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Universitat Politècnica de València
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Abstract

The main content in a webpage is usually centered and visible without the need
to scroll. It is often rounded by the navigation menus of the website and it
can include advertisements, panels, banners, and other not necessarily related
information. The process to automatically extract the main content of a web-
page is called content extraction. Content extraction is an area of research of
widely interest due to its many applications. Concretely, it is useful not only
for the final human user, but it is also frequently used as a preprocessing stage
of different systems (i.e., robots, indexers, crawlers, etc.) that need to extract
the main content of a web document to avoid the treatment and processing of
other useless information. In this work we present a new technique for content
extraction that is based on the information contained in the DOM tree. The
technique analyzes the hierarchical relations of the elements in the webpage
and the distribution of textual information in order to identify the main block
of content. Thanks to the hierarchy imposed by the DOM tree the technique
achieves a considerable recall and precision. Using the DOM structure for con-
tent extraction gives us the benefits of other approaches based on the syntax of
the webpage (such as characters, words and tags), but it also gives us a very
precise information regarding the related components in a block (not necessarily
textual such as images or videos), thus, producing very cohesive blocks.

1. Introduction

Block Detection is a discipline that tries to isolate every information block in
a webpage. For instance, the webpage in Figure 1 has been divided in different
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Figure 1: Blocks of a webpage from The Guardian’s website

areas that correspond to blocks (e.g., menu, related links panel, advertisement,
banner, etc.). The block that contains the main content of the webpage has
been squared with a dashed line. Finding this main block is very important
for many applications because it allows us to concentrate on the main informa-
tion avoiding the processing of superfluous content such as menus, status bars,
advertisements, sponsored information, etc. The process of isolating the main
block in a webpage is known as content extraction. Finding the main block is not
easy at all because the main block is not necessarily continuous in the webpage.
Many times it is inside other block, or it contains other blocks that should be
discarded. Thus the main information is mixed with other noisy information.

It has been measured that almost 40-50% of the content in a webpage can be
considered irrelevant [1]. Therefore, determining the main block of a webpage
is very useful for indexers and text analyzers to increase their performance by
only processing relevant information. Other interesting applications are the
extraction of the main content of a webpage to be suitably displayed in a small
device such as a PDA or a mobile phone; and the extraction of the relevant
content to make the webpage more accessible for visually impaired or blind.

Our technique combines ideas from other works such as [2, 3, 4], and it
introduces new ideas based on the use of explicit information contained in the
Document Object Model (DOM) tree of webpages. This combination of ideas
allows the technique to produce very accurate results.

In summary, the main advantages of our technique are the following:

• It does make no assumptions about the particular structure of webpages.
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• It only needs to process a single webpage (no templates, neither other
webpages of the same website are needed).

• No preprocessing stages are needed. The technique can work online.

• It is fully language independent (it can work with pages written in English,
Greek, Japanese, etc.).

• The particular text formatting and indentation of the webpage does not
influence the performance of the technique.

The rest of the paper has been structured as follows: In Section 2 we discuss
the related work and show some problems of current techniques that can be
solved with our approach. In Section 3 we recall the DOM model and provide
some useful notation. Then, in Section 4, we present and formalize our content
extraction technique and explain it with examples. In Section 5 we give some
details about the implementation and show the results obtained with a collection
of benchmarks. Section 6 presents a case of study using our tool. Finally,
Section 7 concludes.

2. Related Work

There exist many different techniques devoted to solve the problem of content
extraction. Practically all of them are based on the textual information of
the webpage being analyzed. This is due to the fact that the main content
usually contains the biggest concentration of text in the webpage. Some of
the approaches are based on the assumption that the webpage has a particular
structure (e.g., based on table markup-tags) [5], that the main content text is
continuous [6], that the system knows a priori the format of the webpage [5], or
even that the whole website to which the webpage belongs is based on the use
of some template that is repeated [7]. This allows the system to analyze several
webpages and try to deduce the template of the webpage in order to discard
menus and other repeated blocks.

The main problem of these approaches is a big loss of generality. In general,
they require to previously know or parse the webpages, or they require the web-
page to have a particular structure. This is very inconvenient because modern
webpages are mainly based on div tags that do not require to be hierarchically
organized (as in the table-based design). Moreover, nowadays, many webpages
are automatically and dynamically generated and thus it is often impossible to
analyze the webpages a priori.

There are, however, other approaches that are able to work with any webpage
and without the need to preprocess them or know their structure in advance.
One of these approaches is the technique presented in [3]. This technique uses
a content code vector (CCV) that represents all characters in a document de-
termining whether they are content or code. With the CCV, they compute a
content code ratio to identify the amount of code and content that surrounds the
elements of the CCV. Finally, with this information, they try to determine what
parts of the document contain the main content. Another powerful approach
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also based on the labeling of the characters of a document has been presented
in [4]. This work is based on the use of tag ratios (TR). Given a webpage, the
TR is computed for each line with the number of non-HTML-tag characters
divided by the number of HTML-tags. The main problem of the approaches
based on characters or lines such as these two, or words such as [8], is that
they completely ignore the structure of the webpage. Using characters or words
as independent information units and ignoring their interrelations produce an
important loss of information that is present and explicit in the webpage, and
that makes the system to fail in many situations.

Example 2.1. Consider the following portion of a source code extracted from
an IEEE’s webpage:

<body>
(...)
<div id="maincontent">

<a name="Abstract"><h2>Abstract</h2></a>
<p>Most HTML documents (...)
(...)
(...) delivers the best results.</p>

</div>
<div id="footer">

<p class="bottomstuff">Copyright IEEE. All rights are (...) </p>
<p class="links">
<a href="IEEE Xplore.html" target="blank">Help</a> |
<a href="/xpl/techform.jsp">Contact Us</a> | (...)

</div>
(...)

</body>

The tag ratios associated to this webpage are shown bellow.

Observe that the initial part of the footer, which is not part of the main
content, is classified as part of the main content because it starts with a high

tag ratio. Unfortunately, this method does not take into account the
information provided by tags, and thus, it fails to infer that the footer text

belongs to a different div tag than the other text classified as relevant.

The distribution of the code between the lines of a webpage is not necessar-
ily the one expected by the user. HTML code can be completely unindented
(i.e., without tabulations, spaces or even carriage returns), specially when it is
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generated by a non-human directed system. As a common example, the reader
can see the source code of the main Google’s webpage. At the time of writing
these lines, all the code of the webpage is completely unindented and without
carriage returns. In this kind of webpages tag ratios are useless.

Some of the authors of this work proposed a first idea to solve the problems
of tag ratios [2]. This idea is to use a new ratio called chars-nodes ratio (CNR)
that is similar to the tag ratio but based on the DOM structure of the webpage.
Concretely, given a node n in the DOM tree, the CNR of n is computed with
the number of characters contained in the subtree of n divided by the number
of nodes in this subtree. Once all CNRs have been computed, they defined an
algorithm to select one node of the DOM tree using the CNRs of the nodes.

The approach based on CNRs is in the good direction, because it keeps
the good properties of tag ratios, and at the same time, it also solves some
of their problems. In particular, because the DOM tree is independent of the
distribution of the code between the lines of the HTML webpage, the technique is
able to work with any webpage independently of how the webpage was generated
or indented. Moreover, thanks to the DOM hierarchy, the technique can identify
precisely the HTML containers and avoid mixing different sections (such as the
footer and the other div tag in Example 2.1).

Even though our technique has been designed over the CNRs, the method
proposed here to select a node from the DOM tree is essentially different to
the one used with CNR. Moreover, the ratio itself has been changed. The
new ratio is called words-leaves ratio (WLR). First, it counts words instead
of characters. This allows the technique to better measure the relevance of a
text. Using characters was inherited from TR, and it is a bad idea because
it unnecessarily prizes long words (e.g., ‘medicine’ counts double than ‘work’
without any justified reason). Second, after intensive testing we discovered
another weakness of CNR, namely, counting all nodes in the subtree of a node.
In contrast, we only consider the leaves because they are the only nodes that
contain textual information.

Although essentially different to our work, there exist other techniques that
make use of the DOM structure, and thus, they could exploit the same infor-
mation than our technique. The most similar approach is the one presented in
[9]. This approach presents a proxy server that implements a set of filters for
HTML documents. These filters include HTML cleaning (e.g., removing images,
scripts, etc.), HTML refactoring (e.g., removing empty tables), and deleting ad-
vertisements (e.g., with a blacklist of URLs that allow them to remove external
publicity content). Some of these transformations are used by our technique,
but the objective is different, we do not want to clean, improve or transform
the original webpage; our goal is to detect the main content and remove all the
other components of the webpage. Also the implementation is different, our tool
is not based on a proxy server; it is implemented in the client side, and thus it
is independent of any external resource.

There are some approaches specialized for a particular content such as tables
that are somehow related to our work. They do not focus on block detection but
in content extraction from tables [10], or in wrappers induction [11, 12]. Other
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related approaches are based on statistical models [13, 14] and machine learning
techniques [15, 16] and they use densitometric features such as link density and
text features such as number of words starting with an uppercase letter [17].

3. The DOM tree

The Document Object Model [18] is an API that provides programmers with
a standard set of objects for the representation of HTML and XML documents.
Our technique is based on the use of DOM as the model for representing web-
pages. Given a webpage, it is completely automatic to produce its associated
DOM structure and vice-versa. In fact, current browsers automatically produce
the DOM structure of all loaded webpages before they are processed.

The DOM structure of a given webpage is a tree where all the elements of
the webpage are represented (included scripts and styles) hierarchically. For
example, bold text is represented with a node representing the bold format
and a descendant of this node that represents the text. In the current DOM
model there exist 12 node types: 11 types for the different HTML tags and the
type text which is the only one that contains text. Each node contains all the
information associated with the tag it represents (e.g., a image node contains
all its attributes including alt, src, etc.). An important property of DOM trees
is that text nodes are always leaves. We exploit this property in our technique.

Definition 3.1 (DOM Tree). Given an HTML document D, the DOM tree
of D is a pair (N,E) with a finite set of nodes N . Every node contains either
an HTML tag (including its attributes) or text. The root node is the node
corresponding to the tag body. E is a finite set of edges such that (n→ n′) ∈ E,
with n, n′ ∈ N if and only if the tag or text associated with n′ is inside the
tag associated with n in D, and not exists an unclosed tag between them. We
represent with E∗ the reflexive and transitive closure of E.

For the purpose of this work, it does not matter how the DOM tree is built.
In practice, the DOM API provides mechanisms to add nodes and attributes,
and provides methods to explore and extract information from the tree.

Example 3.2. As an example of DOM representation of a webpage observe in
Figure 2 a portion of the source code extracted from the entry “Gerard Salton” at
DBLP. The webpage generated by this code is shown in Figure 3, and a portion
of its associated DOM tree is depicted in Figure 4. For the time being the reader
can ignore the different colors and borders of nodes.

The formalization of our technique has been done using the own DOM repre-
sentation. This allows us to directly map our algorithms to the implementation.
In particular, each node in the DOM tree has a number of attributes depending
on the tag they represent. In our formalization, we add new attributes to the
nodes in order to represent information that will be later used to extract the
main content.
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<body>
<div class="llogo">

<a href="../../../index.html">
<img alt="dblp.uni-trier.de" src="../../../Logo.gif"

border="0" height="60" width="170"/>
</a>

</div>
(...)
<hr/>
(...)
<h1 key="homepages/s/GerardSalton">Gerard Salton

<a href="http://www.cs.virginia.edu/ clv2m/salton.txt">(...)</a>
</h1>
(...)
<p>

<table border="1">
<tr>

<th>(...)</th>
<th colspan="2" bgcolor="#FFFFCC">1997</th>

</tr>
<tr>

<td align="right" valign="top" class="J" bgcolor="#FFCCCC">138</td>
<td valign="top">(...)</td>
<td>Gerard Salton,

<a href="../s/Singhal:Amit.html">Amit Singhal</a> (...)
Automatic Text Structuring and Summarization.
<a href="../../../../db/journals/ipm/ipm33.html#SaltonSMB97">
Inf. Process. Manage. 33</a>(2): 193-207 (1997)

</td>
</tr>
(...)

</table>
</p>
<h2>

<a name="coauthors" href="http://dblp.uni-trier.de/rec/pers/s/Salton:Gerard/xc">
Coauthor Index

</a>
</h2>
<p>

<table border="1">
(...)

</table>
</p>
<script type="text/javascript" src="/ ley/www.dblp.org/completesearch.js"></script>

</body>

Figure 2: HTML code of a DBLP webpage showing Gerard Salton’s papers

Definition 3.3 (node attributes). Every node n in a DOM tree contains the
attributes specified in the DOM model [18] including:

Name: We refer to the name of a DOM node by using name(n) and it corre-
sponds to the DOM attribute nodeName.

Additionally, n contains the following new attributes:

Visible: Once the tree is computed, it is possible to know whether a node is
visible or not. It is done checking whether the attribute ‘visibility’ is set
to ‘hidden’ or ‘collapse’, or the attribute ‘display’ is set to ‘none’. This
boolean attribute is represented with v(n).

Words: It represents the number of words included in the content of this node.
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Figure 3: DBLP webpage associated with the code in Figure 2

This number can be directly inferred from the attribute ‘content’ already
present in the DOM model. We represent this attribute with w(n). If the
attribute ‘content’ is not defined for n then w(n) = 0.

4. Content extraction using DOM trees

In this section we formalize our technique for content extraction. The tech-
nique is based on the notion of words-leaves ratio (WLR), which shows for each
node in the DOM tree the relation between the amount of words and leaves in
its subtree.

First of all we need to discard those nodes that are not useful for the analysis.
Concretely, we have three different scenarios where nodes can be removed. First,
all the subtrees whose root is a not content node such as meta, title, script,
#comment, etc. These nodes can be removed because they do not contribute to
the visible content of the webpage. Similarly, we can remove all the subtrees
whose root is not visible. Finally, we remove all the leaves of the tree that do
not contain any word. This is computed using a fix-point bottom-up process
because deleting one leaf could produce a new removable leaf.

The remaining nodes after removing these three sets is a new set that we call
content nodes set and it contains the only nodes that contribute to the textual
content of the webpage, its hierarchical structure and its format. This set of
nodes form a tree equivalent to the original one where some branches have been
removed. The nodes of this tree are the only ones considered in the rest of the
analysis. The following definition formalizes all these concepts.
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Figure 4: DOM representation associated with the code in Figure 2

Definition 4.1 (content nodes set). Given a DOM tree (N,E), the set of
notContent nodes is the union of the following sets:

• notValid = {n ∈ N | ∃n′ ∈ N such that (n′ → n) ∈ E∗

∧ name(n′) ∈ {meta, title, head, link, style, script,
select, noscript,#comment} }

• notVisible = {n ∈ N | ∃n′ ∈ N such that (n′ → n) ∈ E∗ ∧ ¬v(n′)}

• notWords is the result of the following fix-point:

– notWords0 = ∅
– notWordsi+1 = notWordsi ∪ {n ∈ N\notWordsi | w(n) = 0 ∧

(@n′ ∈ N\notWordsi : (n→ n′) ∈ E)}

Thus, notContent = notValid ∪ notVisible ∪ notWords. The set of content
nodes is represented with C and defined as: C = N\nonContent.
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We need additional attributes for each node in C to be able to properly define
the notion of WLR. Concretely, for each node in C we add one attribute that is
used to uniquely identify each node, we add another attribute to know whether
the position is static, and we add two attributes that respectively represent the
total amount of words and leaves in its subtree.

The following definition formalizes the new attributes where we represent
with Children(n) the set of children of a node n ∈ C, formally, Children(n) =
{n′ ∈ C | (n→ n′) ∈ E}.

Definition 4.2 (C attributes). Every node n ∈ C contains the following at-
tributes:

Identifier: A number that uniquely identifies each node in the tree. Identifiers
are assigned in pre-order and incrementally, being 0 the identifier of the
root node. The identifier of n is represented with id(n).

Static position: A boolean that indicates whether the position of the HTML
element associated to this node is static. The position of all nodes is static
except div nodes whose value in their attribute ‘position’ is ‘absolute’ or
‘fixed’. It is represented with sp(n).

Total words: The number of words in the subtree of a node n is computed
using the following function:

tw(n) =

{
w(n) if Children(n) = ∅∑

tw(nc)
nc∈Children(n)

otherwise

Leaves: The number of leaves in the subtree of n is computed using this func-
tion:

l(n) =

{
1 if Children(n) = ∅
leaves(n) otherwise

where function leaves is defined in Figure 5.

Identifiers play an important role in the technique because they allow us
to compare the position of HTML elements in the final webpage displayed.
This happens thanks to an important property of DOM, namely, elements are
displayed in the screen following the order of their identifiers. It is important
to also remark the way in which the number of leaves in a subtree is computed.
Observe that, according to function leaves, the number of leaves in a subtree
depends not only on its structure, but also on the specific HTML tags distributed
among its nodes. In particular, those HTML tags used to format the text appear
together in the DOM model as consecutive siblings. Some of them apply a
special format such as italics or bold, and others apply special properties such as
paragraphs, or links. In any case, the effect of these tags is that an unformatted
text that would appear as a single leaf in the DOM tree, is represented as a
subtree with many leaves with different text formats. Our analysis detects this
situation and considers this formatted text as a single leaf in the DOM tree.
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leaves(n) =

children = Children(n)
leaves = 0
joining = false
while (children 6= ∅)

child = n′ ∈ children . @n′′ ∈ children such that id(n′′) < id(n′)
children = children\{child}
if (name(child) ∈ {#text, p, a, u, b, i, em, span, sub, sup, strong, div}

∧ sp(child) ∧ l(child)==1)
joining = true

else
leaves = leaves + l(child)
if (joining)

leaves = leaves + 1
joining = false

if (joining)
leaves = leaves + 1

return leaves

Figure 5: Function leaves

The HTML tags affected by this process are #text, p, a, u, b, i, em, span, sub,
sup, strong and div. This is done to avoid penalizing the ratio between words
and leaves of those texts that need several leaves in order to give special format
to some parts of the text. We illustrate the necessity of this special treatment
for leaves in Example 4.3.

Example 4.3. The following HTML code:

<em>Gisela Molina</em>, author of the book <strong>Ethical Life</strong>,

will be interviewed tomorrow in <a href="http://www.bbc.com">BBC</a>.

is displayed by any browser as:

and its associated DOM tree is the following:
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Note that the whole tree represents a single sentence, and thus the intermediate
nodes are only used to format the text (i.e., if the text was plain text, a single
node would be used). Therefore, we should consider this text as a single leaf,
and this is exactly what function leaves implements.

We are now in a position to define the WLR measure that allows the analysis
to identify those nodes associated with the main textual content of a webpage.

Definition 4.4 (words–leaves ratio). Given a node n ∈ C, its words–leaves
ratio is represented with WLR(n) and defined as:

WLR(n) = tw(n)/l(n)

Using WLR we extract a subset of C that we call initial nodes. This set is
the starting point of our analysis and it contains those nodes whose WLR is
closer to the maximum WLR of the whole tree than to the average WLR of the
tree.1 Hence, we need to find a value for variable x that satisfies the following
equation:

maxWLR

x = x
WLR(root)

Therefore,

x =
√

maxWLR ×WLR(root)

This number is an acceptance threshold that our analysis uses to select and
to discriminate nodes. Now we can introduce the formal definition of the initial
nodes set.

Definition 4.5 (initial nodes set). Given the set C, the initial nodes set I is
defined as:

I = {n ∈ C | WLR(n) ≥
√

maxWLR ×WLR(root)}

The initial nodes set contains those nodes in the DOM tree with a higher den-
sity of text. Therefore, it is highly probable that some of these nodes together
form the main content (and, thus, the other nodes in I should be discarded).
Hence, at this point, we need a mechanism to suitably combine the information
of one or more nodes in I. For this purpose, we can use the DOM hierarchy, so
that two nodes can be naturally combined with a common ancestor. Moreover,
the combination mechanism must take into account another factor that has been
ignored until now. This factor is the relative position of the content in the web-
page and can be computed with the identifier of the nodes. In order to combine
several nodes in I taking into account both measures (WLR and position in the
DOM tree) we introduce the relevance of a node, whose formalization follows.

1A moment of thought will convince the reader that, according to Definition 4.4, the
average WLR value in a DOM tree always corresponds to the WLR value of the root node.
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Definition 4.6 (relevance). Given a node n ∈ C, its weight is represented
with W (n) and defined as:

W (n) =

{
rpos(n)× rWLR(n) if n ∈ I
0 if n 6∈ I

where

rpos(n) = 1− id(n)−minid

maxid−minid

rWLR(n) = WLR(n)−minWLR

maxWLR−minWLR

and minid, maxid are the minimum and maximum values of identifiers in I,
whereas minWLR, maxWLR are the minimum and maximum WLR values in C.
Given a node n from C, its relevance is represented with R(n) and defined as:

R(n) = WLR(n)×max(W (n),
∑

R(n′)
n′∈Children(n)

)

The relevance is computed by only taking into account the nodes with a
higher density of text (those in I). The other nodes are discarded by assigning
them a weight of 0. Contrarily, the nodes in I are assigned a weight that
combines their WLR and their relative position in the webpage. With the
weight, we compute the relevance. The relevance of a node is the WLR of
this node multiplied by the maximum between its weight and the sum of the
relevances of its children. Hence, the relevance is composed by two expressions:
WLR(n), and the expression:

M(n) = max(W (n),
∑

R(n′)
n′∈Children(n)

)

The expression M(n) increases when it combines nodes in I. Therefore,
M(n) increases bottom-up in the tree. In particular, given two nodes n, n′ ∈ C,
if (n → n′) ∈ E∗, then M(n) ≥ M(n′). Hence, our mechanism to combine
nodes in I needs a criterion to stop combining (otherwise, we would always
select the root of the tree). Concretely, the criterion must combine nodes with a
high density of text and stop combining when the new nodes combined produce
a decrease in that density. For this objective, we have the other component of
the relevance, namely, WLR(n). This component decreases when the amount
of text associated with a node is low. In summary, the relevance uses M(n) to
go up in the tree combining high textual density nodes, and it uses WLR(n)
to stop going up when the ancestor of a node introduces subtrees with a low
density of text. The relevance is used to select the final node that represents
the main content of the webpage. For this purpose, we order all nodes in the
content nodes set according to their relevance to obtain the best node. In the
case that two nodes have the same relevance, we select the one with a lower
identifier.
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Definition 4.7 (best node). Given the set C, the best node nbest is defined
as:

nbest = n ∈ C such that @n′ ∈ C : R(n′) > R(n) ∨
(R(n′) = R(n) ∧ id(n′) < id(n))

Algorithm 1 Content extraction algorithm
Input: A DOM tree T = (N,E)
Output: A DOM tree T ′ = (N ′, E′) with N ′ ⊆ N and E′ ⊆ E
Inicialization: T ′ = T

begin
1) Obtain the content nodes C by filtering nodes without textual content:

C = N\notContent [See Definition 4.1]
2) Compute WLR for all nodes in C:

Processed = ∅
maxWLR = 0
while Processed 6= C

take n ∈ C\Processed such that Children(n) ⊆ Processed
WLR(n) = tw(n)/l(n) [See Definition 4.2]
if (WLR(n) > maxWLR) then maxWLR = WLR(n)
Processed = Processed ∪ {n}

3) Obtain the initial nodes, the relevance and the best node:
Processed = ∅
nbest is a fresh node reference
R(nbest) = −1
while Processed 6= C

take n ∈ C\Processed such that Children(n) ⊆ Processed
3.1) Obtain the initial nodes I with those nodes with a higher WLR:

if WLR(n) ≥
√

maxWLR ×WLR(root)
thenW (n) = rpos(n)× rWLR(n) [See Definition 4.6]
elseW (n) = 0
3.2) Compute the relevance of all nodes in C:
R(n) = WLR(n)×max(W (n),

∑
R(n′)

n′∈Children(n)

)

3.3) Select the best node, i.e., the node with the highest relevance:
if (R(n) > R(nbest)) ∨ (R(n) = R(nbest) ∧ id(n) < id(nbest))
then nbest = n
Processed = Processed ∪ {n}

4) Extract the subtree of T whose root is nbest:
N ′ = {n ∈ N | (nbest → n) ∈ E∗}
E′ = {(n→ n′) ∈ E | n, n′ ∈ N ′}

end
return T ′

The technique is summarized in Algorithm 1. Essentially, this algorithm
performs the following steps:

1. Obtain the content nodes C by filtering nodes without textual content.

2. Compute WLR for all nodes in C.
3. Obtain the initial nodes I with those nodes with a higher WLR.

4. Compute the relevance of all nodes in C.
5. Select the best node, i.e., the node with the highest relevance.

6. Extract the subtree whose root is the best node.
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The cost of the whole process is O(N) being N the number of nodes in the
DOM tree. The first two steps can be computed with a single pass because
notContent nodes can be discarded at the same time that WLR is computed.
In the algorithm, for clarity, the computation of C has not been detailed, but it
should be performed inside the first while loop. Similarly, steps 3, 4, 5 and 6 can
be computed with a single traversal (here again, step 6 is not computed inside
the second while loop to simplify the reading, but it is trivial). Therefore, the
total cost is 2N . Note that the computation of I requires to know in advance
maxWLR. For this reason, maxWLR has been computed inside the first while
loop. Similarly, rpos and rWLR need to know maxWLR, minWLR, max id and
minid . Of course, the computation of all these values can also be done at the
same time, but it has been omitted for the sake of clarity.

Example 4.8. Consider again the HTML code in Figure 2 and its associated
DOM tree shown in Figure 4. The black nodes are the nodes removed by the
first step of the process, i.e., the rest of the nodes belong to the set C. Note that
the tags script or hr are removed because they do not contribute to the content
of the webpage. The #text node between nodes labeled with h2 and p is also
removed because it does not contain text (as is can be observed in the HTML
code).2

When C has been calculated, the next step is to compute WLR for each node
by counting words and leaves. The only complicated part here is, maybe, to
compute the total amount of leaves for each node. According to our definitions,
in Figure 4, for instance, those nodes with a grey background are considered as
a single leaf. This means that the value for the attribute leaves of the node with
a dotted shape is one.

With WLR we can determine which nodes belong to the initial set I. The
only node in the figure that belongs to I is the node with a dotted shape (la-
belled with td). When I has been computed and all nodes have been assigned
a relevance, we can determine the best node. In this example, the best node is
the one with a dashed shape (labelled with table). It corresponds to the table
which forms the main content of the webpage (the central table with the Gerard
Salton’s list of papers classified by year shown in Figure 3).

5. Experiments

We have implemented the technique presented in this paper and made it
publicly available, including the source code. It was implemented as a plugin
that can be installed in the Firefox browser as a toolbar. The tool is able
to automatically analyze any webpage online and filter out all the irrelevant
content. Additionally, when required, it can show the DOM tree and produce
information about the WLR of each node. This allows us and other researchers

2Nodes of type text without text are normal and frequent in DOM. DOM places a node
of type text in every place where text could appear. When no text exists, these nodes are
useless. Our technique removes all these nodes in the first step.
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to study the performance of WLR and to compare our technique with future
approaches.

As we argued in the related work section, WLR should be better than CNR
because counting words makes more sense than counting characters, and because
counting only the leaves is more accurate than counting all nodes. We wanted to
empirically prove this in order to measure how much better is WLR than CNR.
And, moreover, we also wanted to study the other possible combinations: chars–
leaves ratio (CLR) and words–nodes ratio (WNR). Therefore, we conducted
several experiments with real and online webpages to provide a measure of the
average performance regarding recall, precision and the F1 measure (see, e.g.,
[19] for a discussion on these metrics) for all four ratios.

For the experiments, we selected from the top-most 500 visited webpages
(see http://www.alexa.com/topsites/) a collection of domains with different
layouts and page structures in order to study the performance of the technique in
different contexts (e.g., company’s websites, news articles, forums, etc.). Then,
we randomly selected the final evaluation set. We determined the actual content
of each webpage by downloading it and manually selecting the main content text.
The DOM tree of the selected text was then produced and used for comparison
evaluation later.

Tables 1, 2, 3 and 4 summarize the results of the performed experiments,
and Table 5 compares the average results of these four tables. The first column
contains the URLs of the evaluated webpages. For each benchmark, column DOM

words shows the total number of words in the webpage; column Main block

shows the number of words contained in the main block; column Recall shows
the number of relevant words retrieved divided by the total number of relevant
words; column Precision shows the number of relevant words retrieved divided
by the total number of retrieved words; finally, column F1 shows the F1 metric
that is computed as (2 ∗P ∗R)/(P +R) being P the precision and R the recall.

The results of all four tables have been measured with the same unit: words.
This is very convenient to be able to compare the results. Thanks to the DOM
structure, we can straightforwardly obtain the words retrieved even in the case
when the technique uses characters to retrieve information (i.e., in CNR and
CLR). This is due to the fact that, at the end, the technique retrieves a set of
nodes in the DOM tree, and every (textual) node contains a discrete number of
words. Therefore, we only have to count the number of words contained in the
final set of retrieved nodes.

Experiments reveal that using leaves instead of nodes increases the recall in
around 40% while the precision remains similar. This happens because CNR
and WNR often select a node in the tree which is in the middle of the main
content, while CLR and WLR select a node which is an ancestor of this node
thus increasing the recall. The comparison of CNR and WNR reveals that
using words instead of characters produces an average increment of 6.48% in the
recall and 3.38% in the precision. This increment is not observable with CLR
and WLR because using leaves already performs this increment with respect to
nodes and thus using either characters or words have no influence. In fact, CLR
and WLR have exactly the same empirical results.
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Benchmark DOM words Main block Recall Precision F1

en.citizendium.org 4817 words 4568 words 1.8 % 100 % 3.54 %
googleblog.blogspot.com 801 words 737 words 6.65 % 100 % 12.47 %
us.gizmodo.com 901 words 518 words 13.9 % 100 % 24.41 %
www.applesfera.com 1626 words 1087 words 5.06 % 100 % 9.63 %
www.bbc.co.uk 1531 words 802 words 100 % 96.74 % 98.34 %
www.blogdecine.com 17647 words 1059 words 0.0 % 0.0 % 0.0 %
www.cbc.ca 1636 words 924 words 97.73 % 100 % 98.85 %
www.cbssports.com 3683 words 1836 words 5.77 % 100 % 10.91 %
www.cinemablend.com 827 words 263 words 18.63 % 100 % 31.41 %
www.cnn.com 1555 words 1065 words 97.65 % 81.25 % 88.7 %
www.elmundo.es 2365 words 1353 words 0.0 % 0.0 % 0.0 %
www.engadget.com 5150 words 3783 words 3.7 % 100 % 7.14 %
www.gizmologia.com 1264 words 202 words 0.0 % 0.0 % 0.0 %
www.healthopedia.com 765 words 205 words 45.85 % 100 % 62.87 %
www.microsiervos.com 1171 words 744 words 9.14 % 100 % 16.75 %
www.nationalfootballpost.com 822 words 205 words 20.49 % 100 % 34.01 %
www.news.cnet.com 5051 words 2396 words 98.12 % 100 % 99.05 %
www.nlm.nih.gov 956 words 642 words 12.31 % 100 % 21.92 %
www.people.com 1183 words 308 words 17.86 % 100 % 30.31 %
www.philly.com 865 words 477 words 32.29 % 100 % 48.82 %
www.sportingnews.com 1496 words 772 words 95.6 % 100 % 97.75 %
www.thefreedictionary.com 2605 words 1267 words 10.58 % 100 % 19.14 %
www.umm.edu 433 words 79 words 0.0 % 0.0 % 0.0 %
www.usatoday.com 1080 words 676 words 8.28 % 100 % 15.29 %
www.vidaextra.com 2381 words 257 words 0.0 % 0.0 % 0.0 %
www.wikipedia.org 3835 words 3657 words 1.59 % 100 % 3.13 %
www.wordreference.com 332 words 95 words 0.0 % 0.0 % 0.0 %

Average 2460 words 1109 words 26.04 % 76.96 % 30.91 %

Table 1: Benchmark results obtained with CNR

Benchmark DOM words Main block Recall Precision F1

en.citizendium.org 4817 words 4568 words 1.8 % 100 % 3.54 %
googleblog.blogspot.com 801 words 737 words 6.65 % 100 % 12.47 %
us.gizmodo.com 901 words 518 words 13.9 % 100 % 24.41 %
www.applesfera.com 1626 words 1087 words 5.06 % 100 % 9.63 %
www.bbc.co.uk 1531 words 802 words 100 % 96.74 % 98.34 %
www.blogdecine.com 17647 words 1059 words 0.0 % 0.0 % 0.0 %
www.cbc.ca 1636 words 924 words 97.73 % 100 % 98.85 %
www.cbssports.com 3683 words 1836 words 5.77 % 100 % 10.91 %
www.cinemablend.com 827 words 263 words 18.63 % 100 % 31.41 %
www.cnn.com 1555 words 1065 words 97.65 % 81.25 % 88.7 %
www.elmundo.es 2365 words 1353 words 100 % 100 % 100 %
www.engadget.com 5150 words 3783 words 3.7 % 100 % 7.14 %
www.gizmologia.com 1264 words 202 words 0.0 % 0.0 % 0.0 %
www.healthopedia.com 765 words 205 words 45.85 % 100 % 62.87 %
www.microsiervos.com 1171 words 744 words 9.14 % 100 % 16.75 %
www.nationalfootballpost.com 822 words 205 words 20.49 % 100 % 34.01 %
www.news.cnet.com 5051 words 2396 words 98.12 % 100 % 99.05 %
www.nlm.nih.gov 956 words 642 words 12.31 % 100 % 21.92 %
www.people.com 1183 words 308 words 92.86 % 91.08 % 91.96 %
www.philly.com 865 words 477 words 32.29 % 100 % 48.82 %
www.sportingnews.com 1496 words 772 words 95.6 % 100 % 97.75 %
www.thefreedictionary.com 2605 words 1267 words 10.58 % 100 % 19.14 %
www.umm.edu 433 words 79 words 0.0 % 0.0 % 0.0 %
www.usatoday.com 1080 words 676 words 8.28 % 100 % 15.29 %
www.vidaextra.com 2381 words 257 words 0.0 % 0.0 % 0.0 %
www.wikipedia.org 3835 words 3657 words 1.59 % 100 % 3.13 %
www.wordreference.com 332 words 95 words 0.0 % 0.0 % 0.0 %

Average 2460 words 1109 words 32.52 % 80.34 % 36.89 %

Table 2: Benchmark results obtained with WNR
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Benchmark DOM words Main block Recall Precision F1

en.citizendium.org 4817 words 4568 words 99.98 % 98.09 % 99.03 %
googleblog.blogspot.com 801 words 737 words 100 % 99.59 % 99.79 %
us.gizmodo.com 901 words 518 words 98.46 % 100 % 99.22 %
www.applesfera.com 1626 words 1087 words 8.65 % 100 % 15.92 %
www.bbc.co.uk 1531 words 802 words 100 % 96.74 % 98.34 %
www.blogdecine.com 17647 words 1059 words 0.0 % 0.0 % 0.0 %
www.cbc.ca 1636 words 924 words 97.73 % 100 % 98.85 %
www.cbssports.com 3683 words 1836 words 100 % 100 % 100 %
www.cinemablend.com 827 words 263 words 100 % 68.49 % 81.3 %
www.cnn.com 1555 words 1065 words 97.65 % 81.25 % 88.7 %
www.elmundo.es 2365 words 1353 words 0.0 % 0.0 % 0.0 %
www.engadget.com 5150 words 3783 words 100 % 93.18 % 96.47 %
www.gizmologia.com 1264 words 202 words 91.58 % 100 % 95.6 %
www.healthopedia.com 765 words 205 words 45.85 % 100 % 62.87 %
www.microsiervos.com 1171 words 744 words 19.35 % 92.9 % 32.03 %
www.nationalfootballpost.com 822 words 205 words 99.51 % 100 % 99.75 %
www.news.cnet.com 5051 words 2396 words 98.12 % 100 % 99.05 %
www.nlm.nih.gov 956 words 642 words 12.31 % 100 % 21.92 %
www.people.com 1183 words 308 words 92.86 % 91.08 % 91.96 %
www.philly.com 865 words 477 words 32.91 % 100 % 49.52 %
www.sportingnews.com 1496 words 772 words 100 % 99.61 % 99.8 %
www.thefreedictionary.com 2605 words 1267 words 100 % 72.4 % 83.99 %
www.umm.edu 433 words 79 words 0.0 % 0.0 % 0.0 %
www.usatoday.com 1080 words 676 words 100 % 79.81 % 88.77 %
www.vidaextra.com 2381 words 257 words 90.17 % 90.56 % 90.36 %
www.wikipedia.org 3835 words 3657 words 99.95 % 100 % 99.97 %
www.wordreference.com 332 words 95 words 100 % 100 % 100 %

Average 2460 words 1109 words 73.52 % 83.84 % 73.82 %

Table 3: Benchmark results obtained with CLR

Benchmark DOM words Main block Recall Precision F1

en.citizendium.org 4817 words 4568 words 99.98 % 98.09 % 99.03 %
googleblog.blogspot.com 801 words 737 words 100 % 99.59 % 99.79 %
us.gizmodo.com 901 words 518 words 98.46 % 100 % 99.22 %
www.applesfera.com 1626 words 1087 words 8.65 % 100 % 15.92 %
www.bbc.co.uk 1531 words 802 words 100 % 96.74 % 98.34 %
www.blogdecine.com 17647 words 1059 words 0.0 % 0.0 % 0.0 %
www.cbc.ca 1636 words 924 words 97.73 % 100 % 98.85 %
www.cbssports.com 3683 words 1836 words 100 % 100 % 100 %
www.cinemablend.com 827 words 263 words 100 % 68.49 % 81.3 %
www.cnn.com 1555 words 1065 words 97.65 % 81.25 % 88.7 %
www.elmundo.es 2365 words 1353 words 100 % 100 % 100 %
www.engadget.com 5150 words 3783 words 100 % 93.18 % 96.47 %
www.gizmologia.com 1264 words 202 words 91.58 % 100 % 95.6 %
www.healthopedia.com 765 words 205 words 45.85 % 100 % 62.87 %
www.microsiervos.com 1171 words 744 words 19.35 % 92.9 % 32.03 %
www.nationalfootballpost.com 822 words 205 words 99.51 % 100 % 99.75 %
www.news.cnet.com 5051 words 2396 words 98.12 % 100 % 99.05 %
www.nlm.nih.gov 956 words 642 words 12.31 % 100 % 21.92 %
www.people.com 1183 words 308 words 92.86 % 91.08 % 91.96 %
www.philly.com 865 words 477 words 32.91 % 100 % 49.52 %
www.sportingnews.com 1496 words 772 words 100 % 99.61 % 99.8 %
www.thefreedictionary.com 2605 words 1267 words 100 % 72.4 % 83.99 %
www.umm.edu 433 words 79 words 0.0 % 0.0 % 0.0 %
www.usatoday.com 1080 words 676 words 100 % 79.81 % 88.77 %
www.vidaextra.com 2381 words 257 words 90.17 % 90.56 % 90.36 %
www.wikipedia.org 3835 words 3657 words 99.95 % 100 % 99.97 %
www.wordreference.com 332 words 95 words 0.0 % 0.0 % 0.0 %

Average 2460 words 1109 words 73.52 % 83.84 % 73.82 %

Table 4: Benchmark results obtained with WLR
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Ratio Recall Precision F1

Average CNR 26.04 % 76.96 % 30.91 %
Average WNR 32.52 % 80.34 % 36.89 %
Average CLR 73.52 % 83.84 % 73.82 %
Average WLR 73.52 % 83.84 % 73.82 %

Table 5: Summary of results in the experiments

As shown in the experiments, the technique presents a high precision. How-
ever, sometimes the technique recovers some extra content. This extra content
is usually around the main content and sometimes is a layer that the designer of
the webpage inserted in the middle of the main content. It often shows a picture
or video related to the main content, but sometimes it is just an advertisement.
This is clearly a bad design policy used by the programmer that avoids to cor-
rectly reuse the code. However, we believe that it is done on purpose to ensure
that those webpages that reuse the main content will force the user to see the
advertisements. This is for instance the case of the benchmark www.philly.com.
In this benchmark the main content is divided into two parts with a banner in
the middle. This banner has produced that the tool only recognizes as main
content one of the two parts, and for this reason F1 is 49.52%. In other bench-
marks the tool failed with F1=0%. This problem was caused in all cases because
there is some part of the webpage with a very high concentration of text that is
not main content (e.g., the footer, a comment in a new, etc.), but was classified
as the only main content.

All the information related to the experiments, the source code of the
benchmarks, the source code of the tool and other material can be found at
http://users.dsic.upv.es/~jsilva/retrieval/

6. Case of study

This section provides a real example of usage of our tool. Once installed
in Firefox, the plugin adds to Firefox a new toolbar. This toolbar contains a
button to extract the main content of a webpage. The technique works totally
automatic because the user only have to press this button once a webpage has
been loaded. Then, the technique uses the DOM tree internally loaded by the
browser to select the best node. For instance, observe in Figure 6 the result
produced after the main content has been extracted in the main webpage of
CBS Sports. It has been perfectly filtered and both the horizontal menu and
the vertical panel with advertisements have been removed, thus, the content
extracted is exactly the main content.

In order to display the main content, the tool transforms the webpage to only
display the relevant content identified in the DOM tree. The natural approach
would be to construct a new webpage directly from the nodes that form the main
content ignoring the other nodes (i.e., making the node selected by the technique
the only child of body and removing the other nodes in the tree). However, this
would produce a webpage where the original structure has been lost. This would
happen because the space that was used by those elements removed would be
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Figure 6: Main webpage of CBS Sports (left) and its filtered version (right)

reassigned and redistributed between the remaining elements. Tabular designs
and designs based on divs would be destroyed.

Therefore, we cannot remove the filtered nodes. We only have to hide them.
Hence, once the nodes of the main content have been identified, the tool traverses
the DOM tree and, for each root of a subtree that does not belong to the main
content, it sets the attribute visibility to hidden. With this property, the HTML
elements still exist in the webpage and they fill their original space even though
they are invisible.

7. Conclusions

Content extraction is useful not only for the final user, but also for many
systems and tools such as indexers as a preliminary stage. It extracts the rele-
vant part of a webpage allowing us to ignore the rest of content that can become
useless, irrelevant, or even worst, noisy. In this work, we have presented a new
technique for content extraction that uses the DOM structure of the webpage
to identify the blocks that group those nodes with a higher proportion of text.

The DOM structure allows us to improve the detection of blocks, but it
also allows us to discard parts of the webpage that have a big amount of textual
information but belong to other HTML containers (i.e., they belong to a different
DOM subtree). Our implementation and experiments have shown the usefulness
of the technique presenting a high recall and precision.

The technique could be used not only for content extraction, but also for
blocks detection. It could detect all blocks in a webpage by applying the pre-
sented method iteratively to detect one block after the other. In this way, we
could detect the most relevant block; then, remove from the DOM tree all its
nodes, and detect the next relevant block in the remaining DOM tree. This pro-
cess would identify all blocks in relevant order. Another interesting open line of
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research is using the technique to detect the menus of a webpage. A preliminary
study showed that instead of using a ratio based on words, we could use a ratio
based on hyperlinks to discover big concentrations of links in the DOM tree.
If we collect those concentrations of links where the links contain one or two
words, we will find the menus of the webpage.
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