Document downloaded from:

http://hdl.handle.net/10251/37366

This paper must be cited as:

Pedroche Sanchez, F.; Moreno, F.; Gonzalez, A.; Valencia, A. (2013). Leadership groups
on Social Network Sites based on Personalized PageRank. Mathematical and Computer
Modelling. 57(7-8):1891-1896. d0i:10.1016/j.mcm.2011.12.026.

The final publication is available at

http://dx.doi.org/10.1016/].mcm.2011.12.026

C ight
opyng Elsevier



Leadership groups on Social Network Sites based on
personalized PageRank

Francisco Pedroche?, Francisco Moreno?, Andrés Gonzalez?, Andrés
Valencia®

@ Institut de Matematica Multidisciplinaria
Universitat Politecnica de Valencia
Cami de Vera s/n. 46022 Valéncia. Spain.
{pedroche@imm.upv.es}
bEscuela de Sistemas
Universidad Nacional de Colombia, Sede Medellin
Carrera 80 No 65-223. Medellin. Colombia.
{fimoreno, afgonzalezr, afvalenciab@unal.edu.co}

Abstract

In this paper we present a new framework to identify leaders on an SNS using
the Personalized PageRank vector. The methodology is based in the concept
of Leadership group recently introduced by one of the authors. We show how
to analyze the structure of the Leadership group as a function of a single
parameter. Zachary’s network and a Facebook university network are used
to illustrate the applicability of the model. As an application we introduce
some new concepts such as the probability to be a leader, a classication of
networks and the concept of best potential friend.
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1. Introduction

Some usual centrality measures (degree, betweeness, etc.) can be used to
assign importance to users in a Social Network Site (SNS). We use the concept
of PageRank [1] since it has proved to be of utility in some fields, apart of
being in the core of the searcher Google. For example, PR have been used
in biomedical literature retrieval [2], [3]; in this area, a common assumption
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is to combine linkage information and content information. In the field of
computational Biology, [4] use PR to classify species in order to analyze
which species cause the most damage if removed. In [5] the authors use the
PR to classify nodes in water supply networks using real data. Recently, PR
have been used to classify tennis players [6].

We present a framework to classify the users of an SNS based on the
Personalized PageRank (PPR) vector. PPR is PR when using some pre-
scribed personalization vector. PPR was originally introduced to bias PR to
personal preferences of the users [7]. See, e.g., [8] for an analytical formu-
lation. [9] uses topics of the queries to bias the PageRank. [10] computes
the PPR for some subsets of pages. For computational issues, see [11] for a
low-rank approximation technique and [12] for a Monte-Carlo approach. In
[13] a technique to preserve the PPR when considering a subgraph is shown.

We are interesting in classifying the nodes of a network considering the
direct graph of the network and the features of the nodes. PPR is used to
include some features of the nodes. The method presented allows to give
an extra of PR to some nodes in a controlled way. In this paper we call a
leader a node that has higher PR than the others. The fundamentals of the
model were presented in [14], where the concept of Leadership group, L, was
introduced. In this paper we analyze the structure of £ and we show how
to characterize £ by means of a single parameter e. We also introduce a
new parameter, the frequency in £, that is useful for assigning importance
to a node. By means of this we define the probability to be a leader. We
illustrate the applicability of these new concepts by using two real networks.
In section 2 we recall some definitions. We define the concept of £ and
analyze it when applied to some toys networks in section 3. In section 4 we
present some results in two networks: one is the classical Zachary network
(34 nodes) and the other corresponds to a Facebook university network (769
nodes). In section 5 we describe how the model can be used to define the
probability to be a leader, how to make a classification of networks with € and
the concept of best potential friend. In section 6 we give some conclusions
and some lines for future work.

2. Preliminaries

Let G = (N, €) be the directed graph representing a Social Network Site.
Users are represented by the set of nodes N' = {1,2,...,n} and the set of
directed links is € C N x N. The link represented by the pair (i, j) belongs



to the set £ if and only if there exists a link pointing from node 7 to node j.
In this paper we assume that each node has at least one outlink; i.e., there
are no dangling nodes; denoting d; the number of outlinks of a node i, we
assume d; # 0 for all i € N. We use the PageRank vector [1] as the main
classification tool. Since there are no dangling nodes we can define the row
stochastic matrix P = (p;;) € R™", in the form

d;t if(i,j) e € -
- i ) < <n.
Pij { 0 otherwise Il<ijsn

Let 0 < a < 1 be the damping factor (that we use as o = 0.85). Let e € R™!
be the vector of all ones and let v be the personalization (or teleportation)
vector, i.e., v = (v;) € R™! 0, > 0 for all i € N and v'e = 1. The Google
matrix is defined as G = aP + (1 —a)ev’, and is an stochastic and primitive
(irreducible and aperiodic) matrix [7]. The PageRank vector is defined as
the unique left Perron vector of G 77 = 7#7G, with 77e = 1. Denoting e;
the ith column of the identity matrix of order n, the PageRank of a node 7 is
7; = mle;. We call basic PageRank, and denote it by basic PR to the vector
m(e/n). We call basic leader a node that is in the top of the basic PR.

3. Leadership group

The concept of Leadership group was initially defined in [14] and some
details were given in [16]. We here redefine this concept and include some
new concepts. The following two definitions constitute the framework that
allows classify users using PPR.

Definition 1. Given a directed graph G = (N, €), let 0 < e < =1 and let
vile) = [v;] ER™ iwy =1 —¢€ v =€¢/(n—1) if i # j. Foreachie N,
let PR; = 71(v;). and we denote as (PR;); the jth entry of PR;.

Note that (PR;); represents the value of the PR corresponding to node
J when using the personalization vector v;(e).

Definition 2. Given a directed graph G = (N,E), and 0 < € < ”T_l, the
Leadership group, £ C N is defined as follows: j € L if, for some i € N it
holds that



i.e. for some personalization vector v;(€), node j has the greatest PageRank.
The number of different indices i € N for which (1) occurs is called the
frequency of node j in L, and we denote it as v (7).

It is easy to see that in case of taking ¢ = "1 we obtain that 7(v;) =

7(e/n), which is the basic PR. Attending to an statistical meaning, the effect
of v in the PageRank is the following. Let us assume that v = e/n (which is
the usual value). Then, if there is not a link from page i to page j the effect
of v is putting an artificial link (i.e., a teleportation) from page i to page j.
The random surfer will follow this artificial link with probability (1 — «)/n.
In the case that we take v = e; what happens is that from nodes that did
not go to node ¢ now we have put an artificial link that the surfer will follow
with probability (1 — «).

To illustrate the definition of £ and the effect of the parameter ¢ we show
now the following examples using toy graphs.

3.1. Examples

29— 5 0 0505 0 0
/ \ 05 0 0 05 0
1 1 P=|1 0 0 0 0
\ 0O 1 0 0 0

3 001 0 0 0

Node | PRy | PRy | PR3 | PRy | PRy | vc(i
1 0.38 | 0.29 [ 0.34 | 0.26 | 0.26 2
0.30 | 0.39 | 0.27 | 0.35 | 0.35 3
0
0
0

0.17 | 0.13 | 0.25 | 0.12 | 0.12
0.14 | 0.18 | 0.13 | 0.25 | 0.16
0.01 | 0.01 | 0.01 | 0.01 | O.11

Ot > W N

Table 1: PR;, and v, (i) for the graph of Fig. 1, with e = 0.3.

For the graph shown in Fig 1, computing the basic PR we obtain basicPR =
m(£[1,1,1,1,1]) = [ 0.31 0.33 0.16 0.17 0.03 }T. In Table 1 we show the

resulting PR; giving by Definition 1 with € = 0.3. Note that in this example
changing v we allow to change the ranking. The ranking, giving by the basic
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PR is {node2, nodel, node4, node3, node5} while using v = v; the ranking is
giving by PRy, which is {nodel, node2, node3, node4, node5}. In this exam-
ple we have £ = {1,2} and v.(1) = 2 and v(2) = 3. Note also that, giving a
node, the maximum value of PPR for that node is obtained when computing
PR;; this is in accordance with the statistical meaning of the personalization
vector commented above. We say that the v; is useful to give an extra of
PR to node 7. Note also that there are nodes such as nodes 3, 4 or 5 that
do not win even though we give the maximum of extra PR for the e consid-
ered. Computing the same experiment for some values of € we find that for
€ < 0.68 we have that £ = {1,2} while for ¢ > 0.69 we have that £ = {1}.
Therefore, we conclude that in this graph the ranking, the structure of £
and the values of v, (i) depend on e. In this example the basic leader (node2)
verifies that v, (basicleader) > vy (rest of nodes) Ye. We shall see later that
in some networks this inequality does not hold. Therefore v, (i) can be used
as a centrality measure different from the basic PR.

In Fig. 2 a) we show a linear graph of three nodes. In this case an easy
computation shows that £ = {2}, for all e. Therefore we have v(2) = 3, Ve.
In this graph we always have one leader. By means of the personalization
vector we can promote node 2 or node 3 to second position, as much. In
this example the parameter € is useful to make bigger or lower the relative
importance of the nodes, but does not allow to change L.

le—s2——3 1 23«45
a) b)

Figure 2: In a) node 2 is the leader Ve. In b) node 3 can be a leader when e < 0.8.

In Fig. 2 b) we show a linear graph of five nodes. Now the situation is
complectly different. For e < 0.7 we have that £ = {2,3,4}, with v.(2) =
ve(4) =2 and v, (3) = 1. For € > 0.8 we have, surprisingly, that £ = {2,4},
with v£(2) = vz(4) = 3. This happens since for the ranking with PRj,
with € > 0.8, both nodes 2 and 4 are winners. Therefore this example shows
that ).\ vc(7) > n, since there are situations when we have two (or more)
leaders at the same time (cohabitation). Note also that in this graph even
though we give all the extra PR to node 3, with € > 0.8, this extra PR goes
to benefit node 2 and node 4.



With this examples we have seen that € is a interesting parameter, in this
model, to characterize networks: some networks have only one leader, some
can have two leaders, in some networks any user can be in second position,
etc. These features could be very useful for the managers of SNSs.

4. Experiments in real networks

4.1. Zachary’s karate club [17]

It is a network of 34 nodes representing the members of a university-based
karate club. The club split in two factions. The leaders of the two resulting
communities were node 1 and node 34. Using the basic PR one can classify
the users of the network. In Table 2 only the classification of the first six
nodes is shown. We see that the basic PR detect well the two main leaders
of the network.

Node 34 1 33 3 2 32
basic PR | 0.1009 0.0970 0.0717 0.0571 0.0529 0.0372

Table 2: Classification of the first six nodes using the basic PR

€ card(£) | £
0.001 | 33 |N—{12}
0.01 28 | N —{12,15,16,19,21,23}
0.05 27 | N —{12,15,16, 19,21, 23,27}
0.1 24 | N —{12,13,15, 16,18, 19,21, 22, 23, 27}
0.3 23 | N —{10,12,13,15, 16, 18, 19, 21, 22, 23, 27}
0.4 18 | N —{5,10,11,12,13, 15, 16, 18,
19,20, 21, 22,23, 27,29, 30}
0.6 5 | {1,2,3,33,34)
0.7 4| 1{1,3,33,34)
0.8 2 | {1,34)
0.9 2 | {1,34)
09706 | 1 | {34}

Table 3: Cardinal of the Leadership group for Zachary’s karate club for some values of ¢,
and the corresponding nodes that form L.



In Table 3 we show how the cardinal of £ depends on e. For exam-
ple, using ¢ = 0.01 we have that all the nodes are in £ except nodes
{12,15,16,19,21,23}. We remark here that e is a practical tool for the
managers of an SNS to decide how they want to treat their SNS. For ex-
ample they can use € = 0.001 if they want a nearly democratic network in
which anyone (except node 12) can be the leader. Using this method one
can enhance the importance of node 12 using the personalization vector but
we cannot make 12 the winner. In Table 4 we show v, (i, €) for some nodes
and for some values of €. Note, for example, that node 33 can be a leader
for values of € ranging between 0.001 and 0.7. Let us select ¢ = 0.4 to an-
alyze this network: there are two leaders (node 1 and node 34) which are
more important than the rest, since v,(1) = 8, for ¢ = 0.4. Here we have
ve(basic leader) < vp(1). If we use v, as a centrality measure we have that
for this e node 1 is more important than node 34. This is a feature that basic
PR does not predict.

node\e | 0.001 | 0.01 | 0.05{0.1 [0.3]0.4]0.6|0.7]0.8|0.9]0.9706
1 2 2 2 d S 8§ | 14 | 15 | 14 | 13 0
7 1 1 1 1 1 1 0 0 0 0 0
12 0 0 0 010 0 0 0 0 0 0
18 1 1 1 010 0 0 0 0 0 0
23 1 0 0 010 0 0 0 0 0 0
33 1 1 1 1 1 1 1 1 0 0 0
34 1 6 7 718 1017 | 17 | 20 | 21 34

Table 4: Some values of v (i, €) for Zachary’s karate club.

4.2. Facebook network from Caltech-2005

Here we use a network of 769 nodes that corresponds to users of Facebook
from the California Institute of Technology; see [18] for details!. In Table 5
we show the classification of the first 8 nodes using the basic PR.

In Table 6 we show the cardinal of the Leadership group for some values
of e. We see, for example, that for e = 0.97, we have 98 nodes that can be the
leader. Note that for € < 0.7 any node can be the leader. A deeper analysis
is shown in Table 7 for two selected values of €. In this table we show the

!Data available at http : //people.maths.ox.ac.uk /porterm/data/ facebook5.zip
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Node 623 207 563 60 405 88 82 411

basic PR | 0.0067 0.0056 0.0056 0.0050 0.0048 0.0046 0.0043 0.0043

Table 5: Classification of the first 8 nodes from basic PR for the network of Facebook.

€ 0.5 0.7 09 095 097
card(£) | 769 769 757 734 98

Table 6: Cardinal of £ for the network of Facebook at Caltech.

e = | Node | 3 > 9 60 88 192 207 360 455 461
0.9 |ve 2 2 2 2 2 2 2 2 2 2
e = | Node | 623 207 201 563 3 9 60 88 754 5
097 | v 659 5 3 3 2 2 2 2 2 1

Table 7: Values of v, (i, €) for the network of Facebook at Caltech.

first 10 nodes that contribute to £ for ¢ = 0.9 and ¢ = 0.97. We have noted
before that the parameter e controls who may be a leader. In this table we
also see this feature. When using ¢ = 0.9 not all the nodes contribute to
the Leadership group, while there are some nodes with v,(i) = 2. Note that
for e = 0.97 the situation has changed dramatically and we have an absolute
leader (node 623, which corresponds with that computed with the basic PR).
Note that v, (i,€) can be used to define communities: for e = 0.97 in this
example we could define 6 communities in the network. 5 communities inside
L- those corresponding to v, € {659,5,3,2,1}- and the other community
formed by the nodes outside the Leadership group (v.(i) = 0). We also note
that with the analysis of Table 7 we have new leaders that were no identified
with the basic PR. Therefore this experiment shows again that the presented
technique improves the classification computed using only the basic PR.

5. Other applications of the model

In the above sections we have seen that the framework defined in section
2 can be useful to classify users in SNSs. The experiments have shown that
we can introduce some more useful concepts. In this section we describe
three applications of the presented model.



5.1. Probability to be a leader

With e we have the opportunity to change the classification given by the
basic PR. For a given ¢ we could define the probability of node ¢ to be a
leader as v,(j), but since we can have the phenomenon of the cohabitation
it is formally better to do the following.

Definition 3. Given a directed graph G = (N,E), and 0 < ¢ < ”T_l, let L
and v, (j) given by Definition 2. We define the probability of node i € N to
€) = —velie)
be a leader as P(i,€) = S oG
For example, in the Zachary network we have that using our model node
12 can never win; i.e. vo(j = 12) = 0, Ve. Therefore P(12,¢) = 0, Ve.
Values of P(i,e) can be obtained from Table 4. For example P(34,¢ =
0.1) = 7/34 and P(34,¢ = 0.9706) = 1.

5.2. Classification of networks
The parameter € of the model can be used to classify networks.

Definition 4. Let G = (N, E) be a directed graph of a network and let L be
giwen by Definition 2. We say that the network is a democratic network if
there exists e such that for € < ec it holds that i € L, ¥Yi € N. In other
case we say the network is an oligarchic network of order p = cardl < n.
When p =1 we say the network is an absolute monarchy.

For example, network in Fig. 2 a) is an absolute monarchy, and network
in Fig. 2 b) is an oligarchic network of order 2 for all e. Zachary network is
an oligarchic network of order 33 for ¢ =0.001. Facebook network at Caltech
is a democratic network for € < 0.7.

5.3. PPR and linking strategies

We define the Best Potential Friend of a node, BPF', to be the node that
when linked to i, provides the highest increase in the PR of i. That is:

Definition 5. Let G = (N, &) be the initial graph. Let m;(G) denote the i
component of the PPR for some v. Giveni € N, let: P(i) ={j e N :i #
3. (G,i) & EY, the set of nodes that are not linked to i. £(i,j) = £ U{(j,i)},
with j € P(i), the initial set of edges plus a new edge from j to i. And let

-~

G(i,j) = (N,E(i,7)). Then we say that k € N is a BPF(i) if the following

~

conditions hold: 1) m;(G(i,k)) = maxjep(i)m(g(i,j)). 2) mi(G(i k) > m(G).

9



Figure 3: Node 8 is the basic leader

Consider the graph in Fig, 3. The basic leader is node 8. An easy compu-
tation shows that node 9 cannot win for any e. For ¢ < 0.84 there are more
than one leader. Focusing on node 6, we obtain that for € < 0.68 node 6 can
be a leader. Note that P(6) = {1,2,3,4,7,9,10} and G(6,1) is the initial
graph plus the new link that goes from 1 to 6. An easy computation, taking
v = e/n, shows that in the initial graph we have 74(G) = 0.1071. The results
corresponding to the resulting graphs when adding a new link to node 6 are
shown in Table 8. From this table we conclude that BPF(6) = 3. When
using v = vg(e = 0.5) then node 6 is the winner. Which is the BPF of node
87 We have: P(8) = G — {6,10}. An easy computation shows that, when
using v = vg(e = 0.5) the BPF of node 8 is node 5. It fact in this new graph
node 8 is again the winner.

j 1 2 3 4 7 9 10
76(G(6,5)) | 0.1343 0.1351 0.1355 0.1315 0.1324 0.1301 0.1294

Table 8: Computations for BPF(6) for the graph of Fig.3 using basic PR.

6. Conclusions

We have presented a theoretical framework that allows classifying users in
SNSs. This method allows to modify the usual classification made with the
PR with the standard personalization vector; i.e., the basic PR. Our model
uses PPR and therefore shares the computational and feasibility features of
the PR method. We have shown how to analyze the Leadership group using a

10



single parameter €. We have introduced the measure v, (€) that can be used as
a centrality measure. v (€) can also be used to distinguish communities. We
also have introduced the concept of probability to be a leader. In particular,
we have seen that the probability that a node wins could be greater than
the probability assigned to the basic leader to win. We have remarked the
differences between the basic PR and the PPR as computed in our model. We
have applied the method to some toy graphs and to two real networks. We
also have introduced a classification of networks based in our methodology.
We have introduced the concept of best potential friend which is related with
the optimal linking problem. In this line we address our future research.
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