

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.image.2011.01.008

http://hdl.handle.net/10251/37718

Elsevier

López ., O.; Piñol ., P.; Martinez Rach, MO.; Pérez Malumbres, MJ.; Oliver Gil, JS. (2011).
Low-Complexity 3D-DWT video encoder applicable to IPTV. Signal Processing: Image
Communication. 26(7):358-369. doi:10.1016/j.image.2011.01.008.

Low-Complexity 3D-DWT video encoder suitable for

IPTV

O. Lópeza,∗, P. Piñola, M.O. Mart́ınez-Racha, M.P. Malumbresa, J. Oliverb

aMiguel Hernandez University, Avda. Universidad s/n, 03202 Elche (Alicante), Spain
bUniversidad Politécnica de Valencia, Camino de Vera s/n, 46222 Valencia, Spain

Abstract

3D-DWT encoders are good candidates for applications like professional
video editing, IPTV video surveillance applications, live event IPTV broad-
cast, multi-spectral satellite imaging, HQ video delivery, etc, in order to
reconstruct a frame as fast as possible. However, the main drawback of
the algorithms that compute the 3D-DWT is the huge memory requirement
in practical implementations. In this paper, we present a fast frame-based
3D-DWT video encoder with low memory usage. Furthermore, we evaluate
the behavior of the encoding system when different separable 1D filters are
applied, both in the spatial and temporal dimension.

Keywords: 3D-DWT, wavelet-based video coding, IPTV video surveillance

1. Introduction1

Internet Protocol Television (IPTV) is the use of an IP broadband net-2

work to deliver television services to the end user. Nowadays, IPTV makes3

use of H.264 encoding [1] to deliver the media content, although MPEG-44

Part II [2] and MPEG-2 [3] encoding systems still are used. However, these5

encoders have a great computational complexity, specially for real-time ap-6

plications or devices with power or memory comsumption constraints.7

In recent years, three-dimensional wavelet transform (3D-DWT) has fo-8

cused the attention of the research community, most of all in areas such as9

∗Corresponding author
Email addresses: otoniel@umh.es (O. López), pablop@umh.es (P. Piñol),

mmrach@umh.es (M.O. Mart́ınez-Rach), mels@umh.es (M.P. Malumbres),
joliver@disca.upv.es (J. Oliver)

Preprint submitted to Signal Processing: Image Communication October 1, 2010

video watermarking [4] and 3D coding (e.g., compression of volumetric data10

[5] or multispectral images [6], 3D model coding [7], and specially, video cod-11

ing). These encoders are good candidates for some applications like profes-12

sional video editing, IPTV video surveillance applications (Traffic cameras,13

child/day care, mall cctv surveillance), live event IPTV broadcast, multi-14

spectral satellite imaging, HQ video delivery, etc., where a specific frame of a15

video sequence must be reconstructed as fast as possible and with high visual16

quality.17

In video compression, some early proposals were based on merely apply-18

ing the wavelet transform on the time axis after computing the 2D-DWT for19

each frame [8]. Then, an adapted version of an image encoder can be used,20

taking into account the new dimension. For instance, instead of the typical21

quad-trees of image coding, a tree with eight descendants per coefficient is22

used in [8] to extend the SPIHT image encoder [9] to 3D video coding. Other23

strategy for video coding with time filtering is Motion Compensated Tempo-24

ral Filtering (MCTF) [10, 11]. In these techniques, in order to compensate25

object (or pixel) misalignment between frames, and hence avoid the signif-26

icant amount of energy that appears in high-frequency subbands, a motion27

compensation algorithm is introduced to align all the objects (or pixels) in28

the frames before being temporally filtered.29

In all these applications, the first problem that arises is the extremely high30

memory consumption of the 3D wavelet transform if the regular algorithm31

is used, since a group of frames must be kept in memory before applying32

temporal filtering, and in the case of video coding, we know that the greater33

temporal decorrelation, the greater number of frames are needed in memory.34

Another drawback is the necessity of grouping images in small Group Of35

Pictures (GOP) to prevent very high memory usage, because the 3D-DWT36

must be computed along a set of images which are held in memory. This37

video sequence division into GOPs causes boundary effects between GOPs.38

Even though several proposals have been made to avoid the aforemen-39

tioned problems, most of them are not general (for any wavelet transform)40

and/or complete (the wavelet coefficients are not the same as those from41

the usual dyadic wavelet transform). In addition, software implementation42

is not always easy. In this paper, we propose a video encoder based on a43

frame-by-frame 3D-DWT scheme which does not require a GOP division,44

significantly reduces the memory usage and performs the 3D-DWT much45

faster than traditional algorithms.46

2

2. 3D-DWT with low memory usage47

In the regular 3D-DWT, the wavelet transform is applied in the three48

directions, i.e., in the horizontal, vertical and time directions, resulting in49

eight first level wavelet subbands (typically named as HHL1, HLH1, HHH1,50

HLL1, LHL1, LLH1, LHH1 and LLL1). Afterwards, the same decomposi-51

tion can be done, focusing on the lowest-frequency subband (LLL1), achiev-52

ing in this way a second-level wavelet decomposition, and so on (see example53

in Figure 1(b)).54

Because this algorithm is clearly memory-intensive, with very high mem-55

ory requirements, and exhibits high coding delay (the whole 3D-DWT needs56

to be computed before starting the coding stage) several alternative proposals57

have been made.58

Some of these alternatives are based on modifying the order in which the59

temporal filtering is calculated. E.g., in [12] the authors propose to compute60

the wavelet transform in the time direction with only a few frames; then the61

resulting high-frequency frames are released as a part of the final result, and62

the low-frequency frames are employed along with a few more frames so as to63

continue to compute the wavelet transform in the time direction. A similar64

example is [13], where the temporal decomposition is done by interleaving65

frames in small groups, getting a low-frequency frame per group, which is66

stored to be decomposed later with the low-frequency frames from the rest67

of groups. Although both algorithms ([12] and [13]) require less memory, the68

resulting coefficients are far from being the same as in the regular algorithm.69

Other proposals rely on blocking algorithms [14], in which the transform70

is computed in working subsets to reduce memory usage and exploit data71

locality. Despite the use of overlapping techniques to avoid typical block-72

ing artifacts, the coding efficiency decreases because the redundancy among73

neighboring blocks is not exploited.74

In MCTF [10][11], the temporal decomposition is usually carried out with75

a very simple transform based on the lifting scheme [15]. When using filters76

with only a prediction and an update step (or even sometimes the update77

step is skipped), only a few frames need to be handled in MCTF.78

In this section we propose an extension to a three-dimensional wavelet79

transform of the classical line-based approach [16], which computes the 2D-80

DWT with reduced memory consumption. In the new approach, frames are81

continuously input with no need to divide the video sequence into GOPs.82

Moreover, the algorithm yields slices of wavelet subbands (which we call83

3

LLL1

LLH1, LHL1, LHH1, HLL1,

HLH1, HHL1, HHH1,

LLL2

LLH2, LHL2,

LHH2, HLL2,

HLH2, HHL2,

HHH2

(a) (b)

Figure 1: Overview of the 3D-DWT computation in a two-level decomposition, (a) follow-
ing a frame-by-frame scheme as shown in Figure 2; or, (b) the regular 3D-DWT algorithm

subband frames) as soon as it has enough frames to compute them. This84

approach works as follows:85

For the first decomposition level the algorithm directly receives frames86

one by one. On every input frame, a one-level 2D-DWT is applied. Then,87

this transformed image is stored in a buffer associated to the first decom-88

position level. This buffer must be able to keep 2N+1 frames, where 2N+189

correspond with the number of taps for the largest analysis filter bank in the90

temporal direction. We only consider odd filter lengths because they have91

higher compression efficiency; however, this analysis could be extended to92

even filters as well.93

When there are enough frames in the buffer to perform one step of a94

wavelet transform in the temporal direction (z-axis), the convolution process95

is calculated twice, first using the low-pass filter and then the high-pass filter.96

The result of this operation is the first frame of each high-frequency subbands97

(the HHL1, HLH1, HHH1, HLL1, LHL1, LLH1 and LHH1 wavelet sub-98

bands), and the first frame of the LLL1 subband. At this moment, for a99

dyadic wavelet decomposition, we can process and release the first frame of100

the wavelet subbands. However, the first frame of the LLL1 subband does101

not belong to the final result, since it represents the incoming data for the102

following decomposition level. On the other hand, once the frames at the103

first level buffer have been used, this buffer is shifted twice (using a rotation104

operation) so that two frames are discarded while another two frames are105

inputted at the other end. Once the buffer is updated, the process can be106

4

repeated and more subband frames are obtained.107

At the second decomposition level, its buffer is filled with the LLL1 frames108

that have been computed in the first level. Once the buffer is completely109

filled, it is processed in the very same way as we have described for the first110

level. In this manner, the frames of the second level wavelet subbands are111

achieved, and the low-frequency frames from LLL2 are passed to the third112

level. As depicted in Figure 1(a), this process can be repeated until the113

desired decomposition level (nlevel) is reached.114

In this algorithm a major problem arises when it is implemented. This115

drawback is the synchronization among buffers. Before a buffer can pro-116

duce frames, it must be completely filled with frames from previous buffers,117

therefore they start working at different moments, i.e., they have different118

delays. Moreover, all the buffers exchange their result at different intervals,119

according to their level.120

Handling several buffers with different delays and rhythms becomes a121

hard task. To solve the synchronization problem, the algorithm depicted122

at Figure 2 defines a recursive function that obtains the next low-frequency123

subband frame (LLL) from a contiguous level in a similar way as authors in124

[17] proposed for the 2D-DWT.

function LowMemUsage3D FWT(nlevel)
set FramesReadlevel = 0 ∀level ∈ nlevel

set FramesLineslevel = Nframes

2level ∀level ∈ nlevel

set bufferlevel = empty ∀level ∈ nlevel

repeat

LLL = GetLLLframe(nlevel)
if (LLL != EOF) ProcessLowFreqSubFrame(LLL)

until LLL = EOF
end of fuction

Figure 2: Perform the 3DFWT by calling GetLLLFrame recursive function

125

The algorithm starts requesting LLL frames to the last level (nlevel). As126

seen in Figure 1, the nlevel buffer must be filled with subband frames from127

the nlevel -1 level before it can generate frames. In order to get them, this128

function recursively calls itself until level 0 is reached. At this point, it no129

longer needs to call itself since it can return a frame from the video sequence,130

which can be directly read from the input/output system.131

The first time that the recursive function is called at every level, it has its132

buffer (bufferlevel) empty. Then, its upper half (from N to 2N) is recursively133

filled with frames from the previous level. Recall that once a frame is received,134

5

it must be transformed using a 2D-DWT before being stored. Once the upper135

half is full, the lower half is filled by using symmetric extension. On the other136

hand, if the buffer is not empty, it simply has to be updated. In order to137

update it, it is shifted one position so that the frame contained in the first138

position is discarded and a new frame can be introduced in the last position139

(2N) by using a recursive call. This operation is repeated twice.140

However, if there are no more frames in the previous level, this recursive141

call will return End Of Frame (EOF). That points out that we are about to142

finish the computation at this level, but we still need to continue filling the143

buffer. We fill it by using symmetric extension again.144

Once the buffer is filled or updated, both high-pass and low-pass filter145

banks for the time direction (z-axis) are applied to the frames in the buffer.146

As a result of the convolution, we get a frame of every wavelet subband at this147

level, and an LLL frame. The high-frequency coefficients are compressed and148

this function returns the LLL frame which is the lowest frequency subband149

frame (see Figure 3).150

The inverse DWT algorithm is similar to the forward DWT, but ap-151

plied in reverse order. The decoding process begins immediately by filling152

up the highest-level buffer (nlevel) with the information received from the153

bit-stream. During this process, other information from the bit-stream is154

ignored. Afterwards, once this buffer is full, we also begin to accept infor-155

mation from the previous level, and so forth, until all the buffers are full. At156

that moment, the video can be sequentially decoded as usual. The latency of157

this process is deterministic and depends on the filter length and the number158

of decomposition levels (the higher they are, the higher latency). However,159

for the regular 3D algorithm, the latency depends on the remaining number160

of frames in the current group when the process begins, and the GOP size. A161

drawback that has not been considered yet is the need to reverse the order of162

the subbands, from the forward DWT to the inverse one. This problem can163

be solved by using some buffers at both ends, so that data are supplied in the164

right order [16]. Other simpler solutions are to save every level in secondary165

storage separately so that it can be read in a different order or to keep the166

compressed bit-stream in memory if the 3D-DWT is used for compression.167

3. Run-Length encoder168

In order to have low memory consumption, once a wavelet subband is169

calculated, it has to be encoded as soon as possible to release memory. The170

6

function GetLLLFrame (level)
1) First base case: No more frames to read at this level

if FramesReadlevel = MaxFrameslevel

return EOF
2) Second base case: The current level belongs
to the space domain and not to the wavelet domain

else if level = 0
return InputFrame()

else

3) Recursive case
3.1) Recursively fill or update the buffer for this level

if bufferlevel is empty
for i = N . . . 2N

bufferlevel(i) = 2DFWT (GetLLLframe(level − 1))
SymmetricExtension(bufferlevel)

else

repeat twice
Shift(bufferlevel)
frame = GetLLLframe(level − 1)
if frame = EOF

bufferlevel(2N) = SymmetricExtension(bufferlevel)
else

bufferlevel(2N) = 2DFWT(frame)
3.2) Calculate the WT for the time direction from the frames
in buffer, then process the resulting high frequency subband frames

{LLL, LLH, LHL, LHH} =Z-axis FWT LowPass(bufferlevel)
{HLL, HLH, HHL, HHH} =Z-axis FWT HighPass(bufferlevel)
ProcessSubFrames({LLH, LHL, LHH, HLL, HLH, HHL, HHH})
set FramesReadlevel=FramesReadlevel + 1
return LLL

end of fuction

Figure 3: GetLLLFrame Recursive function

encoder cannot use global video information since it does not know the whole171

video. Moreover, we aim at fast execution, and hence no R/D optimization172

or bitplane processing can be applied, because it would turn it even slower.173

In the next subsection, a Run-Length Wavelet (RLW) encoder with the afore-174

mentioned features is proposed.175

3.1. Fast run-length coding176

In the proposed coding algorithm, the quantization process is performed177

by two strategies: one coarser and another finer. The finer one consists178

on applying a scalar uniform quantization to the coefficients using the Q179

parameter. The coarser one is based on removing bit planes from the least180

significant part of the coefficients. We define rplanes as the number of less181

significant bits to be removed, and we call significant coefficient to those182

coefficients ci,j that are different to zero after discarding the least significant183

7

rplanes bits, in other words, if ci,j ≥ 2rplanes. The wavelet coefficients are184

encoded as follows. The coefficients in the subband buffer are scanned row185

by row (to exploit their locality). For each coefficient in that buffer, if it186

is not significant, a run-length count of insignificant symbols at this level187

is increased (run lengthL). However, if it is significant, we encode both the188

count of insignificant symbols and the significant coefficient, and run lengthL189

is reset.190

The significant coefficient is encoded by means of a symbol indicating the191

number of bits required to represent that coefficient. An arithmetic encoder192

with two contexts is used to efficiently store that symbol. As coefficients in193

the same subband have similar magnitude, an adaptive arithmetic encoder194

is able to represent this information in a very efficient way. However, we still195

need to encode its significant bits and sign. They are raw encoded to speed196

up the execution time.197

In order to encode the count of insignificant symbols, we encode a RUN198

symbol. After encoding this symbol, the run-length count (run lengthL) is199

stored in a similar way as in the significant coefficients. First, the number200

of bits needed to encode the run value is arithmetically encoded (with a201

different context), afterwards the bits are raw encoded.202

Instead of using run-length count symbols, we could have used a single203

symbol to encode each insignificant coefficient. However, we would need to204

encode a larger amount of symbols, and therefore the complexity of the algo-205

rithm would increase (most of all in the case of large number of insignificant206

contiguous symbols, which usually occurs in moderate to high compression207

ratios). However, the compression performance is increased if a specific sym-208

bol is used for every insignificant coefficient, since an arithmetic encoder209

processes more efficiently many likely symbols than a lower amount of less210

likely symbols. So, for short run-lengths, we encode a LOWER symbol for211

each insignificant coefficient instead of coding a run-length count symbol for212

all the sequence. The threshold to enter the run-length mode and start using213

run-length count symbols is defined by the enter run mode parameter. The214

formal description of the depicted algorithm can be found in Figure 4.215

4. Results216

4.1. Wavelet Filter Evaluation217

In this section we analyze the behavior of the proposed encoder (3D-218

RLW) and we evaluate the performance when we use different separable 1D219

8

function RLW Code Subband(Buffer, L)
Scan Buffer in horizontal raster order
for each Ci,j in Buffer

nbitsi,j = ⌈log2 (|Ci,j |)⌉
if nbitsi,j ≤ rplanes

increase run lengthL

else

if run lengthL ≤ enter run mode

repeat run lengthL times

arithmetic output LOWER

else

arithmetic output RUN

rbits = ⌈log2 (run lengthL)⌉
arithmetic output rbits

output bitnbits(i,j)−1 (|Ci,j |). . . bitrplane+1 (|Ci,j |)

output sign(ci,j)
end of fuction

Note: bitn (C) is a function that returns the nth bit of C

Figure 4: Run-length coding of the wavelet coefficients

filters in both spatial and temporal domain. For our simulation we have220

three different options for the 3D decomposition, as shown in Table 1. The221

first one, D97-D97, uses Daubechies 9/7F filter in both spatial and temporal222

dimension. The second one, D97-B53, uses Daubechies 9/7F filter for the223

spatial dimension and LeGall B5/3 filter for the temporal dimension. Finally,224

the B53-B53 option uses the LeGall B5/3 filter for both spatial and temporal225

dimension. We will compare the three 3D-RLW encoder versions versus the226

fast M-LTW Intra video encoder [18], in terms of R/D performance and227

memory requirements.

Option Spatial Temporal
D97-D97 Daubechies 9/7F Daubechies 9/7F
D97-B53 Daubechies 9/7F LeGall B5/3
B53-B53 LeGall B5/3 LeGall B5/3

Table 1: Filter choices for 3D decomposition of video

228

In this new algorithm (frame-by-frame 3D wavelet transform), each buffer229

must be able to keep either 2N + 1 low frequency frames at every level230

(recall that 2N + 1 is the filter length), or even less if the lifting scheme is231

used as shown in [17]. As presented in Figure 1(a), each buffer at a level i232

needs a quarter of coefficients if compared with the previous decomposition233

level (i − 1). Therefore, for a frame size of (w × h) and an nlevel time234

9

Format/Codec QCIF CIF ITU-D1 Full-HD
D97-D97 3908 12548 22508 129750
D97-B53 3412 10476 16076 89292
B53-B53 3412 10476 16076 89292
M-LTW 1104 1540 4900 23800

Table 2: Memory requirements for evaluated filters (KB) (results obtained with Windows
XP task manager, peak memory usage index)

3 64 04 44 8
PSNR(dB) 3 D R L W D 9 7 D 9 7

2 42 83 2 0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0
P

T a r g e t B i t r a t e (K b p s)
3 D R L W D 9 7 B 5 33 D R L W B 5 3 B 5 3M L T W (I n t r a)

Figure 5: PSNR (dB) for all evaluated filters for Container sequence in CIF format

decomposition, the number of coefficients required by this algorithm is:235

(2N + 1) × (w × h) + (2N + 1) × (w × h) /4

+ . . . + (2N + 1) × (w × h) /4nlevel−1 (1)

which is asymptotically (as nlevel approaches infinity) independent of236

the number of frames to be encoded, less than the regular case, which needs237

(w × h × G), being G the number of frames in a GOP.238

∞∑

n=0

(2N + 1) × (w × h)

4n
= (2N + 1) × (w × h) ×

4

3
(2)

For an objective evaluation, in Table 2, the memory requirements of dif-239

ferent encoders under test are shown. Obviously, the M-LTW encoder only240

uses the memory needed to store one frame. The 3D-RLW version using241

LeGall 5/3 temporal filter requires up to 1.5 times less memory than the one242

using Daubechies 9/7F time filter.243

10

Regarding R/D, in Figure 5 we can see the behavior of all evaluated en-244

coders. As shown, the 3D-RLW version using LeGall B5/3 filter in both245

spatial and temporal domain obtains slightly lower R/D performance com-246

pared to the other 3D-RLW versions using Daubechies 9/7F filter in the247

spatial domain. It is interesting to see the improvement of 3D-RLW versions248

when compared to an INTRA video encoder (up to 9 dB). In these encoders249

no ME/MC stage is included, so the improvement is accomplished by ex-250

ploiting only the temporal redundancy among video frames when applying251

the 3D-DWT.252

Among the three 3D-RLW versions, the one using Daubechies 9/7F filter253

for the spatial domain and LeGall 5/3 filter for the temporal domain (D97-254

B53) shows the best trade off between R/D (similar behavior than the one255

using Daubechies 9/7F filter in the temporal domain) and memory require-256

ments (up to 1.5 less memory than the one using Daubechies 9/7F filter in257

the temporal domain).258

4.2. Global Evaluation259

For an extensive evaluation, in this section we analyze the behavior of260

the proposed encoder (3D-RLW) using Daubechies 9/7F filter for the spa-261

tial domain and LeGall 5/3 filter for the temporal domain (D97-B53). We262

will compare the 3D-RLW encoder versus 3D-SPIHT [19], H.264 (JM16.1263

version), H.263 (ffmpeg-r25117), MPEG-2 (ffmpeg-r25117), MPEG-4 Part264

II (ffmpeg-r25117) and X.264 (mingw32-libx264 r1713-1 high quality profile)265

[20] in terms of R/D performance, coding and decoding delay and mem-266

ory requirements. All the evaluated encoders have been tested on an Intel267

PentiumM Dual Core 3.0 GHz with 2 Gbyte RAM memory.268

It is important to remark that H.263, MPEG-2, MPEG-4 and X.264269

evaluated implementations are fully optimized, using CPU capabilities like270

Multimedia Extensions 2 (MMX2), Single Instruction Multiple Data Exten-271

sion 2 (SSE2Fast), Supplemental Streaming SIMD Extension 3 (SSSE3) and272

multithreading, whereas 3D-SPIHT and 3D-RLW are not optimized imple-273

mentations.274

In Table 3, the memory requirements of different encoders under test are275

shown. Obviously, encoders like MPEG-2, H.263 and MPEG-4 only using P276

frames, require to keep in memory just 2 frames to acomplish the ME/MC277

stage, whereas encoders based on 3D-DWT like 3D-SPIHT and 3D-RLW278

need to keep more frames in memory to apply the time filter. The 3D-RLW279

encoder uses up to 7 times less memory than 3D-SPIHT, up to 14 times less280

11

Format/Codec QCIF CIF ITU-D1 Full-HD
H264 35824 86272 227620 489960
X264 10752 36468 36600 178940

3D-RLW 3412 10476 16076 89292
3D-SPIHT 10152 34504 118460 645720

Table 3: Memory requirements for evaluated encoders (KB) (results obtained with Win-
dows XP task manager, peak memory usage index)

4 04 44 8
PSNR(dB) 3 D S P I H T3 D R L W D 9 7 B 5 3

2 83 23 6
0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0

P
T a r g e t B i t r a t e (K b p s)

H 2 6 4M P E G 2M P E G 4 P A R T 2H 2 6 3X 2 6 4
(a) Container

Figure 6: PSNR (dB) for all evaluated encoders for Container sequence in CIF format

memory than H.264 for ITU-D1 sequence size and up to 3 times less memory281

than X.264 which is an optimized version of H.264.282

Regarding R/D, in Figures 6 and 7 we can see the R/D behavior of283

all evaluated encoders. As shown, H.264 is the one that obtains the best284

results, mainly due to the exhaustive motion estimation/motion compensa-285

tion (ME/MC) stage included in this encoder, contrary to 3D-SPIHT and286

3D-RLW that do not include any ME/MC stage. The optimized version of287

H.264 (X.264) has lower R/D performance than H.264 because it uses a fast288

ME/MC stage which is less accurate than the used in the H.264 standard289

version (up to 3 dB). The R/D behavior of 3D-SPIHT and 3D-RLW is sim-290

ilar for images with moderate-high motion activity, but for sequences with291

low movement, 3D-SPIHT outperforms 3D-RLW, showing the power of tree292

encoding system. The proposed encoder (3D-RLW) has a similar behavior293

than H.263 and MPEG-2 and slightly lower performance than MPEG-4.294

Regarding coding delay, in Figure 8 we can see that the 3D-RLW encoder295

12

3 64 04 44 8
PSNR(dB) 3 D S P I H T3 D R L W D 9 7 B 5 32 83 23 6

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0
P

T a r g e t B i t r a t e (K b p s)
H 2 6 4M P E G 2M P E G 4 P A R T 2H 2 6 3X 2 6 4

(b) Foreman

Figure 7: PSNR (dB) for all evaluated encoders for Foreman sequence in CIF format1 0 . 3 1 1 . 2 91 7 2 . 4 1 7 5 . 9 59 . 9 9 1 . 9 11 1 2 . 9 1 1 5 . 4 52 2 3 . 2 1 4 6 . 4 92 3 1 . 4 8 4 3 . 6 5
0 . 1 01 . 0 01 0 . 0 01 0 0 . 0 01 , 0 0 0 . 0 0

mespersecond 0 . 0 2 0 . 0 00 . 0 00 . 0 1 I T U D 1 F u l l H DF ram
3 D S P I H T 3 D R L W H 2 6 4 X 2 6 4 H 2 6 3 M P E G 2 M P E G 4

Figure 8: Execution time comparison of the encoding process

is one of the fastest encoders, being up to 16 times faster than 3D-SPIHT296

for ITU-D1 size sequences, 1.5 times faster than MPEG-2 for Full-HD size297

sequences and up to 39 times faster than X.264 for Full-HD size sequences.298

The decoding process is also very fast in 3D-RLW, having a similar behavior299

than MPEG-2 and MPEG-4 encoders for Full-HD size sequences.300

5. Conclusions301

In this paper a fast and low memory demanding 3D-DWT encoder has302

been presented and several separable 1D filters has been tested. The new303

encoder using Daubechies 9/7F for the spatial domain and LeGall 5/3 fil-304

ter for the temporal domain (D97-B53), reduces the memory requirements305

13

compared with 3D-SPIHT (7 times less memory), H.264 (up to 14 times less306

memory) and X.264 (up to 3 times less memory). The new 3D-DWT encoder307

is faster than 3D-SPIHT (up to 16 times faster for Full-HD), MPEG-2 (up to308

1.5 times faster for Full-HD) and X.264 (up to 39 times faster for Full-HD).309

Regarding R/D, our proposal has a similar behavior than MPEG-2 and310

H.263 and slightly lower performance than MPEG-4. When compared with311

3D-SPIHT, our proposal has a similar behavior for sequences with medium312

and high movement, but lower performance for sequences with low movement313

like Container. In order to improve the coding efficiency, an ME/MC stage314

could be added. In this manner, the objects/pixels of the input video se-315

quence will be aligned, and so, fewer frequencies would appear at the higher316

frequency subbands, improving the compression performance. Also, a full317

optimization process exploiting the parallel capabilities of modern proces-318

sors (like multithreading and SIMD instructions) will make 3D-RLW even319

faster.320

The low memory requirements and the fast coding/decoding process,321

makes the 3D-LTW encoder a good candidate for IPTV applications where322

the coding delay is critical for proper operation.323

6. Acknowledgements324

Thanks to Spanish Ministry of education and Science under grants DPI2007-325

66796-C03-03 for funding.326

References327

[1] I. 14496-10, I. R. H.264, Advanced video coding (2003).328

[2] ISO/IEC JTC1. ISO/IEC 14496-2, Coding of audio-visual objects (April329

2001).330

[3] ISO/IEC JTC1. ISO/IEC 13818-2, Generic coding of moving pictures331

(2000).332

[4] P. Campisi, A. Neri, Video watermarking in the 3D-DWT domain us-333

ing perceptual masking, in: IEEE International Conference on Image334

Processing, 2005, pp. 997–1000.335

14

[5] P. Schelkens, A. Munteanu, J. Barbariend, M. Galca, X. Giro-Nieto,336

J. Cornelis, Wavelet coding of volumetric medical datasets, IEEE Trans-337

actions on Medical Imaging 22 (3) (2003) 441–458.338

[6] P. Dragotti, G. Poggi, Compression of multispectral images by three-339

dimensional SPITH algorithm, IEEE Transactions on Geoscience and340

Remote Sensing 38 (1) (2000) 416–428.341

[7] M. Aviles, F. Moran, N. Garcia, Progressive lower trees of wavelet coef-342

ficients: Efficient spatial and SNR scalable coding of 3D models, Lecture343

Notes in Computer Science 3767 (2005) 61–72.344

[8] B. Kim, Z. Xiong, W. Pearlman, Low bit-rate scalable video coding with345

3D set partitioning in hierarchical trees (3D SPIHT), IEEE Transactions346

on Circuits and Systems for Video Technology 10 (2000) 1374–1387.347

[9] A. Said, A. Pearlman, A new, fast and efficient image codec based on348

set partitioning in hierarchical trees, IEEE Transactions on Circuits,349

Systems and Video Technology 6 (3) (1996) 243–250.350

[10] A. Secker, D. Taubman, Motion-compensated highly scalable video com-351

pression using an adaptive 3D wavelet transform based on lifting, IEEE352

Internantional Conference on Image Processing (2001) 1029–1032.353

[11] P. Cheng, J.W.Woods, Bidirectional MC-EZBC with lifting implementa-354

tion, IEEE Transactions on Circuits and Systems for Video Technology355

(2004) 1183–1194.356

[12] E. Moyano, F. Quiles, A. Garrido, L. Orozco-Barbosa, J. Duato, Ef-357

ficient 3D wavelet transform decomposition for video compression, in:358

Int. Work. Digital and Computational Video, 2001.359

[13] Y. Nian, L. Wu, S. He, Y. Gu, A new video coding based on 3D wavelet360

transform, in: IEEE International Conference on Intelligent Systems361

Design and Applications, 2006.362

[14] G. Bernabe, J. Gonzalez, J. Garcia, Memory conscious 3D wavelet trans-363

form, in: Euromicro Conference, 2002.364

[15] W. Sweldens, The lifting scheme: a custom-design construction of365

biorthogonal wavelets, Applied and Computational Harmonic Analysis366

3 (2) (1996) 186–200.367

15

[16] C. Chrysafis, A. Ortega, Line-based, reduced memory, wavelet image368

compression, IEEE Transactions on Image Processing 9 (3) (2000) 378–369

389.370

[17] J. Oliver, E. Oliver, M.P.Malumbres, On the efficient memory usage in371

the lifting scheme for the two-dimensional wavelet transform computa-372

tion, in: IEEE International Conference on Image Processing, 2005, pp.373

485–488.374

[18] O. Lopez, M. Martinez-Rach, P. Piñol, M. Malumbres, J.Oliver, M-375

LTW: A fast and efficient intra video codec, Signal Processing: Image376

Communication (23) (2008) 637–648.377

[19] B. Kim, Z. Xiong, W. Pearlman, Very low bit-rate embedded video378

coding with 3D set partitioning in hierarchical trees (3D SPIHT) (1997).379

[20] http://ffmpeg.arrozcru.org/autobuilds/blog/2010/09/14/ffmpeg-380

r25117-swscale-r32222-ok/, ffmpeg (September 2010).381

16

