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Abstract. In this paper, we push forward the idea of machine learning
systems for which the operators can be modified and finetuned for each
problem. This allows us to propose a learning paradigm where users can
write (or adapt) their operators, according to the problem, data repre-
sentation and the way the information should be navigated. To achieve
this goal, data instances, background knowledge, rules, programs and
operators are all written in the same functional language, Erlang. Since
changing operators affect how the search space needs to be explored,
heuristics are learnt as a result of a decision process based on reinforce-
ment learning where each action is defined as a choice of operator and
rule. As a result, the architecture can be seen as a ‘system for writing
machine learning systems’ or to explore new operators.

Keywords: machine learning operators, complex data, heuristics, in-
ductive programming, reinforcement learning, Erlang.

1 Introduction

The number and performance of machine learning techniques dealing with com-
plex, structured data has considerably increased in the past decades. However,
the performance of these systems is usually linked to a transformation of the
feature space (possibly including the outputs as well) to a more convenient, flat,
representation, which typically leads to incomprehensible patterns in terms of
the transformed (hyper-)space. Alternatively, other approaches do stick to the
original problem representation but rely on specialised systems with embedded
operators that are only able to deal with specific types of data.

Despite all these approaches and the vindication of more general frameworks
for data mining [6], there is no general-purpose machine learning system which
can deal with all of these problems preserving the problem representation. There
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are of course several paradigms using, e.g., distances or kernel methods for struc-
tured data [13, 9] which can be applied to virtually any kind of data, provided we
can define similarity functions to compare the individuals. However, this general-
ity comes at the cost of losing the original problem representation and typically
losing the recursive character of many data structures.

Other paradigms, such as inductive programming (ILP [23], IFP [16] or IFLP
[12]), are able to tackle any kind of data thanks to the expressive power of first-
order logic (or term rewriting systems). However, each system has a predefined
set of operators (e.g., lgg [24], inverse entailment [22], splitting conditions in
a decision tree, or others) and an embedded heuristic. Even with the help of
background knowledge it is still virtually impossible to deal with, e.g., an XML
document, if we do not have the appropriate operators to delve into its structure.

In this paper we present and explore a general rule-based learning setting
where operators can be defined and customised for each kind of problem. While
one particular problem may require generalisation operators, another problem
may require operators which add recursive transformations to explore the struc-
ture of the data. A right choice of operators can embed transformations on the
data but can also determine the way in which rules are generated and trans-
formed, so leading to (apparently) different learning systems. Making the user
or the problem adapt its own operators is significantly different to the use of
feature transformations or specific background knowledge. In fact, it is also sig-
nificantly more difficult, since operators can be very complex things and usually
embed the essence of a machine learning system. A very simple operator, such
as lgg, requires several lines of code in almost any programming language, if
not more. Writing and adapting a system to a new operator is not always an
easy task. As a result, having a system which can work with different kinds of
operators at the same time is a challenging proposal beyond the frontiers of the
state of the art in machine learning.

In addition, machine learning operators are tools to explore the hypothesis
space. Consequently, some operators are usually associated to some heuristic
strategies (e.g., generalisation operators and bottom-up strategies). By giving
more freedom to the kind of operators a system can use, we lose the capacity
to analyse and define particular heuristics to tame the search space. This means
that heuristics must be overhauled, as decisions about the operator that must
be used at each particular state of the learning process.

We therefore propose a setting where operators can be written or modified
by the user. Since operators are defined as functions which transform patterns,
we clearly need a language for defining operators which can integrate the repre-
sentation of the examples, patterns and operators. We will argue that functional
programming languages, with reflection and higher-order primitives, are appro-
priate for this, and we will choose a powerful and relatively popular programming
language in this family, Erlang [1]. A not less important reason for using a func-
tional language is that operators can be understood by the users and properly
linked with the data structures used in the examples and background knowledge,
so making the specification of new operators easier. The language also sets the



general representation of examples as equations, patterns as rules and models as
sets of rules.

From here, we devise a flexible architecture which works with populations
of rules and programs, which evolve as in an evolutionary programming setting
or a learning classifier system [14]. Operators are applied to rules and generate
new rules, which are combined with existing or new programs. With appropriate
operators and using some optimality criteria (based on coverage and simplicity)
we will eventually find some good solutions to the learning problem. However,
without heuristics, the number of required iterations gets astronomically high.
This issue is addressed with a reinforcement learning (RL) approach, where the
application of an operator over a rule is seen as a decision problem, for which
learning also takes place, guided by the optimality criteria which feed a rewarding
module. Interestingly, different problems using the same operators can reuse the
heuristics. As a result, the architecture can be seen as a ‘system for writing
machine learning systems’ or to explore new operators.

The paper is organised as follows. Section 2 makes a short account of the
many approaches and ideas which are related to this proposal. Section 3 intro-
duces how operators are expressed and applied. Section 4 describes the RL-based
heuristics used to guide the learning process. Section 5 includes some examples
which illustrate how operators are defined and how solutions are reached. Section
6 closes the paper.

2 Previous work

The system we present in this paper is related to different areas of machine
learning: learning from complex data, reinforcement learning, Learning Clas-
sifiers Systems, evolutionary techniques, meta-learning, etc. In this section we
summarise some of the previous works in these fields somehow related to our
proposal.

Inductive programming [16], inductive logic programming (ILP) [23] and
some of the related areas such as relational data mining [8] are arguably the
oldest attempts to handle complex data. They can be considered general ma-
chine learning systems, because any problem can be represented, preserving its
structure, with the use of the Turing-complete languages underneath: logic, func-
tional or logic-functional. Apart from their expressiveness, the advantage of these
approaches is the capability of capturing complex problems in a comprehensible
way. ILP, for instance, has been found especially appropriate for scientific theory
formation tasks where the data are structured, the model may be complex, and
the comprehensibility of the generated knowledge is essential. Learning systems
using higher-order (see, e.g., [19]) were one of the first approaches to deal with
complex structures, which were usually flattened in ILP. Despite the power of
higher-order functions to explore complex structure, this approach has never
become mainstream.

All these systems are based on the use of different fixed operators. For in-
stance, Plotkin’s lgg [24] operator works well with a specific-to-general search.



The ILP system Progol [22] combines the Inverse Entailment with general-to-
specific search through a refinement graph. The Aleph system [26] is based on
Mode Direct Inverse Entailment (MDIE). In inductive functional logic program-
ming, the FLIP system [12] includes two different operators: inverse narrowing
and a consistent restricted generalisation (CRG) generator. In any case, the set of
operators configures and delimits the performance of each learning system. Also,
rules that are learned on a first stage can be reused as background knowledge
for subsequent stages (incremental learning). Hybrid approaches that combine
Genetic Algorithms and ILP have also been introduced as in [29].

As an evolution of ILP into the fields of (statistical) (multi-)relational learn-
ing or related approaches, many systems have been developed to work with rich
data representations. In [4], for example, we can find an extensive description of
the current and emerging trends in the so-called ‘structured machine learning’
where the authors propose to go beyond supervised learning and inference, and
consider decision-theoretic planning and reinforcement learning in relational and
first-order settings.

Structured Prediction (SP) is one example of learning from complex data
context, where not only the input is complex but also the output. This has led
to new and powerful techniques, such as Conditional Random Fields (CRFs) [18],
which use a log-linear probability function to model the conditional probability
of an output y given an input x where Markov assumptions are used in order to
make inference tractable. Other well-known Global Model is SVM for Interde-
pendent and Structured Output spaces (SVM-ISO, also known as SV M struct)
as a SP evolution of [13] (Kernels) or [9] (distances). [30]. Also, hierarchical clas-
sification can be viewed as a case of SP where taxonomies and hierarchies are
associated with the output [17].

Some of these previous approaches use special functions (probabilistic dis-
tributions, metrics or kernels) explicitly defined on the individual space. These
methods either lack a model (they are instance-based methods) or the model
is defined in terms of the transformed space. A recent proposal which has tried
to re-integrate the distance-based approach with the pattern-based approach is
[11], (leading, e.g., to Newton trees [21]).

There have been several approaches applying planning and reinforcement
learning to structured machine learning [28]. While the term Relational Rein-
forcement Learning (RRL) [7,28] seems to come to mind, it offers state-space
representation that is much richer than that used in classical (or propositional)
methods, but its goal is not structured data. Other related approaches are, for
instance, incremental models [3,20] which try to solve the combinatorial nature
of the very large input/output structured spaces since the structured output is
built incrementally. These methods can be applied to a wide variety of techniques
such as parsing, machine translation, sequence labelling and tree mapping.

Finally, there is an approach, somewhat in between genetic algorithms and
reinforcement learning, known as Learning Classifier Systems (LCSs) [15]. LCSs
employ two biological metaphors: evolution and learning which are respectively
embodied by the genetic algorithm, and a reinforcement learning-like mechanism



appropriate for the given problem. Both mechanisms rely on what is referred to
as the environment of the system (the source of input data). The architecture
of our system will resemble in some ways the LCS approach.

Learning to learn is one of the (required) features of our setting and is related
to the area of meta-learning [2]. Learning at the metalevel is concerned with ac-
cumulating experience on the performance of multiple applications of a learning
system. A more integrated approach resembling meta-learning and incremental
learning is [25], where the authors present the Optimal Ordered Problem Solver
(OOPS), an optimally fast way of incrementally solving each task in the sequence
by reusing successful code from previous tasks.

3 Configuring rule operators

After this review of related work, we still perceive a lack of flexibility in the
way in which different problems can be handled, especially when structured
learning is required. As we have mentioned in Section 1, in this paper we set the
goal of constructing a system which can be configured with different (possibly
user-defined) operators, and where the heuristics are also learned from previous
applications of operators for the same or similar problems. As a long-term goal,
this can be roughly seen as a general system for designing customised systems
for applications with complex data.

In order to achieve the above-mentioned goals, we need to use configurable
operators, instead of hard-wired operators. Changing hard-wired operators re-
quires the modification of dozens of lines of code and usually entails a re-writing
(or complete overhauling) of heuristics. Instead, in our approach the heuristics
will be substituted by a reinforcement learning approach, which will determine
which pair of operator and rule will be chosen at each state of the system.

Additionally, we will represent operators in the same language already used
for examples, models and background knowledge. The advantages of using the
same representation language (in this case, rules expressed as unconditional /
conditional equations) has been previously shown by the fields of ILP, IFP and
IFLP (except for operators). Hence, we look for a flexible language, with powerful
features for defining operators and able to represent all other elements (theories
and examples) in an understandable way. For this reason we use Erlang, a func-
tional language with reflection mechanisms which allows us to interact easily
with the meta-level representation of how rules and programs are transformed
by operators.

3.1 Notation

Let X' be a set of function symbols together with their arity and X a countably
set of variables, then T (X, X') denotes the set of terms built from X and X. The
set of variables occurring in a term t is denoted Var(t). A term ¢ is a ground
term if Var(t) = @.



An equation is an expression of the form [ = r where [ and r are terms. [
is called the left hand side (lhs) of the equation and r is the right hand side
(rhs). R denotes the space of all (conditional) functional rules p of the way
l [when G] — T,r where [ and r are the lhs and the rhs of p (respectively),
G ={g1,92,...9m | m > 0}) is a set of conditions or Boolean expressions called
guards, and T = by, ..., b,, the tail of p, is a sequence of equations. If G = &,
then p is said to be an unconditional rule. Let P = 27 be the space of all possible
functional programs formed by sets of rules p € R. Given a program p € P, we
say that term ¢ reduces to term s with respect to p, t —, s, if there exists a
rule | [when G] — T,r € p such that a subterm of ¢ at occurrence u matches
[ with substitution 6, all conditions h,;f holds, for each equation b;, = b; € T,
b;,0 and b;, 0 have the same normal form (that is, b; 0 —7 b, and b; 0 —7 b and
b can not be further reduced) and s is obtained by replacing in ¢ the subterm at
occurrence u by 7.

An example e is a rule without condition nor tail, that is e is of the form
Il — r, being r in normal form and both [ and r are ground. We say that an
example | — r is covered by a program p (denoted by p = {I — r}) if | and
r have the same normal form with respect to p. A functional program p € P
is a solution of a learning problem defined by a set of positive examples ET, a
(possibly empty) set of negative examples £~ and a background theory B if it
covers all positive examples, BUp = E™ (posterior sufficiency or completeness),
and does not cover any negative example, BUp & E~ (posterior satisfiability
or consistency). Our system has the aim of obtaining complete solutions, but
their consistency is not a mandatory property, so approximate solutions are
possible. The function Covt : 2® — N calculates the positive coverage of a
program p € 2% and it is defined as Cov™(p) = Card({e € ET : BUp = e}),
where Card(S) denotes the cardinality of the set S. Additionally, the function
Cov™ : 2R — N calculates the negative coverage of a program p € 2% and it is
defined as Cov™(p) = Card({e € E~ : BUp [= e}).

As we can see in Figure 1, our system works with two sets: a set of rules
R C R and a set of programs P C P, where each program p € P is composed by
rules belonging to R. Initially, the set of rules R is populated with the positive
evidence Et and the set of programs P is populated with as many unitary
programs as there are rules in R.

3.2 Operators

The definition of customised operators is one of the key concepts of our proposal.
The idea is to transform the set of rules R using a set of operators O (provided
by the user or existing in the system). An operator o € O is then a function
0: 2% — 2% where O € O will be the set of operators defined by the user.

An operator can be seen as a piece of code (as complex as the user may wants)
which performs modifications over the lhs or rhs of a rule and which is written
in the same functional language as the system (Erlang) to take advantage of
its high-order and reflection capabilities. The main idea is that, when the user
wants to deal with a new problem, he/she can define his/her own set of operators,



especially suited for the data structures of the problem. This feature allows our
system to adapt to the problem at hand.

Depending on the operators the user provides to the system, it could well
behave as a decision tree or, more precisely, as a coverage-based rule learning
system (if we implement operators that apply some conditions on the rules), or as
a bottom-up concept covering algorithm (if we provide generalisation operators).
That is, the system may behave very differently by changing the operators.

Let us see an example. Given a rule F'Name(Arguments) — RHS, where
Arguments is a list, imagine that we want to define an operator for obtaining
the head of Arguments and return it as the rhs of a new rule. This operator
could be defined as:
takeHead(F'Name(Arguments) — RHS) [when Arguments is a List]

= (FName(Arguments) — head(Arguments)).
where = represents the rule transformation relation defined by the operators.
The codification in Erlang could be as follows:
Operator_takeHead (Rule) ->
€D) {function,_,FName,_,{clause,_,Arguments,Guards,RHS}} = Rule,
(2) {cons,_,L1,L2} = Arguments,
(3) {function,_,FName,_,{clause,_,Arguments,Guards,L1}}.
where identifiers with a capital letter followed by any combination of uppercase
and lowercase letters and underscores are Erlang variables, and other static (or
constants) literals are Erlang atoms. In line 1, the Rule is parsed and transformed
into a valid Erlang abstract syntax tree (AST) in order to easily access to its
components: the Erlang forms Fllame, Arguments, Guards and RHS. Next, the
operator decomposes Arguments into the Erlang meta-expression for lists (line
2), and finally, line 3 returns the new AST constructed by replacing the RHS
part by L1 in the AST obtained in line 1. For simplicity, we have omitted some
further code for checking the arity and type of Arguments.

Our system also has a special kind of operators, called combiners, that only
apply to programs. The Program Generator module (Figure 1) applies a com-
biner to the last rule p’ generated by the Rule Generator module and the pop-
ulation of programs P. Thus, a combiner ¢ € C' can be formally described as a
function ¢ : P x P — P that transforms programs into programs.

By default, our system provides two simple combiners (although other pos-
sibilities are considered): addition, joins the new rule p’ generated with the best
program (in terms of optimality) to the population P; and union which joins
the two best programs (also in terms of optimality) in P.

4 LR-based heuristics

The freedom given to the user concerning the definition of their own operators
implies the impossibility of defining specific heuristics to explore the search space.
This means that heuristics must be overhauled, as decisions about the operator
that must be used at each particular state of the learning process. For this,
we have developed a model-based reinforcement learning approach, where the
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Fig. 1: Prototype System Architecture.

application of an operator over a rule is seen as a decision problem, for which
learning also takes place, guided by the optimality criteria which feed a rewarding
module. Below we will describe our approach.

4.1 State of the system

To guide the learning process we need a picture of the system in each step of the
process (before and after applying an action) in terms of the quality of the set
of rules and programs generated until now. Formally, we define a state at each
iteration ¢ of the system as a tuple oy = (R, P) which represent the population
of rules R and programs P in t. The probable infinite number of states makes
the abstraction of states necessary. How to do this? As we want to find a good
solution to the learning problem, we describe each state o; by a tuple of features
st = (¢1, P2, @3, d4, ¢5) from which to extract relevant information in ¢:

1. Global optimality (¢1): This feature shows the average optimality of all pro-
grams in P;. In turn, the optimality of each program p consists of four factors:

— Positive Coverage measures the proportion of positive examples covered
by the program:

ov™
PosCouv(p) = C(’;"d(gﬁ) (1)

— Negative Coverage measures the proportion of negative examples covered
by the program:
Cov~(p)

N@gOO'U(p) = W(E’_)

(2)



— Program Length Ratio measures the cardinality of p w.r.t. the cardinality

of the positive evidence:c i(p)
ard(p
ProgLength(p) = Card(EH) (3)
— Applied Operators Ratio, the idea is to penalise programs which have
used a large number of operators:
> pep Card(PrevOpers(p)) A
Card(O) - Card(p) )
where PrevOpers(p) is the list of previous operators applied to obtain the
rule p. The optimality of a program p is computed by weighting the four
factors according to its importance, in a way inspired by the MDL/MML
principle [31]:

Opt(p) = wy - PosCov(p) — wa - NegCov(p) (5)
—ws - ProgLength(p) — wy - OpersRate(p)

by default, w; = 0.4, wy = 0.3, w3 = 0.1 and wy = 0.2.
Finally, the Global optimality factor is then calculated as the average of the
optimalities of all programs in the system:

OptGlobal(P;) = m > Opt(p) (6)

pEP;
2. Average Size of Rules (¢2): measures the average size of all the rules in R;.
In particular, we compute the size of a rule p as in [12]:

Size(p) =1+ ny,/2+nc+ny (7)

with n,, n. and ns being, respectively, the number of variables, constants
and functors of only the rhs of r.

3. Average Size of programs (¢p3): measures the average cardinality of all the
programs in P; in terms of the number of rules.

4. Best Rule Optimality (¢4): is the optimality of the best rule (as unitary
program) generated until now.

5. Best Program Optimality (¢s): is the optimality of the best program gener-
ated until now.

OpersRate(p) =

4.2 Decisions

For each iteration of the system, we have to select the rule and operator to
produce new rules. Depending on the problem to solve, the number of required
iterations to learn a problem could be astronomically high. To address this issue
we need a particular heuristic to tame the search space and make good decisions
about the choice of rule and operator, in which the application of an operator
to a rule is seen as a decision problem.

For that, we model the decision process as a typical reinforcement learning
task. Formally, our decision problem is a four-tuple (S, A, 7,w) where: S is an
infinite state space; A is a finite actions space (A =0 X R); 7: S X A — S is
a transition function between states and w: S x A — R is the reward function.
These components are defined below:



— States. Each state is described by five features as we have seen in section
4.1.

— Actions. An action is a tuple (o, p) with p € R and o € O that represents
the operator o to be applied to the rule.

— Transitions. Transitions are deterministic. A transition 7 evolves the cur-
rent sets of rules and programs by applying the operators selected (together
with the rule) and the combiners.

— Rewards. The optimality criteria seen above is used to feed the rewards. In
particular, we use the result returned by equation (5) as reward.

With all these elements, the aim of our decision process is to find a policy
m: S — A that maximises

V7(s1) = > 7 wig (8)

for all s, where v € [0, 1] is the discount parameter which determines the impor-
tance of the future rewards (v = 0 only considers current rewards, while v = 1
strives for a long-term high reward).

At each point in time, the reinforcement learning policy can be in one of the
states s; of S and selects an action a; = w(s;) € A to execute. Executing such
action a; in s; will change the state into s;11 = 7(s¢, a¢), and the policy receives
a reward w; = w(s¢, at). The policy does not know the effects of the actions, i.e.
7 and w are not known by the policy and need to be learned. This is the typical
formulation of reinforcement learning [27] but using features to represent the
states.

In our setting, for the reinforcement learning module, we use a hybrid between
model-free value-function methods (which search for action that maximises val-
ues) and model-based methods (which generalise 7 and w) [27]. Our approach
uses the state-value function (Q(s,a), which returns g values) generalising it
with a regression model, actually a Linear Regression, where s € S, a € A, and
finally, the quality values ¢ € R .

A model M : § x A — R calculates the optimality or g-value for each
state and action. By using a; = argmax,c 4 { M (s¢, a;)} we get the best action
for state s;. Once we have the action, it is carried out to obtain a new state
Str1 = T(St, ar).

In order to train the model we need to provide different states and actions
as an input, and quality values as output. We use g values for the state-value
function as in Q-learning [32], so to train the model we use a matrix Q =
|S] % |O| x |R| where S is the set of states reached so far, O is the set of operators
and R is the set of rules generated. Both sets, S and R, grow in each step of the
system (the number of operators is constant), therefore, the matrix also grows
in terms of the number of rows (states) and columns (actions). In Table 1 we
can see an example of a (Q-matrix that can be used to train our model. Before
the system starts, this matrix is initialised with one row (state sg) with ¢ values
equal to 1 for every action (combinations of operators and rules). In this way,
the model trained with this matrix will have the same probability of selection
for all possible actions at the initial steps of the algorithm.



state (s) action (a)

61 [ 82 [ 63 [6a Gl o | ¢
1.223(1.473|3.431|1.88|1.99|2 12 0.78
1.301|1.511{3.431{1.88|1.99|5 27 0.65

Table 1: Q-matrix example.

Once the system has started, at each step, the @Q-matrix is updated (as we
will see below) and the model can be retrained periodically.

To update each ¢ value in the @Q-matrix at each step we use the following
formula, as in Q-learning;:

Qlst, a¢) + Qlse, ay] + a x |:'U)t+1 + ’YI(BiDliM(StH, apy1) — Q(s4,ar) 9)

where the max future value is obtained by the model instead of a Q)-matrix.
a (o € ]0,1]) is the learning rate which determines to what extent the newly
acquired information will override the old information (o = 0 makes the agent
not to learn anything, while & = 1 makes the agent consider only the most recent
information); and v € [0,1] is the discount parameter. By default, & = 0.5 and
v =0.5.

Using our Reinforcement Learning approach, populations of rules and pro-
grams are updated at each step of the algorithm. First, the Rule Generator
process (Figure 1) gets the operator o and the rule p returned as an action
a = (o, p) by the Reinforcement Learning Module (policy). This process applies
the operator over the rule obtaining a new rule p’ (if the operator is not suit-
able for the rule selected, the process returns the same rule) which is added to
R. The way in which the set programs is evolved is by the Program Generator
process. This takes the new rule generated p’ (if appropriate) as input, the set of
programs P and the set of combiners C' and generates a new program p’ (which
is added to P) applying the combiners over the previous inputs.

4.3 Stopping Criterion

The process is limited to a maximum number of iterations which is also deter-
mined by the user or when the prototype founds the best solution (a program
which covers all the positive evidence and and does not cover any negative ex-
amples) with a minimum optimality value, whichever comes first.

5 Examples

In this section, we describe three different examples where we illustrate how
operators are defined and used to iteratively approach the solution. We also
show more details about our system! and how it solves these problems?.

! Available at http://users.dsic.upv.es/ flip/SystemMetaRL.rar
? Available at http://users.dsic.upv.es/ flip/SystemMetaRLProblems.rar



5.1 Sequence processing

Let us start with a toy example of the kind used in structured prediction, where
not only the input is structured but also the output. Consider the problem of
learning a transformation over the words formed by a given alphabet. More
precisely, suppose we have a set of instances where both the input and output
are lists (i.e., strings). Consider the very particular case where we have a small
alphabet of a non-empty finite set of symbols X' = {a,t, ¢, g, u} and the transfor-
mation just replaces ¢t with . Instances would look like this: trans([t, ¢, g, a, t]) —
[w, ¢, g,a,u].

The first thing we need to define is the basic replacement functions for the
symbols in the alphabet. This is done in the background knowledge, with func-
tions like: foi(a) — ¢ feg(c) — g;... Typically, all the combinations can be
defined or only some of them if some replacements are not possible.

According to the data structure of examples (a string), we need a way to nav-
igate the structure and apply local or global changes. In order to do this we need
to define appropriate operators. The first operator, applyMap is a mechanism
to convert a rule into another rule which introduces the higher-order function
map, which applies a parametrised function to the whole list. The definition of
this operator is written in Erlang, but it can be informally defined as follows:
applyM ap(trans(X) = Y) = trans(X) — map(Vp, X), where X and Y stand
for any list and Vp is a function variable (a higher-order variable).

In order to introduce a replacement function, we need more operators, such
as addBK ¢, which fills the gap Vp by introducing the function f from the BK.
Note that at this moment it seems a matter of taste whether we define one oper-
ator for each replacement function or a single stochastic operator for all of them,
but the difference is important for heuristics. An example of one of each of these
operators is: addBK ;(trans(X) — map(Vp, X)) = trans(X) — map(f, X).
Finally, we need a way of generalising input (and output) strings. This is per-
formed by the genPat operator: genPat(trans(X) —Y) = trans(Vs) =Y,
where Vg is a string variable.

For this toy example there is a simple sequence of operator applications which
turns a simple example into a general solution. For instance, given the instance
trans([t,c, g, a,t]) = [u, ¢, g, a, u], we have this sequence.

genPat(trans([t,c, g,a,t]) = [u,¢,g,a,u]) = trans(Vs) — [u,c, g,a,u
applyMap(trans(Vs) — [u, ¢, g,a,u]) = trans(Vs) — map(Vr, Vs)
addBKjy,, (trans(Vs) — map(Vr,Vs)) = trans(Vs) — map(fiu, Vs)

This latter equation trans(Vs) — map(fiu, Vs) is the solution for this toy
example. Given the simplicity and the relatively small number of operators, the
effect of the coverage mechanisms and the heuristics is not critical, and the
system solves this problem (with five positive and five negative examples) in
9.58 seconds using 58 iterations.



5.2 Bunch of keys

We will continue with a more complex problem, a well-known multi-instance
classification problem. Consider the problem of determining whether a key in a
bunch of keys can open a door [19]. More precisely, for each bunch of keys either
no key opens the door or there is at least one key which opens the door. Each
instance is given by a bunch of keys, where each key has several features, so
there is a two-level structure (sets of lists). While this is a prototypical multiple-
instance problem, it is similar to a number of important practical problems, e.g.,
drug activity prediction [5].

We model a Bunch of keys as a set of keys. Each key, in turn, is modeled as
a list capturing four of its properties: the company that makes it (Abloy, Chubb,
Rubo, Yale), its number of prongs (an integer), its length (Short, Medium, Long)
and its width (Narrow, Normal, Broad).A training example (a bunch with two
keys which does open the door) may look like this: opens([[abloy, 3, medium,
narrow|, [chubb, 6, medium, normal]]) = true.

Given a set of such examples, we want to learn the function opens : Bunch —
{ True, False}.For this, we need a function setFzists(Key, Bunch) which evaluates
(True or False) whether there exists a Key in a Bunch. This function will belong
to the background knowledge. We also need to provide the system with a set of
operators. We again need an operator which incorporates conditions on the right
hand side of a rule: add BK (opens(X) = True) = opens(X) — setExists([], X).

This incorporates an empty list of conditions. Now we need operators to add
conditions. We will have one operator for each attribute value. For instance, the
operator for inserting a condition for keys with abloy is: K Cond(opens(X) —
setExists(C, X)) = opens(X) — setExists([abloy|C], X)).

Finally, we need a generalisation operator which introduces a variable instead
of a list: genPat(opens(X) =Y) = opens(Vy) =Y.

If the system and operators are provided, given the original evidence for
this example (five True instances and four False instances), it will return the
following definition: opens(X) — setExists([abloy, medium], X), which means
that a bunch of keys opens the door if and only if it contains an abloy key of
medium length, which is the proposed solution for this classical example. The
system solves this problem in 17.88 seconds using 60 iterations.

5.3 Web categorisation

The last example corresponds to a web classification problem with a higher level
of difficulty. It was originally proposed in [10]. The evidence of the problem is
modelled with 3 parameters described as follows: Structure (the graph of links
between pages is represented as ordered pairs where each node encodes a linked
page), Content (the content of the web page is represented as a set of attributes
with the keywords, the title, etc.), and Connections (the information derived
from connections to a web server which is encoded by means of a numerical
attribute with the daily number of connections).

The goal of the problem is to categorise which web pages are about sports. A
training example looks like this: sportsWeb(Structure, Content, Connections) —



true where the Structure attribute may be for instance [{[olympics, games], [swim]},
{[swim], [win]}, {[win], [medal]}] and is interpreted in the following way: the first
component of the list stands for the current web page with keywords “olympics”
and “games”. This page links to another page which has “swim” as its only key-
word. There are other two connections. The Content may be [{olympics, 30},
{held, 10}, {summer,40}], which represents the frequency (number of occur-
rences) of the most relevant words in the web page. Finally, Connections is
just an integer attribute which represents the number of connections.

Given the structure of the data, we need to add functions to the back-
ground knowledge to navigate this structure. We define graphEzists(Edge, Graph)
which checks whether an edge is in a graph, and setFEwzists(Key,List) which
tests whether the keyword Key belongs to the list. Again, we also need to pro-
vide the system with a set of operators. As in previous cases, we can reuse
a generic operator to select some function from the background knowledge
(one for each function) in order to replace the right hand side of the rules:
addBK grapn (sportsWeb(S,C,U) — True) = sportsWeb(S,C,U) — graph-
Ezists({[],[]},S), which introduces an empty condition about a connection be-
tween pages. We can similarly define an operator for introducing a condition
over the sets.

Another useful operator takes some type constants and add adds them to the
condition of the setFzists function (first attribute) and another operator which
generate a node and adds it as a node to search in the graph attribute of the
function graphFEwists:

linkl footbair (sportsWeb(S,C,U) — graphEzists({X,Y},S))
= sportsWeb(S,C,U) — graphEzists({[football| X], Y}, S).

Note that this operator is parametrised for the different attribute values.
Finally, we need a generalisation operator for each input pattern of the rules:
genPaty(sportsWeb(S,C,U) — True) = sportsWeb(Vs,C,U) — True. There are
also some other operators to generalise the second and third arguments.

Our system found the following correct program which defines the sports Web
function:

{sportsWeb(Vs, Ve, Vu) — graphEzists({[final], [match]}, Vs).

sportsWeb(Vs, Ve, V) — setExists([{athens]}, Vo).
sportsWeb(Vs, Ve, V) — setExists([{europe]}, Vo). }

which means that if the word ‘athens’ or ‘europe appears in Content, and Struc-
ture contains the link {[final], [match]} then this is a sport web page. The system
solves this problem (with seven positive examples and 2 negative examples) in
19.02 seconds using 42 iterations.

6 Conclusions and future work

The increasing interest in learning from complex data has led to a more inte-
grated view of this area, where the same (or similar) techniques are used for a
wide range of problems using different data and pattern representations. This



general view has not been accompanied by general systems which otherwise need
to be modified when the original data representation and structure changes. In
fact, the most general approach can still be found in ILP (or the more general
area of inductive programming). However, each system is still specific to a set
of embedded operators and heuristics.

In this paper, we have proposed that more general systems can be constructed
by not only giving power to data and background knowledge representation but
also to a flexible operator redefinition and the reuse of heuristics across problems
and systems. This carries a computational cost. In order to address this issue we
rely on the definition of customised operators, depending on the data structures
and problem at hand. This can be done by the user, using a language for express-
ing operators. A generalised operator choice entails generalised heuristics, since
the use of different operators precludes the system to use specialised heuristics
for each of them. The choice of the wight pair of operator and rule has been
reframed as a decision process, as a reinforcement learning problem.

We have included some illustrative examples with a first system implementing
the general architecture, and we have seen where the flexibility stands out. Our
immediate future work is focused on the reuse of operators and heuristics (RL
models) across different problems.

Overall, we are conscious that our approach entails some risks, since a general
system which can be instantiated to behave virtually like any other system by
a proper choice of operators is an ambitious goal. We think that for cocomplex
problems that cannot be solved by the system with its predefined operators,
the system can be used to investigate which operators are more suitable. In
more general terms, this can be used as a system testbed, where we can learn
and discover some new properties, limitations and principles for more general
machine learning systems that can be used in the future.
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