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Abstract. In this paper, we present some recent improvements in our
automatic speech segmentation system, which only needs the speech
signal and the phonetic sequence of each sentence of a corpus to be
trained. It estimates a GMM by using all the sentences of the train-
ing subcorpus, where each Gaussian distribution represents an acoustic
class, which probability densities are combined with a set of conditional
probabilities in order to estimate the probability densities of the states
of each phonetic unit. The initial values of the conditional probabili-
ties are obtained by using a segmentation of each sentence assigning the
same number of frames to each phonetic unit. A DTW algorithm fixes
the phonetic boundaries using the known phonetic sequence. This DTW
is a step inside an iterative process which aims to segment the corpus
and re-estimate the conditional probabilities. The results presented here
demonstrate that the system has a good capacity to learn how to identify
the phonetic boundaries.

Keywords: automatic speech segmentation, phoneme boundaries de-
tection, phoneme alignment

1 Introduction

The two main applications of speech segmentation at the phonetic level are
text-to-speech synthesis and acoustic models training. For both purposes it is
useful to have available as many labelled sentences as possible. Doing this la-
belling task by hand implies a great and very expensive effort. Additionally, as
some authors point out, manual segmentations of a single corpus carried out by
different experts can differ significantly, thus it is reasonable to use automatic
segmentations in the previous applications. As an example, some researchers
gave the same speech database to different human experts to segment it. Then,
they evaluated the differences between the manual segmentations obtained. In
[1], 97% of the boundaries within a tolerance interval of 20 ms were found, and
93% in [2].

There are some different approaches for performing automatic segmentation
of speech corpora when the phonetic sequence of each sentence is available. Most
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of them are systems that operate in two stages: the first one is done by a pho-
netic recognizer based on Hidden Markov Models (HMM), which fixes the pho-
netic boundaries by using the Viterbi algorithm with forced alignment, and the
second stage adjusts the phonetic boundaries. In [1, 3, 4] different pattern recog-
nition approaches are proposed for local adjustment of boundaries. [5] presents
an HMM-based approach where pronunciation variation rules are applied and
a recognition network is generated for each sentence. Then a Viterbi search de-
termines the most likely path and obtains an adapted phonetic transcription for
each sentence. This process is repeated until the adapted phonetic transcrip-
tions do not change any more. Initial phone HMMs are generated with flat-start
training using the canonical transcriptions of the sentences.

A Dynamic Time Warping (DTW) based method that aligns the spoken utte-
rance with a reference synthetic signal produced by waveform concatenation is
proposed in [6]. The known phonetic sequence of each sentence is used to generate
the synthetic signal. The alignment cost function depends on the pair of phonetic
segment classes being aligned, and is computed taking a combination of acoustic
features. In [7] a set of automatic segmentation machines are simultaneously
applied to draw the final boundary time marks from the multiple segmentation
results. Then, a candidate selector trained over a manually-segmented speech
database is applied to identify the best time marks. In [8] several linear and non-
linear regression methods are used for combining multiple phonetic boundary
predictions which are obtained through various segmentation engines.

An approach inspired in the minimum phone error training algorithm for au-
tomatic speech recognition [9] is presented in [10]. The objective of this approach
is to minimize the expected boundary errors over a set of phonetic alignments
represented as a phonetic lattice. A quite different approach, which is presented
in [11], uses an extension of the Baum-Welch algorithm for training HMMs that
use explicit phoneme segmentation to constrain the forward-backward lattice.
This approach improves the accuracy of automatic phoneme segmentation and
is even more computationally efficient than the original Baum-Welch.

A technique that modifies the topology of the HMMs in order to control the
duration of the phonetic boundaries is presented in [12]. The prototype for all the
phones is defined as a 5-state left-to-right topology with duration control states
at each end. This topology improves the segmentation accuracy by reducing
the probability of looping at the beginning and end states, as these model the
boundaries between phonetic units. The acoustic vectors within the transition
from one phonetic unit to the other are clustered at these states.

In this paper we present a technique for automatic speech segmentation at
the phonetic level based on the same idea of altering the topology of the HMMs.
Nevertheless, three differences should be noted: (a) we calculate the emission
probabilities in a different way, (b) the forced alignment is performed by a DTW
algorithm, and (¢) we do not use manually segmented sentences for training.
Emission probabilities are computed by combining acoustic probabilities with
conditional probabilities estimated ad hoc [13,14]. The conditional probabilities
reflect the relation between the acoustic and the phonetic probability densities.
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The estimation of these conditional probabilities is done by means of a progres-
sive refinement iterative process which segments all sentences of the training set
at every step. The initial values of the conditional probabilities are obtained by
using a segmentation into equal parts, i.e., the segments assigned to each pho-
netic unit within a sentence are equally long. The acoustic probability densities
are computed using a GMM (Gaussian Mixture Model), obtained as a result of
a clustering process.

Next, we describe in Section 2 the recent improvements on the automatic
speech segmentation system. Then, in Section 3, we show and comment the
experimentation results. Finally, we conclude in Section 4.

2 System Improvements

The previous version of our system operated in three stages: (1) a coarse seg-
mentation based on acoustic-phonetic rules was used to estimate the initial con-
ditional probabilities, (2) the refinement of these conditional probabilities by
means of an iterative procedure, and (3) a local adjustment of phonetic bound-
aries considering distinct criteria depending on the pair of consecutive phonetic
units [14]. In this work, we present two improvements to this strategy. The first
one consists in using HMMs with a little variation in the topology based on the
idea presented in [12]. The topology is modified by having states without loops
at each end to control the duration of the transitions between phonetic units.
This improvement avoids the need for the coarse segmentation. The other im-
provement consists in the use of transitions between phonetic units as additional
units.

The iterative procedure for progressive refinement is based on a DTW al-
gorithm that automatically segments each sentence. This algorithm aligns the
sequence of states with respect to the sequence of acoustic frames. The sequence
of states of each sentence is obtained by concatenating the model of each phonetic
unit according to the given phonetic sequence. There are two relevant features in
the topology of the models: the total number of states and the number of dura-
tion control states. Figure 1 shows a model with 8 emitting states and 3 duration
control states at both sides. It is important to highlight that each phonetic unit
can have a different number of states according to its nature.
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Fig. 1. An 8 emitting states HMM with 3 duration control states at each side.

Figure 2 shows the allowed movements inside the DTW matrix in an example
of transition between two phonetic units, with one duration control state at
each end. We can observe that horizontal movements are forbidden for duration
control states, i.e., no loops are permitted. The diagonal movements are the only
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ones allowed for these states, as these movements represent the transition from
one state to the next one. Vertical movements are always forbidden since it is
inconsistent to assign one acoustic frame to more than one state.
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Fig. 2. Example of possible movements in our DTW focused on the join between two
phonetic units.

The alignment cost function used in the DTW algorithm takes p(z:|e¥) as the
emission probability, which represents the phonetic class-conditional probability
density function of observing the acoustic frame x; given e}, the ¢-th state of
the phonetic unit u. This phonetic class-conditional probability density function
is computed using the following formula

plxile) = Y plaila) - Pr(aley) (1)

acA

where a is an acoustic class modelled by a Gaussian distribution, A is the set
of Gaussian distributions in the GMM which contains all the acoustic classes,
p(x¢]a) is the acoustic class-conditional probability density function of observing
the acoustic frame x; given the acoustic class a, and Pr(ale}) is the conditional
probability of the acoustic class a given the state e¥ [13,14]. The GMM is com-
puted as the first step of the training process using all the acoustic frames of all
the sentences of the training subcorpus. This acoustical clustering is performed
by using the maximum likelihood estimation.

The initial values of the conditional probabilities are obtained from a seg-
mentation of each sentence into equal parts. The progressive refinement stops
when no variations are observed between the segmentations resulting from two
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consecutive iterations. As a further step, the transitions between each pair of
phonetic units are added as new phonetic units, and new conditional probabili-
ties are computed for the new set of units (original units plus transitions). The
segmentation obtained in the last iteration of the previous progressive refine-
ment process is used as the starting point for the estimation of the new set of
conditional probabilities.

3 Experimentation

3.1 Speech Corpora

In order to carry out experiments for both Spanish and English, we chose two
speech databases: Albayzin [15] and TIMIT [16]. The phonetic corpus from
the Albayzin database was used for the Spanish experiments: 6,800 utterances
(around six hours of speech) which we split into 1,200 sentences manually seg-
mented and labelled that were used for testing and the remaining 5,600 sentences
for training. No speakers appear in both subsets. The TIMIT database was used
for the English experiments, which contains 6,300 utterances (approximately five
hours of speech). In this case we used the suggested training/test subdivision.

The same acoustic parameters were used on both databases. Each acoustic
frame was formed by a 39-dimensional vector composed by the normalized en-
ergy, the first 12 Mel frequency cepstral coefficients, and their first and second
time derivatives. Each acoustic frame was obtained using a 20 ms Hamming
window every 5 ms.

3.2 Evaluation Criteria

The most widely used evaluation criterion to measure the accuracy of an auto-
matic segmentation with respect to a manual one is the percentage of boundaries
which error is within a tolerance. Usually, it is calculated for a range of toler-
ances [1,2, 8].

As discussed in the introduction, some researchers have wondered if a ma-
nual segmentation could be a valid reference [1, 2]. To evaluate this, they gave the
same speech corpus to different human experts asking them to annotate it, and
then evaluated the differences among the manual segmentations. In the study
presented in [1], 97% of the boundaries were found within a tolerance of 20 ms
and in [2] 93%. Thus, we can interpret these results as an upper bound for the
accuracy of automatic segmentations, since a system that reaches 100% com-
pared with a manual segmentation will at least differ around 5% from another
manual segmentation for the same speech database.

3.3 Experimental Results

Our system has been evaluated using different combinations of the number of
emitting states (E) and duration control states (B). Table 1 presents the results
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obtained using different £ x B topologies. Results show that the use of dura-
tion control states lead to a significant improvement when the tolerance ranges
from 5 to 20 ms. This improvement is bigger when the tolerance interval is more
restrictive. For example, using the Albayzin corpus, if F = 7 then the segmen-
tation accuracy improves from 58.5% to 67.8% for a tolerance error of 10 ms as
B increases, and from 85.2% to 89.1% for 20 ms.

Table 1. Percentage of correctly fixed phonetic boundaries for a range of tolerances.

Albayzin TIMIT

Topology Tolerance in ms Tolerance in ms
ExB 5 10 15 20 30 50 5 10 15 20 30 50

5x1 33.0 | 58.5 | 74.9| 853 |94.6 | 98.7 || 25.5 | 46.6 | 62.0 | 72.7 | 88.0 | 97.7
5x2 36.8 | 62.6 | 78.6 | 87.5 | 94.7 | 98.5 || 22.4 | 43.7 | 61.9 | 74.8 | 89.6 | 97.8
6x2 37.1|64.4|80.0| 879952988 |29.5|53.6|69.9|80.3|91.6 | 97.9
7x0 31.7 | 58.5 | 75.5|85.2|94.1 983 | 24.4|44.9 | 60.8|72.3|88.0|97.9
7x1 33.6 | 61.0 | 77.3 | 85.8 | 94.4 | 98.5 || 24.4 | 45.2 | 62.3 | 74.3 | 89.5 | 98.1
7x2 36.2 | 63.0 | 78.6 | 86.9 | 95.1 | 98.7 || 28.5 | 52.1 | 68.9 | 79.8 | 91.8 | 98.2
7x3 40.9 | 67.8 | 82.1 | 89.1 | 95.6 | 98.9 || 24.7 | 47.8 | 66.6 | 78.6 | 91.2 | 98.1
8x3 40.5 | 67.5 | 82.1 |89.5|96.2(99.2 || 27.8 | 51.9 | 70.7 | 82.7| 93.6 | 98.5
9x2 39.8 |1 66.8 | 81.1 | 88.5 | 95.7 | 98.9 || 28.6 | 52.2 | 69.0 | 79.8 | 91.6 | 97.7
9x3 38.1|66.0 | 81.5|89.0 | 96.1 |99.2 || 28.2 | 52.0 | 70.8 | 82.6 | 93.8 | 98.6
9x4 44.0|70.3|82.8|89.4 958 |99.0| 25.4|49.9|69.3 | 81.5|92.7 | 98.2
10x4 42.5 | 68.9 | 82.2 | 88.9 1 95.8 199.0 || 26.3 | 50.1 | 68.2 | 79.9 | 91.6 | 98.1

As mentioned above, our system does not use any manual segmentation for
bootstraping. Starting from a blind segmentation of the sentences into equal
parts, the learning process converges in less than 20 iterations for all the topolo-
gies considered.

We used a subsampling rate of 200 Hz, so, an HMM with 8 emitting states
implies a minimum duration for each phonetic unit of 40 ms, which is longer than
usual for some of them. Thus, different topologies were used for voiced plosives
/b/, /d/ and /g/ when the topology of the remaining phonetic units is larger
than 5 states. In the experiments performed with the Albayzin corpus, a 5 x 2
topology was used for these units. The results improved significantly thanks to
this shorter topology. The structure of voiceless plosives /p/, /t/ and /k/ was
not different from the topologies used for the rest of units, since their preceding
silence is properly clustered by the HMM states. Silences were considered a
special case and were always modelled with a 3 x 0 topology.

Since in the TIMIT corpus the voiceless plosives are preceded by a unit
representing the closure, a shorter topology was needed for these units. A 3 x 1
topology was used for /b/, /d/, /e/, /p/, /t/, and /k/.

Additionally, we also considered adding the transitions between pairs of con-
secutive phonetic units as extra ones. Table 2 shows the results obtained when
a 6 x 2 topology was used for all units except plosives, which were modelled
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with 4 x 1 for Albayzin and 3 x 1 for TIMIT. The silences were modelled with
a 3 x 0 topology for both corpora. In the case of the Albayzin corpus no signifi-
cant improvements are observed. However, experiments with the TIMIT corpus
show small improvements for tolerances of 5 and 10 ms. Also, a significant im-
provement can be observed when using the manually segmented sentences of the
training subcorpus to initialize of the conditional probabilities.

Table 2. Percentage of correctly fixed phonetic boundaries when transitions were used.
For the TIMIT corpus results when using the manual segmentation for training are also
presented. No manual segmentation for training is available in the Albayzin corpus.

Albayzin TIMIT

Using Tolerance in ms Tolerance in ms

manual|| 5 10 15 20 30 50 5 10 15 20 30 50
No 40.6 | 68.7 | 83.2 | 90.5 | 96.4 | 99.3 || 31.5 | 55.8 | 71.0 | 81.1 | 92.3 | 98.2
Yes 44.1 1 70.3 | 81.9 | 88.2 | 94.8 | 98.7

4 Conclusions

We have presented here an automatic segmentation technique that combines
three ideas. The first one consists in using duration control states at each end
of every HMM as well as increasing the number of emitting states. The second,
detailed in Section 2, deals with the way emission probabilities are calculated.
The third idea consists in using a DTW algorithm to align the sequence of states
against the sequence of acoustic frames.

The goal of our approach is to automatically segment speech corpora that can
be useful to train acoustic models without the need for manually segmented and
labelled sentences. The obtained segmentation accuracy for the Albayzin corpus
in both kinds of experiments is around 90% within a tolerance of 20 ms. This
enables our system to be used for the planned purposes, namely, acoustic models
training and concatenative text-to-speech synthesis.

The results achieved with the TIMIT corpus without using the manually
segmented sentences for training are similar to the ones obtained by other re-
searchers referenced above using standard HMM and the manually segmented
sentences. We have also used the transitions between phonetic units, but this
only improves the segmentation accuracy for tolerances of 5 and 10 ms. When
our system is trained using the manually segmented sentences the results are
even better.
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