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Abstract 

 
Nuclear power plant safety analysis is mainly based on models that predict the plant 
behavior under normal or accidental conditions. As the models introduce 
approximations, it is necessary to perform an uncertainty analysis of the results 
obtained. The most popular approach, based on Wilks’ method, obtains a 
tolerance/confidence interval, but it does not completely characterize the output variable 
behavior. In order to obtain more information about the output variable there exist 
different techniques to reconstruct the probability distribution using the information 
provided by a sample of values as, for example, the finite mixture models. In this paper, 
the Expectation Maximization and the k-means algorithms are used to obtain a finite 
mixture model that reconstructs the output variable probability distribution from data 
obtained with RELAP-5 simulations. Both methodologies were applied to a separated 
effects experiment, and an integral effects simulation.  
 
 
Keywords: thermal-hydraulic codes, uncertainty, finite mixture models, Expectation 
Maximization algorithm, k-means algorithm. 
 
 
1. Introduction 
 
Nuclear power plant safety analysis is mainly based on neutronic and thermal hydraulic 
models that predict the plant behavior under normal or accidental conditions (Guba et 
al., 2003). Thermal hydraulic calculations can be performed either using conservative or 
best estimate codes, providing this latter option more realistic results. Nevertheless, as 
the model introduces approximations, it is necessary to perform an uncertainty analysis 
of the results obtained. In this way, the general modeling methodology process 
comprises different steps, from capturing reality to conceptual models to convert those 
models to computerized codes. In this process there are always numerous 
simplifications, approximations, round-off errors, numerical techniques, and so on, 
which cause uncertainties in the calculation (Pourgol-Mohammad, 2009). Thus, the 
uncertainty of the results obtained with the code has to be quantified in order to give 
credit to the predictions obtained (Pourgol-Mohammad et al., 2011).  
 
From the last decade, the regulatory bodies allow the use of thermal hydraulic 
simulation codes to guarantee the safe operation of nuclear installations, but only if the 
uncertainty associated with the simulation is properly quantified (Boyack et al.,1990; 
Wilson et al., 1990; Wulf et al., 1990). The plant simulations undertaken using best 
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estimate codes combined with uncertainty analysis is known as Best Estimate Plus 
Uncertainty (BEPU) approach (Crécy et al. 2008).  
 
In the literature there exist different approaches to quantify uncertainty in best estimate 
codes. For example, in Cacuci and Ionescu-Bujor (2000a) and in Cacuci and Ionescu-
Bujor (2000b) a deterministic approach is followed using the adjoint sensitivity analysis 
method for RELAP code. This approach needs to implement the uncertainty 
quantification method in a new code, which has to be coupled with the thermal-
hydraulic code. This is known as an intrusive method as the original thermal hydraulic 
code has to be modified. But the most popular approaches to quantify code uncertainty 
are the non intrusive methods. Such approaches use the thermal-hydraulic code as a 
black box model, in which the output variables are linked to the input variables (Guba et 
al., 2003 ). That is, given and input variable vector, �⃗�, the computer code transforms it 
into a vector �⃗� of output variables, 
 
�⃗� (𝑡) = 𝑓(�⃗�, 𝑡 ).         (1) 
 
In practical, this link is very complex but it is assumed to be deterministic, that is, once 
the input variables are fixed the same output is obtained from the code within the 
computation accuracy of each run. In this situation, the uncertainty associated with the 
input variables will be propagated to the output variables, and should be quantified. 
Some of the non intrusive methodologies developed to quantify best estimate codes 
uncertainty are the CSAU (Boyeck et al.,1990; Wilson et al., 1990; Wulf et al., 1990), 
the GRS methodologies (Glaeser et al., 1994) ASTRUM and IMTHUA (Pourgol-
Mohammad, 2009). Reference Pourgol-Mohammad (2009) provides a detailed 
comparison of the uncertainty methodologies developed, and applied to the thermal 
hydraulic calculations.  
In these methodologies, it is assumed that the input variables are uncertain, and follow a 
statistical distribution. In this way, fixing the time of the transient, after N runs, N 
randomly samples of a varying output variable are obtained, which carry information on 
the fluctuating input and the code properties.  
 
The uncertainty in the output variables can be quantified by obtaining a 
tolerance/confidence interval, making use of the advantage of order statistics (Guba et 
al., 2003). Thus, assuming there is one output variable, y , with a probability distribution 
g(y). If we carry N runs with fluctuating inputs, we obtain a sample {𝑦1,𝑦2, … , 𝑦𝑁} of 
the random variable y . The usual approach is to construct two random functions 
𝐿 = 𝐿(𝑦1,𝑦2, … ,𝑦𝑁) and 𝑈 = 𝑈(𝑦1,𝑦2, … ,𝑦𝑁), called tolerance limits, such that  
 

𝑃 �∫ 𝑔(𝑦)𝑑𝑦 >  𝛾𝑈
𝐿 � = 𝛽,        (2) 
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where  
 

∫ 𝑔(𝑦)𝑑𝑦 =  𝐴(𝑦1,𝑦2, … ,𝑦𝑁)𝑈
𝐿 ,       (3) 

 
is a random variable, called probability content, which measures the portion of the 
distribution included in the random interval [𝐿,𝑈]. Probability 𝛽 is the confidence level, 
and 𝛾 is a non-negative real number not grater that 1. It is desirable to have values of 𝛽 
and 𝛾 as large as possible inside the interval [0, 1]. Having fixed 𝛽 and 𝛾, it becomes 
possible to determine the number of runs N necessary to determine an appropriate 
interval [L,U]. The first works that discussed the problem of setting 
tolerance/confidence intervals based on samples where developed by Wilks (1941), and 
they are the basis of uncertainty methodologies for quantifying best estimate codes 
uncertainty such as Glaesser (1994) and Guba et al. (2003). This approach has the 
advantage that the number of runs, N, necessary to determine the tolerance limits, is 
much lower than the runs necessary in a Monte Carlo approach. This is of great interest 
in the study of the uncertainty in best estimate codes, since, in most of situations, the 
code execution requires a high computational cost. However, the information provided 
by the tolerance limits methodology does not completely characterize the output 
variable behavior.  
 
In order to obtain more information about the output variable, there exist different 
techniques to reconstruct its probability distribution using the information provided by a 
sample of values. For example, recently, polynomial chaos expansion methods have 
been used to reconstruct the probability distribution and to estimate its parameters, as a 
lower number of runs are needed compared with Monte Carlo approaches (Sundret, 
2008; Eaton and Williams, 2010; Gili et al., 2012). This methodology provides very 
good results for unimodal distributions, but for multimodal probability distributions the 
order of the expansions needed to reconstruct the probability function increases and the 
computational cost becomes very large, especially in the multidimensional case (Nouy, 
2010).  
 
In the process of thermal hydraulic modelling using best estimate (BE) codes the initial 
plant state is represented by the initial and boundary conditions of the plant model, 
which are the input variables in the BE simulation. In many cases their values are 
unkown or uncertain, an such uncertainty is transmitted through the code to the output 
variable. So, assuming that the input variables are random and follow a certain 
probability distribution, if its variance or range of variation are small, generally, the 
probability distribution of the output variables can be reconstructed using polynomial 
chaos expansion and described by its first moment (mean) and its second moment 
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(variance), as the output variable follows an unimodal distribution. But if the variance 
or range of variation of the input variables is larger, the output variable distribution can 
become multimodal and the mean and the variance of its probability distribution are not 
enough to describe it.  
 
The analysis of multimodal distributions has been successfully carried out using finite 
mixture models. Finite mixtures of distributions have provided a mathematical-based 
approach to the statistical modeling of a wide variety of random phenomena, because 
they are able to represent arbitrarily complex probability density functions (McLachlan, 
2000). Because of their usefulness as an extremely flexible method of modeling, finite 
mixture models have continued to receive increasing attention over the years, from both 
a practical and theoretical point of view. Fields in which mixture models have been 
successfully applied include astronomy, biology, genetics, medicine, psychiatry, 
economics, engineering, and marketing, among many other fields in the biological, 
physical, and social sciences.  
 
So, the use of finite mixture models can be of interest in the uncertainty quantification 
of thermal-hydraulic simulations if the output variables to be studied follow multimodal 
probability distributions. Two approaches can be used: In the first one, a Gaussian 
mixture model is built to reconstruct the output variable probability distribution and 
then classify the results into different clusters that can be characterized by its mean and 
standard deviation. The second approach consists of performing a previous 
classification of the output variable to assure that the clusters obtained follow, 
approximately, a Gaussian distribution. From this previous classification, a Gaussian 
mixture model is built to reconstruct the complete probability distribution of the output 
variable. 
 
The rest of the paper is organized as follows: In section 2 finite mixture models, the 
Expectation Maximization based algorithm, section 3 reviews the k-means algorithm, 
section 4 presents two applications of both algorithms to a separated test effects, 
considering the experiments undertaken in the RIT facility and an integral test effects, 
considering a large break LOCA in a pressurized water reactor. Finally, section 5 
presents the conclusions of the work.  
 
2. Finite Mixture models  
 
Finite Mixture Modeling was introduced by Karl Pearson to study a population of crabs 
using Gaussian distributions, and a moments based approach to determine the mixture 
parameters. The interest on Finite Mixture Models has increased since Dempster et al. 
(1977) published the Expectation Maximization (EM) algorithm, since this algorithm 
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has simplified the process of computing the mixture parameters. In the following we 
review the finite mixture models and the estimation of the parameters from observed 
data, using the EM algorithm. 
 
Let y be a random variable, it is said that this variable follows a k-component finite 
mixture distribution if its probability density function can be written as: 
 

𝑓(𝑦) = � 𝜋𝑖 𝑓𝑖(𝑦)𝑘
𝑖=1 ,        (4) 

 
where 𝑓𝑖(𝑦) are the different probability density functions and 𝜋1,𝜋2 … ,𝜋𝑛  are the 
mixing probabilities satisfying 0 < 𝜋𝑖 < 1 ,   i = 1 … ,𝑘   and 
 
∑ 𝜋𝑖𝑘
𝑖=1 = 1 .          (5) 

 
For the particular case of a mixture of Gaussian distributions, the expression of  𝑓𝑖(𝑦) is 
given by: 
 

𝑓𝑖(𝑦) = 1
𝜎𝑖√2 𝜋

 𝑒
−
�𝑦−𝜇𝑖�

2

2𝜎𝑖2 ,        (6) 

 
where μi and σi are the mean and the standard deviation of the distribution, respectively. 
A finite mixture of Gaussian distributions is considered in this work, although more 
general mixtures can be defined.  
 
The standard method to fit finite mixture models to observed data is the Expectation 
Maximization (EM) algorithm (Dempster et al., 1997; McLachlan, 2000). In order to 
review how the EM algorithm works, we consider the particular case of a mixture of 
two Gaussian distributions given by 
 
𝑓(𝑦) = 𝜋1𝑓1(𝑦) + (1 − 𝜋1)𝑓2(𝑦),       (7) 
 
where the parameters of this distributions have to be estimated from the samples 
{𝑦1,𝑦2, … ,𝑦𝑛} of the variable y. The generalization of the method for a larger number of 
distributions is straight forward. 
 
The estimation of the mixture parameters using the maximum likelihood method 
implies to solve a system of nonlinear equations (McLachlan, 2000). Instead of using 
this method, the problem is interpreted as an incomplete data problem. In this way 
classification variables are introduced, 𝑧1𝑖 , 𝑧2𝑖 ,  𝑖 = 1, … ,𝑛; being  
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𝑧1𝑖 = � 1          
 0         

𝑖𝑓 𝑦𝑖 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑓1(𝑦)
𝑖𝑓 𝑦𝑖 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑓2(𝑦) ;          𝑧2𝑖 = � 0          

1        
𝑖𝑓 𝑦𝑖 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑓1(𝑦)
𝑖𝑓 𝑦𝑖 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑓2(𝑦) , (8) 

 
and satisfying 𝑧1𝑖 + 𝑧2𝑖 = 1. 
 
For a given observation of the variable, yj, calling 𝜃=(π1, μ1, σ1, μ2, σ2) the vector of the 
mixture parameters, we have the conditional probabilities  
 
𝑃�𝑦𝑗 , 𝑧1𝑗, 𝑧2𝑗|𝜃� = 𝑃�𝑦𝑗|𝑧1𝑗, 𝑧2𝑗 ,𝜃�𝑃�𝑧1𝑗, 𝑧2𝑗|𝜃�,     (9) 
where  
 

𝑃�𝑦𝑗|𝑧1𝑗, 𝑧2𝑗,𝜃� = 𝑓1
𝑧1𝑗�𝑦𝑗� 𝑓2

𝑧2𝑗(𝑦𝑗),      (10) 
and  
 

𝑃�𝑧1𝑗 , 𝑧2𝑗|𝜃� =  𝜋1
𝑧1𝑗  (1 − 𝜋1 )𝑧2𝑗.       (11) 

Thus, for a sample yj , we can write 
 

𝑃�𝑦𝑗 , 𝑧1𝑗, 𝑧2𝑗|𝜃� = 𝑓1
𝑧1𝑗�𝑦𝑗� 𝑓2

𝑧2𝑗�𝑦𝑗� 𝜋1
𝑧1𝑗  (1 − 𝜋1 )𝑧2𝑗,    (12) 

and the logarithm 
 

log �𝑃�𝑦𝑗 , 𝑧1𝑗, 𝑧2𝑗�𝜃�� = 𝑧1𝑗 log �𝑓1�𝑦𝑗�� + 𝑧1𝑗 log(𝜋1) + 𝑧2𝑗 log �𝑓2�𝑦𝑗�� +

𝑧2𝑗 log(1 − 𝜋1) .         (13) 
 
For the n samples 𝑦 = (𝑦1,𝑦2, … ,𝑦𝑛) we can write 
 
𝐿(𝑦, 𝑧|𝜃) = 𝑙𝑜𝑔�𝑃(𝑦, 𝑧|𝜃)� =

∑ �𝑧1𝑗 log �𝑓1�𝑦𝑗�� + 𝑧1𝑗 log(𝜋1) + 𝑧2𝑗 log �𝑓2�𝑦𝑗�� + 𝑧2𝑗 log(1 − 𝜋1) �𝑛
𝑗=1 . (14) 

 
To apply the EM algorithm we need an initial estimation of the parameters, which is 
taken for the z variables, 𝑧(1). With this estimation, the means and the standard 
deviations are initialized as 
 

𝜇1
(1) =

∑ 𝑧1𝑗
(1)𝑦𝑗𝑛

𝑗=1

∑ 𝑧1𝑗
(1)𝑛

𝑗=1
 ;              𝜇2

(1) =
∑ 𝑧2𝑗

(1)𝑦𝑗𝑛
𝑗=1

∑ 𝑧2𝑗
(1)𝑛

𝑗=1
,      (15) 

 

𝜎1
2(1) =

∑ 𝑧1𝑗
(1)(𝑦𝑗−𝜇1

(1))2𝑛
𝑗=1

∑ 𝑧1𝑗
(1)𝑛

𝑗=1
;       𝜎2

2(1) =
∑ 𝑧2𝑗

(1)(𝑦𝑗−𝜇2
(1))2𝑛

𝑗=1

∑ 𝑧2𝑗
(1)𝑛

𝑗=1
,    (16) 
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and, finally, the probability  
 

𝜋1
(1) =

∑ 𝑧1𝑗
(1)𝑛

𝑗=1

𝑛
.         (17) 

 
With this initialization the algorithm follows with the expectation step,  
 

𝑧1𝑗
(𝑖) = 𝑃 �𝑧1𝑗 = 1�𝜃(𝑖−1),𝑦𝑗� = 𝜋1

(𝑖−1)𝑓1(𝑦𝑗,𝜃(𝑖−1))

𝜋1
(𝑖−1)𝑓1�𝑦𝑖,𝜃(𝑖−1)�+�1−𝜋1

(𝑖−1)�𝑓2(𝑦𝑖,𝜃(𝑖−1))
 ,  (18) 

𝑧2𝑗
(𝑖) = 𝑃 �𝑧2𝑗 = 1�𝜃(𝑖−1),𝑦𝑗� =

�1−𝜋1
(𝑖−1)�𝑓2(𝑦𝑗,𝜃(𝑖−1))

𝜋1
(𝑖−1)𝑓1�𝑦𝑖,𝜃(𝑖−1)�+�1−𝜋1

(𝑖−1)�𝑓2(𝑦𝑖,𝜃(𝑖−1))
,  (19) 

 
which is a result of applying the Bayes’ rule (McLachlan and Krishnan, 2008).  
 
After the expectation step, the maximization step follows updating the means, standard 
deviations and the mixing probabilities by means of: 
 

𝜇1
(𝑖) =

∑ 𝑧1𝑗
(𝑖)𝑦𝑗𝑛

𝑗=1

∑ 𝑧1𝑗
(𝑖)𝑛

𝑗=1
 ;              𝜇2

(𝑖) =
∑ 𝑧2𝑗

(𝑖)𝑦𝑗𝑛
𝑗=1

∑ 𝑧2𝑗
(𝑖)𝑛

𝑗=1
,      (20) 

 

𝜎1
2(𝑖) =

∑ 𝑧1𝑗
(𝑖)(𝑦𝑗−𝜇1

(𝑖))2𝑛
𝑗=1

∑ 𝑧1𝑗
(𝑖)𝑛

𝑗=1
;       𝜎2

2(𝑖) =
∑ 𝑧2𝑗

(𝑖)(𝑦𝑗−𝜇2
(𝑖))2𝑛

𝑗=1

∑ 𝑧2𝑗
(𝑖)𝑛

𝑗=1
,    (21) 

 

𝜋1
(𝑖) =

∑ 𝑧1𝑗
(𝑖)𝑛

𝑗=1

𝑛
 .         (22) 

 
The EM algorithm has several drawbacks (Figuereido and Jain, 2002), it is a local 
method, that is, it obtains local maxima of the likelihood function, and it is sensitive to 
the initialization used because the likelihood function of a mixture model can have 
several maxima. In Figuereido and Jain (2002) some modifications to EM algorithm are 
done to mitigate these problems. Such modifications include a criterion to select the 
optimal number of Gaussian distributions in the finite mixture model based on the 
Minimum Message Length criterion (MML) (Oliver et al. 1996). The implementation 
proposed by Figuereido and Jain (2002) is the one used in this paper.  
 
Once the finite mixture model is obtained from the samples of a given variable, 
different clusters can be defined associated with each Gaussian distribution. It is 
assumed that a sample yj belongs to the ith-cluster if it satisfies 
 
�𝑦𝑗 − 𝜇𝑖� ≤ 3𝜎𝑖 .         (23) 
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The objective to construct the clusters is that inside each one of the clusters the output 
variable approximately follows a Gaussian distribution and can be characterized using 
its mean and the standard deviation, which is the usual approach followed in uncertainty 
quantification.   
 
 
3.- K-means algorithm 
 
An alternative approach to study a multimodal distribution from a population is to 
perform a previous classification of the population into clusters that approximately 
follow a Gaussian distribution. A possible classification is obtained from the k-means 
algorithm. There are many interpretations for this method, but all of them follow similar 
guidelines (Jain and Dubes, 1998).  
 
Let us assume that we start with a sample of n values of a given variable {𝑦1, … ,𝑦𝑛} that 
has to be grouped in k clusters {𝑐1, … , 𝑐𝑘} with a ng data per cluster, in such a way that  
 
∑ 𝑛𝑔 = 𝑛𝑘
𝑔=1  .         (23) 

 
The centroids of each cluster are 

𝑦�𝑔 = 1
𝑛𝑔
∑ 𝑦𝑖
𝑛𝑔
𝑖=1 ,         (24) 

the square error for each cluster is  
 

𝑒𝑔2 = ∑ (𝑦𝑖 − 𝑦�(𝑔))𝑇(𝑦𝑖 − 𝑦�(𝑔))𝑛𝑔
𝑖=1 ,       (25) 

 
and the total square error is 
 
𝐸𝐾2 = ∑ 𝑒𝑔2𝑘

𝑔=1  .         (26) 
 
The k-means method to obtain the k-clusters has the following steps: 
 
Step 1.- Select an initial partion with k-clusters and compute the centroid of each 
cluster. 
 
Step 2.- Generate a new partition by assigning each pattern to its clostest cluster 
centroid. 
 
Step 3.- Compute new cluster centers as the centroids of the each cluster. 
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Step 4.- Repeat steps 2 and 3 until an optimum value of the square error function is 
found. 
 
Step 5.- Adjust the number of clusters by merging and splitting existing clusters or by 
removing small or outlier clusters.  
 
This algorithm presents some weakness. For example, when the number of data is small 
the initial grouping will determine the final clustering. Moreover, the number of clusters 
has to be defined beforehand. And also it is not robust to outliers, that is, very far data 
from the centroids may pull the centroid away from the real one. Many implementations 
of the different steps of the method have been proposed to minimize these drawbacks. 
The particular implementation used here is the one included in the kmeans() function of 
MatLab package (Sober, 1984; Spath, 1985).  
 
Once the k clusters {𝑐1, … , 𝑐𝑘} are obtained with a ni data per cluster, the mean, μi, and 
the standard deviation, σi, are computed for each one of the clusters. A finite mixture 
model can be built as  
 

𝑓(𝑦) = � 𝜋𝑖 𝑓𝑖(𝑦)𝑘
𝑖=1 ,        (27) 

 
being fi(y)  
 

𝑓𝑖(𝑦) = 1
𝜎𝑖√2 𝜋

 𝑒
−
�𝑦−𝜇𝑖�

2

2𝜎𝑖2 ,        (28) 

 
and the probability mixtures are  
 
𝜋𝑖 = 𝑛𝑖

𝑛
 .          (29) 

4.- Thermal-hydraulic simulations 
 
In the following we will study the uncertainty propagation for typical transients using 
the best estimate code RELAP5 (Information Systems Laboratories, 2001) where the 
output variables follow multimodal distributions showing the usefulness of finite 
mixture technique to describe them. Also a clustering technique will be investigated to 
classify the output variables into several groups following a Gaussian distribution. In 
particular the probability distribution function of the maximum wall temperature is 
reconstructed for a dry-out transient associated with an experiment in the Royal Institute 
of technology facility. Also, the peak cladding temperature (PCT) distribution obtained 
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from a loss of coolant accident in a typical PWR is reconstructed, using both the EM 
and k-means algorithms. 
 
 
4.1. Royal Institute of technology transients 
 
In the scope of the International Thermal-Hydraulic Code Assessment and Application 
Program (ICAP), a series of experiments were performed on the RIT facility to study 
the accuracy of the thermal-hydraulic codes to simulate the post-dry-out heat transfer 
process. ICAP program is oriented to assess the codes capabilities in order to improve 
future code versions.  
 
Fig. 1 shows a simplified flow diagram of the RIT facility (Nilsson, 1993). In this 
Figure we can observe the test section, which is constituted by a vertical pipe. This pipe 
is electrically heated and the wall temperatures are measured by different thermocouples 
distributed along its length, as shown in Fig 2. 

 

P

T

P

T

T

preheater

filter

bypass

recirculation pump

feedwater 
pump

Test section

dP

 
Fig. 1. Diagram of the RIT experimental facility. 
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Fig. 2. Placement of the thermocouples in the heated pipe and nodalization for the 
RELAP5 model. 

 
As the important phenomena take place inside the vertical pipe, the RELAP5 plant 
model only considers this zone, and the rest of the installation is substituted by 
boundary conditions. As can be observed in Fig 2., the length of the volumes that 
constitute the PIPE element has been chosen according to the location of the 
thermocouples, to guarantee the temperature calculated by RELAP5 corresponds to an 
experimental measure.  
 
The boundary conditions are defined at the bottom of the PIPE by a TMDPVOL 
connected to the PIPE by a TMDPJUN, to assure that the pressure and the inlet mass 
flow will remain constant along the simulation. At the top of the PIPE a TMDPVOL 
defines a constant pressure during the transient. Using this plant model several 
transients were performed with different conditions. In this paper experiment 136 has 
been selected to perform the uncertainty analysis. The parameters which define the 
transient are shown in Table 1 (Nilsson, 1993). 
 
Table 1. 
Experiment RIT 136 parameters 

Pressure 
(MPa) 

Mass flux 
(kg/s) 

Inlet temp. 
(ºK) 

Heat flux 
(kW/m2) 

Measured CHF 
localization 

(m) 

Oulet steam 
quality 

(x) 

6,90
6,80

6,70
6,60

6,40
6,50

6,30

6,95

6,20
6,10

6,00

5,80
5,90

5,60
5,50

5,70

5,40

5,20
5,30

5,10
5,00

4,80
4,90

4,70
4,60

4,50
4,40

4,20
4,30

4,10
4,00

3,90
3,80

3,70
3,60

3,40
3,50

3,30
3,20

3,00
3,10

2,75

2,50

2,25

2,00

1,75

1,50
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13.99 0.34456 599.6 509 5.55 0.384 
 
 
Taking data from experiment RIT-136 as a base case, different examples have been 
analyzed changing the range and number of the uncertain input variables and 
reconstructing the probability distribution of the maximum wall temperature.  
 
4.1.1. RIT-C1: Uncertain mass flux. Unimodal output. 
 
First, we study the uncertainty propagation when only one input variable is considered 
as uncertain. In particular, we assume that the inlet mass flux can be described as a 
Gaussian distribution with mean 0.34456 kg/s and a standard deviation of 0.025 kg/s. 
As output variable to be studied we use the maximum wall temperature reached in the 
pipe. This example will be referred as RIT-C1. 
 
In order to reconstruct the output variable probability distribution we obtained three 
populations of size 100, 500 and 40000 for the inlet mass flux and by executing 
RELAP5 we obtained their corresponding populations for the maximum wall 
temperature. For all of these populations the output variable follows an unimodal 
distribution, shown in Fig 3., that can be fitted using a Gaussian distribution, with the 
parameters shown in Table 2. As the values of the parameters exposed in Table 2 are 
quite close, a sample of size 100 is sufficient to approximately describe the maximum 
wall temperature distribution.  

 
Fig 3. RIT-C1 maximum wall temperature and Gaussian mass flux histograms. 

 
Table 2. 
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RIT-C1 parameters of the Gaussian maximum temperature distribution for different 
sample sizes. 
Sample size Mean Standard Deviation 
100 684.42 3.41 
1000 684.53 3.19 
4000 684.73 3.22 

 
 
4.1.2. RIT-C2 Case. Uncertain mass flux. Multimodal output. 
 
If the variance of the inlet mass flux distribution is increased, the maximum temperature 
distribution becomes multimodal. In this example, referred as RIT-C2, we have 
considered that the input variable follows a Gaussian distribution N(0.34456, 0.05) kg/s. 
The histograms associated with the output and the input variables are shown in Fig 4.  
 
This is due to the fact that there are some values of the mass flux that do not lead to a 
dry-out in the heated zone (see Fig.1 and Fig. 2), the heat is properly removed and the 
pipe is always full of water, so the temperature remains at the initial temperature during 
all the transient, which correspond to the values near 620 K in Fig. 4. If the mass flux 
value leads to a dry-out in the heated zone the wall temperature rises, obtaining values 
of temperature between 660 K and 740 K, as it is also observed in Fig 4.  
 

 
Fig 4. RIT-C2 maximum wall temperature and Gaussian mass flux histograms. 

 
As can be observed in Fig 4, the histogram obtained for the maximum temperature 
presents several maxima, and the probability distribution followed by this variable is 
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multimodal. To describe this distribution, a mixture of three Gaussians is used, which is 
the optimal number of Gaussian distributions provided by the EM algorithm. 
 

𝑓𝑖(𝑦) = 𝜋1
1

𝜎1√2 𝜋
 𝑒−

(𝑦−𝜇1)2

2𝜎12 + 𝜋2
1

𝜎2√2 𝜋
 𝑒−

(𝑦−𝜇2)2

2𝜎22 + 𝜋3
1

𝜎3√2 𝜋
 𝑒−

(𝑦−𝜇3)2

2𝜎32  .  

 
To reconstruct the probability distribution two methods will be used. In the first one, the 
finite mixture parameters will be obtained by means of the EM algorithm, explained in 
section 2. To use this method three population sample sizes of 100, 1000 and 4000, 
respectively, have been considered. The parameters of the reconstructed mixture with 
the EM method are shown in Table 3.  
 

Table 3.  
RIT-C2 parameters of the finite mixture of Gaussian distributions obtained with the 
EM algorithm considering different sample sizes. 

Sample 
size 

Probabilities 
(π 1, π 2, π3) 

Means 
(μ1, μ2, μ3) 

Standard Deviations 
(σ1, σ2, σ3) 

100 (0.13, 0.37, 0.50,) (620.65, 674.50, 700.33,) (0.06, 1.94,11.52) 
1000 (0.11, 0.32, 0.57) (620.68,673.78, 697.91) (0.03,1.78,12.51) 
4000 (0.12, 0.27, 0.61) (620.68, 673.92,697.92) (0.01, 1.73, 13.51) 

 
Fig. 5. shows the histogram of the maximum wall temperature distribution and its 
reconstruction using the finite mixture model obtained by the EM algorithm when a 
sample of 4000 runs are considered. 
 

 
Fig. 5. RIT-C2 case histogram and EM reconstruction of the maximum temperature 

distribution. 
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From the parameters found for the mean and standard deviation in the finite mixture 
model, it is possible to divide the population of the output variable into three different 
clusters. Considering into a cluster those values of temperature whose distance to a 
given mean is less than three times its corresponding standard deviation. That is, 
cluster 𝑐𝑖 satisfies, 

𝑐𝑖 = {𝑦 ∶  |𝑦 − 𝜇𝑖| ≤ 3𝜎𝑖} . 
 
This clustering in the output variable induces the corresponding clustering in the input 
variable, which is the mass flux measured in kg/s, shown in Table 4. 
 

Table. 4. RIT-C2 clusters for mass flux, using the finite mixtures obtained 
with the EM algorithm. 

Sample size Cluster1  Cluster 2 Cluster 3 
100 [0.24, 0.40] [0.35, 0.40] [0.40, 0.52] 
1000 [0.20, 0.40] [0.35, 0.40] [0.40, 0.49] 
4000 [0.20, 0.40] [0.35, 0.40] [0.40, 0.47] 

 
The second method used to reconstruct the probability distribution of the output variable 
is based on the use of the k-means algorithm, described in section 3. Once the clusters, 
ci, are obtained the mean, standard deviation and the probability weights of the finite 
mixture model are computed using expressions (20), (21) and (22), respectively.  
 
In order to compare the results obtained with both methods, three clusters are 
preselected for the k-means algorithm, as this is the optimal number of Gaussians 
provided by the EM algorithm.  
 
The different clusters performed by the k-means algorithm in the maximum temperature 
induce a clustering in the input variable (mass flux in this case of application) presented 
in Table 5. Comparing Table 4 and Table 5 we can observe that both methodologies 
provide similar results for case RIT-C2.  
 
Table 5. RIT-C2 clusters for mass flux obtained with the k-means algorithm for 
different sample sizes. 
Sample size Cluster 1  Cluster 2 Cluster 3 
100 [0.24, 0.33] [0.34,0.40] [0.40, 0.52] 
1000 [0.20, 0.34] [0.34, 0.40] [0.40, 0.52] 
4000 [0.17, 0.33] [0.33, 0.40] [0.40, 0.52] 

 
To reconstruct the maximum wall temperature distribution, the parameters of the finite 
mixture model are obtained using expressions (27), (28) and (29) for each one of the 
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clusters predicted by the k-means algorithm. Table 6 presents the parameters obtained 
with the k-means algorithm for this case of application. Fig. 6 shows the histogram and 
the reconstructed distribution obtained with the parameters of Table 6.  
 
Table 6. RIT-C2 parameters of the finite mixture of Gaussian distributions obtained 
from the k-means algorithm using different number of samples. 
Number 
of samples 

Probabilities 
(π 1, π 2, π3) 

Means 
(μ1, μ2, μ3) 

Standard Deviations 
(σ1, σ2, σ3) 

100 (0.14, 0.46, 0.40) (620.65, 676.40, 704.60) (0.06, 4.46, 8.53) 
1000 (0.12, 0.47, 0.41) (620.67, 676.69, 704.18) (0.03, 5.14, 8.50) 
4000 (0.12, 0.46, 0.42) (620.68, 677.49, 704.98) (0.02, 5.61, 8.50) 
 

 
Fig. 6. RIT-C2 case histogram and k-means reconstruction of the maximum temperature 

distribution. 
It can be observed that the reconstructions provided by EM algorithm and k-means 
algorithm are slightly different, see Fig.5 and Fig. 6. In particular, for the second 
Gaussian distribution obtained the k-means algorithm predicts a larger standard 
deviation, and the mean is shifted to a higher value, as can be observed comparing 
Tables 3 and 6. 
 
4.1.3. RIT-C3 Case. Uncertain mass flux and power. 
 
A similar study has been developed assuming that there are two uncertain input 
variables, mass flux (kg/s) and power (W), which are considered to follow Gaussian 
distributions N(0.344, 0.025) and N(23826.20, 1191.31), respectively. This example is 
referred as RIT-C3 case. The histograms associated with the output variable, which is 
the maximum wall temperature, and the input variables, mass flux and power, are 
shown in Fig 7. It is observed that, in this case the probability distribution of the output 
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variable is also a multimodal distribution. To reconstruct this distribution a finite 
mixture of three Gaussian distributions is used. 

 
Fig. 7. RIT-C3 maximum wall temperature distribution, mass flux and power 

histograms. 
 
The parameters of the reconstructed finite mixture using the EM method are shown in 
Table 7, for different sample sizes.  
 

Table 7.  
RIT-C3 parameters of the finite mixture of Gaussian distributions computed with the 
EM algorithm for different samples sizes. 
Sample 
size 

Probabilities 
(π 1, π 2, π3) 

Means 
(μ1, μ2, μ3) 

Standard Deviations 
(σ1, σ2, σ3) 

100 (0.04, 0.53, 0.43) (620.23, 677.97, 697.41) (0.18, 3.63, 7.33) 
1000 (0.06, 0.42,0.52) (620.23, 676.02, 695.49) (0.19, 3.19, 8.63) 
4000 (0.07, 0.42, 0.51) (620.17, 676.65, 696.29) (0.24, 3.60, 8.17) 

 
Fig. 8 shows the histogram and its reconstruction using the finite mixture model 
obtained using a sample size of 4000. 
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Fig. 8. RIT-C3 maximum temperature histogram and finite mixture reconstruction. 

 
From the finite mixture model, we can obtain three clusters or intervals in the maximum 
temperature, corresponding with the three Gaussian distributions of the mixture. These 
intervals divide the plane mass flux-power in three regions where the maximum 
temperature follows a Gaussian distribution. Fig. 9 shows the different clusters in mass 
flux and power induced by the finite mixture obtained using a sample size of 4000. This 
previous classification of the regions of the possible values of power and mass flux is 
necessary if a classical uncertainty quantification for the maximum wall temperature is 
carried out. 

 
Fig. 9. Clustering in mass flux and power induced by the Gaussian finite mixture model 

in RIT-C3. 
 
For the RIT-C3 case, the clustering in mass flux and power induced by the k-means 
algorithm for a sample size of 4000 is presented in Fig 10. This method provides more 
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independent clusters than the finite Gaussian mixture, as can be observed when 
comparing Fig. 9 and Fig 10. 
 

 
Fig. 10. Clustering in mass flux and power induced by the k-means in RIT-C3 case. 

 
The parameters obtained for the finite mixture of Gaussian distributions computed form 
the clusters in the maximum temperature obtained with the k-means algorithm are 
shown in Table 8. In this Table, it can be observed that the parameters are quite similar 
for any sample size, so using the smallest sample size it would be sufficient to 
reconstruct the temperature probability distribution.  
  

Table 8. 
RIT-C3 parameters of the finite mixture of Gaussian distributions obtained from the 
k-means classification for different sample sizes. 
Number 
of samples 

Probabilities 
(π 1, π 2, π3) 

Means 
(μ1, μ2, μ3) 

Standard Deviations 
(σ1, σ2, σ3) 

100 (0.05, 0.56, 0.39) (620.23, 678.46, 698.86) (0.20, 4.00, 6.26) 
1000 (0.06, 0.54, 0.40) (620.23, 677.75, 699.01) (0.19, 4.62, 6.31)  
4000 (0.07, 0.53, 0.41) (620.17, 678.28, 699.25) (0.24, 4.81, 6.17) 

 
The histogram of the maximum temperature and its reconstruction with the finite 
mixture of Gaussian distributions computed from the k-means classification when 4000 
samples are used is shown in Fig. 11.  
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Fig. 11. RIT-C3 maximum temperature histogram and finite mixture reconstruction 

using k-means algorithm. 
 
 
4. Pressurized Water Reactor 4” LOCA. 
 
The model used in this analysis corresponds to a four loop Pressurized Water Reactor of 
3600 MW of nominal power. The model constitutes one of the RELAP5 test cases 
recognized by typpwr.i. This input file is used to simulate a small break in the cold leg 
of a four loop PWR. In this particular model, three of the loops have been lumped, so 
the plant model used in the calculations constitutes a two asymmetric PWR. The loop 
containing the break is modeled as a single loop, and is presented in Fig. 12, but the 
other three loops are coalesced into one loop. The model also contains the steam 
generators secondary side of each of the two steam generators and the safety injections 
are modeled as boundary conditions. The transient is initiated by the break opening, 
after that a scram signal is activated, scram is produced and the primary pumps stop, 
and then safety injections actuate. 
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Fig. 12. Broken leg nodalization of the typical PWR model. 
 
 
4.1. PWR-C1 Case: Uncertain break area. 
 
In this case of application the input parameter considered uncertain is the break area, 
and it is supposed to follow a Gaussian distribution N(0.012,0.002) m2, and the output 
variable to be studied is the Peak Cladding Temperature (PCT). This case of application 
is called PWR-C1. Fig. 13 shows the histograms associated with the maximum PCT and 
the break area considering a sample size of 4000.  
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Fig. 13. PWR-C1 maximum wall temperature and break area probability distributions. 

 
In Fig 13, it can be observed that the histogram of the temperature presents two clear 
maxima, what coincides with the optimal number of Gaussians predicted by the EM 
algorithm. The results obtained using the EM algorithm to fit the parameters of the 
mixture model, are presented in Table 9. The highest mean temperature value remains 
quite stable for all the sample sizes as well as its standard deviation. However, to get a 
stable value of the lowers mean more than 100 runs are needed. The Gaussian 
distribution associated with lower temperature values has a large standard deviation. 
 
Table 9. 
PWR-C1 parameters of the finite mixture of Gaussian distributions computed with the 
EM algorithm for different samples sizes. 
Sample size Probabilities 

(π 1, π 2) 
Means 
(μ1, μ2) 

Standard Deviations 
(σ1, σ2) 

100 (0.20, 0.80) (805.90, 1304.50) (169.78, 78.51)  
1000 (0.17, 0.83) (748.50, 1299.30) (163.63, 80.96) 
4000 (0.17, 0.83) (745.70, 1295.20) (155.14, 81.90) 
 
Fig. 14 shows the histogram of the PCT and its reconstruction for a sample size of 4000 
and using a finite mixture of two Gaussians, with the parameters presented in Table 9. It 
can be observed that the model reconstructs quite accurately the peak of high values of 
temperature, but it fails to predict the distribution for low temperature values. This must 
be due to the asymmetry of the probability distribution of the temperature in the region 
of low temperatures. Such behavior can be explained by the value of the initial 
temperature value, which takes a value of 600 K, so if there is any run in which the 
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safety system injection could decrease this value it is not taken into consideration in this 
application as the value recorded is always the maximum one.  

 
Fig. 14. PWR-C1 PCT reconstruction using the EM algorithm. 

 
The clustering induced by the finite mixture model in the break area is presented in 
Table 10. In this case, both clusters are overlapped, since the standard deviation of the 
Gaussian obtained to predict the range of temperatures [600, 1000] is quite large (see 
Table 9) and this produces an overlapping of both clusters. 
 
Table 10. 
PWR-C1 break area clusters obtained using the EM algorithm. 
Sample size Cluster1  Cluster 2 
100 [0.10, 0.17] [0.07, 0.17] 
1000 [0.06, 0.17] [0.09, 0.20] 
4000 [0.09, 0.20] [0.05, 0.20] 

 
The same problem is studied using the k-means method and assuming that the 
distribution can be reconstructed using two Gaussian distributions. The k-means 
algorithm provides the clusters in the break area values, presented in Table 11. It can be 
observed that also in this case the clusters predicted are not independent. 
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Table 11. 
PWR-C1 break area clusters obtained using k-means algorithm. 
Sample size Cluster1  Cluster 2 
100 [0.07, 0.15] [0.10, 0.17] 
1000 [0.06, 0.15] [0.09, 0.20] 
4000 [0.06, 0.12] [0.09, 0.20] 

 
The parameters obtained to reconstruct the PCT distribution using the k-means method 
are exposed in Table 12. And Fig. 15 shows the histogram and the reconstruction of the 
PCT distribution predicted by the k-means algorithm. 
 
Table 12.  
PWR-C1 parameters of the finite mixture of Gaussian distributions computed with the 
k-means algorithm for different samples. 
Sample size Probabilities 

(π 1, π 2) 
Means 
(μ1, μ2) 

Standard Deviations 
(σ1, σ2) 

100 (0.17, 0.83) (750.25, 1295.40) (127.62, 90.03) 
1000 (0.16, 0.84) (701.47, 1292.80) (116.56, 89.07)  
4000 (0.15, 0.85) (711.88, 1290.50) (121.69, 87.86) 
 

 
Fig. 15. PWR-C1 PCT reconstruction using k-means method for two Gaussians. 

 
4.2. PWR-C2 Case: Uncertain break area and nominal power. 
 
This second case of application considers the break area and nominal power as 
uncertain parameters for the LOCA transient. Assuming that the break area follows a 
distribution N(0.012,0.002) m2, and the power is modeled as N(3600, 36) MW, the 
objective is to reconstruct the PCT distribution. This case is referred as PWR-C2. Fig. 
16 shows the histogram of the PCT distribution together with the histograms of the 
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break area and the power values. All these histograms have been obtained with a sample 
size of 4000.  

 
Fig. 16. PWR-C2. PCT, break area and power histograms. 

 
The parameters of the finite mixture obtained with the EM algorithm are presented in 
Table 13 for different number of sample sizes, and Fig. 17 shows the histogram 
associated with of the PCT and its reconstruction using the finite mixture model, with 
the parameters of Table 13 for a sample size of 4000.  
 
Table 13. PWR-C2 parameters of the Gaussian mixture for the PCT distribution for 
different number of sample sizes. 
Sample 
size 

Probabilities 
(π 1, π 2) 

Means 
(μ1, μ2) 

Standard Deviations 
(σ1, σ2) 

100 (0.13, 0.87) (780.10, 1307.50) (167.35, 69.77) 
1000 (0.17, 0.83) (785.20, 1289.20) (171.51, 79.98) 
4000 (0.16, 0.84) (736.40, 1291.10) (139.78, 86.51) 
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Fig. 17. PWR-C2 PCT probability distribution reconstruction using EM algorithm. 

 
The finite mixture model obtained with the EM algorithm induces the clustering in the 
plane break area-power presented in Fig. 18, for a sample size of 4000. In the Figure an 
overlapping of both clusters is observed, due to the large standard deviation predicted 
for the first Gaussian distribution (see table 13).  

 
Fig. 18. PWR-C2. Clusters in break area and power induced by the EM algorithm. 

 
Finally, the same problem was solved using the k-means method to reconstruct the PCT 
distribution considering the break area and the power as uncertain inputs. The clusters 
induced by the k-means algorithm for break area and power values are shown in Fig. 19. 
Also, with this method it can be observed an overlap of the two clusters associated with 
the two Gaussian distributions. Such situation is due again to the large standard 
deviation predicted for the Gaussian distribution obtained for low values of the 
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temperatures. Nevertheless, the values obtained using the k-means method are not so 
large as the ones predicted by the finite mixture model, as it can be observed by 
comparing the values presented in Table 13 and Table14.  

 
Fig. 19. PWR-C2. Clustering in break area and power induced by the k-means 

algorithm. 
 
The parameters for the Gaussian mixture model obtained from the clusters computed 
with the k-means algorithm using different number of sample sizes are exposed in Table 
14. Once again the Gaussian for high PCT values is quite stable, but this is not the case 
for low temperature values, and also the standard deviations in this cluster are quiet 
large. 
 
Table 14. Parameters of the Gaussian mixture model obtained from the k-means 
method using different number of runs for case PWR-C2 case. 
Number of 
runs 

Probabilities 
(π 1, π 2) 

Means 
(μ1, μ2) 

Standard Deviations 
(σ1, σ2) 

100 (0.12, 0.88) (746.54, 1304.10) (145.65, 75.58) 
1000 (0.15, 0.85) (739.89, 1284.20) (131.98, 85.78) 
4000 (0.15, 0.85) (722.17, 1288.80) (125.69, 89.34) 

 
Fig. 20 shows the histogram for the PCT and its reconstruction with the k-means 
method using a sample size of 4000 for the PWR-C2 case. 
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Fig. 20. PWR-C2. PCT probability distribution reconstruction using k-means algorithm. 
 
We observe that the k-means method also fails to reconstruct the probability distribution 
for the region of low temperatures, where the probability distribution is asymmetric. In 
fact the PCT distribution reconstructed with the k-means is practically identical to the 
one reconstructed using the EM algorithm, as can be observed comparing Fig. 17 and 
Fig. 20. 
 
 
5. Conclusions 
 
As thermal-hydraulic simulations using best estimate codes play an important role in 
Nuclear Power Plants safety analysis, it is also important to analyze the uncertainty 
associated with such simulations, and its propagation to the code results. Great advances 
have been made during the last years using statistical techniques as the order statistics, 
which provides a tolerance/confidence interval of the output variable. However, there is 
not a complete knowledge of the output variable probability distribution. Finite mixture 
models have been successfully used to reconstruct the probability distribution of 
random variables, even if such probability distribution presents a multimodal behavior.  
 
This paper presents two different methodologies to reconstruct the output variable 
probability distribution of a best estimate code using a Gaussian mixture model: The 
EM and the k- means algorithms. Both techniques have been applied in the study of the 
uncertainty of two typical applications. A separated effects problem has been analyzed 
using both methods, considering the maximum wall temperature as output variable, 
obtaining good agreement between the reconstructed distribution and the histogram. 
Moreover, using the finite mixture techniques it has been possible to cluster the input 
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variable domains induced by the value of the output variable, which is of great interest 
to estimate the value of the output depending on the value of the input parameters 
selected. The definition of the different clusters in the input variables, also allows 
assuming an approximate Gaussian behavior of the output variable inside each cluster, 
where the classical statistical analysis can be applied.  
 
The EM and k-means methods have also be applied to an integral effects problem. In 
this case the reconstructed distribution agrees with the histogram for high temperature 
values but they fail to reproduce the low range of temperatures. This situation is due to 
the asymmetric behavior of the PCT given by boundary conditions. That is, there exist 
many situations in which safety systems are able to maintain the PCT at the initial 
value. In any case, the reconstructed PCT can give us an estimation of the probability of 
exceeding its limit value. In this application the clusters induced by the PCT are 
overlapped, so a deeper study on how to tackle this situation is needed. The results in 
this case of application could be improved if more general finite mixture models where 
asymmetrical distributions are considered. 
 
 
Acknowledgements 
This work has been partially supported by the Consejo de Seguridad Nuclear under the 
contract with reference STN/2369/08/640.  
 
 


