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Abstract: Reducing the stiffness of titanium is an important issue to improve the behavior 

of this material when working together with bone, which can be achieved by generating a 

porous structure. The aim of this research was to analyze the porosity and mechanical 

behavior of Ti–6Al–4V porous samples developed by spherical powder sintering. Four 

different microsphere sizes were sintered at temperatures ranging from 1300 to 1400 °C for 

2, 4 and 8 h. An open, interconnected porosity was obtained, with mean pore sizes ranging 

from 54.6 to 140 µm. The stiffness of the samples diminished by as much as 40% when 

compared to that of solid material and the mechanical properties were affected mainly by 

powder particles size. Bending strengths ranging from 48 to 320 MPa and compressive 

strengths from 51 to 255 MPa were obtained. 

Keywords: porous titanium; microsphere sintering; bending strength; compressive 

strength; stiffness; metallic implant 
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1. Introduction 

Increased use of titanium and its alloys as biomaterials stems from their lightness, biocompatibility, 

corrosion resistance and excellent mechanical properties when compared to more conventional 

stainless steel and cobalt-based alloys [1]. Conversely, their excessive stiffness in comparison to that 

of cortical human bone (0.16–18 GPa [2]), relatively high cost and reactivity have been reported to be 

major disadvantages [3–6]. 

As explained by Sumitomo et al. [5] and Niinomi [6], the major differences between the stiffness of 

the bone and that of the implant may alter the bone tissue reaction at the interface between both 

elements, leading to local loss of osseous material. The scientific community has been seeking 

alternatives to mitigate this problem. Several works [1,7–10], have focused on developing low 

modulus β-type titanium alloys, most of which are composed of non-toxic elements. Examples of these 

alloys include Ti–29Nb–13Ta–4.6Zr (referred to as TNTZ, 60 GPa) [1], Ti–12Mo–6Zr–2Fe (referred 

to as TMZF, 74 to 86 GPa) [7], Ti25Ta (64 GPa) [8], Ti–35Nb–6Ta (50 to 75 GPa) [9] or Ti20Nb  

(74 GPa) [10]. Stiffness has also been reduced by creating a porous structure. Among the different 

methods used, Nugroho et al. [11] successfully combined hot isostatic pressing (HIP) and the 

pressurized gas bubble entrapment method to produce porous titanium samples with up to 45 vol % of 

porosity (20–200 μm). In the work by Barbas et al. [12], the selective laser melting (SLM) method was 

used to develop Commercially Pure Titanium samples with 53 vol % porosity and pore sizes falling 

within the 860–1500 µm range. Wieding et al. [13] also used SLM to fabricate Ti–6Al–4V scaffolds 

with porosities of approximately 70 vol %, and compressive strengths within the human cortical bone 

range. Highly porous scaffolds were also obtained by the space holder method. While Dezfuli et al. [14] 

observed excellent attachment and proliferation of human cells to scaffolds fabricated with urea, in the 

studies by Reig et al. [15,16], of all the parameters influencing the mechanical properties of the porous 

samples developed, the amount and size of spacer particles, together with the compacting pressure, 

proved to be the most essential. 

Titanium microsphere sintering, which has traditionally been used to coat titanium with a view to 

improving cell attachment [17], also successfully obtained completely porous structures. The 

metallurgical process followed to develop porous Ti–6Al–4V samples by microsphere sintering was 

optimized in [4]. While the reactivity observed when sintering in alumina molds increased the 

brittleness of samples and diminished their mechanical properties, minimal reactivity occurred when 

molds were covered with an yttria layer. Furthermore, the study concluded that a compromise between 

mechanical properties (better for the smallest microspheres) and pore size (greater for the coarser 

microspheres) should be reached for biomedical applications. However, only two different particle 

sizes were sintered and no data on the material’s compressive behavior were supplied in that study.  

In this paper, the porosity and mechanical behavior (bending strength, compressive strength and 

stiffness) of porous samples processed by sintering spherical powder of four different sizes have been 

analyzed. For the development of these samples and in order to make them appropriate for biomedical 

applications, the following criteria were taken into consideration: 

(1) Minimal stiffness when compared to that of solid Ti–6Al–4V titanium alloy. 

(2) Achievement of a strength equivalent (or higher) to that of cortical or cancellous human  

bone tissue. 
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(3) Open porosity and interconnected pores.  

(4) Porosity in the range of 20% to 80%, as defined by Bansiddhi et al. [18]. 

(5) Pore size greater than 100 µm to facilitate bone colonization [19].  

Furthermore, machining the samples after the sintering process results critical, due to beads tend to 

come off the sample when they are subjected to cutting or grinding, especially as the microsphere size 

increases. So, in order to assess the reactivity of titanium with the mold, and determine whether 

machining could be avoided after the sintering process, no machining was applied after the  

sintering process. 

2. Experimental Procedure 

2.1. Raw Material  

Ti–6Al–4V alloy spherical powder (Figure 1), manufactured by the plasma-rotating electrode 

process (PREP), was supplied by Phelly Materials Inc. As shown in Figure 2, four different particle 

sizes were selected for this study. Although the particle size of selected particles (+180/−600 µm) is 

relatively large in comparison to much smaller titanium particles (i.e., that used for the laser or electron 

beam melting process), to make it clear and simple to understand, they were referenced as “fine” (FP), 

“medium” (MP), “medium-coarse” (MCP) and “coarse” (CP) in the present paper. Their chemical 

composition agreed with the specification for Ti–6Al–4V powders used for coating surgical and 

medical implants (ASTM F1580-01), and they all had an aluminum content of between 5.5 and  

6.75 wt % and a Vanadium content below 4.5 wt %. The amount of hydrogen, nitrogen and oxygen 

was under 0.004 wt %, 0.03 wt % and 0.20 wt %, respectively, denoting high purity powder.  

Figure 1. Morphology of the Ti–6Al–4V spherical powder produced by the plasma-rotating 

electrode process (PREP): (a) Fine particles (−250/+180 µm); (b) Coarse particles 

(−600/+425 µm). 

(a) (b) 

The density of the raw material was determined according to Standard ASTM B213-97.  

Although apparent density was lower for the smaller microspheres (FP: 2.64 g/cm3, MP: 2.63 g/cm3,  
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MCP: 2.74 g/cm3, CP: 2.82 g/cm3), after applying slight vibration (tap density), it increased up to  

2.82 g/cm3 in them all, irrespectively of their mean diameter in each granulometric distribution.  

Figure 2. Particle size distribution of the Ti–6Al–4V microspheres.  

 

2.2. Equipment and Methods  

Yttria-coated alumina molds were used for the sintering process. The microspheres sizes selected 

for the present study, and the sintering temperatures and times are based on previous research [4], and 

are summarized in Table 1. After pouring the Ti–6Al–4V microspheres into the mold, a slight 

vibration was applied to increase the number of contacts between microspheres. Sintering was 

performed in an HVT 15/75/450 Carbolite vacuum furnace (10−4–10−5 mBar).  

Table 1. Spherical powder sintering process variables. 

Process variables Values Unit 

Sintering temperatures  1300, 1350, 1400 °C 
Sintering times  2, 4, 8 h 

Microsphere sizes  

FP: −250/+180 
MP: −300/+212 

MCP: −425/+300 
CP: −600/+425 

µm 

2.3. Characterization of the Porous Samples  

A microstructural analysis was performed by optical and electron microscopy in a Nikon Microphot 

FX and a JEOL JSM6300 Scanning Electron microscope, respectively. The apparent density and 

porosity of the developed samples was analyzed by mercury intrusion porosimetry (MIP, AutoPore IV 

9500) using pressures from 2 psi (13.8 kPa) to 32989 psi (227.4 MPa), equivalent to pores with diameters 

ranging from 91.2 µm to 5.5 nm. Pressures were converted to equivalent pore widths using the Washburn 

equation, assuming a contact angle of 130°. Five rectangular specimens (≈ 4 ×·10.5·× 25 mm3) were 
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subjected to the three-point bending test, which was performed according to ASTM E290-97a 

specifications in an Instron 4204, at a crosshead speed of 0.5 mm/min. Intermediate microsphere sizes 

(MP and MCP) were selected for the compressive strength test as they were expected to provide a 

compromise between strength and pore size. Five cylindrical samples (ϕ = 14 mm; h ≈ 23 mm) were 

tested under compression, in accordance with ASTM E9-89a specifications (0.2 mm/min). Stiffness 

was determined in compression by following the ASTM E111-97 standard test method. The stiffness of 

rod forged Ti–6Al–4V was used as a reference to evaluate the relative stiffness of the developed 

porous samples (Ecr = Ec/Ecs, where Ec is the stiffness of each porous sample and Ecs is that of  

solid material).  

3. Results 

3.1. Microstructure  

Figure 3 presents the microstructure of the spherical particles before and after the sintering process. 

Before sintering, alternating α and β thin layers (Widmanstätten) are distinguished which, according to 

Leyens and Peters [20], typically originates from the high cooling rate of the PREP process. As 

expected, microstructure coarsening occurred when sintering, and the increased size of the grains was 

greater when sintering at higher temperatures or for longer times.  

Figure 3. Microstructure of the Ti–6Al–4V microspheres (CP) before and after the 

sintering process. Etching: Kroll reagent. 

 

3.2. Porosity  

The mercury porosimetry test results are summarized in Table 2. A very similar porosity  

(≈31.5 vol %) and density (≈2.95 g/cm3) were found for all the samples, regardless of their particle 

size. These values are close to that presented by theoretical body-centered cubic structures (BCC), with 
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a packing factor of 0.68 (32% porosity). The little differences observed when sintering different 

microspheres sizes, as well as the higher porosity obtained when compared with denser close-packed 

structures (FCC, 26% porosity), are attributed to the particle-size distribution of the microspheres and 

some degree of random arrangement into the mold. The slight increase in density when compared to 

the tap density of the raw material (≈2.82 g/cm3) was attributed to the developed sintering necks 

between adjacent microspheres during the sintering process (see Figure 4), which slightly shrinked the 

original volume. As expected, larger powder particles resulted in larger pore sizes.  

Table 2. Porosimetry test results. 

Sample Apparent density g/cm3 Median diameter µm d84 * vol % Open porosity Vol %

FP 2.95 54.6 72.7 32.1 
MP 2.95 76.6 97.2 31.7 

MCP 2.94 113.4 161.3 32.5 
CP 2.95 140.1 175.9 31.2 

* 84 vol % of pores below this size 

Figure 4. SEM micrograph of the FP Ti–6Al–4V microspheres after being sintered at  

1300 °C for 8 h. Bending test fracture area. 

 

3.3. Mechanical Properties  

3.3.1. Bending Strength 

Flexural strength and the standard deviation of the porous samples developed by Ti–6Al–4V 

spherical powder sintering are summarized in Figure 5. Although better mechanical properties were 

obtained when raising the temperature and prolonging the sintering time, particle size proved to be the 

most influential parameter, giving rise to higher bending strength values when sintering smaller 

microspheres. According to German [21], this is due to their larger specific surface, which provides 

more energy to develop necks between neighboring microspheres in the sintering process. Although 

larger differences were expected between MCP and CP porous samples, similar results were obtained 

for all the sintering cycles applied. 
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Figure 5. Bending strength and standard deviation of the porous samples developed by 

sintering Ti–6Al–4V microspheres: (a) 1300 °C; (b) 1350 °C; (c) 1400 °C. 

(a) (b) 

(c) 

3.3.2. Compressive Strength 

The generic stress-strain compressive curve of the developed porous samples is plotted in Figure 6. 

The stiffness of the material was determined as the stress/strain ratio at the proportional limit, while the 

compressive strength was considered the maximum stress sustainable under crush loading. 

Figure 7 summarizes the compressive strength and the standard deviation of the sintered MCP and 

MP particles. Similarly to bending strength, better compressive behavior was presented by smaller 

particles, and it improved with higher temperatures and longer sintering times. The compressive 

strength values ranged from 51 to 125 MPa, and from 86 to 255 MPa for the MCP and MP porous 

samples, respectively. The compressive strength of the MCP microspheres sintered at 1400 °C for 8 h 

was slightly lower than expected. This was attributed to reactivity with the alumina of the substrate 

through the yttria coating [4], which was most probably not uniform or thick enough.  
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Figure 6. Stress-strain diagram of the MP Ti–6Al–4V microspheres sintered at 1400 °C  

for 2 h. 

 

Figure 7. Compressive strength and standard deviation of the porous samples developed by 

sintering Ti–6Al–4V microspheres: (a) MCP (−425/+300 µm); (b) MP (−300/+212 µm). 

(a) (b) 

3.3.3. Stiffness 

The stiffness of the porous developed samples, in relation to rod forged Ti–6Al–4V, is shown in 

Figure 8. Similarly to strength, higher stiffness values were obtained when sintering smaller particles 

(MP), and they generally increased when sintering at higher temperatures or for longer times. The 

stiffness of the developed porous samples ranged from 40% to 92% of that of solid material which, as 

reported by Ryan et al. [22], is of vital importance to minimize bone re-absorption problems. 
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Figure 8. Relative stiffness of the porous Ti–6Al–4V samples developed by  

microsphere sintering. 

 

4. Discussion  

Porous Ti–6Al–4V samples with an open and interconnected porosity, and a median pore  

diameter ranging from 54.6 to 140.1 µm, were obtained by spherical powder sintering. According to  

Bansiddhi et al. [18], a minimum pore size of 500 µm is required to allow the generation of blood 

vessels, whereas authors such as Bram et al. [19] reported that one of at least 100 µm is desirable to 

generate bone cells. However in the study by Kujala et al. [23], bone in-growth was also observed with 

smaller pore sizes (50 to 125 µm) when no load was applied. Thus, despite larger pore sizes (CP and 

MCP porous samples) facilitating bone in-growth, vascularization can also be expected in the FP and 

MP porous specimens when load is lacking.  

Compressive strength values within the 130–205 MPa range were reported in [2,24] for cortical 

human bone, which were lower for cancellous bone tissue (≈70 MPa for femoral head; ≈10 MPa for 

vertebrae). Furthermore, a bending strength close to 100 MPa was observed by Heimann [25] for the 

cortical human bone. So, although CP and MCP porous samples could be considered to replace some 

cancellous bones, their strength is not sufficient to allow their use as a cortical bone substitute. 

Conversely, although the samples obtained after sintering the smallest particles (FP) presented the best 

mechanical properties, bone in-growth possibilities greatly reduced, thus rendering their use 

unsuitable. In contrast, the samples developed from sintered MP spherical powder showed slightly 

larger pore sizes, together with appropriate mechanical properties (both bending and compressive 

strengths ranging from approximately 90 to 225 MPa, and relative stiffness from 50% to 88%), which 

make them good candidates to replace cancellous and some cortical human bones. So, while porous 

samples produced by CP and MCP spherical powder sintering would be the most appropriate to 

replace cancellous bone tissue, MP microsphere sintering would be the most recommendable option to 

develop implant devices replacing failed hard tissue (i.e., titanium intervertebral discs or bone plates).  
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5. Conclusions  

Porous Ti–6Al–4V has been developed by spherical powder sintering to provide a new material 

which responds to medical problem necessities. Samples with approximately 30 vol % open porosity, 

and a wide range of compressive and bending strength values, were obtained when sintering four 

different granulometric fractions in different temperature-time cycles. The stiffness of the developed 

porous material varied from 40% to 88% of that of solid Ti–6Al–4V. While MCP porous samples can 

be considered candidates to substitute some cancellous bones, the properties of sintered MP specimens 

make them good candidates for both cortical and cancellous bone applications.  
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