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Abstract

There is a great interest in dimensionality reduction techniques for tackling
the problem of high-dimensional pattern classification. This paper addresses
the topic of supervised learning of a linear dimension reduction mapping
suitable for classification problems. The proposed optimization procedure
is based on minimizing an estimation of the nearest neighbor classifier error
probability, and it learns a linear projection and a small set of prototypes that
support the class boundaries. The learned classifier has the property of be-
ing very computationally efficient, making the classification much faster than
state-of-the-art classifiers, such as SVMs, while having competitive recogni-
tion accuracy. The approach has been assessed through a series of experi-
ments, showing a uniformly good behavior, and competitive compared with
some recently proposed supervised dimensionality reduction techniques.

Keywords:
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1. Introduction

Dimensionality reduction techniques play a very important role in pattern
recognition tasks in which the feature vectors lay on a high-dimensional space.
It is difficult to directly apply machine learning algorithms to this type of
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tasks because of the so called curse of dimensionality. On the other hand,
data visualization is usually needed in applications where an expert can derive
useful knowledge from low-dimensional data representations.

Because of their simplicity and effectiveness, the two most popular di-
mensionality reduction techniques are Principal Component Analysis (PCA)
and Linear Discriminant Analysis (LDA) Fukunaga (1990), being the former
unsupervised and the latter supervised. Among their limitations, both of
these methods are linear and assume a Gaussian distribution of the data.
Additionally, LDA has an upper limit of C−1 for the number of components
after the mapping, being C the number of classes. To overcome these and
other limitations, subsequent methods have been proposed, where the non-
linear problem is commonly approached by extending the linear algorithms
using the kernel trick Mika et al. (1999); Schölkopf et al. (1999).

Methods based on finding the lower dimensional manifold in which the
data lies are ISOMAP Tenenbaum et al. (2000) and Locally Linear Em-
bedding (LLE) Roweis and Saul (2000); de Ridder et al. (2003), which are
non-linear, and Locality Preserving Projections (LPP, SLPP) He and Niyogi
(2004); Zheng et al. (2007), Linear Laplacian Discrimination (LLD) Zhao
et al. (2007) and Locality Sensitive Discriminant Analysis (LSDA) Cai et al.
(2007), which are linear. A work worth mentioning is Yan et al. (2007) in
which the authors propose the Marginal Fisher Analysis (MFA) and a Graph
Embedding Framework under which all of the methods mentioned so far can
be viewed. From a different point of view, is worth mentioning the Self Orga-
nizing Map (SOM) Kohonen (1982), an unsupervised neural network closely
related to these techniques since it aims at producing a low-dimensional em-
bedding of the data preserving the topological properties of the input space.

In the present work, the dimensionality reduction mapping is learned by
minimizing a Nearest-Neighbor (1-NN) classification error probability esti-
mation. Therefore this work is related with other methods in which the op-
timization is based on trying to minimize the k-NN classification error prob-
ability, among them Nonparametric Discriminant Analysis (NDA) Bressan
and Vitrià (2003), Neighbourhood Component Analysis (NCA) Goldberger
et al. (2005) and Large Margin Nearest Neighbour (LMNN) Weinberger et al.
(2006) are worth mentioning.

In Villegas and Paredes (2008) we proposed a new algorithm that learns
simultaneously a linear projection and a reduced set of prototypes. This pre-
liminary work has some limitations. In the present paper we propose a new
formulation of this approach which results in a more efficient implementation
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of the algorithm. Additionally, the originally proposed approach learned an
unrestricted projection matrix. In this paper, the method forces the projec-
tion matrix to be orthonormal. Depending on the data set, this modification
can lead to better recognition accuracy as can be observed in the results
presented.

An extensive experimentation comparing our approach with recently pro-
posed linear supervised dimensionality reduction methods and Support Vec-
tor Machines is carried out. The experimental results show that the proposed
approach is clearly competitive both in classification accuracy and speed.
Furthermore, we show that although the algorithm gives a complete 1-NN
classifier, the learned subspace alone, which we refer to as LDPP*, is very
competitive compared to state-of-the-art supervised dimensionality reduction
techniques.

The remainder of the paper is organized as follows. Section 2 introduces
the notation used throughout the paper. In section 3 the proposed dimen-
sionality reduction approach is presented. Experimental results are presented
in section 4. The final section draws the conclusions and directions for future
research.

2. Preliminaries and Notation

Following common notation, column vectors will be denoted by lowercase
bold letters. To denote row vectors, the transpose operator (T) will be used.
Matrices will be denoted by uppercase bold letters and sets using uppercase
calligraphic. Any other symbol which is not in bold font is either a scalar or
a function.

Two representation spaces will be distinguished. The first one, which will
be referred to as the original space, is the space where the objects of interest
are originally represented. It is assumed that this is a D-dimensional real
valued vector space, i.e., RD. The other representation space, which will be
referred to as the target space, is the space in which the objects of interest
are represented after the dimensionality reduction transformation has been
applied. This space is assumed to be an E-dimensional real valued vector
space, i.e., R

E. Certainly, the dimensionality of the target space will be
always smaller than the dimensionality of the original space, that is E < D.

In general, the dimensionality reduction transformation can be any func-
tion, however the present work is only concerned with linear transformations
which will be specified by a matrix B ∈ R

D×E. For convenience, throughout
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the paper, vectors in the original and the target spaces will be denoted with
the same symbol, with the difference that vectors in the target space will
have a tilde. Using this notation, a linear mapping from the original space
to the target space is given by:

x̃ = BTx, x ∈ R
D, x̃ ∈ R

E. (1)

Some functions which will be used in this work are the following. The
Heaviside step function centered at z = 1, is defined as:

step(z) =

{

0 if z < 1
1 if z ≥ 1 .

(2)

As an approximation to the step function, the sigmoid function with slope
β, centered at z = 1 will be used. It is defined as:

Sβ(z) =
1

1 + eβ(1−z)
. (3)

Note that if β is large, then Sβ(z) ≈ step(z), ∀z ∈ R, z 6= 1. The derivative
of the sigmoid function, also needed in this work, is given by

S′

β(z) =
d Sβ(z)

dz
=

βeβ(1−z)

(1 + eβ(1−z))2
. (4)

S′
β(z) is a windowing function which is maximum for z = 1 and vanishes for

|z − 1| ≫ 0. If β is large, then S′
β(z) approaches the Dirac delta function,

conversely, if β is small, then S′
β(z) is approximately constant for a wide

range of values of z.

3. Learning Discriminative Projections and Prototypes

The objective of the algorithm is to learn a projection base B ∈ R
D×E

by minimizing the error rate of the Nearest-Neighbor (1-NN) classifier on
a training set X = {x1, . . . ,xN} ⊂ R

D whose samples belong to one of C
classes. A method for estimating the error rate is therefore required. A pop-
ular method of estimation of the error is Leave-One-Out (LOO) Paredes and
Vidal (2006). However, the LOO estimation for a 1-NN classifier has the
problem that vectors tend to pair up, producing complex decision bound-
aries that do not generalize well to unseen data and giving an optimistic
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estimate of the error rate. To overcome this problem, an alternative way of
estimating the error rate is to define a new set of class labeled prototypes
P = {p1, . . . ,pM} ⊂ R

D, different from and much smaller than the training
set X , and with at least one prototype per class, i.e. P 6⊂ X , C ≤ M ≪ N .
These will be the reference prototypes used to estimate the 1-NN classifica-
tion error probability. For simplicity, all of the classes will have the same
number of prototypes, i.e. Mc = M/C.

An approximation of the 1-NN error rate of the training set X projected
on the target space using the reference prototypes P can be written as:

JX (B,P) =
1

N

∑

∀x∈X

Sβ(Rx) , (5)

where Rx =
d(x̃, p̃∈

)

d(x̃, p̃/∈)
. (6)

As it has been pointed out in Paredes and Vidal (2006), the sigmoid approx-
imation with an adequate β may be preferable than the exact step function.
This is because the contribution of each sample to the goal function JX be-
comes more or less important depending on the quotient of the distances.
This way the sigmoid approximation has a smoothing effect capable of ig-
noring clear outliers in the data and not learning from correctly classified
samples which are far from the decision boundary.

From equation (5) the following expressions can be derived:

∇
B JX =

1

N

∑

∀x∈X

S′
β(Rx)Rx

d(x̃, p̃∈
)
∇

B d(x̃, p̃∈
)

−
1

N

∑

∀x∈X

S′
β(Rx)Rx

d(x̃, p̃/∈)
∇
B d(x̃, p̃/∈) , (7)

∇pm
JX =

1

N

∑

∀x∈X :
p̃m=p̃

∈

S′
β(Rx)Rx

d(x̃, p̃∈
)
∇pm

d(x̃, p̃∈
)

−
1

N

∑

∀x∈X :
p̃m=p̃/∈

S′
β(Rx)Rx

d(x̃, p̃/∈)
∇pm

d(x̃, p̃/∈) , (8)
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where the sub-index m, indicates that it is the m-th prototype of P . If the
squared Euclidean distance is used, the corresponding gradients with respect
to the parameters are:

∇
B d(x̃, p̃) = 2(x− p)(x̃− p̃)T , (9)

∇p d(x̃, p̃) = −2B(x̃− p̃) . (10)

In order to simplify the subsequent equations, the factors in (7) and (8) will
be denoted by:

F∈ =
S′
β(Rx)Rx

d(x̃, p̃∈
)

, and F/∈ =
S′
β(Rx)Rx

d(x̃, p̃/∈)
. (11)

Looking at the gradient equations the update procedure can be summa-
rized as follows. In every iteration, each vector x ∈ X is visited and the
projection base and the prototype positions are updated. The matrix B

is modified so that it projects the vector x closer to its same-class nearest
prototype in the target space, p̃

∈
. Similarly, B is also modified so that it

projects the vector x farther away from its different-class nearest prototype
p̃/∈. Simultaneously, the nearest prototypes in the original space, p

∈
and p/∈,

are modified so that their projections are, respectively, moved towards and
away from x̃.

3.1. The LDPP Algorithm

An efficient implementation of the algorithm can be achieved if the gradi-
ents with respect to B and P are simple linear combinations of the training
set X and the prototypes P . This property holds for the euclidean distance,
and it may hold for other distances as well (although not for all possible
distances).

Let the training set and the prototypes be arranged into matrices X ∈
R

D×N and P ∈ R
D×M , with each column having a vector of the set. Then the

gradients can be expressed as a function of some factor matrices G ∈ R
E×N

and H ∈ R
E×M as:

∇
B JX = XGT + PHT , (12)

∇
P JX = BH . (13)
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In the particular case of the Euclidean distance, the n-th and m-th columns
of the factor matrices G and H are:

gn =
2

N
F∈n(x̃n − p̃

∈n)

−
2

N
F/∈n(x̃n − p̃/∈n) , (14)

hm =−
2

N

∑

∀x∈X :
p̃m=p̃

∈

F∈(x̃− p̃
∈
)

+
2

N

∑

∀x∈X :
p̃m=p̃/∈

F/∈(x̃− p̃/∈) . (15)

Finally, the optimization is performed using the corresponding gradient de-
scent update equations:

B(t+1) = B(t) − γ∇
B JX , (16)

P (t+1) = P (t) − η∇
P JX . (17)

Up to this point the projection base B is not an orthonormal basis. A simple
approach we propose to ensure an orthonormal projection is to perform a
Gram-Schmidt process after each gradient update.

The resulting optimization procedure is summarized in the algorithm
Learning Discriminant Projections and Prototypes (LDPP)2, presented in
figure 1.

The time complexity of the algorithm is O(DEN) per iteration, which is
considerably more efficient than the original proposal Villegas and Paredes
(2008). Still, this is the complexity of the learning stage, which can be
performed in a powerful server. On the other hand, the complexity for the
classification phase is O(DE + EM), which is considerably fast compared
to other classification approaches which normally are O(DE + EN) being
M ≪ N .

2A Matlab/Octave implementation is available in
http://www.iti.upv.es/~mvillegas/research/ldpp.html

7



Algorithm LDPP (X,B,P , β, γ, η, ε) {
// X: training data; B, P : initial parameters;

// β: sigmoid slope; γ, η: learning factors; ε: small constant;

λ′ = ∞; λ = JX (B,P );
while(|λ′ − λ| > ε) {

λ′ = λ; B′ = B; P ′ = P ;
compute G and H ;
P = P ′ − ηB′H ;
B = B′ − γ(XGT + P ′HT);
B = orthonorm(B);
λ = JX (B,P );

}
return(B,P );

}

Figure 1: Learning discriminant projections and prototypes (LDPP) algorithm.

3.2. Discussion

The proposed approach is also related to the family of pattern recog-
nition algorithms based on gradient descent optimization, in particular, the
neural networks algorithms Bishop (1995) such as the Multi Layer Perceptron
(MLP) which uses the Backpropagation algorithm Rumelhart et al. (1986)
for learning and the SOM neural network mentioned in the introduction.
The MLP and the proposed algorithm both use a sigmoid function, the MLP
uses it for handling non-linear problems while our algorithm introduces it to
obtain a suitable approximation to the 1-NN classification error rate. An-
other similarity is that the number of hidden neurons and the number of
prototypes of the proposed method defines the structural complexity and its
representation capability.

In general all the methods based on gradient descent optimization have
the same properties. These methods are easy to implement, they only require
to optimize a differentiable function and are easily tuned by means of con-
trolling the learning factor. On the other hand, they may generally converge
to any local minimum on the target function surface. The local minimum
reached will depend on the initialization of the algorithm. In our case using
PCA and k-means for initialization, generally leads to a fast convergence and
very good results as the experiments show.
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The convergence of the algorithm is very stable for a wide range of values
of the parameter β of the sigmoid function, see figure 3. For low values of
β the goal function starts and stays close to 0.5 for all the parameter space
(B,P). In this case the convergence becomes very slow and is hard to judge
when to stop iterating. Moreover low values of β entail a significant diver-
gence between the goal function and the 1-NN error rate. This divergence is
reduced using high values of β but then it becomes more likely that the algo-
rithm converges to a local minima due to the roughness of the goal function
along the parameter space. Empirically it has been observed that a value
of β = 10 provides a good balance, because it is a point in which the goal
function is a good estimator of the error rate and the algorithm does not
seem to get stuck in local minima.

4. Experiments

The proposed approach has been assessed with different problems. First,
some results are presented on synthetic data to illustrate the behavior of the
algorithm. After this, we show classification results for several data sets with
a great variety in size of the corpus, number of classes, and dimensionality.
Followed by this, some results are presented using a high-dimensional data,
for which the algorithm is mainly intended.

The proposed approach was compared with similar techniques, i.e. linear
and supervised, namely LDA, MFA, LSDA, SLPP, NDA, NCA and LMNN
all of them with and without a PCA preprocessing. For LDA our own im-
plementation was used, however for the rest, we used freely available imple-
mentations from the authors of Cai et al. (2007); Bressan and Vitrià (2003);
Weinberger et al. (2006); Fowlkes et al. (2007). For each of the baseline
methods, the corresponding algorithm parameters were properly adjusted,
and only the best result obtained in each case is shown. A k-NN classifier
was used for all these dimensionality reduction techniques. The k parameter
of the classifier was also varied and the best result is the one presented.

The initialization used for the LDPP algorithm in all of the experiments
was a per class k-means for the prototypes P and PCA for the projection
base B. It has been observed that this simple initialization provides good
convergence behavior and recognition results. For LDPP, the training data
was previously normalized so that each component had a zero mean and unit
variance. Furthermore, the learned projection bases have been restricted to
being orthonormal. It was observed that these modifications helped to make
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the learning factors more stable across different data sets, and thus making
more narrow the range of values of the parameters to explore. For all of the
experiments, the results are for β = 10. Aditionally in the high-dimensional
data sets, different values of β are used to show the effect that this parameter
produces on the results.

There are two different results for LDPP, either using the learned proto-
types and a 1-NN classifier shown as plain LDPP, or using the whole training
set and a k-NN classifier, shown as LDPP*.

The proposed algorithm condenses the training set into a very compact
classifier, and this added to the fact that it is linear, makes the classifier
extremely fast, in the results we have also included what we call the speedup.
This is a measure of how many times faster is the testing phase of the method
compared to what it takes using a k-NN classifier in the original space. This
relative measure has been estimated using the time complexity of the algo-
rithms.

Although the Support Vector Machine (SVM) is not a dimensionality
reduction method, it can be considered the state-of-the-art in pattern clas-
sification, for this reason in some of the experiments a comparison was also
made with SVM. For this, we used the multi-class LIBSVM Chang and Lin
(2001) implementation. In each experiment, the linear, polynomial and RBF
kernels were tried, and for each one, the penalty and kernel parameters were
varied to obtain the best result.

4.1. Synthetic Data

Figure 2 presents the 2-D visualization of a 7 class 6-dimensional syn-
thetic data set. Three of the dimensions conform a 3-dimensional helix with
the classes distributed along this helix, generated using the tool mentioned
in L.J.P. van der Maaten (2007). The other 3 additional dimensions are
random noise. Some of the classes are multi-modal and therefore the result
obtained by classical techniques such as LDA gives an overlap between the
classes. The figure first shows the initialization of the algorithm which was
PCA and two prototypes per class obtained by k-means. The second plot
shows the result obtained after LDPP learning.

As can be observed in the figure, the projection learned completely re-
moves the noise and the reference prototypes are positioned so that they
classify very well the data. Although this is a very ideal synthetic data set,
it illustrates how the algorithm works. If we would have chosen only one
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Figure 2: 2-D visualization of a 3-D synthetic helix with 3 additional dimensions of random
noise. The graphs include the prototypes (big points in black), the corresponding voronoi
diagram and the training data (small points in color). At the left is the initialization (PCA
and k-means) and at the right, the final result after LDPP learning.

prototype per class it would have been impossible for the prototypes to clas-
sify well the data. For a real data set the number of prototypes needs to be
varied and the best result will be the one that gives a low error rate with the
least number of prototypes. The number of prototypes is desired to be low
because it defines structural complexity of the recognizer and this affects the
generalization capabilities to unseen samples.

4.2. UCI and Statlog Corpora

Although the proposed approach has been developed for high-dimensional
tasks, it is still a classifier learning technique that works with an arbitrary
vector valued classification problem. In this section we present some results
for several data sets form the UCI Machine Learning Repository Asuncion
and Newman (2007), most of which are low-dimensional. As can be observed
in table 1, the selected data sets have a wide variety in the number of samples,
number of classes and feature dimensionality.
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Table 1: Error rates (in %) for several data sets and different dimensionality reduction techniques. The last two rows are the
average classification error rate and the average speedup relative to k-NN in the original space.

Task
Statistics Orig. S. SLPP MFA NDA NCA LMNN LDPP LDPP*
N C D (k-NN, X̃ ) (k-NN, X̃ ) (k-NN, X̃ ) (k-NN, X̃ ) (k-NN, X̃ ) (k-NN, X̃ ) (1-NN, P̃) (k-NN, X̃ )

Australian 690 2 42 32.53 14.61 16.54 13.92 31.45 26.65 13.34 14.04
Balance 625 3 4 13.47 10.30 12.61 8.70 5.00 10.05 8.89 10.02
Cancer 683 2 9 3.44 3.34 3.73 3.25 4.57 3.43 3.40 3.68
Diabetes 768 2 8 26.30 24.13 26.50 25.22 26.30 25.72 23.85 25.28
German 1000 2 24 29.54 24.25 28.99 25.96 29.51 28.21 23.37 24.54
Glass 214 6 9 32.66 44.20 41.97 34.38 34.34 33.54 37.49 35.21
Heart 270 2 25 33.63 17.00 18.81 20.59 33.56 21.85 17.37 18.11
Ionosphere 351 2 34 14.61 14.27 10.77 11.34 11.80 12.27 13.36 11.74
Liver 345 2 6 33.22 35.16 34.49 31.57 33.91 33.83 30.99 34.67
MFeat 2000 10 649 4.80 1.05 24.70 0.80 4.95 4.95 0.95 0.80
Phoneme 5404 2 5 12.95 23.49 14.68 14.63 14.62 14.96 16.48 14.93
Segmen 2310 7 19 5.09 3.54 3.63 3.42 5.09 3.25 4.77 3.50
Sonar 208 2 60 24.51 31.03 31.83 23.64 23.54 24.24 28.04 24.37
Vehicle 846 4 18 35.81 27.32 22.74 19.87 35.82 22.47 20.21 20.96
Vote 435 2 16 7.87 5.69 5.17 5.03 5.86 5.92 5.49 6.91
Waveform 5000 3 40 15.38 14.46 20.14 13.44 14.09 13.25 13.33 13.48
Wine 178 3 13 28.35 2.40 4.99 3.55 28.35 4.35 3.58 3.07

Avg. Error 20.83 17.43 18.96 15.25 20.16 17.00 15.58 15.61
Speedup 1 17 5 7 3 5 88 4
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To estimate the error rates, an S-fold cross-validation procedure was em-
ployed, using one set for test, another one for development and the rest for
training. The estimation of the error rate is the error of the test set for the
parameters which gave the lowest error rate in the development set. This
way the estimated error rates also take into account the generalization to
unseen data.

Table 1 shows the results obtained by a 20 time repeated 5-fold cross-
validation, as explained previously. The last two rows of the table are a
summary of the results for all of the data sets. First, the average classi-
fication error indicates recognition performance in comparison to the other
techniques. And second, the speedup indicates the efficiency of the classifier
in the testing phase, as was explained in the beginning of the section. For
LDPP, depending on the data set, using the learned prototypes instead of
the whole training set, does or does not improve the recognition. Although
on average it is better to use the learned prototypes. In comparison with the
baseline techniques, on average the proposed approach performs very well,
having a lower error rate than all of the techniques except for NDA. Remark
that LDPP is much faster than the other techniques in the testing phase. In
particular, LDPP is more than 10 times faster than NDA for a very similar
average error rate.

4.3. High-Dimensional Data Sets

As representatives of high-dimensional problems, due to their current
high interest, we have considered two face image analysis tasks, gender
and emotion recognition. Gender recognition is a two class problem, ei-
ther male or female, which makes it interesting in this context since sev-
eral supervised dimensionality reduction techniques in the literature have
C − 1 as an upper limit for the target space dimensionality. For these
methods the target dimensionality is at most one, a restriction that the
proposed approach does not have. The gender data set is the same as the
one described in Villegas and Paredes (2008), composed of 1892 images,
half males and half females, obtained from the following databases: AR
Face Database Martinez and Benavente (1998), BANCA Database Bailly-
Bailliére et al. (2003), Caltech Frontal Face Database Weber, Essex Collec-
tion of Facial Images Spacek, FERET Database Phillips et al. (2000), FRGC
Database Phillips et al. (2005), Georgia Tech Face Database Nefian and the
XM2VTS Database Messer et al. (1999). The images were converted to
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Figure 3: Graph illustrating the relationship of the β parameter with the recognition
performance and goal function. This is an average of the 5-fold cross-validation for both
the gender and emotion data sets.

gray-scale, cropped to a size of 32×40 and histogram equalized3.
In contrast, the emotion recognition task considered is a seven class prob-

lem, the six basic emotions Donato et al. (Oct 1999) and neutral face. The
images were extracted from the Cohn-Kanade video database Kanade et al.
(2000). Only 348 sequences were used, all of which the emotion labels are
publicly available Buenaposada et al. (2008). Two images were used per se-
quence, the first frame, which are neutral expressions, and the last frame,
which is the apex of the corresponding emotion. As can be observed, the
data set is not balanced. The images were converted to gray-scale, cropped
to a size of 32×32 and histogram equalized2.

Figure 3 shows the relationship that the β parameter has on the recog-
nition performance. As can be observed the performance does not change
much, although a value of β = 10 seems to be the best one. A β = 10 has
worked well for all of the data sets we have tried.

A single 5-fold cross-validation was employed to estimate the results. The

3Data sets available in
http://www.iti.upv.es/~mvillegas/research/datasets
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Table 2: Face gender recognition results for different dimensionality reduction techniques.

Approach
Error Rate (%)

Dim. Speedup
[95% conf. int.]

Orig. Space 19.6 [ 17.6 – 21.6 ] 1,280 1
PCA 17.7 [ 15.8 – 19.7 ] 64 9
SVM 8.6 [ 7.3 – 9.8 ] N/A 2
LSDA 35.7 [ 33.0 – 38.3 ] 2 301
MFA 35.7 [ 33.2 – 38.2 ] 6 100
SLPP 34.0 [ 31.0 – 36.9 ] 1 601
NDA 29.6 [ 27.4 – 31.9 ] 24 25
PCA+LDA 47.1 [ 44.9 – 49.3 ] 1 601
PCA+MFA 19.5 [ 17.7 – 21.2 ] 16 38
PCA+NCA 18.3 [ 16.8 – 19.8 ] 32 19
PCA+LSDA 12.3 [ 10.7 – 13.8 ] 24 25
PCA+NDA 11.1 [ 9.3 – 12.8 ] 12 50
PCA+SLPP 11.1 [ 9.8 – 12.3 ] 1 601
PCA+LMNN 10.4 [ 8.6 – 12.2 ] 16 38
LDPP(Mc=1) 11.5 [ 10.4 – 12.6 ] 1 1,132
LDPP(Mc=16) 8.5 [ 7.3 – 9.8 ] 24 46
LDPPnot ortho. 9.9 [ 9.1 – 10.8 ] 24 46
LDPP* 9.2 [ 7.5 – 11.0 ] 12 50

results are presented in tables 2 and 3, for gender and emotion respectively.
For LDPP the target space dimensionality was varied logarithmically between
1 and 48 and the number of prototypes per class was varied between 1 and
24 also logarithmically.

For both data sets the best result is presented with or without the proto-
types, LDPP and LDPP* respectively. For gender also the result is presented
when reducing to only one dimension, so that it can be compared with the
other techniques that have such a extreme constraint. As can be observed in
the tables, for both problems LDPP gives very competitive error rates. For
gender, the best result is statistically significantly better than all the base-
line techniques, except for SVM. However LDPP still gives a much faster
classifier than SVM. In the emotion task LDPP also performs very well. Al-
though the best target space dimensionality resulted to be higher than most
of the baseline techniques. The tables also include the result when LDPP
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Table 3: Face emotion recognition results on the Cohn-Kanade database for different
dimensionality reduction techniques.

Approach
Error Rate (%)

Dim. Speedup
[95% conf. int.]

Orig. Space 30.8 [ 28.3 – 33.3 ] 1,024 1
PCA 29.4 [ 27.6 – 31.1 ] 16 23
SVM 13.2 [ 12.3 – 14.2 ] N/A 2
LSDA 50.2 [ 48.4 – 52.1 ] 24 15
NDA 24.7 [ 22.7 – 26.8 ] 48 8
SLPP 19.9 [ 17.0 – 22.7 ] 6 60
MFA 17.0 [ 15.3 – 18.7 ] 12 30
PCA+NCA 29.4 [ 27.6 – 31.1 ] 16 23
PCA+MFA 18.4 [ 16.9 – 19.9 ] 6 60
PCA+LMNN 17.4 [ 16.9 – 17.9 ] 24 15
PCA+NDA 15.7 [ 13.5 – 17.8 ] 16 23
PCA+LDA 14.2 [ 13.2 – 15.3 ] 6 60
PCA+SLPP 14.2 [ 13.2 – 15.3 ] 6 60
PCA+LSDA 12.5 [ 11.7 – 13.4 ] 8 45
LDPP(Mc=1) 11.5 [ 10.6 – 12.4 ] 16 35
LDPPnot ortho. 12.1 [ 10.6 – 13.5 ] 16 35
LDPP* 12.1 [ 11.2 – 13.0 ] 32 11

does not force B to be orthonormal, and in both experiments giving worse
performance. This suggests that depending on the problem, the orthonor-
malization is capable of improving the recognition results.

In general the baseline techniques tend to work bad handling the orig-
inal high dimensional space, making these techniques inadequate for high-
dimensional problems. On the other hand, LDPP is capable of handling the
data in the original space. In general the baseline techniques work better
using a previous PCA. Notice the relative bad results obtained by NDA in
this high-dimensional scenario and even when is combined with PCA is still
far from the best result obtained by our LDPP.

In the original space LDA is unable to give a result due singularity prob-
lems. Moreover with such a high dimensionality both NCA and LMNN are
extremely slow, thus we were unable to compute those results.
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5. Conclusions

In this paper we have presented the LDPP algorithm. This algorithm
learns simultaneously a linear projection and a reduced set of prototypes that
define adequately the class distributions on the target space. In the present
work we have introduced a more elegant formulation for LDPP which leads
to a more efficient and easily parallelizable implementation. Furthermore,
the approach has been modified to ensure that the resulting projection ma-
trix is orthonormal. Experimental results confirm that this modification can
improve the recognition results.

From the experiments we can conclude that the LDPP approach behaves
considerably well for a wide range of problems. It achieves very competitive
results for supervised dimensionality reduction, comparable to state-of-the-
art techniques. The results on high-dimensional problems show that unlike
other techniques, LDPP obtains competitive recognition performacen when
applied to the original feature space and without having to resort to a PCA
preprocessing. This has the advantage that no information is ignored during
the discriminative learning. On the other hand, the technique additionally
learns a small set of prototypes optimized for 1-NN classification, which in
conjunction to the linear dimensionality reduction, gives an extremely fast
classifier when compared with other classification approaches. Finally, the
results show that there are problems where ignoring the learned prototypes,
referred to as LDPP*, and using an alternative classifier may lead to better
recognition accuracy. This shows that the projection base alone is quite
discriminative and the prototypes are simply a way of estimating the error
rate to be able to minimize it.

Future research will be focused on the use of different distances on the
LDPP. Moreover distances for which the derivatives with respect to the model
parameters can not be obtained could be applied, thus some approximation
to such derivatives have to be used. On the other hand, alternative goal
functions could be proposed to be optimized. For some problems the error
rate minimization has no sense, and other goal functions would be more
adequate, for instance one related to the area under the ROC curve Villegas
and Paredes (2009). Also it would be interesting to extend LDPP to be semi-
supervised to be used in problems where it is expensive to label all of the
training data. As a final direction of future research, it is worth mentioning
that in this moment there is a great interest in classification problems where
there are millions of training samples available. The proposed approach does
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not scale to corpora of this magnitude, therefore future work could be focused
on this direction as well.
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Mariéthoz, J., Matas, J., Messer, K., Popovici, V., Porée, F., Rúız, B.,
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