - 609 

051 JF714207 JF714167 - JF714196 - 610 

052 JF714207 JF714167 JF714179 JF714196 - 611 

053 JF714207 JF714167 JF714179 JF714196 - 612 

054 - JF714167 - - - 613 
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055 - JF714167 JF714179 - - 585 

8 
056 - JF714167 JF714179 - - 586 

057 - JF714167 JF714179 - - 587 

058 JF714207 JF714167 JF714179 - - 588 

059 JF714209 JF714169 JF714176 JF714187  460 

9 

060 JF714209 JF714169 JF714176 JF714187 JF714173 461 

061 - JF714169 - - - 462 

062 - - - JF714187 - 463 

063  JF714167?? JF714176   534 

064 - - - - - 535 

065 JF714209 JF714169 JF714176 JF714187 JF714173 541 

066 - JF714169 JF714176 - - 542 

067 - - JF714181 JF714195 JF714171 589 

10 

068 JF714200 JF714157 JF714181 JF714195 JF714171 590 

069 - - JF714181 JF714195 JF714171 591 

070 JF714200  JF714181 JF714195 JF714171 592 

071 JF714200 - - JF714195 JF714171 614 

072 JF714200 JF714157 JF714181 JF714195 JF714171 615 

073 JF714200 JF714157 JF714181 JF714195  593 

11 

 

074 JF714200 JF714157 JF714181 JF714195 JF714171 594 

075 JF714200 JF714157 - - - 595 

076 - - - - - 596 

077 JF714200 JF714157 JF714181 - - 617 

078 - - JF714181 - - 619 

079 JF714200 - JF714181 - - 616 

080 JF714200 JF714160 JF714181 JF714195 JF714171 618 

081 JF714201 - JF714181 JF714195 - 477 

12 

082 JF714201 JF714159 JF714181 JF714195 - 478 

083 JF714201 JF714159 JF714181 JF714195 - 479 

084 JF714201 JF714159 JF714181 JF714195 JF714171 480 

085 JF714201 JF714159 JF714181 JF714195 JF714171 543 

086 - JF714157 - JF714195 JF714171 544 

087 - - - - - 545 

088 - - JF714181 - - 546 

089 JF714198 - JF714181 JF714195 JF714171 597 

13 

090 JF714198 JF714164 JF714181 JF714195 JF714171 598 

091 JF714198 JF714160 JF714181 JF714195 JF714171 599 

092 JF714198 JF714160 JF714181 JF714195 JF714171 600 

093 JF714198 JF714160 JF714181 JF714195 JF714171 620 

094 - - JF714181 - - 621 

095 - JF714160 JF714181 - - 622 

096 JF714198 JF714160 - - JF714171 623 

097 JF714199 JF714158 JF714181 JF714195 - 601 

14 

098 JF714199 JF714158 JF714181 JF714195 - 602 

099 - JF714158 JF714181 - - 603 

100 - - JF714181 - - 604 

101 JF714199 JF714158 JF714181 JF714195  624 
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102 JF714199 JF714158 JF714181 - - 625 

103 JF714199 JF714158 - JF714195 - 626 

104 JF714199 - - - - 627 

105 - - - - - 481 

15 

 

106 - - JF714177 JF714191 - 482 

107 - - JF714177 - - 483 

108 JF714203 JF714164 JF714177 JF714191 - 484 

109  JF714164 - JF714191 - 547 

110 - - - - - 548 

111 JF714203 JF714164 JF714177 JF714191 - 549 

112 - - JF714182 JF714186 - 550 

113 - - JF714177 JF714191 - 485 

16 

114 JF714203 JF714164 JF714177 JF714191 - 486 

115 - JF714164 - JF714191 - 487 

116 - - JF714177 JF714191 - 551 

117 - - - JF714191 - 552 

118 JF714203 JF714164 JF714177 JF714191 - 553 

119 JF714203 JF714164 JF714177 JF714191 - 554 

120 - - - - - 555 

121 - - - JF714189 - 489 

17 122 JF714202 JF714161 JF714183 JF714188  490 

123 JF714202 JF714161 JF714183 JF714188 JF714175 491 

124 - JF714164 - - - 728 

18 

125 JF714203 JF714164 JF714177 JF714191 - 729 

126 JF714203 JF714164 JF714177 JF714191 - 730 

127 JF714203 JF714164 - - - 731 

128 JF714203 JF714164 JF714177 - - 732 

129 JF714203 JF714164 JF714177 JF714191 - 492 

19 

130 JF714203 JF714164 JF714177 JF714191 - 493 

131 - JF714164 JF714177 - - 494 

132 - JF714164 JF714177 JF714191 - 495 

133 - JF714164 JF714177 JF714191 - 496 

134 JF714203 JF714164 JF714177 JF714191 - 605 

135 JF714203 - - JF714191 - 606 

136 JF714203 - - - - 607 

137 - - - - - 497 

20 

138 - - JF714179 - - 498 

139 - JF714167 - - - 499 

140 - JF714167 - - - 500 

141 JF714207 JF714167 JF714179 JF714196 - 556 

142 JF714207 JF714167 JF714179 JF714196 - 557 

143 - JF714167 - JF714196 - 558 

144 - - - JF714196 - 559 

145  JF714168   - 501 

21 
146 - - - - - 502 

147 - - - - - 503 

148 - - - - - 504 
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149 JF714204 JF714168 - - - 561 

150 JF714204 JF714168 JF714184 - - 562 

151 - - - - - 563 

152 - - - - - 564 

153 JF714198 JF714160 JF714181 JF714195 JF714171 633 

22 

154 JF714198 JF714160 JF714181  JF714171 634 

155 JF714198 JF714160 JF714181 JF714195 JF714171 635 

156 JF714198 JF714160 JF714181 JF714195 JF714171 636 

157 JF714198 JF714160 JF714181 - - 637 

158 JF714202 JF714161 JF714183 JF714189  628 

23 

159 JF714202 JF714161 JF714183 - - 629 

160 - - JF714183 - - 630 

161 JF714202 - - JF714189 - 631 

162 JF714202 JF714161 JF714183 JF714189  638 

163 - JF714161 - JF714189 - 639 

164 - JF714161 - - - 640 

165 JF714202 JF714161 JF714183 JF714189  641 

166 - - - - - 642 

24 

167 - - - - - 643 

168 - - - - - 644 

169 JF714210 JF714166 JF714182 JF714186 JF714174 645 

170 - - JF714182 JF714186 - 646 

171 JF714210 JF714166 JF714182 JF714186 JF714174 647 

172 JF714210 JF714166 JF714182 JF714186 JF714174 648 

173 JF714210 JF714166 JF714182 JF714186 JF714174 649 

174 JF714202 JF714161 JF714183 JF714188  653 

25 

175 JF714202 JF714161 JF714183 JF714189 JF714175 654 

176 - JF714161 JF714183 - - 655 

177 JF714202 JF714161 JF714183 JF714188 JF714175 665 

178 - JF714161 JF714183 - - 666 

179 - JF714161 JF714183 - - 667 

180 - - - - - 668 

181 JF714202 - - - - 669 

182 - - - - - 681 

26 

183 JF714202  JF714183 JF714188 JF714175 682 

184 JF714202 JF714161 JF714183   683 

185 JF714202 JF714161 JF714183 JF714188  684 

186 JF714202 JF714161 - - - 685 

187 JF714200 JF714157 JF714181 JF714195  690 

188 JF714203 - - - - 505 

27 

189 - - - - - 506 

190 JF714203 JF714164 JF714177 JF714191 - 507 

191 - JF714164 - - - 508 

192 JF714203 JF714164 JF714177 JF714191 - 565 

193 JF714203 JF714164 - - - 566 

194 - JF714164 - - - 567 

195 JF714200 JF714157 JF714181 JF714195 - 686 28 
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196 JF714200 JF714157 JF714181 JF714195 JF714171 687 

197 JF714200 JF714157 JF714181 JF714195 JF714171 688 

198 JF714200 JF714157 JF714181 JF714195 JF714171 689 

199 - JF714157 JF714181 JF714195 JF714171 691 

200 - JF714157 JF714181 - - 692 

201 - JF714157 JF714181 JF714195 JF714171 693 

202 - JF714165 - - - 509 

29 

203 JF714205 JF714165  JF714192 - 510 

204 - - - - - 511 

205 - - - - - 568 

206 JF714205 JF714165 JF714178 JF714192 - 569 

207 - - - - - 570 

208 - - -  - 571 

209 JF714205 JF714165 JF714178 JF714192 - 572 

210  JF714164 JF714177  - 515 

30 

211 - - - - - 516 

212  JF714164   - 573 

213 JF714203 JF714164 JF714177 JF714191 - 574 

214 JF714203 JF714164 JF714177 JF714191 - 575 

215 - JF714164 JF714177 - - 577 

216 - - JF714183 - - 517 

31 

217 - - - - - 518 

218 JF714202 JF714161 JF714183 JF714190 JF714175 519 

219 JF714202 JF714161 JF714183 JF714190 JF714175 520 

220 JF714202 JF714161 - - JF714175 576 

221 - JF714161 - - - 578 

222 - JF714161 - - - 579 

223 - - - - - 580 

224 JF714203 JF714164 - - - 670 

32 

225 - - - - - 671 

226 - - - - - 672 

227 - JF714164 - - - 673 

228 - JF714164 - - - 674 

228  JF714164 JF714177  - 675 

229  JF714164   - 676 

230  JF714164   - 677 

231 JF714208 JF714170 - JF714197 - 1647 

33 
232 JF714208 JF714170 - JF714197 - 1648 

233 JF714208 JF714170 JF714185 JF714197 - 1649 

234 JF714208 JF714170 JF714185  - 1650 

235 JF714203 JF714164 JF714177 JF714191 - 1651 

34 
236 JF714203 JF714164 JF714177 JF714191 - 1652 

237  JF714164 - JF714191 - 1653 

238 JF714203 JF714164 JF714177 JF714191 - 1654 
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Abstract 

Phenacoccus peruvianus Granara de Willink (Hemiptera: Pseudococcidae) is 

an invasive mealybug of Neotropical origin. In recent years it has invaded 

the Mediterranean Basin causing significant damages in bougainvillea and 

other ornamental plants. This article examines its phenology, location on 

the plant and spatial distribution, and presents a sampling plan to 

determine P. peruvianus population density for the management of this 

mealybug in Southern Europe. Six urban green spaces with bougainvillea 

plants were periodically surveyed between March 2008 and September 

2010 in Eastern Spain, sampling bracts, leaves, and twigs. Our results show 

that P. peruvianus abundance was high in spring and summer, declining to 

almost undetectable levels in autumn and winter. The mealybugs showed a 

preference for settling on bracts and there were no significant migrations 

between plant organs. Phenacoccus peruvianus showed a highly aggregated 

distribution on bracts, leaves, and twigs. We recommend a binomial 

sampling of 200 leaves and an action threshold of 55% infested leaves for 

integrated pest management purposes in urban landscapes and 

enumerative sampling for ornamental nursery management and additional 

biological studies. 

Keywords: Phenacoccus peruvianus, sampling, phenology, spatial 

distribution, urban landscape 
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3.1 Introduction 

 Invasive pests are an important threat to landscape and agricultural 

ecosystems and can cause significant ecological and economical losses 

(Williamson 1996; Pimentel et al. 2001; Kenis et al. 2009). Mealybugs are 

typical invasive pests and because of their small size and cryptic behavior, 

they are easily introduced into new areas through international 

horticultural and ornamental trade (Miller et al. 2002; Hulme et al. 2008). In 

Europe they represent the third most numerous family of alien insect 

species after aphids and armored scale insects, accounting for 40 newly 

established species (Roques et al. 2009; Pellizzari and Germain 2010). 

Mealybug species such as Phenacoccus solani Ferris (Mazzeo et al. 1999), 

Pseudococcus comstocki (Kuwana) (Pellizzari 2005), Phenacoccus solenopsis 

(Tinsley) (EPPO 2011), and Phenacoccus peruvianus Granara de Willink 

(Beltrà et al. 2010) have recently been recorded as new invaders in the 

Mediterranean Basin causing significant damage to crops and ornamental 

plants.  

 Phenacoccus peruvianus is a mealybug of Neotropical origin, first 

described in Peru and Argentina (Granara de Willink and Szumik 2007). The 

first time it was found in Europe was in 1999 in Almeria (Spain), and in the 

following years it was also reported in other areas such as Sicily, France, 

United Kingdom, Portugal, the Canary Islands, and Corsica (Beltrà et al. 

2010). Phenacoccus peruvianus is a polyphagous species that has been 

reported on several ornamental plants such as Aucuba japonica Thunb. 

(Aucubaceae), Myoporum laetum G. Forst. (Myoporaceae), Lantana camara 

L. (Verbenaceae), and particularly on Bougainvillea spp. (Nyctaginaceae) 

(Granara de Willink 2007; Beltrà et al. 2010). On Bougainvillea spp. the 

mealybug settles on leaves, bracts, and soft plant tissue where it feeds on 

sap, reducing plant growth and causing leaves to fall when high populations 

are present. Moreover, the honeydew excreted promotes black sooty mold 

that interferes with plant photosynthesis, reduces its esthetic quality and 

disturbs urban landscape users (Dreistadt et al. 2004). 

 Broad-spectrum chemicals have traditionally been relied on for the 

management of this mealybug in urban landscapes and commercial 



3-. PHENOLOGY AND SAMPLING PLAN FOR PHENACOCCUS PERUVIANUS 

43 
 

nurseries. However, the new European directive on pesticide use requires 

the reduction or even prohibits pesticides in a wide range of urban green 

areas, giving significant priority to biological control (European Parliament 

and Council 2009). The establishment of integrated pest management (IPM) 

programs in urban landscapes requires a better understanding of the 

biology and ecology of the target pests as well as efficient sampling 

techniques and management action thresholds (Binns and Nyrop 1992; 

Raupp et al. 1992). The development of sampling techniques for assessing 

mealybug populations has led to an improvement in their control in 

agricultural ecosystems and ornamental plants (Geiger and Daane 2001; 

Walton et al. 2004; Martínez-Ferrer et al. 2006; Mudavanhu et al. 2011; 

Waterworth et al. 2011). Thus, in this work we studied 1) the seasonal 

phenology, 2) location on the plant, 3) spatial distribution, and finally 4) 

defined a sampling methodology for P. peruvianus on Bougainvillea spp., as 

first steps toward developing a reliable IPM program for this mealybug in 

Southern Europe. 

3.2 Materials and methods 

3.2.1 Survey sites and sampling protocol 

 Six urban green spaces (UGS) located on the city of Valencia 

(Eastern Spain) were sampled from March 2008 to September 2010. The 

UGS were located on the Polytechnic University of Valencia Campus 

(39.481536 N, 0.343685 W), Aiora Park (39.467340 N, 0.344363 W), Vivers 

Park (39.478889 N, 0.367822 W), Lluis Vives College (39.468063 N, 

0.377609 W), University of Valencia Campus (39.476423 N, 0.339589 W), 

and Ramon Llull College (39.476054 N,75 0.346413 W) covering a total area 

of 5.200.000 m2. Each sampling site averaged a surface area of one ha with 

at least 15 mature bougainvillea plants. Two of the sites included 

Bougainvillea glabra Choisy and four had a mixed group of Bougainvillea 

glabra and the hybrid Bougainvillea x buttiana Holttum and Standl plants. 

As three of the sampling sites were sprayed with pesticides in July 2008, 

they were replaced by new unsprayed UGS with similar pest population 

densities located within a distance of 500 m. The periodicity of the sampling 

depended on the developmental biology of the mealybug: weekly or twice 
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a month in the months of most rapid development (March-November) and 

monthly during the rest of the year. 

 One 10-cm long tender twig, which was less than 1 year old, 

together with its leaves; and two bracts were taken per plant from 10 

randomly selected plants for each sampling site. Twigs and bracts were 

taken from heights ranging between 0.3 and 2 m above the ground. In the 

four sites with mixed bougainvillea plant species, each half of the sample 

belonged to one of the two species found. Bougainvillea blooming is not 

continuous throughout the year depending on various factors such as 

temperature and humidity (Schoellhorn and Alvarez 2002); thus, bracts can 

be scarce in the winter. In these cases, bracts were only collected when >10 

units were available in the sampling site. Samples were bagged and 

immediately transported to the laboratory inside a portable cooler. The 

material was then deposited in climatic chambers at 10°C and 50% relative 

humidity (RH) and processed within the next 24 h. 

3.2.2 Mealybug phenology and distribution on the plants 

 For each sample, we counted the mealybugs present in 20 bracts, 

10 twigs, and 50 leaves (five leaves randomly selected from each twig). The 

sex and instar of each mealybug were also recorded. Female instars of P. 

peruvianus can only be distinguished by their morphological characteristics 

after mounting each specimen on the slides. However, as body length 

appears to be well correlated with developmental stages (A.B., unpublished 

data), the following body length ranges (obtained by previously measuring 

30 mealybugs of each instar on the slide mounts) were used to separate 

instars: first nymphal instar (0-0.5 mm), second nymphal instar (0.5-0.9 

mm), third nymphal instar (0.9-1.4 mm), and adult females (>1.4 mm). 

Then, for routine samplings, the different mealybugs were separated by 

measuring them with a dissecting microscope fitted with an ocular 

micrometer. For the first and second nymphal instars males and females 

were pooled together as sex cannot be distinguished at these stages (Gullan 

and Martin 2009).  
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 One-way analysis of variance (ANOVA) was used to check for 

differences in mealybug abundance between 1) the 3 yr of the study (2008-

2010), 2) bougainvillea species (B. glabra and the hybrid B. x buttiana), and 

3) plant strata (bracts, leaves, or twigs). When analyzing the effect of 

mealybug abundance on bougainvillea species we compared the data from 

the four UGS that contained mixed bougainvillea populations. Data were 

log (x + 1) transformed before analysis to normalize the distribution. A two-

way ANOVA was used to compare the proportion of infested sampling units 

between plant strata and years. The proportions were arc-sine square-root 

transformed before analysis. Means were compared using Fisher least 

significant difference (LSD) test with significance level set at α = 0.05. All 

these analyses were performed using the statistical software Statgraphics 

Centurion XVI (Statpoint Technologies 2009). 

3.2.3 Measure of dispersion 

 The spatial patterns of the mealybug populations were analyzed 

using Taylor’s power law that relates the mean density of all counts and the 

variance: s2 = amb (Taylor 1961). After applying logarithms, Taylor’s 

parameters a and b can be estimated by a simple regression analysis. The 

first parameter a is a function of the sample size unit while b is the index of 

aggregation and it is specific and constant for the species. According to the 

value of b, populations are classified as regular (b < 1), random (b = 1) or 

aggregated (b > 1) (Taylor 1984). When no insects were found in a sample, 

the related data were omitted from analysis. We used a Student t-test with 

n-2 degrees of freedom to test if the slope b differed significantly from 

unity. To contrast the index of aggregation between instars, seasons, plant 

parts, and bougainvillea species, a 95% CI based on the t-distribution was 

used and significant differences were considered when the intervals did not 

overlap. 

3.2.4 Enumerative and binomial sampling 

 The enumerative minimum sample size was obtained by applying 

Green’s formula: n = a * m (b-2) / E2, where n is the sample size, a and b are 

the Taylor’s parameters, m the sampling mean and E the desired ratio of 
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the standard error to the mean (Green 1970). For our purposes a value of E 

= 0.25 was applied, which allows the detection of doubling or halving the 

sample means. This ratio is considered adequate for extensive sampling to 

carry out pest management decisions (Southwood 1978). 

 Binomial sampling can be applied if the mean m of insects per 

sampling unit and the proportion p of infested units in each sample are 

correlated. We compared mean densities and the proportion of infested 

leaves, bracts, or twigs through the use of the method of Wilson and Room 

(1983) based on the negative binomial distribution and the empirical model 

of Kono and Sugino (1958). The Wilson and Room’s equation is: 

p = 1 – exp(- m [ln (a*m(b-1) / a*m(b-1) - 1)] 

where a and b are the coefficients of Taylor power law. The empirical 

model of Kono and Sugino (1958) was also proposed independently by 

Gerrard and Chaing (1970) and Nachman (1984): 

p = 1 – exp( - a´mb´ ) 

where a and b  are constants that can be obtained from the regression: 

ln (m) = a´ + b´ ln ( - ln [1 - p] ). 

 To test if these models were conducive with the data obtained in 

the field, a simple regression analysis was carried out between the 

infestation levels observed and the levels predicted by the models. Finally, 

sample size in the presence-absence sampling was calculated by applying 

the formula proposed by Kuno (1986): 

n = E-2 (1 - P0) P0
-(2/k) – 1 [k (P0 

-1/k - 1)] -2 

where P0 is the probability of empty samples, and k is a parameter 

characteristic of the negative binomial distribution. Wilson and Room 

(1983) related k to the mean and Taylor parameter’s a and b: 

k = m2 / (amb - m). 
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 To prepare a practical and useful sampling plan for IPM programs, 

we selected leaves as the plant strata to determine optimum sample size 

because bracts are not present throughout the entire plant cycle and twigs 

are less abundant and more difficult to observe than leaves. First nymphal 

instars were omitted from the analysis because in practice they are difficult 

to detect and to count. The rest of the instars were then plotted together, 

as they cannot be separated without measuring them using a micrometer. 

3.2.5 Sampling plan validation 

To assess the reliability of the sampling plan for P. peruvianus we 

used the resampling software for analysis and validation of enumerative 

and binomial sampling plans (RSVP) (Naranjo and Hutchinson 1997). 

Fourteen independent datasets were used to validate the sampling plan. 

Datasets represented a range of 0.1-12.34 mealybugs per leaf and were 

taken in different months from 2008 to 2009 in five independent urban 

green spaces. Each dataset consisted on 50 leaves collected from 

bougainvillea plants following the methods described above. Five hundred 

simulations were conducted with replacement and a minimum sampling 

size of 10, for a prefixed precision level of 0.25. 

3.3 Results 

3.3.1 Mealybug phenology and distribution on the plants 

 The phenology of P. peruvianus showed a similar trend over the 3 

years of the study. The mealybug completed multiple overlapping 

generations within a year with intense fluctuations in abundance. Mealybug 

density increased in spring and reached its peak at the end of this season or 

in early summer (June and July) (Fig. 1). Afterwards, populations decreased 

and the presence of the insect was almost undetectable in autumn and 

winter, except for 2008 when medium densities of mealybugs were 

observed in autumn. Phenacoccus peruvianus populations were more 

abundant in 2008 (mean ± SE: 6.08 ± 0.74 mealybugs per sampling unit) 

than in 2009 (1.42 ± 0.80) or 2010 (1.20 ± 0.80) (F = 13.86; df = 2, 161; P < 

0.0001). Significant differences were also found in mealybug abundance 
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depending on the bougainvillea species, with higher populations on B. 

glabra (4.88 ± 0.67 mealybugs per sampling unit) than on the hybrid B. x 

buttiana (2.69 ± 0.67) (F = 4.79; df = 1, 223; P = 0.03). Phenacoccus 

peruvianus was irregularly distributed on plant strata; higher population 

densities were present on bracts (7.45 ± 0.59 individuals per sampling unit) 

than on twigs (2.77 ± 0.59) or leaves (2.02 ± 0.59) (F = 32.52; df = 2, 723; P < 

0.0001) (Fig. 2). 

The percentage of infested sampling units was also influenced by 

plant strata (F = 37.76; df = 2, 723; P < 0.0001) and year (F = 74.82; df = 2, 

723; P < 0.0001) and there was no significant interaction between these 

two factors (F = 1.74; df = 4, 723; P = 0.14). Over the 3 years of the study 

the percentage of infestation was higher on bracts (36.81 ± 1.85%) than on 

leaves (20.78 ± 1.85%) or twigs (16.64 ± 1.85%) (F = 37.76; df = 2, 723; P < 

0.0001) (Fig. 3). Bract infestation reached its maximum in June with 71.21 ± 

6.22% bracts occupied in the first year of the study, 53.53 ± 6.57% in the 

second year and 35.83 ± 7.81% in the third year. The monthly average 

percentage of infested leaves also peaked in June reaching 47.68 ± 6.19%, 

25.17 ± 6.55%, and 15.17 ± 7.80% from 2008, 2009, and 2010, respectively. 

The proportion of infested sampling units decreased during the winter 

months always remaining below 10%. 

3.3.2 Measure of dispersion 

Taylor’s power law was used to study the distribution patterns of P. 

peruvianus in Bougainvillea spp. Comparing the logarithm of the mealybug 

mean abundance and its associated variance, significant regressions with 

high determination coefficients were obtained for all the mealybug instars 

in the three plant organs sampled, leaves, bracts, or twigs (Fig. 4). The 

values of the slope were significantly > 1(t-test) in all cases, indicating that 

there was a clumped distribution of the mealybug on leaves, bracts, and 

twigs (Table 1). 
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Figure 1. Seasonal phenology of Phenacoccus peruvianus in Bougainvillea spp. in six urban green 

spaces of Valencia. Mean number of mealybugs collected per sample unit. (N1= first nymphal instar 

(females and males); N2 = second nymphal instar (females and males); N3 third nymphal instar 

(females); H1 young female; H2 gravid female). Note that y-axis scales are different for 2008 and 

2009-2010. 
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Figure 2. Percentage of Phenacoccus peruvianus individuals distributed on leaves, bracts and twigs of 
Bougainvillea spp. plants. Data from six urban areas in Valencia (Eastern Spain) sampled in 2008, 
2009, and 2010 from April to September. 

 

Figure 3. Percentage of leaves, bracts, and twigs of Bougainvillea spp. plants infested by Phenacoccus 
peruvianus. Data from six urban areas in Valencia (Eastern Spain) sampled in 2008, 2009, and 2010. 
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No significant differences were found in the aggregation parameter 

b between bougainvillea species [B. glabra (1.62-1.72, 95% CI), B. x buttiana 

(1.47-1.64, 95% CI) (P > 0.05)] nor between seasons [spring (1.59-1.69, 95% 

CI), summer (1.63-1.71, 95% CI), autumn (1.51-1.72, 95% CI), and winter 

(1.28-1.68, 95% CI) (P > 0.05)]. Conversely, the aggregation decreased with 

the age of the mealybugs, being higher in first (1.61-1.68, 95% CI) and 

second (1.62-1.68, 95% CI) nymphal instars than in third nymphal instars 

(1.48-1.55, 95% CI), young females (1.47-1.53, 95% CI), and gravid females 

(1.39-1.48, 95% CI) (P < 0.05). Clump size was also higher on bracts and 

twigs than on leaves (P < 0.05) (95% CI; Table 1). 

3.3.3 Relationship between insect density and percent infestation 

When mealybugs were located on leaves, the percent infestation 

levels observed in the field were similar to the values estimated by both 

Wilson and Room’s model (F = 1324; df = 1, 223; P < 0.0001) (R2 = 0.86) and 

Kono and Sugino’s model (F = 1029; df = 1, 223; P < 0.0001) (R2 = 0.82). This 

correlation was smaller on bracts: Wilson and Room’s model (F = 606; df =1, 

195; P < 0.0001) (R2 = 0.76) and Kono and Sugino’s model (F = 350; df = 1, 

190; P < 0.0001) (R2 = 0.65); and twigs: Wilson and Room’s model (F = 265; 

df = 1, 125; P < 0.0001) (R2 = 0.67) and Kono and Sugino’s model (F = 174; df 

= 1, 124; P < 0.0001) (R2= 0.58) (Fig. 5). In all cases, Wilson and Room’s 

(1983) negative binomial model adjusted better to our data than Kono and 

Sugino’s (1958) empirical model. 
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Figure 4. Relationship between mean mealybug density and variance on leaves, bracts and twigs of 

Bougainvillea spp. Data from six urban areas in Valencia (Eastern Spain) sampled in 2008, 2009, and 

2010. 
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Table 1. Taylor’s power law parameters for the different instars of Phenacoccus peruvianus on Bougainvillea spp. (N1= first nymphal instar (females and males); N2 = 
second nymphal instar (females and males); N3 = third nymphal instar (females); Females = all instars).

Plant 
substrate 

Life stage 
Samples 

n 

Taylor Power law             Test for slope (b ≠ 1) Confidence interval 

a b SE(b) r2 P t  P CI (b) 

Bracts N1 138 7.34 1.72 0.03 95.38 < 0.001 22.22  < 0.001 1.66-1.79 

 
N2 148 6.67 1.73 0.03 96.63 < 0.001 27.35  < 0.001 1.68-1.78 

 
N3 153 4.79 1.62 0.03 94.25 < 0.001 19.04  < 0.001 1.56-1.68 

 
Adult young female 162 4.68 1.59 0.03 95.78 < 0.001 22.31  < 0.001 1.54-1.64 

 
Adult gravid female 115 4.04 1.52 0.04 93.96 < 0.001 14.28  < 0.001 1.44-1.59 

 
Females 200 6.10 1.76 0.02 96.38 < 0.001 31.32  < 0.001 1.71-1.81 

 
N2-N3-Adult female 196 5.65 1.72 0.02 96.51 < 0.001 30.77  < 0.001 1.68-1.77 

 
N3-Adult female 207 4.83 1.66 0.03 95.51 < 0.001 24.27  < 0.001 1.56-1.66 

Leaves N1 164 8.84 1.61 0.03 96.19 < 0.001 22.08  < 0.001 1.55-1.66 

 
N2 168 8.17 1.61 0.03 95.34 < 0.001 18.32  < 0.001 1.41-1.51 

 
N3 160 5.19 1.46 0.03 95.56 < 0.001 14.80  < 0.001 1.34-1.44 

 
Adult young female 164 4.30 1.39 0.03 94.49 < 0.001 16.28  < 0.001 1.36-1.46 

 
Adult gravid female 107 4.73 1.41 0.03 96.72 < 0.001 11.12  < 0.001 1.51-1.73 

 
Females 238 8.21 1.62 0.02 95.91 < 0.001 24.95  < 0.001 1.53-1.62 

 
N2-N3-Adult female 226 7.07 1.57 0.02 95.44 < 0.001 24.02  < 0.001 1.69-1.81 

 
N3-Adult female 188 5.34 1.48 0.02 95.62 < 0.001 24.02  < 0.001 1.69-1.82 

Twigs N1 83 5.54 1.75 0.03 97.48 < 0.001 15.76  < 0.001 1.60-1.77 

 
N2 87 5.81 1.75 0.03 97.35 < 0.001 18.25  < 0.001 1.66-1.82 

 
N3 84 4.42 1.69 0.04 94.82 < 0.001 14.12  < 0.001 1.61-1.82 

 
Adult young female 101 4.95 1.74 0.04 94.92 < 0.001 31.06  < 0.001 1.89-2.04 

 
Adult gravid female 31 5.17 1.72 0.05 97.53 < 0.001 32.24  < 0.001 1.74-1.84 

 
Females 140 5.46 1.79 0.02 97.47 < 0.001 25.00  < 0.001 1.61-1.71 

 
N2-N3-Adult female 128 5.32 1.78 0.03 97.08 < 0.001 21.56  < 0.001 1.43-1.52 

 
N3-Adult female 120 5.05 1.75 0.03 96.29 < 0.001 23.68  < 0.001 1.68-1.81 



3-. PHENOLOGY AND SAMPLING PLAN FOR PHENACOCCUS PERUVIANUS 

54 
 

Figure 5. Relationship between the proportion of leaves occupied by Phenacoccus peruvianus and the 

mean population density per (A) leaf, (B) bract, or (C) twig. Data predicted using the equations of 

Wilson and Room’s (1983) model: p = 1 exp(m [ln (a*m(b1)/a*m(b1) 1)]. 
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3.3.4 Enumerative and binomial sampling 

 The number of leaves per sample required to estimate P. 

peruvianus populations was calculated using the values of the coefficients 

of Taylor’s power law for second and third nymphal instars and adults. 

Optimal sample size was always higher for binomial than enumerative 

sampling for a precision of 0.25 (Fig. 6). According to our sampling plan, for 

population densities from 5 to 30 mealybugs per leaf, 25-55 leaves should 

be monitored in enumerative samplings and 120-200 leaves in binomial 

samplings. 

 
Figure 6. Optimum sample size to estimate different mealybug densities by using enumerative and 
binomial sampling plans for Phenacoccus peruvianus on Bougainvillea spp. leaves. Prestablished 
relative variation level: E = 0.25. Data for mealybugs from second nymphal instar to adult. 

3.3.5 Sampling plan validation 

 The validation of the sampling plan with a desired precision of 0.25 

resulted to a sample number that ranged from 39 to 309 (Table 2). Actual 

mean precision levels varied from 0.13 to 0.44 and averaged the desired 
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Table 2. Resampling simulation results used to validate Green’s fixed precision sequential sampling 
plan for P. peruvianus in bougainvillea plants with desired precision levels adjusted to 0.25 with 
replacement (Taylor’s a = 7.07 and b = 1.57). 

 

3.4 Discussion 

 The purpose of the current study was to determine the phenology 

and spatial distribution of the invasive species P. peruvianus in Eastern 

Spain. Subsequently, these data were used to design a sampling plan for 

this pest which will be helpful to establish an IPM program in urban 

landscapes in accordance with the new European legislation. Our results 

indicated a similar trend in mealybug phenology over the 3 years of the 

study; population densities increased in spring with peaks occurring during 

June and July. Mealybug populations then decreased in August and 

remained at very low levels for the rest of the year. This fast decrease might 

be a consequence of biotic and abiotic factors such as plant phenology, 

climate, and the action of natural enemies. In Eastern Spain, bougainvillea 

Validation 
data set 

Observed 
mean 

density 

Avg statistics for 500 sequential sampling simulations 

Density 
Mean 

Precision (D) Average sample number 

Mean Max. Min. Mean Max. Min. 

1 0.10 0.10 0.26 0.32 0.20 309 435 200 

2 0.18 0.18 0.16 0.18 0.13 238 294 198 

3 0.22 0.22 0.15 0.19 0.13 218 270 181 

4 0.36 0.36 0.14 0.18 0.12 177 220 149 

5 0.58 0.58 0.13 0.16 0.11 144 168 124 

6 0.60 0.62 0.30 0.40 0.16 145 225 101 

7 0.82 0.87 0.44 0.69 0.30 130 239 72 

8 1.34 1.41 0.34 0.46 0.26 103 165 69 

9 2.12 2.24 0.32 0.41 0.21 84 124 53 

10 2.44 2.64 0.36 0.47 0.25 79 118 49 

11 6.22 6.25 0.20 0.25 0.16 53 68 39 

12 7.12 7.30 0.24 0.32 0.16 50 68 36 

13 8.48 8.63 0.28 0.35 0.20 47 69 34 

14 12.34 12.71 0.22 0.28 0.17 39 55 29 

Overall 3.06 3.15 0.25 0.33 0.18 129.71 179.86 95.29 
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plants have a vegetative growth period in early spring followed by various 

continuous blooming periods. The high temperatures and low humidity that 

frequently occur in the Mediterranean summer may cause high mortality in 

mealybugs, especially in first instars (Browning 1959; Bartlett and Clancy 

1972). Interestingly, studies carried out under laboratory conditions 

showed high mortality rates in P. peruvianus crawlers at 30°C and 65 % H.R. 

(A.B. et al. unpublished data). Furthermore, a companion study (Beltrà et al. 

2013b) demonstrated that parasitism reaches its peak in August, and 

thereby contributes to the decline of mealybug populations. In the same 

study it was found that parasitism was higher in 2009 and 2010 than in 

2008; this might explain the differences in the mealybug abundance 

observed over the years. 

 In our study, P. peruvianus completed several overlapping 

generations during the year, with all development stages present 

throughout this period. Similar studies carried out in the Mediterranean 

Basin with other mealybug species of agronomic importance such as 

Phenacoccus madeirensis Green (Longo et al. 1995), Planococcus citri 

(Risso) (Panis 1969; Santorini 1977; Martínez-Ferrer et al. 2003) or 

Pseudococcus viburni (Signoret) (Panis 1986) showed a similar pattern. The 

continuous overlap of development stages has relevant implications for the 

mealybug management. Host stage can influence natural enemies’ 

efficiency and must be taken into account when designing biological control 

strategies (Jervis et al. 2007). Parasitism of scale insects that complete a 

small number of generations in Eastern Spain is strongly influenced by host 

instar/size (Tena et al. 2008; Pekas et al. 2010; Beltrà et al. 2011). In this 

study, all P. peruvianus instars are present all year round and therefore, 

host stage availability should not be a limiting factor for efficient biological 

control by its parasitoids. Conversely, the low mealybug populations found 

in long periods of the year such as autumn and winter might limit the action 

of insect parasitoids that commonly show host delayed density dependence 

(Kidd and Jervis 2007; Van Driesche et al. 2008). Moreover, chemical 

control may also be hampered by the constant presence of adult mealybugs 

that are more resistant to contact chemical applications because of their 

hydrophobic wax cover (McKenzie 1967; Moore 1988; Franco et al. 2009). If 

chemical control is required to manage occasional population outbreaks, 
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we suggest start monitoring in the spring, before mealybug populations 

grow and reach higher densities. At that time, selective insecticides should 

be used to allow the future establishment of biological control agents. 

 Scale insects show a sedentary behavior and crawlers tend to settle 

near their mothers when conditions are favorable (Greathead 1997). 

However, some mealybug species migrate to different strata of the plant 

host, adapting to the plant phenology (Browning 1959; Furness 1976; 

Geiger and Daane 2001; Grasswitz and James 2008; Ben-Dov et al. 2009; Cid 

et al. 2010; Haviland et al. 2012). When P. peruvianus feeds on 

bougainvillea plants it is primarily found on bracts, leaves, and green twigs. 

Contrary to the expectations, our results showed no seasonal migrations 

between plant strata and the location of the mealybugs remained stable 

along the spring and summer. A possible explanation for this might be the 

fact that the plant phenology is rather constant, with continuous flower 

blooming during this period. The small densities of the mealybug in autumn 

and winter did not allow us to detect whether there is an overwintering 

migration. Phenacoccus peruvianus shows a preference for settling on 

bracts. This distribution could play a significant role in mealybug survival, 

because bracts offer good protection against climatic fluctuations and the 

action of contact pesticides.  

 The mealybug showed a strongly clumped distribution on bracts, 

twigs and leaves. This distribution is typical of scale insects (Nestel et al. 

1995) and has also been reported for other mealybug species such as 

Rastrococcus invadens Williams on mango leaves (Boavida et al. 1992), P. 

citri on orange fruits (Martínez-Ferrer et al. 2006), grapefruit (Nestel et al. 

1995), Saccharicoccus sacchari (Cockerell) on sugarcane stalks (Allsopp 

1991), and Pseudococcus maritimus (Ehrhorn) in vines (Geiger and Daane 

2001). Differences in aggregation between instars were also found, with the 

clumped distribution decreasing as the mealybugs aged. This finding agrees 

with the observations of Martínez-Ferrer et al. (2006) with P. citri. The 

differences may be a consequence of density dependent natural mortality 

on younger mealybug instars because of parasitism or food sources and 

dispersion resulting from spatial limitation (Martínez-Ferrer et al. 2006). 
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The elevated indices of aggregation lead to high optimum sample 

sizes in both enumerative and binomial sampling. Our field observations 

showed that P. peruvianus densities lower than five mealybugs per leaf did 

not cause important esthetic damage to plants. This corresponds to 57.5% 

of infested leaves. In our experience an enumerative sampling of 50 leaves 

takes more time than a binomial sampling of 200 leaves that requires ≈10-

15 min. Therefore, for IPM purposes in urban landscapes we recommend a 

feasible binomial sampling of 200 leaves and a management decision 

threshold of 55% infested leaves. However, for ornamental nursery 

management, which requires lower action thresholds (Sadof and Sclar 

2002), or for further biological studies, we recommend enumerative 

sampling to accurately estimate lower or higher mealybug populations. In 

these cases the sample size required in binomial sampling increases 

considerably and the sampling becomes a time-consuming work (Fig. 6). 
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Abstract 

Phenacoccus peruvianus Granara de Willink (Hemiptera: Pseudococcidae) is 

a Neotropical invasive mealybug that has rapidly spread throughout 

Mediterranean Basin. It has established itself as the principal pest of several 

ornamental plants, causing considerable problems in nurseries and urban 

landscapes. The aim of this study was to determine the natural enemy 

complex of this pest and report the feasibility of its biological control. Six 

urban green spaces were surveyed in Eastern Spain from 2008 to 2010. The 

most abundant natural enemies of P. peruvianus were found to be the 

primary parasitoids Acerophagus n. sp. near coccois and Leptomastix epona 

Walker (Hymenoptera: Encyrtidae). Phenacoccus peruvianus populations 

were lower during the second and third year of the survey, coinciding with 

an increase of the parasitoid Acerophagus sp., which displaced the native L. 

epona. Differential female offspring and resource preemption are discussed 

as the main reasons for this displacement. 
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4.1 Introduction 

 An increase in international commercial traffic in recent decades 

has led to a concomitant increase in the number of exotic insects entering 

Europe (Roques et al. 2009). Mealybugs (Hemiptera: Pseudococcidae) have 

entered Europe at a high rate, surpassed only by members of the Aphididae 

and Diaspididae families, and account for 37 alien species, which constitute 

one fourth of the mealybug fauna currently present in Europe (Pellizzari 

and Germain 2010). They are typical invasive pests due to their small size 

and cryptic behavior (Miller et al. 2002; Pellizzari and Germain 2010). The 

invasive nature and the difficulties presented by the chemical control of 

Pseudococcidae have made them a principal target of classical biological 

control programs (Moore 1988; Miller et al. 2002).  

 The classical biological control strategy for managing insect pests, 

namely, the introduction and release of exotic natural enemies, has met 

with some success in the control of mealybug species, such as Phenacoccus 

manihoti Matile-Ferrero (Neuenschwander 2001), Maconellicoccus hirsutus 

(Green) (Kairo et al. 2000), Rastrococcus invadens Williams (Agricola et al. 

1989; Neuenschwander et al. 1994) and, more recently, Paracoccus 

marginatus Williams and Granara de Willink (Muniappan et al. 2006; 

Amarasekare et al. 2009). Mealybug invasions have also been controlled by 

the accidental importation of natural enemies. At least six cases of 

biological control by fortuitous introductions of parasitoids and predators 

have been reported in mealybugs (Cox 1940; Beardsley 1985; Anonymous 

2000; Nechols 2003; Muniappan et al. 2006; Gautam et al. 2009).   

 Most of the successful biological control programs involving the 

Pseudococcidae family have involved insect parasitoids (Moore 1988). Of 

these, encyrtids (Hymenoptera: Encyrtidae) are the most abundant and 

widely distributed natural enemies of mealybugs, and various classical 

biological control programs have demonstrated that encyrtids often 

establish host-specific interactions with mealybugs (Moore 1988; Charles 

and Allan 2002; Charles 2011). Apart from parasitoids, the coccinellid 

Cryptolaemus montrouzieri Mulsant is also a well-known and successful 
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example of a predator-based biological control program (Bartlett 1978; 

Moore 1988). 

 Phenacoccus peruvianus Granara de Willink (Hemiptera: 

Pseudococcidae) is a mealybug of Neotropical origin (Granara de Willink 

and Szumik 2007) that has been recently recorded in Europe. This mealybug 

was first reported in Southern Spain in 1999 and, subsequently, in other 

areas such as Sicily (2002), the UK and Corsica (2005), Portugal (2006), 

France (2008), and Majorca Island (2010) (Beltrà et al. 2010). It is a 

polyphagous pest that attacks a wide variety of plants, including several 

ornamental species. Among their hosts it shows a preference for members 

of the Solanaceae; a recent study shows that it settles and feeds on tomato 

and tobacco plants, which are major members of this family (Beltrà et al. 

unpublished data). At the present time, this mealybug has established itself 

as a key pest of the ornamental plants of genus Bougainvillea 

(Nyctaginaceae) in nurseries and urban landscapes of Southern Europe 

(Beltrà et al. 2010). 

 Biological control of P. peruvianus has not been investigated, 

primarily because its natural enemy complex has never been determined in 

Europe or South America, where it is considered to be a native species 

(Granara de Willink and Szumik 2007). In this study, we examine the natural 

enemy complex of P. peruvianus and report on its potential for the 

biological control of this pest. In particular, in this study we determine (1) 

the natural enemy species complex of P. peruvianus, (2) its seasonal 

abundance, (3) its effect on host populations, (4) the brood size and sex 

ratio of its main parasitoids in the field. 

4.2 Materials and methods 

4.2.1 Survey sites and sampling protocol 

Six urban green spaces (UGS) located in the city of Valencia (Eastern 

Spain) were sampled from March 2008 until September 2010. Phenacoccus 

peruvianus was first reported in this area in 2005 (authors’ personal 

observation). The UGS were located on the Polytechnic University of 
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Valencia Campus (39.481536 N, 0.343685 W), Aiora Park (39.467340 N, 

0.344363 W), Vivers Park (39.478889 N, 0.367822 W), Lluis Vives College 

(39.468063 N, 0.377609 W), University of Valencia Campus (39.476423 N, 

0.339589 W), and Ramon Llull College (39.476054 N, 0.346413 W). Each 

sampling site had an average surface area of 1 ha with more than 15 

mature climbing Bougainvillea glabra and/or hybrid B. glabra x buttiana 

plants. Because of the high population levels of P. peruvianus, three 

sampling sites were sprayed with pesticides in July 2008. These were 

replaced by new unsprayed UGS with similar pest population densities, 

located within a distance of 500 m from the old ones. Sampling periodicity 

depended on P. peruvianus density: weekly or twice a month when medium 

and high densities, respectively, were found per sampling (March - 

November) and monthly when fewer than ten individuals were found per 

sampling (rest of the year).  

 One 10-cm softwood twig, <1 year old, was removed, with its leaves 

and two bracts, from ten randomly selected plants at each site. Twigs and 

bracts were taken from heights ranging between 0.3 and 2 m above the 

ground. During the winter, Bougainvillea plants have fewer bracts, and 

therefore <20 bracts were collected per site. Samples were bagged and 

immediately transported to the laboratory inside a cooler where the plant 

material was deposited in climate chambers set to a temperature of 10 °C 

and 50 % relative humidity (RH). The samples were then processed 

according to the procedures described below over the next 24 h. 

 Occasionally, a variable quantity of highly infested leaves, bracts, 

and twigs were also taken from the sampling sites. These samples were 

used to complement data on the sex ratio and brood size of the main 

parasitoids. 

4.2.2 Mealybug density and parasitism abundance 

For each sampling, we counted all of the P. peruvianus individuals 

susceptible to parasitism (second and third instars and adults) present in 20 

bracts, the softwood of ten twigs, and 50 leaves (five leaves randomly 

selected from each twig). All the mealybugs were morphologically checked 
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for parasitism. We considered an individual to be parasitized when it was 

mummified or when it showed the first signs of mummification (body 

deformation and cuticle sclerotization). When a mummy was found, the 

length was first measured to the nearest 0.01 mm, and then the mummy 

was gently separated from the plant with a wet camel hair brush and placed 

into 3.0 x 0.8 cm glass vial (1 mummy per vial). The vials were covered with 

a cotton plug and stored at 23 ± 5 °C and the natural outdoor photoperiod 

and checked twice a week for parasitoid emergence. Upon emergence, 

each vial was placed in a freezer to kill the adult parasitoids, which were 

then identified. The number and sex of parasitoids that emerged per 

mealybug were recorded. Parasitism rates, active parasitism, were 

estimated as the proportion of mummified mealybugs (those that 

contained parasitoids) to the total number of mealybugs susceptible to 

parasitism (alive and mummified mealybugs). To obtain parasitism rates, 

the data from the ten twigs, 50 leaves, and 20 bracts from each sampling 

were pooled. The proportion of parasitized mealybugs on twigs and leaves 

per plant and date was also used to determine the parasitoid patch 

aggregation. 

 Parasitoids were mounted using conventional techniques (Noyes 

1982) and identified using different Chalcidoidea keys (García-Mercet 1917; 

Graham 1969; Rosen 1981; Trjapitzin 2008). The identity of some parasitoid 

species was confirmed by Dr. Andy Polaszek at the British National History 

Museum. Additionally, each sample was inspected for foraging predators 

within P. peruvianus colonies. Predators found preying on the colonies 

during field sampling or below the ovisacs were captured and counted in 

the laboratory. Where necessary these were removed, identified, and 

recorded along with the preyed-upon mealybug instars. Predators were 

identified following various taxonomic keys (Díaz-Aranda and Monserrat 

1990; Ferragut and González-Zamora 1994; Oosterbroek 2007). 

4.2.3 Statistical analysis 

 We used a generalized mixed model with repeated measurements 

to analyze the dynamics of parasitism from May to September (Bolker et al. 

2009). Year was considered as a fixed factor and month as a random one. 
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We assumed binomial variance for parasitism ratio and fitted the 

parameters by Laplace approximation. Moreover, linear models were 

applied assuming normal error variance to determine the relationship 

between parasitism and the number of mealybugs per plant. We examined 

all possible regressions using linear, power, log, exponential, and 

polynomial functions and selected the model with the highest coefficient of 

determination.  

 Brood size and secondary sex ratio were analyzed by using 

generalized linear modeling (GLM) techniques (Wilson and Hardy 2002; 

Crawley 2007). A Poisson error variance was initially assumed for the 

analysis of brood size, and binomial error variance was assumed for sex 

ratio analysis. If over- or underdispersion was detected, the significance of 

the explanatory variables was re-evaluated using an F test after re-scaling 

the statistical model by a Pearson’s χ2 divided by the residual degrees of 

freedom (Crawley 2007). The statistical software ‘R’ (http://www.R-

project.org) and its package lme4 (Bates et al. 2012) were used in our 

analyses. 

4.3 Results 

4.3.1 Phenacoccus peruvianus density and parasitism 

Over the three-year study period, P. peruvianus populations were 

found to increase during the spring months in Bougainvillea plants, reaching 

a maximum between June and July (Fig. 1). In 2008, up to 470 specimens of 

P. peruvianus were collected per sample. This number was approximately 

threefold lower in 2009 and 2010 than in 2008. In contrast, parasitism rates 

augmented during the course of the study and were higher in 2009 than in 

2008 (GLMM based on binomial distribution: χ2 = 904.07; df = 1; P < 

0.0001), and in 2010 compared to 2009 (GLMM based on binomial 

distribution: χ2 = 71.64; df = 1; P < 0.0001).  

4.3.2 Parasitoid species complex and seasonal trend 

 A total of 2,147 parasitoid specimens were obtained over the three-

year study period. Three species of primary parasitoids and three 
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hyperparasitoids were reared from P. peruvianus (Table 1). Acerophagus n. 

sp. near coccois Smith (Hymenoptera: Encyrtidae) was identified as the 

main primary parasitoid, accounting for 91.6 % of the parasitoids 

recovered. The other primary parasitoids, Leptomastix epona Walker 

(Hymenoptera: Encyrtidae) (3.8 %) and Anagyrus pseudococci Girault 

(Hymenoptera: Encyrtidae) (0.1 %), were much less abundant. The most 

important hyperparasitoid was Pachyneuron sp. (Hymenoptera: 

Pteromalidae) (3.5 %), while specimens of Chartocerus sp. (Hymenoptera: 

Signiphoridae) (0.9 %) and Prochiloneurus bolivari Mercet (Hymenoptera: 

Pteromalidae) (0.1 %) were recovered only sporadically. Acerophagus sp. 

was recovered from all of the sites sampled, while L. epona and 

Pachyneuron sp. were recovered from five of the six sampled sites. 

 
Figure. 1 Seasonal correlation between the population density of Phenacoccus peruvianus, which was 
suitable for parasitism, and percentage parasitism, based on samples taken from plants of 
Bougainvillea spp. in six urban green spaces of Valencia (Eastern Spain) during the period 2008–2010. 
Vertical bars Standard error (SE). 

Table 1. Abundance of Phenacoccus peruvianus parasitoids recovered from six urban green spaces of 
Valencia (Eastern Spain) from March 2008 to September 2010. 
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Encyrtidae Acerophagus sp. Primary parasitoid 83 1275 609 6/6 

Encyrtidae Leptomastix epona Primary parasitoid 49 29 3 5/6 

Encyrtidae Anagyrus pseudococci Primary parasitoid 0 2 0 2/6 

Pteromalidae Pachyneuron sp. Secondary parasitoid 40 29 6 5/6 

Pteromalidae Prochiloneurus bolivari Secondary parasitoid 2 0 0 1/6 

Signiphoridae Chartocerus sp. Secondary parasitoid 0 16 4 1/6 
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 The abundance of the parasitoid complex of P. peruvianus varied 

throughout the three-year study period (Fig. 2). In 2008, the native L. epona 

comprised 28.2 % of the emerged parasitoids and Acerophagus sp. was 

recovered in 47.7 % of the cases. In 2009 and 2010, the percentages of L. 

epona decreased to 2.1 and 0.5 %, respectively, while the abundance of 

Acerophagus sp. specimens increased to 94.4 % and 97.9 %, respectively. 

The abundance of the hyperparasitoid Pachyneuron sp. also fell from 23.0 % 

in 2008 to 2.1 and 1.0 % of the parasitoid specimens in 2009 and 2010. 

 

 

 

 

Fig. 2 Phenacoccus peruvianus parasitoid complex composition and number of parasitoids recovered 
from plants of Bougainvillea spp. in six urban green spaces in Valencia (Eastern Spain) during the 
period 2008–2010. 

4.3.3 Host use: size preference, brood size, sex ratio, and spatial 

distribution 

Acerophagus sp. mummy sizes ranged from 0.6 to 3.4 mm. This 

species developed as a facultative gregarious parasitoid, with brood sizes 

that ranged from one to 12 parasitoids with an average of 2.75 ± 0.10 

parasitoids per host. There was a significant relationship between brood 

size of the parasitoid and mealybug mummy size, with larger brood sizes 

emerging from longer hosts {brood size = Exp [1.08 x (mealybug length) - 

1.02]; GLM based on semi-Poisson distribution: F = 668.39; df = 1,485; P < 

0.0001; 41.73 % deviance explained}. All of the Acerophagus sp. recovered 

were females. Percentage parasitism by Acerophagus sp. was negatively 
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correlated with the mealybug density. Parasitism decreased when the 

number of mealybugs per plant increased [parasitism = 1.10 x (number of 

mealybugs per sample)-0.77; R2 = 0.78; F = 551.32; df = 1,152; P < 0.0001)] 

(Fig. 3). 

 

Fig. 3 Effect of P. peruvianus aggregation on Acerophagus sp. parasitism in samples of 10-cm softwood 

twigs and 5 leaves of Bougainvillea spp. in six urban green spaces of Valencia (Eastern Spain) during 

the period 2008–2010. Plotted curve fits to the power function [parasitism = 1.10 x (number of 

mealybugs per sample) - 0.77; df = 1,152; F = 551.32; R2 = 0.78; P < 0.0001]. 

Leptomastix epona mummy sizes ranged from 1.0 to 2.5 mm. This 

species always developed as a solitary parasitoid. Its secondary sex ratio 

was negatively correlated with mealybug mummy size, and it became 

female biased in hosts larger than 1.8 mm (GLM of sex ratio based on 

binomial distribution: sex ratio = 1/ 1 + {1/[Exp (-1.30 x mealybug length) + 

1.75]}; χ1
2 = 8.34; P = 0.004; 92.38 % deviance explained). 

4.3.4 Predator abundance and feeding behavior 

 Several species of generalist predators were found preying on P. 

peruvianus eggs and nymphs in Bougainvillea plants. We recorded 105 

Orius laevigatus Fieber (Heteroptera: Anthocoridae), 58 coccinellids 
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belonging to species Cryptolaemus montrouzieri Mulsant, Propylea 

quatuordecimpunctata L., Oenopia lyncea Olivier, and Scymnus spp. 

(Coleoptera: Coccinellidae), 43 Leucopis sp. (Diptera: Chamaemyiidae), and 

22 Chrysoperla carnea Stephens (Neuroptera: Chrysopidae). Orius 

laevigatus, C. carnea larvae, and all the coccinellid species preyed on P. 

peruvianus nymphs. 

 Leucopis sp. larvae foraged below the ovisacs of adult P. peruvianus 

and preyed on the mealybug eggs. This predator was observed during the 

summer and was present in 5.51 % of the ovisacs counted in July. 

4.4 Discussion 

The Phenacoccus peruvianus populations described in this paper 

decreased gradually over the three-year study period. The high parasitism 

rates observed in 2009 and 2010 suggest that P. peruvianus populations 

may be naturally controlled by the parasitoid Acerophagus sp. under 

Mediterranean conditions. During the first year, P. peruvianus populations 

remained at >200 mealybugs per sample until Acerophagus sp. became the 

major parasitoid in September. The following years, Acerophagus sp. 

appeared and its populations remained high from as early as the spring, 

whereas the populations of its host did not increase.  

 Before this study, Acerophagus sp. had never been described in the 

Mediterranean Basin, yet the results obtained in this study show that 

during the study period this species became the most abundant natural 

enemy of P. peruvianus and contributed the most to its control. However, if 

this species has been introduced, its origin and date of introduction remain 

unknown. Genus Acerophagus Smith consists of 46 species, all of which are 

parasitoids of mealybugs (Charles 2011). Although it might be a non-

monophyletic genus (Charles 2011), most of the species are of Nearctic and 

Neotropical origin, and some have been introduced in new areas to control 

invasive mealybugs: Acerophagus papayae Noyes and Schauff from Mexico 

to control P. marginatus in the Caribbean, USA, and Pacific Islands, A. 

coccois Smith from Venezuela and the USA States to control Phenacoccus 

herreni Cox and Williams in Brazil and Oracella acuta (Lobdell) in China, and 
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A. maculipennis (Mercet) from Australia and A. flavidulus (Brèthes) from 

Chile to control Pseudococcus viburni (Signoret) in New Zealand and the 

USA respectively (Bento et al. 1999; Charles et al. 2004; Muniappan et al. 

2006; Daane et al. 2008a; Amarasekare et al. 2009; Clarke et al. 2010). The 

successful biological control of P. peruvianus by Acerophagus sp. during the 

last two years of the study and the common specificity of encyrtid 

parasitoids of mealybugs (Moore 1988; Charles and Allan 2002; Charles 

2011) lead us to hypothesize that Acerophagus sp. could have been 

accidentally imported with the introduction of P. peruvianus or a few years 

later.   

 In our field samples, Acerophagus sp. was recovered from mealybug 

mummies that ranged in length from 0.6 to 3.4 mm. These results and 

those presented in a companion manuscript (Beltrà et al. 2013c) show that 

Acerophagus sp. parasitizes second and third nymphal instars as well as 

adults. Its brood size increased with host size, which is a common 

characteristic of gregarious encyrtids when they parasitize mealybugs and 

this is consistent with the findings reported for other species of this genus, 

such as A. flavidulus, A. coccois and A. papayae (Karamaouna and Copland 

2000a; Amarasekare et al. 2009; Sandanayaka et al. 2009). More 

importantly, we did not recover any Acerophagus sp. males during the 

three-year study period, suggesting that reproduction might occur by way 

of thelytokous parthenogenesis. To our knowledge, strict parthenogenesis 

has never been reported for any species of this genus.  

 Acerophagus sp. showed a negative correlation between host 

density and parasitism rates in Bougainvillea plants. In other words, 

parasitism decreased as the number of mealybugs per plant increased. 

These results are not consistent with the empirical review carried out by 

Walde and Murdoch (1988), where small parasitoids of multivoltine hosts 

frequently present direct host density dependence in large spatial scales, 

such as trees. There are several possible explanations for our results. During 

our field observations, we observed the presence of ants tending mealybug 

colonies. Although Acerophagus sp. has a high egg load averaging 30 eggs 

when it is five days old (Beltrà et al. 2013c), a female usually needs more 

than 30 min to lay one egg (Beltrà et al. in preparation). This long process 
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could be disturbed by ants, if ant attendance is density dependent, causing 

a disruption in parasitism in patches with high mealybug densities 

(González-Hernández et al. 1999; Barzman and Daane 2001). Our findings 

may also be explained as a response to a high rate of catastrophic patch 

failure (Heimpel and Casas 2008). High mealybug infestations entail leaf fall 

(authors’ personal observation), which could endanger the progeny of the 

parasitoid allocated to this patch.  

 The second most abundant parasitoid was the native species 

Leptomastix epona. It is a generalist parasitoid that has also been recovered 

from Phenacoccus solani Ferris, another new invasive species of Nearctic 

origin, in Southern Spain (Calvo and Belda, 2011). Leptomastix epona is a 

koinobiont parasitoid and was recovered from mealybug mummies that 

ranged in size from 1.00 to 2.46 mm, indicating that it might parasitize 

mostly third nymphal instars and adults. Its secondary sex ratio became 

female biased in mealybug mummies >1.8 mm. These findings are 

consistent with those of Karamaouna and Copland (2000a) who found that 

the parasitism rates of L. epona when parasitizing P. viburni were smaller in 

second instars than in higher mealybug stages and that the parasitoid sex 

ratio became female biased in mummies >1.83 mm under laboratory 

conditions.  

 During the first year of the study, Acerophagus sp. displaced L. 

epona as the principal parasitoid of P. peruvianus. This displacement took 

place at all the sampling sites. Interspecific competition commonly occurs 

among parasitoids which share the same host (Bogran et al. 2002). In this 

study, both parasitoid species behaved differently when they used P. 

peruvianus as host, and these differences might explain the displacement 

(Reitz and Trumble 2002). The first is the differential female offspring: 

Acerophagus sp. presents a high brood size of female offspring which leads 

to a rapid growth of its population densities, while L. epona is a solitary 

parasitoid with host size-dependent sexual reproduction. The second cause 

is resource preemption, as Acerophagus sp. exhibits a range in a scale size 

that is wider than L. epona which allows for parasitism of smaller 

mealybugs. Moreover, P. peruvianus encapsulates Acerophagus sp. eggs at 

low rates (<11 %) under laboratory conditions (Beltrà et al. 2013c). This 
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might also be an advantage for Acerophagus sp. if P. peruvianus 

encapsulates L. epona eggs. Although the influence of other important 

mechanisms of parasitoid competition was not the aim of this study, our 

findings seem to be consistent with other research and reflect the 

difficulties of mealybug parasitoid coexistence. In concert with other 

factors, the ability to produce females from smaller hosts has been known 

to bring about a shift in different mealybug parasitoids: Anagyrus lopezi (De 

Santis) displaced Anagyrus diversicornis (Howard) when introduced into 

Africa to control P. manihoti (Neuenschwander 2001); Anagyrus antoninae 

Timberlake was substituted by Neodusmetia sangwani (Subba Rao) as the 

main parasitoid of Antonina graminis in North America (Schuster and Dean 

1976); A. papayae proved to be a better competitor than Anagyrus loecki 

Noyes and Menezes and Pseudleptomastix mexicana Noyes and Schauff in 

the classical biological control of P. marginatus (Amarasekare et al. 2009). 

However, resource preemption has not always led to parasitoid 

displacement. For example, Gyranusoidea tebygi Noyes uses smaller hosts 

than Anagyrus mangicola Noyes, but both parasitoids co-exist as 

parasitoids of Rastrococcus invadens in Africa. This may be due to the fact 

that A. mangicola is a better competitor in cases of multiparasitism 

(Bokonon-Ganta et al. 1996). In the present parasitoid complex, the 

complete exclusion of L. epona might be also discarded as it parasitizes 

other hosts, such as Pseudococcus longispinus and Pseudococcus viburni, 

which are widely spread in Eastern Spain. This also occurs with A. 

diversicornis and A. lopezi, which coexist in their native South America due 

to the presence of Phenacoccus herreni where A. diversicornis refuges and 

persists (Pijls and van Alphen 1996).  
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Abstract 

Phenacoccus peruvianus Granara de Willink (Hemiptera: Pseudococcidae) is 

a new invasive mealybug that causes important damages in ornamental 

plants in urban landscapes and nurseries in Southern Europe. Recently, a 

new species of genus Acerophagus Smith (Hymenoptera: Encyrtidae) has 

been recorded as the main parasitoid of P. peruvianus in Spain, displacing 

the native parasitoid Leptomastix epona Walker (Hymenoptera: 

Encyrtidae). In this work, we have determined some traits of the 

reproductive and feeding strategies of Acerophagus sp.: fecundity, 

immature developmental time, host instar suitability, and preference when 

parasitizing P. peruvianus, and the effect of natural occurring sugar sources 

on adult longevity. Acerophagus sp. egg load reached its maximum when it 

was 5 days old. Second and third nymphal instars and adults were suitable 

for parasitism and immature development (efficient encapsulation was 

low). Immature development lasted between 20 and 22 days. Acerophagus 

sp. developed as a solitary parasitoid in the second instar and as a 

gregarious parasitoid in older instars (2–4 parasitoids per host). All the 

emerged offspring were females. Acerophagus sp. always preferred older 

instars when different host instars were available. Finally, adults lived more 

than 20 days when fed on honey, but they lived fewer than 3 days when fed 

on naturally occurring sugar sources (host honeydew and host plant 

flowers, Bougainvillea glabra). The consequences of these characteristics 

on biological control and parasitoid rearing are discussed. 

 

 

 

 

Keywords: Pseudococcidae, Encyrtidae, Egg load, Survivorship, Host 
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5.1 Introduction 

Mealybugs are important pests of agricultural and ornamental 

plants (McKenzie 1967; Ben-Dov 1994). In recent years, the invasion of new 

mealybug species and the substitution of broad-spectrum chemical 

applications by integrated pest management strategies have led to the 

emergence of mealybugs as key pests (Charles 1993; Hattingh et al. 1998; 

Miller et al. 2002; Daane et al. 2008b; Franco et al. 2009; Pellizzari and 

Germain 2010). Phenacoccus peruvianus Granara de Willink (Hemiptera: 

Pseudococcidae) is a mealybug of Neotropical origin that was first detected 

in the Mediterranean Basin, in Almeria in 1999 (Beltrà et al. 2010). Since 

then, it has extended its range throughout Europe: Portugal, France, Sicily, 

Majorca, Corsica, UK (under greenhouse conditions), and Canary Islands. It 

is a polyphagous species that feeds on several ornamental plants, including 

Bougainvillea spp. (Nyctaginaceae), Hibiscus spp. (Malvaceae), Myoporum 

laetum (Myoporaceae), Lantana camara (Verbenaceae), and Aucuba 

japonica (Aucubaceae) disturbing pest management in urban landscapes 

and ornamental plant nurseries in Southern Europe (Beltrà et al. 2010). 

In a recent 3-year survey in Eastern Spain (2008-2010), a new 

parasitoid species of unknown origin, Acerophagus n. sp. near coccois 

(Hymenoptera: Encyrtidae), was the most abundant and effective parasitoid 

of P. peruvianus (Beltrà et al. 2013b). Acerophagus sp. was recorded at the 

end of the first year, replaced the native parasitoid Leptomastix epona 

Walker (Hymenoptera: Encyrtidae), controlling populations of P. peruvianus 

in the years that followed. Because of its unknown origin and its high 

efficacy, the authors considered it a case of fortuitous control. Acerophagus 

sp. behaved as a gregarious parasitoid and it probably displaced L. epona 

because of its higher female fecundity and resource preemption (Beltrà et 

al. 2013b). 

One of the greatest challenges of biological control practitioners is 

to understand those factors which affect the efficiency of natural enemies, 

such as fecundity, sex ratio, progeny size, and host selection (King 1987; 

Ridley 1988). Moreover, some of these reproductive traits are closely 

related to the feeding resources that parasitoids can use (nectar, 
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honeydew, and host-feeding) and that are available (Jervis et al. 2008). 

Because of the new description of Acerophagus sp. as a biological control 

agent, most of these reproductive and feeding traits remain unknown. 

Thus, in this study we attempt to determine some of these parameters: (i) 

effect of parasitoid age and body size on egg load, (ii) gustatory acceptance 

and effect of diet on longevity, (iii) host instar suitability and selection, and 

(iv) immature developmental time. These results will provide essential 

information to mass rear Acerophagus sp. and improve the efficiency of the 

biological control of P. peruvianus in nurseries and urban landscapes. A high 

capacity of the parasitoid for increasing the population rapidly throughout a 

high brood size and fecundity may make its mass-rearing easy and provide a 

good efficacy in augmentative releases. Moreover, its potential adaptation 

to use natural occurring sugar sources to increase its longevity in the field 

may facilitate the conservation of the parasitoid and its efficacy as 

biological control agent. 

5.2 Material and Methods 

5.2.1 Mealybug and parasitoid rearing 

The culture of P. peruvianus was established in the laboratory of 

the Polytechnic University of Valencia using specimens collected from 

Bougainvillea glabra plants on the university campus. The mealybugs were 

reared on organic sprouted potatoes inside plastic sandwich boxes (16.5 x 

11 x 6 cm) with a 6.5-cm diameter aperture covered by muslin with a mesh 

of 0.2 x 0.2 mm for ventilation. The mealybug colony was maintained in 

darkness in a climatic chamber at 25 ± 2 ˚C and 65 ± 10 % HR. 

The culture of Acerophagus sp. was started using specimens 

emerged from P. peruvianus mummies collected from Bougainvillea glabra 

plants on the university campus. Acerophagus sp. was reared on P. 

peruvianus from the laboratory culture in total darkness under the same 

conditions described above. To obtain newly emerged parasitoids for our 

experiments, mealybug mummies were gently transferred into 10 x 1.5 cm 

glass vials topped with a plastic lid with a central hole covered with muslin 

to allow ventilation and a streak of honey on the inner wall. These vials 
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were maintained in a climatic chamber at 25 ± 2 ˚C, 65 ± 10 % HR and a 

14:10 D/N photoperiod and were checked daily from 8:00 to 10:00 for adult 

emergence. If gregarious parasitoids emerged from the same mummy, they 

were separated and placed in new vials. For our experiments, we used 

Acerophagus sp. unmated females because it reproduces 

parthenogenetically. 

5.2.2 Effect of parasitoid age and body size on egg load 

The egg load of Acerophagus sp. was determined at emergence and 

at days 1, 2, 3, 5, 7, and 11. At emergence, parasitoids were individually 

placed in a 10 x 1.5 cm glass vial as explained above. Parasitoids were then 

honey-fed by supplying a honey streak twice a week in the inner wall of the 

vial, and maintained in a climatic chamber at 25 ± 2 ˚C, 65 ± 10 % HR, and a 

14:10 D/N photoperiod from emergence until they were dissected. Vials 

were placed in a freezer at (-20 ˚C) for 1 h to kill parasitoids. After that, 

specimens were placed in a droplet of fuchsine (1 %) on a microscope glass 

slide (Maple 1954). Using two fine dissection needles, the thorax was 

separated from the abdomen leaving the eggs in the solution droplet (Jervis 

et al. 2007). After the staining was completed (2–3 min), the eggs were 

counted using a compound microscope (40x magnification) and the length 

of the hind tibia was measured to the nearest 0.001 mm using the numeric 

image analysis software NIS-Elements D 64-bit 3.10 (Nikon) under a 

compound microscope (40x magnification). In total, 92 parasitoids were 

dissected with at least nine individuals per age.  

5.2.3 Gustatory acceptance and effect of diet on longevity 

To assess the influence of different diets on Acerophagus sp. 

longevity, adults were introduced into 10 x 1.5 cm clean glass vials at 

emergence, under the same conditions as described above, and fed on four 

diets: (i) honey, (ii) P. peruvianus honeydew, (iii) Bougainvillea glabra 

flowers, and (iv) water alone (control). Water was supplied daily for all 

treatments by spraying the vials through the muslin mesh. Honey was 

supplied by introducing a streak on the inner wall of the vials twice a week 

(Tena and Garcia-Marí 2009). Honeydew was collected over a period of 24 h 
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by placing a 3-cm diameter clip-cage around a colony of mealybugs settled 

on Bougainvillea glabra x buttiana plants in the climatic chambers of the 

laboratory of the Polytechnic University of Valencia. Once in the lab, the 

honeydew was collected using microcapillaries and transferred to the inner 

wall of the vials. Freshly collected honeydew was supplied daily to avoid 

crystallization (Hogervorst et al. 2007). Bougainvillea glabra flowers were 

taken from untreated plants from the university greenhouses and replaced 

daily to avoid wilting. Flowers were directly introduced inside the vials. 

After supplying the food for the first day, we observed if parasitoids were 

able to feed on the different diets for 30 min using a compound 

stereoscope or until the fed. Vials were checked daily from 8:00 to 10:00 to 

determine the number of surviving parasitoids. Accidental deaths (wasps 

stuck in honey) were not taken into account for the analysis. 

5.2.4 Host instar suitability and selection 

The suitability and preference of the parasitoid for the different 

host instars were evaluated under choice and no-choice tests. Experimental 

arenas consisted of a 5.3-cm diameter Petri dish with two, 1-cm diameter 

holes covered by a muslin mesh to permit ventilation. Inside, a leaf-disk (Ø 

5 cm) of Aucuba japonica was introduced upside down over a layer of 8 g/l 

Bacteriological agar (Karamaouna and Copland 2000a). Mealybugs were 

gently transferred with a small wet camel brush from the mass culture to 

the arenas 24 h before the assays. Mealybug instars were estimated from 

their length: (i) second nymphal instar (0.5–0.9 mm), (ii) third nymphal 

instar (0.9–1.4), (iii) young adult (1.4–2 mm), and (iv) preovipositing adult 

(more than 2 mm) (Beltrà et al. 2013a). Arenas were placed inside a climatic 

chamber at 25 ± 1 ˚C and 65 ± 10 % HR and a 14:10 D/N photoperiod during 

the experiments.  

To determine the mealybug instars susceptible to parasitism, we 

conducted a no-choice experiment. One 3–5-day old female parasitoid was 

introduced in an arena with 15 mealybugs of the same size during 24 h. 

Then, the female was removed with a manual vacuum device. Ten days 

later, mummified mealybugs were recovered and isolated in small vials 3.0 

x 0.8 cm in diameter covered with a cotton plug. In addition, non-
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parasitized mealybugs were dissected to check for encapsulated eggs and 

the percentage of efficient encapsulation (hosts with all parasitoid eggs 

encapsulated) was calculated. Parasitized mealybugs were checked daily 

until emergence. Then, the sex, brood size (number of parasitoids per 

mealybug), and immature developmental time were recorded. The hind 

tibia length (HTL) of 30 newly emerged parasitoids of each mealybug instar 

was also measured as mentioned above. At least 14 repetitions were 

carried out for each mealybug instar. 

Two-at-a-time choice tests were performed to determine the 

parasitoid preference for each mealybug instar. One 3–5-day-old female 

parasitoid was introduced into one arena with 10 mealybugs (five of each 

instar) for 6 h. The female was then removed and mealybugs were 

separated according to their instar and placed on new disk leaves inside the 

climatic chamber (Amarasekare et al. 2010). Ten days later, we recorded 

the mummified mealybugs and dissected the rest of the specimens to check 

for encapsulated eggs. Encapsulated and successful parasitized mealybugs 

were pooled to calculate parasitism rates. The experiment was carried out 

by pairing all the different instars: second nymphal instar, third nymphal 

instar, young female, pre-oviposition female and was repeated at least 15 

times for each combination. 

5.2.5 Statistical analysis 

The influence of the host instar on the number of parasitized 

mealybugs, parasitoid brood size, developmental time, encapsulation, and 

adult parasitoid size was compared by a one-way ANOVA. Data were 

normalized by logarithmic transformation when required. The influence of 

parasitoid age and body size (HTL) on the number of mature eggs (egg load) 

was evaluated using generalized linear models. Akaike’s Information 

Criterion was used to select a log-linear analysis over a standard analysis 

(Akaike 1974). After that, a stepwise backward elimination was performed 

to find the minimum adequate model (Hardy and Field 1998). The effect of 

the feeding treatments on the longevity of adult parasitoids was 

represented by Kaplan–Meier survivorship curves and analyzed by a log-

rank test. The preference of the parasitoid for the different host instars was 
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analyzed by a t test. All the analyses were carried out by means of 

STATGRAPHICS Centurion 16.1.11 (Statpoint Technologies 2009) software, 

except the egg load analyses which were performed by means of statistical 

software R (http://www.R-project.org). 

5.3 Results 

5.3.1 Effect of parasitoid age and body size on egg load 

Acerophagus sp. egg load was significantly influenced by body size 

(HTL) and parasitoid age, and the minimum adequate model [Egg load = exp 

(7.06363 + 0.222949 * age - 0.0662735 * HTL - 0.0163974 * age2 + 

0.000241833 * HTL2)] explained 55.42 % of the total deviance (n = 92; P < 

0.001) (Fig. 1). Females averaged 12.17 ± 1.32 mature eggs at emergence 

(0–24 h-old) and their egg load increased until the fifth day, when they 

contained 29.50 ± 1.66 mature eggs. After the fifth day, the number of eggs 

per female started to decrease. 

Figure 1. Effect of parasitoid age (days) and size (hind tibia length [μm]) on the egg load (mature eggs) 
of Acerophagus sp. [Egg load = exp (7.06363 + 0.222949 * age – 0.0662735 * HTL – 0.0163974 * age^2 
+ 0.000241833 * HTL^2)]. The model explained 55.42% of the total deviance. 

http://www.r-project.org/
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5.3.2 Gustatory acceptance and effect of diet on longevity 

All Acerophagus sp. parasitoids fed on honey and honeydew during 

our direct observations. However, none of the 20 parasitoids observed 

were able to feed on Bougainvillea nectar. The small size of the 

Bougainvillea flower impeded adult wasps from reaching the nectar.  

Diet in form of water, honeydew, or honey significantly influenced 

the life span of Acerophagus sp. (Global Log-rank test: χ2 = 137.32; df = 2; P 

< 0.001) (Fig. 2). Parasitoids lived longer when they fed on honey (21.85 ± 

0.91 days; n = 55) than when fed on honeydew (2.51 ± 0.13; n = 49) (Log-

rank test: χ2 = 119.84; df = 1; P < 0.001). Parasitoid longevity was also 

slightly higher when they fed on honeydew than on water (1.71 ± 0.12; n = 

14) (Log-rank test: χ2 = 10.42; df = 1; P = 0.001). 

Fig. 2 Survivorship curves for Acerophagus sp. subjected to four diet treatments: honey, P. peruvianus 

honeydew when it fed on B. glabra x buttiana, and control (water) (Global Log-rank test: χ2 = 137.32; 

df = 2; P < 0.001). 
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5.3.3 Host instar suitability and selection 

All the host instars offered in the non-choice experiments were 

parasitized by Acerophagus sp. The number of parasitized mealybugs was 

significantly higher on the third instar, young adults, and preovipositing 

adults (9.29 ± 0.41 parasitized mealybugs), than on the second instar (3.50 

± 0.80) (ANOVA: F = 18.14; df = 3, 54; P < 0.001) (Table 1). 

Table 1. Effect of host instar on parasitism, efficient encapsulation, brood size, and immature 
developmental time (number of replicates, mean ± SE) of Acerophagus sp. when parasitizing P. 
peruvianus. 

Host instar Parasitized hosts 
Efficient 

encapsulation (%)* Brood size 
Immature 

developmental time 
(days) 

N2 (0.5-0.9) 14 3.50 ± 0.80b 14 0.65 ± 3.26 43 1.09 ± 0.32c 33 21.85 ± 0.34a 
N3 (0.9-1.4) 14 9.86 ± 0.80a 14 8.68 ± 2.89a 132 2.29 ± 0.18b 113 20.29 ± 0.18b 
H1 (1.4-2) 15 8.60 ± 0.77a 15 14.31 ± 2.79a 100 4.09 ± 0.21a 100 19.59 ± 0.19c 
H2 (> 2) 15 9.47 ± 0.77a 15 9.14 ± 2.79a 104 3.89 ± 0.20a 99 19.41 ± 0.19c 

Different letters indicate significant differences between columns (one way ANOVA: P < 0.05) 
N2 2nd nymphal instar; N3 3rd nymphal instar; H1 young adult; H2 preovipositing adult 
* Second nymphal instar was excluded from the analysis because there was just one case of encapsulation 

Overall, only 41 mealybugs (out of 458 parasitized mealybugs) 

successfully encapsulated all the eggs laid by Acerophagus sp. Only one out 

of the 49 parasitized second instars encapsulated the eggs. Among the 

other instars, the percentage of efficient encapsulation was similar (third 

instar, young adults, and preovipositing adults) and averaged 10.76 ± 0.31 

% (ANOVA: F = 1.00; df = 2, 41; P = 0.38). Acerophagus sp. needed 19.98 ± 

0.11 days to complete its immature development at 25°C. The 

developmental period differed among instars (ANOVA: F = 15.57; df = 3, 

341; P < 0.001). It was slightly shorter in older hosts (Table 1). There were 

no significant differences among the sizes of the parasitoids that emerged 

from the different mealybug instars (ANOVA: F = 2.16; df = 3, 117; P = 

0.096) (HTL averaged 163.42 ± 2.93 µm).  

Acerophagus sp. behaved as a facultative gregarious parasitoid. 

Brood size was significantly influenced by scale instar (ANOVA: F = 45.92; df 

= 3, 375; P < 0.001) (Table 1). Acerophagus sp. behaved mainly as a solitary 
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parasitoid when it parasitized the second and third instars whereas more 

than one adult emerged from adult mealybugs. Brood size was nearly four 

parasitoids, reaching a maximum of 11 parasitoids per host. 

Acerophagus sp. preferred the oldest instar in all the pair-way 

experiments (Table 2). The second instar was less parasitized when paired 

with third instar (t = -5.53; df = 28; P < 0.001), young females (t = -5.28; df = 

28; P < 0.001), and pre-oviposition females (t = -7.59; df = 28; P < 0.001). 

Smaller, but significant, differences were found between the third instar 

and young females (t = -2.13; df = 28; P = 0.049) or between young females 

and gravid females (t = -2.47; df = 28; P = 0.026). 

Table 2. Mean number of hosts (x ± SE) parasitized by Acerophagus sp. when combining different host 
instars under choice experiment. 

Host instar combination Mean parasitized hosts  T statistics 
Instar 1 Instar 2 Instar 1 Instar 2 T df P 

N2 N3 0.87 ± 0.21 2.47 ± 0.23 -5.53 28 <0.0001 
N2 H1 0.53 ± 0.19 2.33 ± 0.32 -5.28 28 <0.0001 
N2 H2 0.88 ± 0.28 3.59 ± 0.27 -7.95 32 <0.0001 
N3 H1 1.23 ± 0.22 2.00 ± 0.26 -2.13 28 0.049 
N3 H2 1.26 ± 0.25 3.73 ± 0.30 -5.67 28 <0.0001 
H1 H2 1.62 ± 0.27 2.75 ± 0.37 -2.47 28 0.026 

N2 2nd nymphal instar; N3 3rd nymphal instar; H1 young adult; H2 preovipositing adult 

5.4 Discussion 

The results of this study show the potential of Acerophagus sp. as 

biological control agent of P. peruvianus. It parasitized a wide range of host 

instars and suffered low encapsulation rates in all the parasitized instars. 

These results corroborate the field observations by Beltrà et al. (2013b) and 

support the suitability of Acerophagus sp. as an effective biological control 

agent of P. peruvianus. Moreover, our research defines other biologic traits 

of this parasitoid such as ovigeny, immature developmental time, suitability 

of different natural occurring diets on adult longevity, and instar 

preference. The better understanding of these parasitoid traits will be 

useful to design an adequate biological control program against P. 

peruvianus (i.e., rearing protocols for its main parasitoid and conservation 

biological control). 
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Acerophagus sp. was able to parasitize all the mealybug instars 

assayed in this study. However, the number of parasitized mealybugs was 

lower in the second instar and it always preferred the oldest hosts, when 

given a choice among different mealybug instars. Even so, the suitability of 

second nymphal instars has important consequences on biological control, 

revealing host preemption as one of the possible mechanisms that can 

explain the displacement of the native L. epona in the field by this 

parasitoid. In fact, L. epona parasitizes third nymphal instars and adults of 

P. peruvianus and other mealybug species such as Phenacoccus solani 

(Green) and P. viburni (Karamaouna and Copland 2000a; Calvo and Belda 

2011; Beltrà et al. 2013b). The wide range of host instars of Acerophagus 

sp. also simplifies its use in augmentative biological control because the 

parasitoid could be released independently of the scale instars present in 

the field. Our results differ from those obtained in no-choice experiments 

with other parasitoids of the same genus: the gregarious parasitoid 

Acerophagus flavidulus (Brèthes) uniformly parasitized all the instars of 

Pseudococcus viburni (Signoret) from the second instar to adult females 

(Karamaouna and Copland 2000a); in contrast, the solitary parasitoid 

Acerophagus papayae Noyes and Schauff showed higher parasitism rates in 

the smaller instars of Paracoccus marginatus Williams and Granara de 

Willink (Amarasekare et al. 2010). Our choice-test results agree with those 

of Sandanayaka et al. (2009) and Karamaouna and Copland (2000a) which 

showed that the gregarious parasitoids A. maculipennis and A. flavidulus 

preferred the oldest instars of P. viburni. Again, these results contrast the 

studies of Amarasekare et al. (2010) which indicate that the solitary 

parasitoid A. papayae preferred the youngest mealybug instars of P. 

marginatus. 

Two of the most important reproductive traits of Acerophagus sp. 

are its high degree of gregariousness and its complete female brood. The 

brood size increased as the host aged and an average of four parasitoids 

developed in the adult mealybug stage. Moreover, some of the brood sizes 

were found to be higher, up to 11 parasitoids, and quite similar to the 

maximum found in the field, namely, 12 parasitoids (Beltrà et al. 2013b). 

Most species of genus Acerophagus, such as A. maculipennis, Acerophagus 

coccois Smith, A. flavidulus, and Acerophagus angelicus Howard, are also 
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facultatively gregarious and their brood size increase with host size (Maple 

1954; Van Driesche et al. 1987; Karamaouna and Copland 2000a; 

Sandanayaka et al. 2009). No male parasitoid was recovered in the study, 

showing that Acerophagus sp. reproduces by thelytokous parthenogenesis. 

However, to our knowledge, thelytokous parthenogenesis has not been 

observed in other species of this genus, which show arrhenotokous 

parthenogenesis (Van Driesche et al. 1987; Karamaouna and Copland 

2000a; Sandanayaka et al. 2009; Amarasekare et al. 2010). These attributes 

make Acerophagus sp. a better competitor than L. epona, which is a solitary 

parasitoid with a male-biased offspring when it parasitizes small hosts 

(Karamaouna and Copland 2000a; Beltrà et al. 2013b). Moreover, these 

results show that immature adult instar of P. peruvianus is the most 

suitable for mass-rearing Acerophagus sp. because of the higher brood size, 

low encapsulation rates, and faster immature development without 

reducing the size of the adult females that emerge from this instar. 

Encapsulation is an important defense mechanism utilized by 

mealybugs against parasitoids (Bess 1939; Blumberg 1997; Blumberg and 

Van Driesche 2001). However, in our study, we found small rates of efficient 

encapsulation (i.e. hosts with all parasitoid eggs encapsulated) and, 

consequently, the biological control of P. peruvianus by Acerophagus sp. 

does not seem to be compromised by encapsulation. Among instars, the 

second instar was not able to avoid parasitism by encapsulating eggs and 

only 10 % of the older instars efficiently encapsulated eggs. This increase in 

encapsulation as age increases is common in mealybugs (Sagarra et al. 

2000a; Karamaouna and Copland 2009) and soft scales (Hemiptera: 

Coccidae) (Blumberg 1997; Kapranas et al. 2012). For this reason, some 

parasitoid species tend to parasitize younger instars (Blumberg 1997; 

Sagarra et al. 2000a; Jervis et al. 2007). 

The increase of the egg load in host-deprived females indicates that 

Acerophagus sp. is a synovigenic parasitoid (sensu Jervis et al. 2001). The 

parasitoid matured eggs after emergence and its egg load peaked on the 

fifth day, averaging 30 mature eggs. Beyond the fifth day, it started to 

resorb eggs (Jervis et al. 2007). Therefore, if Acerophagus sp. is 

augmentative released in biological control programs, females should be 
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ideally less than 5-days old. The number of mature eggs observed in this 

parasitoid is higher than that obtained in similar studies for parasitoids of 

the same genus. The egg load of A. maculipennis became constant 7 days 

after emergence, averaging 23 mature eggs (Sandanayaka et al. 2009), 

while A. coccois just contained 10 mature eggs 3 days after emergence 

(Dorn et al. 2001). In addition, this is the first time, to our knowledge, that 

egg resorption is reported for a parasitoid of genus Acerophagus.  

Among synovigenic parasitoids, adult feeding is important for 

maintenance and reproduction (Olson et al. 2005; Jervis et al. 2008). 

Because Acerophagus sp. is a non-host-feeding species (Beltrà et al. in 

prep), the main food that is available for this parasitoid in the field is plant 

nectar and honeydew excreted by hemipterans, which are rich in 

carbohydrates. In our study, Acerophagus sp. increased its longevity when it 

fed on honey, living up to 22 days. However, the parasitoid died within 2 

days when it fed on the sources which are commonly present in the field: 

honeydew from its main host and nectar from the host plant, Bougainvillea, 

which is located exclusively inside the flowers. In a similar study carried out 

by Sandanayaka et al. (2009), A. maculipennis had a similar lifespan when it 

fed on honey (nearly 16 days for females) or water (less than 4 days), but 

when it was fed on honeydew from P. viburni settled on potatoes its 

lifespan was found to be nearly 15 days. A possible explanation for the poor 

quality of P. peruvianus honeydew when it feeds on Bougainvillea glabra x 

buttiana could be the presence of secondary toxic compounds in this plant 

(Gupta et al. 2009). Although bougainvillea nectar could be expected to be 

a good food resource for Acerophagus sp., our observations revealed that 

the parasitoid was not able to enter the flowers due to their small size. 

Therefore, only the honeydew of other hemipterans such as aphids and soft 

scales, if they are suitable, may be available for Acerophagus sp. in 

bougainvillea plants. Thus, biological control of P. peruvianus could be 

enhanced by increasing the diversity of flowering plants in urban 

landscapes (Landis et al. 2000; Raupp et al. 2010). Conversely, sugar 

solutions could be provided in bougainvillea ornamental nurseries where 

plant diversity cannot be increased. 
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The results presented herein and in the previous paper by this 

group (Beltrà et al. 2013b) show that Acerophagus sp. is an efficient 

biological control agent for the invasive pest P. peruvianus. The 

conservation of this parasitoid in urban landscapes may act as a good 

control of P. peruvianus and its populations may be enhanced by increasing 

floral biodiversity or the availability of supplemental food. Moreover, its 

augmentative release may be especially interesting in bougainvillea 

nurseries or in urban landscapes where the parasitoid is not yet established 

and mealybug populations reach high levels during spring (Beltrà et al. 

2013b). The introduction of the parasitoid into other European regions, 

where the mealybug constitutes a problem, should not be ruled out. 

Acerophagus sp. can be easily reared in P. peruvianus due to its wide host 

instar range and female-biased broods. Also, the adult instar is the most 

adequate instar for mass-rearing Acerophagus sp. Further research on this 

parasitoid should include its interaction with ants in the field and its 

capacity to parasitize other mealybug species. 
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General discussion 

The problems associated with mealybugs in Spain have increased as 

a result of the recent legislative limits on pesticide use and the introduction 

of new invasive species. Several mealybug species are currently causing 

serious losses in important crops such as Planococcus citri and 

Delottococcus aberiae on citrus; Pseudococcus viburni on apples; P. citri and 

Planococcus ficus on vineyards; Phenacoccus solani, Phenacoccus 

madeirensis and P. citri on greenhouses crops; P. madeirensis, P. peruvianus 

and P. citri on ornamental plants; and Dysmicoccus grassii on banana trees 

(Beltrà and Soto 2012). These species are often misidentified leading to 

confusion and reducing the efficiency of pest control. In this work we 

carried out a multi-criterion identification of most of these species, 

combining morphological and molecular taxonomy. The DNA sequences 

obtained will facilitate routine identification by barcoding by any user with 

access to DNA sequencing. These sequences will also enable the further 

development of specific PCR kits and will make it possible to use molecular 

identification tools to track invasive species and detect quarantine pests 

during import and export controls. Constant reduction of sequencing costs 

and the emergence of Next-Generation Sequencing technologies is opening 

a new scenario for molecular biology, where we expect that DNA barcoding 

will play a major role in inscect taxonomy (Schuster 2008; Metzker 2010).  

Our molecular studies in five different loci provide important 

insights into invasion biology. This work showed high genetic intraspecific 

variability in native and established mealybug populations, such as P. citri, 

Planococcus vovae and Pseudococcus longispinus, as compared with more 

recently-introduced species like P. madeirensis and P. peruvianus. The latter 

species is a relative newcomer to Europe and has rapidly spread around the 

Mediterranean countries, probably through the trade of ornamental plants, 

which is the main pathway of dispersion of scale insects in Europe (Pellizzari 

and Germain 2010). Its genetic homogeneity suggests that the different 

Spanish and French populations studied originated from the same 

geographical region or have spread from a single population, possibly from 

Almeria, where it was first observed. 
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Phenacoccus peruvianus’ biology and behavior were first studied in 

Eastern Spain. Mealybug populations increased in early spring, reaching a 

peak in summer, and subsequently fell to their lowest levels during autumn 

and winter. All the mealybug instars overlapped during the whole year. This 

biology is similar to that of other mealybug species present in 

Mediterranean countries, such as P. citri, P. viburni and P. madeirensis 

(Panis 1986; Longo et al. 1995; Martinez-Ferrer et al. 2003). The presence 

of several overlapping generations limits chemical control in urban 

landscapes, due to the continuous presence of adult instars, which are 

more resistant to soft contact insecticides like mineral oils. However, this 

phenology may favor biological control agents that have instars available 

that are susceptible to parasitism or predation all the year round.  

In order to improve the decision making process in the 

management of P. peruvianus, we studied its spatial distribution and 

developed a sampling plan in bougainvillea plants. The mealybug preferred 

bracts over leaves and twigs and showed a high clumped distribution typical 

of scale insects (Nestel et al. 1995). In view of our results, we propose a 

feasible binomial sampling of 200 leaves for urban pest management 

purposes, which can be done in 10-15 minutes. We also recommend a 

management threshold of five mealybugs per leaf, following aesthetic 

criteria. We expect that the simplicity of this methodology will facilitate its 

routine application in urban landscapes. We also provide an enumerative 

sampling method for cases in which monitoring is carried out for other 

purposes, such as ornamental nursery management or additional biological 

studies. 

The action of natural enemies surprisingly resulted in a gradual 

reduction of mealybug populations between 2008 and 2010. Several 

parasitoids and predators were recorded feeding on P. peruvianus. Of 

these, a new parasitoid species, Acerophagus n. sp. near coccois, displaced 

the native parasitoid Leptomastix epona and provided a successful 

biological control of this pest. Fortuitous introductions of mealybug 

biological control agents resulting in pest control have also been recorded 

in other mealybug species in Spain and other countries (Nechols 2003; Jacas 

et al. 2006; Muniappan et al. 2006). Although the origin of this parasitoid 



6-. GENERAL DISCUSSION 

92 
 

remains unknown, the specific interaction between encyrtids and 

mealybugs and the American origin of most Acerophagus species lead us to 

consider that the parasitoid might be of Neotropical origin and could have 

been introduced together with the pest or in successive introductions 

(Charles 2010).  

Several insect displacement mechanisms have been detailed by 

Reitz and Trumble (2002): i) resource acquisition, ii) differential female 

fecundity, iii) searching ability, iv) resource preemption, v) resource 

degradation, vi) agnostic interference competition, vii) reproductive 

interference, and viii) intraguild predation. In the present study, the most 

likely causes of parasitoid displacement were differential fecundity and 

resource preemption. Acerophagus sp. is a gregarious and parthenogenetic 

species and therefore obtains higher female broods from the same 

resources than L. epona, which is a solitary parasitoid with sexual 

reproduction. Moreover, Acerophagus sp. can parasitize P. peruvianus from 

second nymphal instars anticipating its competence. On the other hand, L. 

epona may be a better competitor by resource degradation, because it is 

able to host-feed on small mealybug instars (Karamaouna and Copland 

2000b). Further studies should be carried out to determine the effect of 

other competitive mechanisms, such as searching ability, resource 

acquisition when ants are present or interference by larval competition. 

Besides the above mentioned characteristics, other biological traits 

studied, such as the high parasitoid egg-load and the small percentage of 

encapsulation when Acerophagus sp. parasitizes P. peruvianus, make this 

parasitoid a very effective biological control agent. Moreover, its 

parthenogenesis and gregariousness facilitate its mass rearing. The success 

of Acerophagus sp. raises the question whether this parasitoid can be used 

in other geographic areas and in a wider range of hosts. Acerophagus sp. 

has also been detected in other Mediterranean regions such as Catalonia 

and French Riviera (personal observations), and might be introduced in 

other European areas where biological control is not succesful. The 

suitability of other mealybug species for this parasitoid should be studied to 

determine whether it can also be used against other invasive species, such 

as Phenacoccus solani or P. madeirensis. 
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The results obtained in this study provide useful information for the 

management of P. peruvianus in urban landscapes. The biological control of 

this pest is successful when Acerophagus sp. is present. The conservation of 

this parasitoid and other natural enemies is therefore a key issue in 

mealybug management. The efficiency of Acerophagus sp. in urban 

landscapes could be improved by limiting the use of broad-spectrum 

chemicals, increasing plant biodiversity or applying sugars to ensure 

parasitoid nourishment, and controlling ants, if present. This last point is 

particularly relevant, as recent studies show that Acerophagus sp. 

oviposition is frequently disrupted by tending ants (Beltrà et al. unpublished 

data). Even so, if high mealybug infestations are present in urban 

landscapes or plant nurseries, inundation biological control could be 

considered. As noted above, Acerophagus sp. can be easily reared and 

could prove attractive to biocontrol companies. However, this parasitoid 

species is not commercially available at the present time and L. epona could 

be considered as a secondary option in inundation biological control. For 

those cases in which these strategies are unfeasible, mealybug 

management can also be carried out through chemical control. However, 

the use of insecticides in urban landscapes must be limited to active 

ingredients with low risk to human health and natural enemies such as 

soaps and mineral oils. In these cases, monitoring should be carried out 

during spring, before population outbreaks.  
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Molecular and morphological characterisation of Pseudococcidae 

surveyed on crops and ornamental plants in Spain 

 Ten different mealybug species were identified and DNA sequenced at 

five loci, providing the first molecular data for Delottococcus aberiae, 

Phenacoccus peruvianus and Planococcus vovae. 

 Genera Phenacoccus and Planococcus were found monophyletic, while 

both Dysmicoccus and Pseudococcus were found paraphyletic. 

 Mealybug native species or those that have been present for over a 

century in the Mediterranean Basin showed substantial genetic 

intraspecific divergences, while the newly introduced species P. 

peruvianus and P. madeirensis showed no divergences. 

Seasonal phenology, spatial distribution and sampling plan for the 

invasive mealybug Phenacoccus peruvianus (Hemiptera: Pseudococcidae) 

 Phenacoccus peruvianus populations were high in spring and summer 

and decreased to almost undetectable levels in autumn and winter. 

 The mealybug showed preference for bougainvillea bracts and there 

were no significant migrations between plant organs. 

 We recommend a binomial sampling of 200 leaves and an action 

threshold of 55% of infested leaves for IPM purposes in urban 

landscapes. 

Fortuitous biological control of the invasive mealybug Phenacoccus 

peruvianus in Southern Europe. 

 Within the natural enemy complex of P. peruvianus we identified the 

following parasitoids: Acerophagus n. sp. near coccois, Leptomastix 

epona, Anagyrus pseudococci, Pachyneuron sp., Chartocerus sp. and 

Prochiloneurus bolivari; and predators: Orius laevigatus, Cryptolaemus 

montrouzieri, Propylea quatordecimpunctata, Oenopia lyncea, 

Scymnus spp., Leucopis sp., and Crysoperla carnea. 

 The high parasitism rates observed in 2009 and 2010 suggest that P. 

peruvianus populations may be naturally controlled by the parasitoid 

Acerophagus sp. under Mediterranean conditions. 
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 Acerophagus sp. displaced the native parasitoid L. epona during the 

three years of the study. Differential female offspring and resource 

preemption are exposed as the main causes for this displacement. 

Reproductive strategies and food sources used by Acerophagus n. sp. near 

coccois, a new successful parasitoid of the invasive mealybug Phenacoccus 

peruvianus 

 Acerophagus sp. egg load reached its maximum when it was 5 days old 

with nearly 30 mature eggs. 

 Second and third nymphal instars and adults were suitable for 

parasitism. 

 The parasitoid always preferred older instars when different host 

instars were available. 

 Efficient encapsulation was low and should not compromise biological 

control. 

 Acerophagus sp. developed as a solitary parasitoid in the second instar 

and as a gregarious parasitoid in older instars (2–4 parasitoids per 

host).  

 The parasitoid reproduced parthenogenetically with a complete female 

offspring ratio.  

 Immature development lasted from 20 to 22 days at 25ºC and 65% HR.  

 Adult parasitoids lived more than 20 days when fed on honey, but 

fewer than 3 days when fed on naturally occurring sugar sources (host 

honeydew and host plant flowers, Bougainvillea glabra). 
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