

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://link.springer.com/article/10.1007%2Fs00779-011-0414-0

http://hdl.handle.net/10251/37760

Springer Verlag (Germany)

Gil Pascual, M.; Giner Blasco, P.; Pelechano Ferragud, V. (2012). Personalization for
unobtrusive service interaction. Personal and Ubiquitous Computing. 16(5):543-561.
doi:10.1007/s00779-011-0414-0.

Pers Ubiquit Comp manuscript No.
(will be inserted by the editor)

Personalization for unobtrusive service interaction

Miriam Gil · Pau Giner · Vicente Pelechano

Received: date / Accepted: date

Abstract Increasingly, mobile devices play a key role

in the communication between users and the services

embedded in their environment. With ever greater num-

ber of services added to our surroundings, there is a

need to personalize services according to the user needs

and environmental context avoiding service behavior

from becoming overwhelming. In order to prevent this

information overload, we present a method for the de-

velopment of mobile services that can be personalized

in terms of obtrusiveness (the degree in which each ser-

vice intrudes the user’s mind) according to the user

needs and preferences. That is, services can be devel-

oped to provide their functionality at different obtru-

siveness levels depending on the user by minimizing

the duplication of efforts. On the one hand, we provide

mechanisms for describing the obtrusiveness degree re-
quired for a service. On the other hand, we make use of

Feature Modeling techniques in order to define the ob-

trusiveness level adaptation in a declarative manner. An

experiment was conducted in order to put in practice

the proposal and evaluate the user acceptance for the

personalization capabilities provided by our approach.

M. Gil · P. Giner · V. Pelechano
Centro de Investigación en Métodos de Producción de Soft-
ware,
Universitat Politècnica de València,
Camino de Vera s/n, 46022 Valencia, Spain
Tel.: +34-963877007 (Ext. 73551), Fax: +34-963877359
E-mail: mgil@pros.upv.es

P. Giner
pginer@pros.upv.es

V. Pelechano
pele@pros.upv.es

Keywords Obtrusiveness adaptation · Personaliza-

tion · Feature modeling · Interaction adaptation ·
Context-awareness

1 Introduction

In ubiquitous computing environments, services might

be embedded in the actual activities of everyday life,

resulting in calm technology that moves back and forth

between the center and the periphery of human at-

tention [45]. The advanced capabilities of mobile de-

vices give them great potential to be the default phys-

ical interface for ubiquitous computing [2]. In a mobile

context where users are permanently connected to the

environment, users may be interrupted often. Services

should interact with users in a way that are not disturb-

ing for them. Since user attention is a valuable but lim-

ited resource, an environment full of embedded services

must behave in a considerate manner [18], demanding

user attention only when it is actually required. Eval-

uating Presto [19], a context aware mobile platform

that allows to support different workflows by interact-

ing with the physical environment, we found the need

for mechanisms that adapt the degree to which inter-

action intrudes on user attention.

To avoid service behavior from becoming overwhelm-

ing, we propose a technique to adjust the way atten-

tional resources of each user are considered by pervasive

services according to the user needs.

Since mobile devices provide a rich contextual in-

formation about the user, the system can anticipate

some of the user tasks in order not to interrupt him/her.

However a complete automation is not always possible

or desirable [41]. For certain tasks, some users prefer

that the system acts silently in order not to be dis-

2 Miriam Gil et al.

turbed. For other tasks, users want to know what is

happening behind the scenes. For example, when the

favorite program of a certain user begins, the system

should consider whether to start recording and/or in-

forming the user depending on their preferences. But,

if the system decides to inform the user first, it must

choose the most adequate mechanism from all the ones

available in his/her mobile device (sound, vibration, a

text message, etc.).

The main contribution of this work is a method for

the development of mobile services that can be person-

alized to regulate the service obtrusiveness (i.e., the

extent to which each service intrudes the user’s mind)

in a systematic way. In this work, we enrich the design

phase with information (abstractions) to define the at-

tentional resources used for each service depending on

the user needs. In this way, user needs drive the design

of the system providing users with personalized services

and avoiding information overload.

Our approach relies on proven frameworks and mod-

eling techniques. On the one hand, personas [8] are user

profiles used to gather the relevant information of the

audience helping to drive design and to detect com-

mon functionalities between users. In order to provide

personalized services according to the user needs, these

needs have to be known by means of user modeling

techniques. Moreover, we have applied this personal-

ization technique to express the user needs in terms

of obtrusiveness. On the other hand, Feature Modeling

techniques [13] are applied to describe the commonali-

ties and differences between the interaction mechanisms

provided for each service and the constraints for their

selection. We have defined user interfaces by means of

UI fragments. In this way, Feature Models allow design-

ers to represent these fragments in an abstract man-

ner in a way that a feature can be implemented by

one or many UI fragments. Thus, Feature Models are

used to define the different alternatives for combining

these fragments according to the service obtrusiveness

required for each user.

This paper is organized as follows. Section 2 de-

scribes the development method defined for supporting

our approach. Section 3 provides detail on the tool sup-

port developed. Section 4 describes the application of

the proposal in a case study that is based on a Smart

Home scenario and presents the results from this appli-

cation. Section 5 presents related work. In Section 6, a

discussion of the usefulness and efficiency of the pro-

posed method is introduced. Finally, Section 7 con-

cludes the paper.

2 Developing personalized mobile services

The goal of the approach presented in this work is to

manage the attentional demand of services according

to user needs in order to avoid information overload.

We propose a technique to personalize the way in

which a pervasive service is accessed by adjusting its

obtrusiveness level. For defining such services we need

to (1) detect the user needs and preferences to deter-

mine the obtrusiveness level required for the interaction

and (2) make use of the adequate interaction mech-

anisms to provide the functionality according to this

obtrusiveness level.

To understand the users and capture their needs

and preferences we use personas. From the software en-

gineering side, different mechanisms exist in order to de-

fine the relationship between users and their performed

activities such as UML Use Case Diagrams [37], Con-

curTaskTrees [30], and Business Process Modeling No-

tation (BPMN) [33]. Personas are usually used in the

design of user-centered approaches. According to the

users, personas give a much more concrete picture of

typical users providing features that directly address

specific user needs [21]. Thus, it is interesting the use

of them in this work where we have directly address

specific user needs following a user-centered design.

For the selection of the adequate interaction mecha-

nism we make use of Feature Models. Feature Models al-

low to describe the essential aspects of each interaction

mechanism and the ways in which they can be com-

bined. By providing an intensional description of the

interaction possibilities (as opposed to an extensional

description of all the possibilities), we avoid having to

define the interaction for each combination of context,

obtaining “common aspects” between context factors.

This work is based on Model Driven Engineering

(MDE) principles [16] in order to automate the devel-

opment of personalized mobile services in a systematic

way. MDE proposes the use of models to specify the de-

sired aspects of a system, and then, derives the actual

code in an automatic way. The specified system can

be automatically generated for different platforms from

abstract descriptions. Following the development pro-

cess iteratively, a prototype of the system is obtained.

Then, following a user-centered design, feedback from

users drives changes in requirements and the detection

of new adaptation aspects. In this way, the initial pro-

totype can be evolved to the final solution.

Thus, we have defined a method to guide the devel-

opment of personalized services based on models and

descriptions. The method comprises three phases: anal-

ysis, creation, and interface generation. The develop-

ment process is shown in Figure 1. The different coor-

Personalization for unobtrusive service interaction 3

Analysis

shopping list
service

1) Detecting user needs:

Creation

6) Describe component architecture:

3, 4) Create obtrusiveness space and
 interaction model:

in
it

ia
ti

v
e

attention

Visual

TextGraphical

Expression

Status-basedChange-based

Interaction

5) Create Concrete User Interface:

Group
Widget

Text Button

Interface generation

7) Validate the generated interfaces:

(Reactive-Slightly Aware)

generate

not valid
change

obtrusiveness level

valid

View items

Add item

Notify
supermarket

Items
Shopping list

service

Scenarios:

Objectives: Background:

Concerns:

put together
in the models

depending
on context

· Optimize time
· Don't forget tasks
· Feel in control
· Keep track the items to buy

· How can I do not forget
important tasks and
events?

· If the system do
something, will it inform
me about it?

· Be aware of pending tasks
Bob has a busy lifestyle and he
sometimes forgets important tasks he
has to do such as deadlines or meetings
and other tasks that are less important
but they are essential such as water the
plants, birthdays, etc.

Bob is a single man who
works in a big company
and he lives alone in a
house with ...

Define Personas:

2) Detect services and attentional demand:

Text
Status-
based

Low
attention

Persona X

abstract
interaction

concrete
UI fragments

shopping list
service

Fig. 1 Development process

dinated activities that constitute the development pro-

cess, the roles and the models involved are detailed be-

low.

2.1 Analysis phase

User modeling becomes the first stage in the develop-

ment of a new personalized system in order to capture

user requirements. Following the user-centered design

principles [28], this phase requires several iterations to

ensure that the captured user requirements fulfill the

real needs. There is a team of designers taking part in

different interaction design roles (information architect,

interaction designer, and user researcher) [42] in charge

of this phase. The activities involved in this stage are

the following:

2.1.1 Detecting user needs

The first step in the personalization of pervasive ser-

vices is to understand who the users will be by study-

ing their cognitive, behavioral and attitudinal charac-

teristics. In order to do this we make use of Personas

(also known as User Profiles). A persona is a summary

representation of the system’s intended users, often de-

scribed as real people [8]. They provide a framework for

describing the target audience in a way useful to design

and personalize systems.

Personas (or User Profiles) describe target users of

the system, giving a clear picture of how they are likely

to use the system, and what they will expect from it [8].

Personas capture relevant information about users that

directly impact on the design process: user goals, sce-

narios, tasks, and the like. Although these user profiles

are depicted as specific individuals because they func-

tion as archetypes, they represent a type of user. Users

are grouped into personas, and the personas are ana-

lyzed to facilitate service personalization at a person

level.

However, a user does not always need to be of the

same type. A user can evolve and services have to be

continuosly adapted to the needs of each moment. For

example, in an online banking system, the needs of a

user can evolve from the New Customer group to the

Regular User group. So, the system will have to adapt

the services provided based on the new profile.

Personas are synthesized from data collected from

user research or information-gathering methods such

as interviews with users, user testing, etc. In the pre-

design phase the design team makes interviews and ob-

servations that are the basis for creating personas [6].

Then, in this phase, designers analyze the information

collected and define the personas.

There is no standard format for personas, and dif-

ferent approaches are offered. Regardless of the selected

approach, personas should express what users need and

what they expect, containing the majority of the user

research findings. In this work, we follow the notation

defined in [8] to determine the needs of each user and

the functionality required.

In this notation, the information is structured fol-

lowing three layers of detail. Table 1 shows the elements

of a persona prioritized into these three layers. Layer

1 contains the fundamental elements to establish user

requirements. These elements are: the name of the per-

sona, some key features that distinguish the user group

from others, descriptive dimensions that are individ-

ual scales representing knowledge, tasks, interests and

characteristics, the objectives and motivations of the

4 Miriam Gil et al.

Bob Berry · The busier
Familiar to Smart Home services

Behaviors Objectives

ACTIVITYLow High

BREADTH
One

service
Many
services

VENUE
One

channel
Many
channels

· Optimize time

· Don't forget tasks

· Feel in control of housekeeping

· Keep track the items to buy

· Keep the house up-to-date

· Record favorite programs

Scenarios Concerns

· How can I do not forget important tasks and

events?

· If the system do something, will it inform me

about it?

· I am very busy. How can I make sure I maintaing

the house up-to-date?

· Be aware of pending tasks

Bob has a busy lifestyle and he sometimes forgets important tasks he has to do such as deadlines

or meetings and other tasks that are less important but they are essential such as water the

plants, birthdays, etc. He hopes be aware of pending tasks and events when it was required.

· Optimize time

Bob usually goes walking to the work. He passes in front of several supermarkets backing home

but he never remembers that he has items to buy and he has to return later. He wants to be

aware that he has items to buy when he is nearby to the supermarket avoiding having to return

later.

Background

Bob is a single man who works in a big company

and he lives alone in a house with swimming pool.

He has 32 years old. He works a lot because ...

Fig. 2 Excerpt of a persona

Layer 1 Layer 2
Establishing Elaborating Layer 3
Requirements Relationships Making’em Human

Name Concerns Personal Background

Key Scenarios Photo
Distinguishing

Descriptive Quotes System
Dimensions Features

Objectives & Demographic
Motivations Information

Source Technology Comfort

Table 1 The elements of a persona prioritized into three
layers [8]

persona within the scope of the system and annota-

tions of the data sources. These elements can be com-

plemented with information of the other layers such as

the concerns of the personas that will influence their

experience with the system, the scenarios and circum-

stances that set the stage for an interaction between a

user and a system, the personal background, a photo-

graph of the persona, etc (see Table 1).

According to these elements that characterize a per-

sona, designers can define the functionalities and tasks

that user needs to achieve their objectives and motiva-

tions. Moreover, it can be detected common functional-

ities between personas and these functionalities be ex-

pressed in terms of obtrusiveness. Considering system

services in the context of a type of user makes easy to

determine the way to provide a service personalized to

the user needs. For example, services for a busy user

have to be defined avoiding overwhelming user atten-

tion.

Figure 2 shows an example of a persona for a Smart

Home system. This persona gives a detailed picture of

a typical “busy user” that wants to use Smart Home

services to simplify his life and to help him in optimizing

his time. This excerpt of a persona provides the basics of

a user’s needs and behaviors. Through careful analysis

of this persona, designers can deduce that (1) the user

wants Smart Home services for helping him in home

tasks to do not waste time, (2) he wants be aware of

pending tasks related to home and work, (3) he hopes

to be alerted of the updates that services perform, and

(4) he prefers as many services as possible.

Information captured in the personas corresponds

to the user requirements or needs structured in goals-

scenarios-system features. Designers use this understand-

ing of people to determine what services personas re-

quire to accomplish their goals and how the services are

presented in terms of obtrusiveness. This is done by the

designer manually since there is no explicit characteris-

tic of the impact of obtrusiveness on the requirements.

Then, this information will be formalized in the models

of the next phase by the designer in order to be pro-

cessed automatically in the development phases. The

way in which services and obtrusiveness are detected is

thoroughly described in the next section.

Personalization for unobtrusive service interaction 5

The purpose of personas is not to give a complete

theoretical model of a user. Instead, it is aiming at a

simple, but good enough description of the user to allow

designers to detect the services needed and the level of

obtrusiveness which need each type of user.

2.1.2 Detecting services and obtrusiveness

From the definition of personas, designers have to deter-

mine what information and capabilities our personas

require to achieve their needs and how this information

is provided in terms of obtrusiveness. This is performed

by detecting the services of the system and their obtru-

siveness degree according to the user context (see step

2 of Figure 1). By establishing the degree of user atten-

tion that a task need, we avoid developing overwhelm-

ing services. These concepts are expressed together in

the models of the next phase.

For example, the services detected from the synthe-

sis of the persona of Figure 2 are: a shopping list to keep

track the items to buy, an agenda that notifies him im-

portant tasks, a video recorder that records his favorite

programs, and a supermarket notification to remember

him that he has items to buy.

For these services detected, the degree of attentional

demand required according to the user context is: low

attention for managing the shopping list, slightly atten-

tion for the video recorder service and high attention

for the supermarket notification. The agenda to notify

important tasks could require slightly or high attention

depending on the priority of the task for the user. This

priority can be set up by the user in their preferences.

Some other personas could require other services

and different attentional demand for information pre-
sentation and interaction with the services depending

on their needs. Thus, personas will guide subsequent

adaptations in information presentation, modality and

interaction style. In order to personalize the services

and provide them in a degree of obtrusiveness that

fits into each user type, designers define the services in

terms of obtrusiveness in the creation phase according

to the personas.

2.2 Creation phase

Once the user requirements are captured, the differ-

ent models that characterize personalization and in-

teraction are defined and the mappings among these

models are specified in this phase. First, the atten-

tional demand required for each service is defined in

terms of obtrusiveness according to the personas anal-

ysis. Once the obtrusiveness level for each service is

specified, the appropriate interaction technique can be

selected from the ones available. These abstract models

are complemented with others that provide a more con-

crete representation of the service components. These

concrete models are (1) the concrete interaction com-

ponents that are going to represent the user interface

elements available, and (2) the architecture of the com-

ponents that form the system. The interaction designer

is the role in charge of this phase (henceforth we will

refer to it as designers).

The different steps carried out in this phase and the

models involved are detailed below:

2.2.1 Adjusting the obtrusiveness level

We make use of the conceptual framework presented

in [25] to determine the obtrusiveness level for each

interaction in the system. This framework defines two

dimensions to characterize implicit interactions: initia-

tive and attention. According to the initiative factor,

interaction can be reactive (the user initiates the inter-

action) or proactive (the system takes the initiative).

With regard to the attention factor, an interaction can

take place at the foreground (the user is fully conscious

of the interaction) or at the background of user atten-

tion (the interaction with the system is unadvised).

In this work we assume that the different services

detected from the user profiles can be situated in a dif-

ferent position of the obtrusiveness space according to

the attentional demand required for each type of user.

For the application of our proposal, we introduce

an order in the values that define the initiative and

attention axes. On the one hand, the extreme values
for the attention axis are Background and Foreground.

Since this axis represents user attention demands, we

could order these values as Background < Foreground

to indicate that Foreground interactions require more

attention than Background interactions. On the other

hand, the initiative axis is related to automation, so

we consider that the Reactive value provides a lower

degree of automation than the Proactive value (i.e.,

Reactive < Proactive). A consequence of introducing

this ordering in our approach is that we can express

changes in the obtrusiveness level as increments and

decrements in the different axes.

Figure 3 illustrates an example of different services

in the obtrusiveness space for two personas. In order

to highlight the similarities and differences of the needs

and tasks of each persona in terms of obtrusiveness we

can create a simple table of needs comparison, using

circles with shaded pie pieces to indicate the priorities

(see the figure). This table indicates the relative level

or importance of each task for each persona.

6 Miriam Gil et al.

Tasks reminders such as meeting
notification, water the plants...

re
ac

ti
ve

p
ro

ac
ti

ve

awareslightlyinvisible

in
it

ia
ti

ve

attention

The user adds an item to the shopping list

The system adds an item to the
shopping list automatically

when it runs out

Bob Berry · The busier
Familiar to Smart Home services

Objectives

· Optimize time
· Don't forget tasks
· Feel in control of housekeeping
· Keep track the items to buy
· Keep the house up-to-date
· Record favorite programs

Mery Jane · The housewife
Novice in Smart Home services

Objectives

· Optimize displacements to the city
· Manage and remember tasks
· Organize the activities to perform
· Keep track the items to buy
· Remember when water the plants
· Dicrease workload

Provide a shopping list

Automate the shopping list

Provide video recorder

Notify supermarkets

Tasks reminders

Contextual help

Bob Mery

B

M

M

B

B

M

M

B

The system records a program
without notifying the user

The system informs the user about
a supermarket nearby

The user goes to the supermarket and
the system provides the shopping list

The system informs the user
about a program to record

Program recording
service (adapted
according to each user
need)

Table of needs comparison

Fig. 3 Services at different obtrusiveness level according to personas

In this particular example, the initiative axis is di-

vided in two parts: Reactive and proactive. The atten-

tion axis is divided in three segments which are asso-

ciated with the following values: Invisible (there is no

way for the user to perceive the interaction), slightly-

appreciable (usually the user would not perceive it un-

less he/she makes some effort), and user-awareness (the

user becomes aware of the interaction even if he/she is

performing other tasks). Designers can divide the ob-

trusiveness space into many disjoint fragments as they

need to provide specific semantics. In our approach we

use these divisions to drive the selection of the interac-

tion mechanism that is better suited for each persona.

In the example of the Figure 3, we can see that the

same service for different personas makes sense to be in

different obtrusiveness level because their needs are dif-

ferent. For example, for Bob the system is more likely to

add an item to the shopping list automatically because

he prefers to automate the shopping list. However, the

same service for Mery is completely aware since she

prefers to add the items manually. Another example is

the service to record programs. For Bob, this task is

really important because he does not have time to see

his favorite programs and he prefers the system records

the programs automatically as it was captured by the

persona model (see Figure 2). For Mery, this is not very

important because she has time to see the programs she

likes. She prefers that the system informs her about to

record a program. Although the general relevance of a

service can be the same for different users at design

time, the relevance varies on the different executions of

the services. For example, we have considered the noti-

fication service to be relevant for Bob and Mery, how-

ever, they are not equally prone to be interrupted by

the same kind of notifications (e.g., watering the plants

or meeting notifications).

Nevertheless, these preferences can also change from

time to time due to changes in the user needs and pri-

orities. For example, the obtrusiveness level for the no-

tification of a supermarket nearby can be changed de-

pending on the user’s location, but can also be changed

depending on the priority it has for the user (e.g., de-

manding more attention when the supermarket is closer

or when the items to buy exceed a fixed number). In

addition, a particular user X can play Bob and Mary

roles at different moment (e.g., weekdays vs. weekends),

and the system will provide their services at different

obtrusiveness levels according to it. This evolution in

the obtrusiveness level is further described in the con-

tinuous evolution subsection.

2.2.2 Decomposing interaction aspects

To make use of the interaction mechanism that sup-

ports the adequate obtrusiveness level, this work pro-

poses decomposing the context conditions (adaptation

aspects) in their features (capabilities and limitations).

These features are used to describe the interaction in

an abstract manner. Feature Modeling is a technique

to specify the variants of a system in terms of fea-

tures (coarse-grained system functionality). The rele-

vant aspects of each platform and the possibilities for

their combinations are captured by means of the fea-

ture model. Features are hierarchically linked in a tree-

Personalization for unobtrusive service interaction 7

Visual Auditory

Graphical Text Sound Speech

Haptic

Vibration

Interaction
Optional

Mandatory

Single-Choice

Status-based

Expression

Change-based

Fig. 4 Feature Model of interaction mechanisms

like structure through variability relationships. There

are four relationships related to variability concepts in

which we are focusing:

Optional. A feature can be selected or not whenever

its parent feature is selected. Graphically it is repre-

sented with a small white circle on top of the feature.

Mandatory. A feature must be selected whenever its

parent feature is selected. It is represented with a

small black circle on top of the feature.

Or-relationship. A set of child features have an or-

relationship with their parent feature when one or

more child features can be selected simultaneously.

Graphically it is represented with a black triangle.

Alternative. A set of child features have an alterna-

tive relationship with their parent feature when only

one feature can be selected simultaneously. Graphi-

cally it is represented with a white triangle.

Besides describing the relevant aspects of the sys-

tem, Feature Models have proven to be effective in hid-

ing much of the complexity in the definition of the adap-

tation space [10]. We make use of Feature Models to

describe the possible interaction mechanisms and the

constraints that exist for their selection. For example,

according to our Feature Model showed in Figure 4 an

auditory element must either be speech or sound. In

the same way, information or feedback can either be

expressed change-based (it reports only the changes) or

status-based (it is continually informing about the sta-

tus).

Feature Models allow us to decompose the interac-

tion in different adaptation aspects without explicitly

having to define it for each possible combination of con-

text conditions. This avoids duplicating efforts in the

development.

The definitions that are contained in the feature

Model are by no means considered universal. The Fea-

ture Model is intended to capture the perspective that

designers have about interaction. In the example, we

have considered that an interaction element can either

be visual or auditory, which is obviously a simplification

Interaction mechanisms

attention

initia
tiv

e

reacti
ve

proacti
ve

invis. app. aware

Visual

Auditory

Text

Haptic

Vibration

Interaction

Sound

Graphical

Speech

Expression

Status-based

Change-based

Fig. 5 Mappings between obtrusiveness aspects and interac-
tion mechanisms

since many common widgets normally combine these

aspects (e.g., to offer feedback to the user).

2.2.3 Mapping to interaction features

Designers must define the appropriate interaction tech-

nique for each obtrusiveness level. This is done through

the mapping between each fragment in the obtrusive-

ness space into a set of interaction features represent-

ing interaction mechanisms available. These set of fea-

tures are the interaction aspects preferred for a specific

obtrusiveness level. This constitutes a configuration of

interaction for a given obtrusiveness level. Note that

the set of the selected interaction features must fulfill

the constraints among them represented by their rela-

tionships. In order to determine the fulfillment of the

constraints among the subset of features, analysis tools

such as FAMA [4] can be used.

Figure 5 shows an example of the mapping between

obtrusiveness levels and interaction techniques. For ex-

8 Miriam Gil et al.

Group

Group
Widget

Status
Bar
Notif.

Text Button

Group

Speech

Fig. 6 Concrete Interface model of the “Supermarket Noti-
fication”

ample, when a service is in the proactive-aware space,

interaction is offered in a graphical and speech manner

and the feedback is change-based which means that only

the changes are reported (these features are activated

for this obtrusiveness aspect).

2.2.4 Concrete interaction components

In this step, designers have to define the concrete user

interface components that support the interaction tech-

niques available defined by features (previous step). For

representing the concrete interaction components we as-

sume a user interface model that is organized in a tree

structure allowing a flexible composition of the inter-

action elements. In this structure, components can be

contained in other components following a hierarchical

representation that allows an easier definition of UIs

and an easier support for animation, multi-touch inter-

actions and visual effects as seen in iPhone or Android

UIs. This node-based user interface provides an easier

node substitution (to adapt UIs at run-time) and an

advanced management of interaction events.

In our work, the nodes represent concrete interac-

tion objects. They are any UI components that the user

can perceive such as graphical objects, text, image view-

ers, UI controls, video viewers, etc.

An example of the concrete user interface model is

shown in Figure 6. This example shows the user in-

terface components for a supermarket notification. De-

pending on the user needs and preferences described in

the persona model, the notification would be shown by

either a widget (left branch) or a status bar notification

(right branch). For the Bob’s persona, a status bar no-

tification is chosen since Bob prefers to be completely

aware of this kind of notifications (see Figure 3). Speech

component could be used together to provide a speech

interaction (it has an optional constraint) depending

on the context conditions (e.g., if the user is alone and

he/she is not in a noisy environment). The final user

Visual Auditory

Text

Haptic

Vibration

Interaction

SoundGraphical

Interaction Features

UI Components

Final UI
(Reactive-Slightly Aware)

Speech

Group

Group
Widget

Status
Bar

Notif.
Text Button

Group

Speech

Expression

Status-basedChange-based

Fig. 7 Mappings between interaction features and concrete
components

interface corresponding to this notification is shown at

the right of the figure. However, for Mery’s persona a

widget is preferred according to their needs (subtle in-

teraction) activating the left branch of the figure.

We have taken from the notation of Feature Models

the relationships (optional, mandatory, etc.) to indicate

the constraints between the nodes. The constraints de-

fined on them determine when they can be enabled or

disabled according to the resource availability and the

interaction features activated.

2.2.5 Mapping to the concrete interface

Designers must define how each feature in the interac-

tion model is specified in the concrete interface model.

To achieve this, each feature is mapped into a set of

nodes representing concrete interaction objects. This

determines which UI components must be used to sup-

port each interaction technique in a concrete manner.

This model also allows the automatic generation of user

interfaces for a concrete platform.

In this way, when an interaction mechanism is acti-

vated for a given service, the corresponding concrete UI

components are activated too obtaining a personalized

user interface.

Figure 7 shows an example of the mapping between

the interaction features and the concrete user interface

components. In this case, the interaction should be pro-

duced in a status-based text manner (these features are

activated in the Feature Model). For these features, the

corresponding nodes in the concrete UI model will be

Personalization for unobtrusive service interaction 9

Activity

Content
provider

Service

Intent filter

Intent launch

Intent broadcast

Broadcast receiver

Fig. 8 Component Architecture Model

activated. In particular, the concrete components that

support these interaction features are the Group Wid-

get node (to support the status-based interaction) that

contains a Text node to show the information and a

Button to obtain a detailed information.

These mappings are specified by the designer once

after the design of the involved models. For later adap-

tations, these mappings are already defined and inter-

action is adapted and personalized automatically ac-

cording to them.

2.2.6 Describing the architecture

The component architecture defines the components

that form a given application and the communication

that is produced among them. This allows designers to

express the dependencies of an application in terms of

data and functionality, and detect the sources of con-

text information that can trigger a user interface adap-

tation. This model is also used to generate the system

architecture automatically.

The mobile services developed are based on the An-

droid platform1. We have chosen a specific platform be-

cause we want (1) to address UI definition at a concrete

level of abstraction and (2) to use concepts that are easy

to project to the implementation of the concrete plat-

form. In this way, the rules imposed by the platform are

respected without dealing with technical implementa-

tion details.

The Android platform provides loosely-coupled com-

ponents such as Service, Activity, Content Provider,

and Broadcast Receiver. A Service in Android provides

functionality that is executed in the background, and

an Activity provides the user interface from which ser-

vice functionality can be accessed. A Content Provider

1 http://www.android.com

offers data to other components, and a Broadcast Re-

ceiver is a component that reacts to announcements

from other components. Broadcasts are useful to sup-

port reactive behavior. The communication mechanisms

defined among Android components are based on In-

tents. An Intent is an abstract description of a desired

action (e.g., obtaining an image) regardless of the com-

ponent that provides this functionality.

Using this model, we focus on the general compo-

nents defined for a mobile architecture, instead of deal-

ing with technical implementation details of the plat-

form. Some of these components are similar to compo-

nents defined by traditional software architectures. For

example, the notion of Service and Content Provider

(Repository) used in Android is the same than the de-

scribed by the Domain Driven Design [15]. Addition-

ally, another specific components such as intents are

included to support a mobile architecture.

In our system, we use Services to represent the func-

tionality of the defined services and Activities to pro-

vide the user interfaces from which service functionality

can be accessed.

Figure 8 shows the model for the components of a

shopping list and supermarket notification services. The

notation used is illustrated at the left of the figure. The

system is composed by four activities corresponding to

the user interfaces provided. These activities have de-

fined the intent filters associated to the actions they can

perform such as ADD ITEM or VIEW ITEMS. Show

Location activity launches the intent VIEW to show

the map of the location. Moreover, the Show Services

activity has the intent filter MAIN to mark this activity

as the initial activity. There are two content providers:

one for offering the items of the shopping list and an-

other for offering the information to update the Wid-

get Supermarket receiver. There are also two services

10 Miriam Gil et al.

in the system: the Shopping List service in charge of

orchestrating the communication between the compo-

nents and the Notify Supermarket service in charge of

launching a notification.

On mobile platforms, such as Android, it is difficult

to precisely determine the way in which the different

interfaces are tight together just by observing the final

user interfaces. This is because different components in-

fluence in the user interface navigation. The introduced

model captures relevant aspects for interaction such as

(1) the components that require a user interface (i.e.,

Android Activities), (2) the possibilities for user navi-

gation by means of intents, and (3) the different goals

that each user interface must fulfill (e.g., add items or

view items). Having these aspects separately, it is pos-

sible to define a combination of components for each

user, personalizing the system to each user.

Although the approach has been applied to the An-

droid platform, it is worth noting that it has been de-

signed to be general. Android-specific components are

decoupled from adaptation aspects. Thus, a different

component model (e.g., based on iPhone, Symbian, etc.)

can be used instead without the need for redefining

adaptation.

2.3 Interface generation phase

Once the models are defined and the mappings be-

tween the models are specified, the final code for the

interface can be generated from the concrete UI model

and the architecture components model. A prototype

of the final interface can be obtained from this inter-
face generation phase to be validated. This phase can

be completely automated by means of model transfor-

mation techniques. System developers are responsible of

this phase. Although this is an automated phase, sys-

tem developers are in charge of creating the generation

templates. It is supported by the following step:

2.3.1 UI generation

In this step, the final user interface is made up by

those fragments of user interface whose nodes are acti-

vated from the node-based structure. The user interface

model organized in a tree structure used provides a flex-

ible composition of the user interface elements and an

easier node substitution. In Figure 7 we can see the user

interface generated for the active nodes.

The implementation code of the system is gener-

ated by means of model-to-code transformations. These

transformations are implemented using XPand templates

from the Model-to-Text (M2T) project2, which is part

of the Eclipse Modeling Project. The application of

templates to models is similar to the way templates are

used to generate dynamic web pages in the web applica-

tion development area. Model elements can be iterated

and pieces of code can be produced instantiating them

with values obtained from the model.

We provide code generation capabilities for the de-

velopment method described in the present work. This

generation considers Android as the target technology,

but the followed approach allows developers to define

different mappings to target other technological plat-

forms.

The current implementation provides code-generation

capabilities for two different aspects: (1) the architec-

ture components of the whole system, and (2) the dif-

ferent user interfaces.

On the one hand, we provide generation for the An-

droid components of the whole application defined from

the component architecture model. This includes the

generation of the Android Manifest and the different

Android classes that are required for the implementa-

tion of the different components. Intent processing code

is also generated. Although full code generation is not

provided for component implementation, the provided

code skeletons let developers focus on the implemen-

tation of the business-logic behavior, avoiding to deal

with particular details of the target technology.

On the other hand, we generate the user interfaces

from the concrete UI model. In particular, in an An-

droid application, the user interface is defined using

a hierarchy of View and ViewGroup nodes. The most

common way to define a user interface expressing the

view hierarchy is with an XML layout file. XML of-

fers a human-readable structure for the layout, much

like HTML. Each element in XML is either a View or

ViewGroup object (or descendant thereof). View ob-

jects are leaves in the tree and ViewGroup objects are

branches in the tree. So, we provide generation capa-

bilities to generate the Android XML layout file for the

Android Activity classes that correspond to the differ-

ent user interfaces.

The advantage of declaring the UI in XML is that

it facilitates to separate the presentation of the appli-

cation from the code that controls its behavior. UI de-

scriptions are external to the application code, which

means that it can be modified or adapted without hav-

ing to modify the source code and recompile.

Furthermore, we generate code for a status bar noti-

fication since it cannot be implemented by means of the

layout file. The status bar notification is initiated from

a Service. In this way, the notification can be created

2 http://www.eclipse.org/modeling/m2t

Personalization for unobtrusive service interaction 11

Fig. 9 Different personalized generations of the same service

from the background, while the user is using another

application.

Figure 9 shows the generated code for the supermar-

ket notification of two different personas. The service is

in different obtrusiveness level for each persona, so the

generated code is personalized according to the obtru-

siveness level. On the one hand, for Bob (left branch)

represented by the persona of Figure 2, the service is

in the proactive-aware obtrusiveness level. Through all

the process described in the previous steps, the service

is presented by means of a status bar notification (see

Fig. 6). An excerpt of the generated code for the status

bar notification and the rendering of this code is shown

in the left of the figure. On the other hand, for Mery

(right branch), the service is in the reactive-slightly ob-

trusiveness level because she is a different type of user

that prefers to go to the supermarket without a noti-

fication. For this obtrusiveness level, a widget is used

(see Fig. 7 to see the mappings of the models) and the

generated code is shown on the right of the figure. In

this way, the services are generated and personalized

for each persona.

2.4 Continuous evolution

Preferences of the user could change over time entailing

an evolution of the type of user to another profile. So,

services should be adapted according to it. This consti-

tutes an evolution of the services in terms of obtrusive-

ness. Moreover, a specific preference or environmental

condition within the same type of user could change

implying a change in the obtrusiveness level for a spe-

cific service. Thanks to the decoupling role that the

models play in the development process, this evolution

is supported by the method in an easy manner. The

designers can define several transitions that determine

how the type of user evolves or how the obtrusiveness

level for a service within a type of user evolves. A tran-

sition is composed by a condition and an action. When

a condition is fulfilled, the user is evolved to another

profile or the obtrusiveness level is modified by chang-

ing the attention level, the initiative level, or both, as

defined by the action.

First a change requirement is detected. This means

that the obtrusiveness level for a service is not the most

adequate for a specific user. This change can be de-

12 Miriam Gil et al.

re
ac

ti
ve

p
ro

ac
ti

ve

awareslightlyinvisible

in
it

ia
ti

ve

attention

Interaction Features

UI Components

Final UI

Supermarket
Notification

3 5
(Reactive-Slightly Aware)

(Proactive-Aware)

Group

Group
Widget

Status
Bar

Notif.
Text Button

Group

Speech

The busier
Persona

The free time
Persona

change-
based

Speech
graphical

Text
Status-
based

adaptation of
interaction features

1

2

Group

Group
Widget

Status
Bar

Notif.
Text Button

Group

Speech

Change in the
user preferences

Adaptation of the
obtrusiveness level

4 adaptation of the
concrete UI components adaptation of the UI

Partition of the
obtrusiveness space

When a transition Rk is
triggered, the
obtrusiveness level varies

R1

Fig. 10 Service evolution

tected through two ways. On the one hand, the user

can explicitly set up his/her new preferences by choos-

ing their new profile by means of an end-user tool sim-

ilar as the developed in [39]. In this way, the system

adapts services according to the new profile. On the

other hand, services can be adapted in response to the

fulfillment of context conditions at run-time. In order

to do this, a context monitor can be used as the one we

developed in the Model-based Reconfiguration Engine

(MoRE) [10].

MoRE is a reconfiguration engine that provides self-

configuration capabilities to a system. The way to use

MoRE in this approach is similar as we defined for the

adaptation of mobile business processes in terms of ob-
trusiveness according to the business context [20]. Using

MoRE, designers can provide adaptation rules in order

to indicate when the system should be reconfigured. In

this way, the system can detect a context change that

triggers a rule and evolves the profile of the user adapt-

ing the obtrusiveness level of services. This change in

the obtrusiveness level entails the activation of another

interaction features and the composition of the corre-

spondent concrete user interface components. Thus, for

example if the user has a profile in which the system in-

forms the user proactively in a slightly-noticeable man-

ner about the items to buy in the supermarket but the

user does not reacts to it, the increasing of the items

to buy (context condition) can produce an evolution of

the service (due to the fulfillment of the context con-

dition) to another obtrusiveness level that produces a

notification in a more notorious manner.

We chose MoRE since it is a generic engine that

can be customized by means of models. In order to use

it in a particular application, designers must provide

the adaptation rules and the architecture description

by means of models. Thus, using MoRE, we can adapt

to the change of preferences in an optimal way. To sup-

port our approach, we should use the mentioned tran-

sitions as the adaptation rules that trigger the changes

in the obtrusiveness. However, the way to define these

adaptation rules falls out of the scope of the present

paper.

The context monitor used by MoRE can also be

used to gather user information continuously in order

to adapt UI obtrusiveness based on user behavior. Ana-

lyzing the user behavior (based on user’s reaction), the

user personality can be better understood improving

the UI obtrusiveness. This can be achieved by means of

adding inference rules in the context monitor, which can

automatically update the obtrusiveness level according

to the captured user’s behavior information. Support

for self-learning capability will be dealt with in further

work.

Figure 10 shows an example of an evolution of the

user to another profile due to a context change. This

evolution implies the adaptation of the supermarket no-

tification service according to the new profile. For this

particular example, the service was in a proactive-aware

space due to the preferences of the user described in the

busier persona model (see Figure 2). For this region in

the obtrusiveness space an explicit notification was used

demanding a high attention from the user. With the

change in the preferences or needs of the user (detected

from a context monitor or set up by the user manually)

the user is defined by the free time persona and the

service is adapted to another obtrusiveness level (steps

1 and 2). For this region in the obtrusiveness space,

subtle interaction was preferred, activating the features

Personalization for unobtrusive service interaction 13

Fig. 11 Model edition support

status-bar and text (step 3) and producing a different

personalized UI (step 4 and 5).

3 Tool support

In order to support the proposed method and allow the

code generation, tool support is provided. This tool al-

lows designers to specify (1) the obtrusiveness level for

each task in the system for each persona and (2) the in-

teraction requirements following the feature-based ap-

proach proposed in this work.

Eclipse tools are defined by combining a set of plug-

ins with different functionalities. We have developed

some plug-ins to support the modeling of the personal-

ized services, and we have integrated existing plug-ins

that provide feature modeling capabilities that meet

our requirements. These descriptions (expressed by means

of models) facilitate the automatic development. The

modeling community has developed several projects to

support the Model Driven Engineering (MDE) paradigm

under the Eclipse Modeling Project3. EMF permits the

definition of custom modeling languages and the auto-

matic generation of editors to support the model cre-

ation. Figure 11 shows the editor that support the defi-

nition of the obtrusiveness space model using the EMF

capabilities.

3.1 Graphical editors

We have implemented a graphical editor tool that is

based on Eclipse. For the implementation of the graph-

ical tool we have used the possibilities offered by the

Eclipse Graphical Modeling Framework (GMF) which

is part of the Eclipse Modelling Project. GMF provides

a generative component and runtime infrastructure for

3 http://www.eclipse.org/modeling/

developing graphical editors based on EMF. The devel-

oped tool incorporates a palette of Android components

that can be labeled and linked with other components.

Figure 8 shows the modeling environment. The com-

ponents defined are the ones detailed in the previous

section.

To model interaction features we have used Moskitt

Feature Modeler (MFM). MFM is a free open-source

tool that is part of the Moskitt modeling suite4. MFM

is defined as a set of plug-ins that we could incorporate

to enhance our tool support with feature modeling ca-

pabilities. MFM provides features that are well suited

for the use we are making of feature models. MFM is

based on the generic formalization of the feature model

syntax defined by Schobbens et al. [38]. According with

the results of their work, MFM incorporates support

to multiple graphical notations. Users can dynamically

change the graphic notation of feature models. This is

very convenient when dealing with large user interface

models, since we have all the possible interaction com-

ponents for the different contexts and not only the set

for a specific context.

4 Validation of the proposal

In order to put in practice our proposal and validate it,

we have defined a scenario within the Smart Home envi-

ronment that illustrates how interaction can be person-

alized and adapted to provide an adequate obtrusive-

ness level in an ubiquitous computing environment. The

adaptation takes into account the user needs and their

preferences such as the message urgency, and the con-

text conditions that affect the user such as the user loca-

tion. All these factors have an effect in the obtrusiveness

level to be provided. Then, we present the evaluation of

the user acceptance for the interaction personalization

developed in the scenario following our approach.

4.1 Smart Home case study

We applied our approach to a case study of a Smart

Home environment based on the scenario of service adap-

tation we developed in [10]. We extended the services

defined in the original case study in order to adapt the

obtrusiveness level at which they are presented to the

user.

The case study described two similar scenarios. In

each scenario, services of a Smart Home were personal-

ized according to a persona (unique for each scenario).

In particular, both scenarios described a normal day for

4 http://www.moskitt.org

14 Miriam Gil et al.

Bob Mery

1. Shopping list (reactive, invisible) (reactive, aware)
2. Meeting/lesson notification (proactive, aware) (proactive, aware)
3. Video recorder (reactive, invisible) (reactive, aware)
4. Water plants reminder (proactive, slightly) (proactive, slightly)
5. Supermarket notification (proactive, aware) (reactive, slightly)
6. Items suggestion (proactive, slightly) (proactive, aware)
7. Video recorder reminder (proactive, slightly) -
7. Water plants reminder - (proactive, aware)
8. Clean pool (proactive, invisible) -
8. Video recorder - (proactive, invisible)

Table 2 Obtrusiveness level of services for each persona in the case study

a particular persona (Bob and Mery) and the way inter-

action mechanisms of different home services changed

depending on their needs, but the services presented in

both scenarios were the same. In this way, users could

evaluate the personalization.

Regarding the profile of Bob, the scenario presented

was the following: Bob lives in a smart home with gar-

den and a swimming pool. Every day, he gets up at

7 a.m. and drinks milk for breakfast while he watches

a TV program before going to work. One day during

breakfast, Bob ran out of milk. In reaction to this,

the refrigerator added this item to the shopping list

in an invisible manner for Bob. While he was watch-

ing a TV program, the system reminded him that he

had an important meeting at work and he had to leave

the house sooner. Therefore, the video service started to

record it. During the meeting, the smart home reminded

Bob about watering the plants. Because of watering

the plants was not urgent for him, the notification ap-

peared in a subtle manner suggesting him if he wanted

that the system water the plants. When he was going

back to home, he was nearby of a supermarket and the

mobile notified him about it in order to optimize his

time, showing the map to arrive to the supermarket.

When he was there, the map was changed by the floor

map of the supermarket. At the same time, the mobile

suggested him the items to the shopping list that were

available in that supermarket. While Bob was buying,

the mobile suggested him a television series to record.

When he arrived at home, he put the mobile to charge.

While it was charging, pool was cleaned automatically.

Regarding the profile of Mery, the scenario adjusted

at her needs was: Mery lives in a smart home with gar-

den. She is a housewife and everyday she gets up at

7:30 a.m. and drinks milk for breakfast. One day dur-

ing the breakfast, Mery ran out of milk and she added

this item to the shopping list. Then she was watching

the TV and the system reminded her that she had a

painting lesson and she had to leave the house. She

activated video recorder. During the lesson, the smart

home reminded her about watering the plants. Because

of she was engaged in other activities more important,

the notification appeared in a subtle manner. Before

she was going back to home, she went to the super-

market. When she was there, the system reminded her

the items to buy and showed her the floor map of the

supermarket. When she was buying, the mobile sug-

gested her again to water the plants, but this time in

a more explicit manner (because plants was important

for her and she was not engaged in an important ac-

tivity). When she arrived at home, she put the mobile

to charge. While it was charging, a TV program was

recorded automatically.

Table 2 shows the obtrusiveness level of the different

services in the case study for each persona depending on

their needs. In these two scenarios, several services are

presented at different obtrusiveness level. For example,

video recorder service for Bob is presented first in a

reactive-invisible manner because it begins to record

automatically in reaction to the user leave. But then,

the same service proactively notifies the user about to

record the program in a subtle manner. In this way,

users could evaluate the adaptation.

We developed a prototype version for the system

described and conducted an experiment5. The exper-

imental setup included an HTC Magic mobile device

running Android Operating System. The experiment

showed that by following our technique, personalized

services with the properly interaction mechanisms in

terms of obtrusiveness can be obtained.

4.2 Questionnaire and participants

To evaluate the user acceptance of the system and de-

termine whether the interaction has been personalized

and adapted properly, we used an adapted IBM Post-

Study questionnaire [26] in conjunction with the ques-

5 Screenshots of the developed prototype are showed in
http://www.pros.upv.es/labs/projects/interactionadaptation

Personalization for unobtrusive service interaction 15

Fig. 12 Summarized results

tionnaire defined by Vastenburg et al. in [43]. On the

one hand, IBM Post-Study is a questionnaire that mea-

sures user satisfaction with system usability. On the

other hand, some questions were taken from the Vasten-

burg questionnaire to evaluate home notification sys-

tems such as messages acceptability and interaction

adaptation. The three dimensions evaluated in our ques-

tionnaire were:

– Usability of the system

– Messages acceptability according to user needs

– Interaction adaptation

The first dimension focuses on measuring users’ ac-

ceptance with the usability of the system; the second

one focuses on the general acceptability considering the

messages, the needs of the user and the user activity at

the time of notification; and finally, the third dimension

is about users’ satisfaction in the interaction adapta-

tion. We also included a NASA task load index (TLX)6

test. This test assesses the user’s subjective experience

of the overall workload and the factors that contribute

to it on six different subscales: Mental Demand, Phys-

ical Demand, Temporal Demand, Performance, Effort,

and Frustration.

A total of 15 subjects participated in the experi-

ment (6 female and 9 male). Most of them had a strong

background in computer science. Participants were be-

tween 23 and 40 years old. 8 out of 15 were familiar

with the use of a smartphone, and three own an An-

droid device similar to the one used in the experiment.

We applied a Likert scale (from 1 to 5 points) to evalu-

ate the items defined in the questionnaire. Some space

was left at the end of the questionnaire for positive and

negative aspects, and for further comments.

6 http://humansystems.arc.nasa.gov/groups/TLX/index.html

4.3 Procedure

For the evaluation of the Smart Home prototype, users

adopted both Bob’s and Mery’s roles and perform the

activities earlier described. The study was conducted

in our laboratory in order to simulate the different sce-

narios in which the experiment was based on. In-situ

evaluation was possible since the technique does not re-

quire a complex infrastructure. An HTC Magic mobile

device running Android Operating System was used to

interact with the Smart Home services.

4.4 Evaluation results

Figure 12 shows a summarized table of the obtained

results7.

More than 70% of the people strongly agreed that

using the system they were able to complete the tasks

and scenarios effectively and quickly. All users consid-

ered (4 or 5 points) the user interface to be pleasant

and easy to understand. 67% of users strongly agreed

about recommending the system to other people.

With regard to the messages acceptability according

to user needs, the results were also positive, but more

dispersion was found in them. This was due the different

perception each user had about what was considered to

be a relevant or urgent message. Although participants

had to adopt the personas roles and adjust to personas

needs, this is difficult when they really have another

needs. In the study made by Vastenburg et al. [43],

they pointed out that the more urgent the message was

considered to be, the higher the level of intrusiveness

should be. In our results, the content and presentation

7 The complete dataset can be downloaded from
http://www.pros.upv.es/labs/projects/interactionadaptation

16 Miriam Gil et al.

Very low Very high

Mental demand
How mentally demanding was the task?

Physical demand
How physically demanding was the task?

Very low Very high

Temporal Demand
How hurried or rushed was the pace of the task?

Very low Very high

Performance
How successful were you in accomplishing what
you were asked to do?

Perfect Failure

Frustration
How insecure, discouraged, irritated, stressed,
and annoyed were you?

Very low Very high

Effort
How hard did you have to work to accomplish
your level of performance?

Very low Very high

Fig. 13 Results from the Nasa TLX

of the different messages was considered appropriate by

the 73% of the subjects. Some users (20%) found some

services to be intrusive, but the interruption level was

in general (80%) considered adequate to each situation.

Regarding the interaction adaptation, automated tasks

outcomes are not always discovered (33% of subjects),

but 80% of subjects strongly agreed in that automated

actions had performed in appropriate situations for each

persona and helped them to perform routine tasks. There

were some exceptions that were suggested in the com-

ments such as “I would like to receive the pool notifi-

cation and be able to postpone it” or “When the sys-

tem clean the pool do not inform the user about that”.

Although the adaptation provided was considered ad-

equate for each scenario (more than 80% considered it

appropriate for all the services), most of the complaints

were related to the level of control provided. Some users

would like to be able to undo actions they are notified

about such as the video recording, many (67%) did not

considered watering the plants deserving a notification

(in case of Bob’s scenario), and the suddenly change of

the outdoor to an indoor map of the supermarket made

some users (33%) feel they were loosing control.

The initial results obtained show that by following

our approach we can adjust the obtrusiveness level for

the services in a detailed manner providing a good per-

sonalization. Nevertheless, additional experimentation

would be required to analyse the adaptation during

longer periods. Due to time constraints, we gave the

users a script to follow to reproduce specific tasks and

contexts of use. Using a script that was conformant to

the process rules did not allow to evaluate the system

in a more realistic context where services are competing

with daily activities.

4.4.1 Workload

The results on workload are showed in Figure 13. We

show each subscale in a different diagram. The Men-

tal Demand diagram shows that not all the tasks were

simple and easy. Mostly, mental demand was low but

some tasks in the experiment required more attention,

increasing the mental demand. Some users would prefer

more automation in the tasks. Physical demand was low

except for the tasks that require more attention. More-

over, some users were not familiar with the use of a

smartphone. For these users, the physical demand was

higher.

The low workload was accompanied by good perfor-

mance. The majority of users could accomplished the

goals of the tasks proposed (see the Performance di-

agram) without much effort (see the Effort diagram)

and with a low degree of frustration (see the Frustra-

tion diagram). Temporal demand did not provide any

significant results since the results are very scattered.

They show that users did not understand the question

very well.

5 Related work

This work is placed in the intersection of Context-Aware

Computing and Considerate Computing. In the follow-

ing subsections we compare details of our work with the

existing in the mentioned areas.

Personalization for unobtrusive service interaction 17

5.1 Context-aware computing

There are many proposals in context-aware computing

that extend the models used for describing UIs in the

Software Engineering in order to take into account the

context of use and make UIs to be context-aware.

Calvary et al. in [9] describe a development process

to create context-aware user interfaces and they give an

overview of different modeling approaches to deal with

user interfaces supporting multiple targets in the field

of context-aware computing [34]. Our proposal intro-

duces the notion of features to relate them in a decou-

pled fashion. In this way, we can describe UI adaptation

over multiple platforms (1) in a declarative manner and

(2) taking into account different aspects such as obtru-

siveness.

Interaction concepts have been reflected in different

modeling languages that are focused on the description

of interaction. Van der Bergh in [5] proposes the exten-

sion of UML by means of profiles to cope with the mod-

eling of context-aware user interfaces. Other approaches

such as UIML [1], UsiXML [27] or XIML [35] define

domain-specific languages that are specifically designed

from the beginning to deal with the description of user

interfaces in a device-independent manner. All these

approaches consider pre-defined set of context factors

and do not decompose them to exploit their common-

alities and differences as our proposal does by means of

decomposing them into features.

The modeling of interaction becomes really powerful

when the descriptions can be used to guide the develop-

ment of the final system in an automatic way. Despite

the limitations in the automatic generation of user in-

terfaces [32], tools such as Teresa [31] or DynaMo [12]

deal with the generation of interfaces that are focused

on the support of multiple platforms and contexts.

All of the mentioned approaches consider the con-

text of use by three classes of entities: user, platform

and environment [9] [14] [3]. In this work, we introduce

the concept of obtrusiveness to consider user attention

in the personalization and adaptation process. We ad-

dress a different issue that is more related to human

limitations of the user (e.g., attention) than technical

limitations of the device (e.g., screen size).

5.2 Considerate computing

Since human attention is a scarce resource, services

should be presented to users in an unobtrusive way

to avoid overloading them. Attention can be viewed

as a limited resource that can be modeled according

to the user goals [29] [24]. The attentive user interface

paradigm [44] and the considerate computing paradigm [18]

aim at avoiding overwhelming the user by adapting the

services based on sensed user attention. The different

approaches are mainly focused on detecting or infer-

ring attention, calculating the cost of interruption in

order to predict acceptability. As early pioneers in this

area, Horvitz et al. [24] demonstrated the potential use

of Bayesian networks for computing the cost and value

of interruptions. These approaches provide conceptual

frameworks to obtain design guides, but they lack of

tools for the development of this kind of user interfaces

and the easy user interface definition. Conversely, our

approach provides mechanisms for the design and de-

velopment of user interfaces in a declarative manner in

terms of obtrusiveness.

Towards creating systems that adapt their level of

intrusiveness to the context of use, works focus on mini-

mizing unnecessary interruptions for the user [36]. Hinck-

ley and Horvitz [22] modeled interruptibility by consid-

ering the user’s likelihood of response and the previous

and current activity. Ho and Intille [23] compared dif-

ferent mental or task stages during which interruption

occurs and suggested that proactive messages delivered

when the user is transitioning between two activities

may be received more positively. Vastenburg et al. [43]

conducted a user study of acceptability of notifications

to find out what factors influence the acceptability of

notifications.

Given this background, our services take into ac-

count the preferences of a user in deciding the obtru-

siveness level of each service. Furthermore, these initia-

tives are almost exclusively focused on evaluating the

adequate timing for interruptions, while user interface

adaptation or presentation mode has received little at-

tention. These approaches are based on provide or not a

service but they neither address the problem of adapta-

tion of interaction nor offer tool support as we address

in this work.

Adaptation to individual users and tasks is desig-

nated as personalization [40] [46]. Several works deal

with personalizing intelligent environments [11] and adapt-

ing services to the user [7] based on the occupants pres-

ence, behavior and intentions. In these works the per-

sonalization is made at content level since user could

choose what information is going to be displayed or

hidden. In our approach, the personalization is made

at attention level adapting the interaction mechanisms

that allow users to access to service content in a differ-

ent way according to the needs analyzed for each user.

6 Discussion about efficiency and usefulness

In this section we introduce a discussion of the useful-

ness and efficiency of the proposed method.

18 Miriam Gil et al.

The usefulness of our proposal depends on the adap-

tation level expected (number of factors considered).

– When we handle simple applications with few adap-

tation factors to consider (services, users, context

conditions), the definition and combination of all

the models that help designers to personalize the

interaction does not add too much usefulness.

– When the number of adaptation factors increase

by considering many combinations of services, users

and context conditions, our proposal allow to (1)

have a description of the impact of the adaptation

aspects and (2) reuse interaction fragments.

Android has introduced application fragments in An-

droid 3.0 in order to help applications adjust their in-

terfaces and reuse different parts of an applications user

interface. This is due to the need to support more dy-

namic and flexible UI designs when considering different

conditions such as large screens (tablets, TVs) or new

interaction mechanisms. This provides a user interface

composition similar as we propose in our method. The

fact that a company leader in the mobile devices field

opts for a fragment approximation is an indicator of

the scalability and usefulness of the solution for these

devices. The difference with our approach is that they

are based on the technical part without dealing with

adaptation according to obtrusiveness models.

Regarding the efficiency, the modeling solutions for

interaction adaptation usually describe what informa-

tion is presented to the user by means of an Abstract

User Interface, and then define a discrete set of plat-

forms, environments and user types to determine how

the interaction will be offered for each set of context

conditions [9]. But this discretization of context condi-

tions presents some problems:

– Similarities between the different context conditions

are not exploited. Context conditions are considered

to be atomic without taking into account the ex-

istence of shared limitations and capabilities. For

example, an auditory impaired user and a noisy en-

vironment both share the auditory limitation, so the

interaction with the system would be more similar

in these contexts compared to the interaction offered

at other user.

– All combinations of context conditions are consid-

ered explicitly to define the interaction. This implies

specifying how interaction is derived from an Ab-

stract User Interface for each platform - user - envi-

ronment combination. For example, we should con-

sider how to produce the interface for a visually-

impaired user accessing the system from a mobile

device platform in a noisy environment. Therefore,

the complexity of interaction increases with the num-

ber of context conditions considered.

In order to avoid these problems, we decompose

the context conditions in their features (capabilities

and limitations) represented as interaction aspects, and

we use these features to describe the interaction in an

abstract manner. Interaction features can be shared

among context conditions to indicate their common-

alities. For example, a noisy context and a user with

an auditory impairment require interaction not to be

provided by means of audio. By considering the specifi-

cation in terms of features the duplication of efforts in

the development are minimized since both cases are ex-

pressed as the exclusion of the auditory feature. Avoid-

ing the duplication of efforts in the development of ser-

vices we guarantee the efficiency of the proposal.

7 Conclusions

The challenge in an environment full of embedded ser-

vices (where human attention is the most valuable re-

source) is not only to make information available to

people at any time, at any place, and in any form, but

to reduce information overload by making information

relevant to the task-at-hand [17]. Information delivery

methods should achieve the right balance between the

costs of intrusive interruptions and the loss of context-

sensitivity of deferred alerts [24].

This work provides an approach to define and de-

velop personalized mobile services in terms of obtrusive-

ness by decoupling obtrusiveness and interaction fea-

tures without duplicating efforts in the development.
On the one hand, by means of personas we detect the

user needs of each kind of user, define common func-

tionalities and express them in terms of obtrusiveness.

On the other hand, Feature Models allow designers to

decompose interaction aspects and set the constraints

for their selection. As the whole method is supported

by models, feedback from users is easily mapped onto

the models. Tool support has been provided by means

of a MDE toolset with code generation capabilities. We

developed a prototype system for a case study and con-

ducted an experiment with end-users to evaluate it. Ex-

perimental results show that by following our technique,

personalized services with the properly interaction in

terms of obtrusiveness can be obtained.

Further work will be dedicated to (1) the improve-

ment of the tool support enabling end-users to set their

preferences, (2) integrate it with the Model-based Re-

configuration Engine (MoRE) [10] to achieve a dynamic

reconfiguration in response to the change of user pref-

erences and user context variations, and (3) provide

Personalization for unobtrusive service interaction 19

the self-learning capability of UI obtrusiveness based

on user behavior to improve the adaptation.

Acknowledgements This work has been developed with
the support of MICINN under the project EVERYWARE
TIN2010-18011 and co-financed with ERDF, in the grants
program FPU.

References

1. Abrams, M., Phanouriou, C., Batongbacal, A.L.,
Williams, S.M., Shuster, J.E.: Uiml: an appliance-
independent xml user interface language. In: WWW ’99,
pp. 1695–1708. Elsevier North-Holland, Inc. (1999)

2. Ballagas, R., Borchers, J., Rohs, M., Sheridan, J.G.: The
smart phone: A ubiquitous input device. IEEE Pervasive
Computing 5(1), 70 (2006)

3. Balme, L., Demeure, A., Barralon, N., Coutaz, J., Cal-
vary, G.: Cameleon-rt: A software architecture reference
model for distributed, migratable, and plastic user inter-
faces. In: EUSAI, pp. 291–302 (2004)

4. Benavides, D., Cortés, R.A., Trinidad, P.: Automated
reasoning on feature models. LNCS, Advanced Informa-
tion Systems Engineering: 17th International Conference,
CAiSE 2005 3520, 491–503 (2005)

5. Van den Bergh, J., Coninx, K.: Using uml 2.0 and profiles
for modelling context-sensitive user interfaces. In: Proc.
of the MDDAUI2005 CEUR Workshop

6. Blomquist, A., Arvola, M.: Personas in action: ethnogra-
phy in an interaction design team. In: Proce. of NordiCHI
’02, pp. 197–200. ACM, New York, NY, USA (2002)

7. Bright, A., Kay, J., Ler, D., Ngo, K., Niu, W., Nuguid,
A.: Adaptively recommending museum tours. In: G.R.
Nick Ryan Tullio Salmon Cinotti (ed.) Proc. of Work-
shop on Smart Environments and their Applications to
Cultural Heritage, pp. 29–32. Archaeolingua (2005)

8. Brown, D.M.: Communicating Design: Developing Web
Site Documentation for Design and Planning (2nd Edi-
tion). New Riders Press (2010)

9. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., Vanderdonckt, J.: A unifying reference
framework for multi-target user interfaces. Interacting
with Computers 15(3), 289–308 (2003)

10. Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autonomic
computing through reuse of variability models at run-
time: The case of smart homes. Computer 42(10), 37–43
(2009)

11. Chatfield, C., Carmichael, D., Hexel, R., Kay, J., Kum-
merfeld, B.: Personalisation in intelligent environments:
managing the information flow. In: OZCHI ’05, pp. 1–10.
Computer-Human Interaction Special Interest Group of
Australia (2005)

12. Clerckx, T., Winters, F., Coninx, K.: Tool support for
designing context-sensitive user interfaces using a model-
based approach. In: TAMODIA ’05: Proceedings of the
4th international workshop on Task models and dia-
grams, pp. 11–18. ACM Press (2005)

13. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged config-
uration using feature models. In: Proc. of SPLC 2004

14. Duarte, C., Carriço, L.: A conceptual framework for de-
veloping adaptive multimodal applications. In: Proc. of
IUI ’06, pp. 132–139. ACM, New York, NY, USA (2006)

15. Evans: Domain-Driven Design: Tacking Complexity In
the Heart of Software. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA (2003)

16. Favre, J.M.: Foundations of Model (Driven) (Reverse)
Engineering : Models – Episode I: Stories of the fidus
papyrus and of the solarus. In: J. Bezivin, R. Heckel
(eds.) Language Engineering for Model-Driven Software
Development, no. 04101 in Dagstuhl Seminar Proceed-
ings. Dagstuhl, Germany (2004)

17. Fischer, G.: User modeling in human-computer interac-
tion. User Modeling and User-Adapted Interaction 11(1-
2), 65–86 (2001)

18. Gibbs, W.W.: Considerate computing. Scientific Ameri-
can 292(1), 54–61 (2005)

19. Giner, P., Cetina, C., Fons, J., Pelechano, V.: Developing
mobile workflow support in the internet of things. IEEE
Pervasive Computing 9(2), 18–26 (2010)

20. Giner, P., Cetina, C., Fons, J., Pelechano, V.: Implicit
interaction design for pervasive workflows. Personal and
Ubiquitous Computing pp. 1–10 (2011)

21. Gulliksen, J., Goransson, B., Boivie, I., Blomkvist, S.,
Persson, J., Cajander, A.: Key principles for user-centred
systems design. Behaviour & Information Technolog 22,
397–409 (2003)

22. Hinckley, K., Horvitz, E.: Toward more sensitive mobile
phones. In: Proc. of the UIST ’01, pp. 191–192. ACM,
New York, NY, USA (2001)

23. Ho, J., Intille, S.S.: Using context-aware computing to
reduce the perceived burden of interruptions from mobile
devices. In: Proc. of CHI ’05, pp. 909–918. ACM (2005)

24. Horvitz, E., Kadie, C., Paek, T., Hovel, D.: Models of
attention in computing and communication: from princi-
ples to applications. Commun. ACM 46(3), 52–59 (2003)

25. Ju, W., Leifer, L.: The design of implicit interactions:
Making interactive systems less obnoxious. Design Issues
24(3), 72–84 (2008)

26. Lewis, J.R.: Ibm computer usability satisfaction ques-
tionnaires: psychometric evaluation and instructions for
use. Int. J. Hum.-Comput. Interact. 7(1), 57–78 (1995)

27. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon,
L., López-Jaquero, V.: Usixml: A language supporting
multi-path development of user interfaces. In: EHCI/DS-
VIS, pp. 200–220 (2004)

28. Mao, J.Y., Vredenburg, K., Smith, P.W., Carey, T.: User-
centered design methods in practice: a survey of the state
of the art. In: CASCON ’01, p. 12. IBM Press (2001)

29. McCrickard, D.S., Chewar, C.M.: Attuning notification
design to user goals and attention costs. Commun. ACM
46, 67–72 (2003)

30. Mori, G., Paternò;, F., Santoro, C.: Ctte: support for de-
veloping and analyzing task models for interactive system
design. IEEE Trans. Softw. Eng. 28(8), 797–813 (2002)

31. Mori, G., Paternò, F., Santoro, C.: Design and develop-
ment of multidevice user interfaces through multiple logi-
cal descriptions. IEEE Trans. Softw. Eng. 30(8), 507–520
(2004)

32. Myers, B., Hudson, S.E., Pausch, R.: Past, present, and
future of user interface software tools. ACM Trans.
Comput.-Hum. Interact. 7(1), 3–28 (2000)

33. OMG: Business Process Modeling Notation (BPMN)
Specification (2006). OMG Final Adopted Specification

34. Paternò, F., Santoro, C.: A unified method for designing
interactive systems adaptable to mobile and stationary
platforms. Interact. with Comput. 15(3), 349–366 (2003)

35. Puerta, A., Eisenstein, J.: Ximl: a common representa-
tion for interaction data. In: Proc. of IUI ’02, pp. 214–
215. ACM, New York, NY, USA (2002)

36. Ramchurn, S.D., Deitch, B., Thompson, M.K., Roure,
D.C.D., Jennings, N.R., Luck, M.: Minimising intrusive-
ness in pervasive computing environments using multi-

20 Miriam Gil et al.

agent negotiation. In First International Conference on
Mobile and Ubiquitous Systems pp. 364–372 (2004)

37. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified
Modeling Language Reference Manual. Addison-Wesley
(1998)

38. Schobbens, P.Y., Heymans, P., Trigaux, J.C., Bontemps,
Y.: Generic semantics of feature diagrams. Comput. Net-
works 51(2), 456–479 (2007)

39. Serral, E., Pérez, F., Valderas, P., Pelechano, V.: An end-
user tool for adapting smart environment automation to
user behaviour at runtime. In: Proc. of UCAmI ’10 (2010)

40. Streefkerk, J.W., van Esch-Bussemakers, M.P., Neerincx,
M.A.: Designing personal attentive user interfaces in the
mobile public safety domain. Computers in Human Be-
havior 22, 749–770 (2006)

41. Tedre, M.: What should be automated? interactions
15(5), 47–49 (2008)

42. Unger, R., Chandler, C.: A Project Guide to UX Design:
For user experience designers in the field or in the making.
New Riders Publishing, Thousand Oaks, CA, USA (2009)

43. Vastenburg, M.H., Keyson, D.V., de Ridder, H.: Con-
siderate home notification systems: a field study of ac-
ceptability of notifications in the home. Personal and
Ubiquitous Computing 12(8), 555–566 (2008)

44. Vertegaal, R.: Attentive user interfaces. Commun. ACM
46(3), 30–33 (2003)

45. Weiser, M., Brown, J.S.: The coming age of calm tech-
nolgy pp. 75–85 (1997)

46. Weld, D.S., Anderson, C., Domingos, P., Etzioni, O.,
Gajos, K., Lau, T., Wolf, S.: Automatically personalizing
user interfaces. In: IJCAI ’03, pp. 1613–1619 (2003)

