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A quantitative version of Krein’s theorems
for Fréchet spaces

Carlos Angosto, Jerzy Kakol, Albert Kubzdela and Manuel
Loépez-Pellicer

Abstract. For a Banach space E and its bidual space E” the following
function k(H) := SUP o (5", B7) infze g |[y—z|| defined on bounded sub-

sets H of E measures how far H is from being o(F, E’)-relatively com-
pact in E. This concept, introduced independently by Granero (2006)
and Cascales-Marciszewski-Raja (2006), has been used to study a quan-
titative version of Krein’s theorem for Banach spaces E and spaces
Cp(K) over compact K. In the present paper a quantitative version
of Krein’s theorem on convex envelopes coH of weakly compact sets H
is proved for Fréchet spaces, i.e. metrizable and complete locally convex
spaces. For a Fréchet space F the above function k(H) reads as follows

k(H) := sup{d(h,E) : h € FU(E“’E/)}, where d(h, E) is the natural
distance of h to E in the bidual E”. The main result of the paper is the
following

Theorem: For a bounded set H in a Fréchet space E the following
inequality holds k(coH) < (2"*' — 2)k(H) + 5 for all n € N. Con-
sequently this yields also the following formula k(coH) < /k(H)(3 —
2\/k(H)).

Hence coH is weakly relatively compact provided H is weakly rel-
atively compact in E. This extends a quantitative version of Krein’s
theorem for Banach spaces (obtained by Fabian, Hajek, Montesinos, Zi-
zler, Cascales, Marciszewski and Raja) to the class of Fréchet space. We
also define and discuss two another measures of weak non-compactness
Ik(H) and k'(H) for a Fréchet space and provide two quantitative ver-
sions of Krein’s theorem for the both functions.
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1. Introduction

In the last decade several quantitative counterparts of some other classical re-
sults (including Gantmacher, Eberlein-Grothendieck, Grothendieck, Krein—
Smulyan’ theorems) have been proved by several specialists, see for example
(1], [2], 3], [4], [5], [8], [10], [11] and references. It turns out that these new
versions strengthen the original results and provide new applications both in
functional analysis and topology.

The classical Krein’s theorem for Banach spaces E states that for a
weakly relatively compact set K in F its closed convex envelop is weakly
compact, i.e. compact in the weak topology o(F, E') of E, see for example
[8, Theorem 3.5.8]. The following question which refers to this theorem was
formulated in [9]:

(*) Let H be a bounded set in a Banach space E and let Bg~ be the
closed unit ball in the bidual E” of E. Assur/rlle /that H is a e-weakly relatively
compact set (in short € — WRK), i.e. 7"t E +¢eBgy for some ¢ > 0.
Does the same hold for its convex envelope coH?

Clearly the answer is positive if € = 0, which is the statement of the
Krein’s theorem. As mentioned in [9], problem (*) was motivated by some re-
sults about closed subspaces of Weakly Compactly Generated Banach spaces,
see [9, Theorem 15]. This, and the fact that the class of Weakly Compactly
Generated Fréchet spaces is sufficiently large and attracted also specialists,
see for example results of Khurana [13], motivate also the present work.

In [9, Theorem 2] it was proved by applying Ptak’s combinatorial lemma,
that whenever H is ¢ — WRK for some € > 0, then coH is 2¢ — WRK.
Moreover if Bg» is o(E", E')-angelic, then coH is e — WRK. The latter
result applies to separable Banach spaces, or more generally, Weakly Com-
pactly Generated Banach spaces or even Weakly Lindel6f Determined Banach
spaces, see again [8].

In [7, Corollary 3.4] Cascales, Marciszewski and Raja obtained more
general theorem stating that for a compact space K and uniformly bounded
H C C(K) the following evaluation holds

(o™ | C(K)) < 2d(E" ", C(K)),

where d is the Hausdorff non-symmetrized distance.
Let E be a Banach space and let E” be its bidual. Following [7] and
[10] define the function

k(H) := su inf -z
()= s ity

for any bounded set H in E. Clearly k(H) measures how far H is from being
weakly relatively compact in E. The above result from [7, Corollary 3.4]
implies that k(coH) < 2k(H) for any bounded set H in a Banach space F,
see also [1]. Note that the equality k(coH) = k(H) fails in general, see [10],
[11].
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In the present paper we continue this line of research for the class of
Fréchet spaces. The main result as stated in Abstract implies that if H is a
bounded set in a Fréchet space E and if k(H) < 2, then k(coH) < &(3 — 2¢)
for each € > 0, where the function k(H) for the case E being a Fréchet space
takes the form as mentioned in Abstract, see also below.

Let E be a Fréchet space and let (U,), be the family of absolutely
convex neighbourhoods of zero such that (%Un)n is a basis of neighbourhoods
of zero. By (E', 8 (E', E)) and (E”, 8 (E",E’)) we mean the strong dual of E
and (E', 8 (E', E)), respectively. By ||h||,, = sup {|h (u) | : u € U} we denote
the seminorm in E” associated with U? and d,, means the pseudometric
defined by |.||,,- The restriction of ||.||, to E, also denoted by |.|,,, is the
seminorm defined by U,,. The topology of E can be defined by the F-norm

d(z,y) =Y 2" & = ylla(1+ [z = yla) "

for z,y € E. Also the topology of the space (E”, 3(E",E")) is defined by the
F-norm

d@*,y™) =D 27" |2 =y |l (1 + |2 = ™)
n

for all z**, y** € E”. Additionally, without loss of generality, we will assume
that U,41 C U, for n € N; and this clearly implies that ||2**||, < [|#**||n+1
for n € N and each z** € E”.

2. More about the measure of weak non-compactness k(H)

By a measure of the weak non-compactness we mean a function p defined on
the family of bounded subsets of a Fréchet space E such that if A, B C FE
are bounded then (i) u(A) = 0 if and only if A is weakly relatively compact,
(i) if A C B, then pu(A) < u(B). If H is a bounded subset of E then H? is
a neighbourhood of zero in (E’, 8 (E’, E)) and the bipolar H" is a compact
subset of (E”, o (E”, E")) which is bounded in the strong topology S(E”, E').
Therefore a bounded subset H of E is weakly relatively compact if and only if
FJ(E ') is contained in E. In [6] we introduced the following two functions
for a Fréchet spaces E.

k(H) = sup {d (hE):he H“(E”’E')} ,

ke (H) := sup {dn (hE):he H”(E”’E')} .

Observe that k(H) is a measure of weak non-compactness and a bounded set
H C E is weakly relatively compact if and only if k(H) = 0 if and only if
kn(H) = 0 for each n € N.

We need the following lemma which will be used for the proof of Theo-
rem 3.5.
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Lemma 2.1. If H is a bounded subset of a Fréchet space E and n € N then

M —1 ky(H) 1
< —.
M) < =13 ko(H)  2n

Proof. Since the function f(z) = x/(1+x) is strictly increasing and d,, (h, e) <
dn(h,e) for each h,e € E” and m < n (recall that d,,(h,e) < dy,41(h,e) for
all m € N), we derive that
=1 dn(he) "1 dy(he) =1

JR— S — < —_—_— _—=
mzzl 2m 1+ dm(h’ 6) Z 2m 1+ d”(h7 6) " m§+1 2m

_ Ly dahe) 1
20’1+ d,(h,e) 27
1 dn(h,e) 1

27 1+dy(he) 27
Then

o0 inf d,,(h, e)

1 on —1 oopth 1
ah By = inf 3 .m0 22 T
[ 1 2m ]_ + dm(h7 6) 2” ]_ + llelg dn(h7 e) 2n

2" —1  du(h,B) 1
v 1+d,(h,E) 27

Finally, if we take the supremum over all h € FU(E o ), we have the following
2" —1 dn(h, E 1 2" — 1 ky(H 1
K(H) < sup B 1 W) 1
o e Trda(E) 2 2 T ka(H) 2
€H
O

3. Quantitative version of Krein’s theorem

In this section we prove a promised quantitative versions of the Krein’s theo-
rem for Fréchet spaces. Our approach will use the concept of e-interchange of
limits. This notion, originally introduced by Grothendieck in [12] for e = 0,
was extended for € > 0 in [9]. If ¢ > 0 we say that H e-interchanges limits
with a subset B of E’ if

lim lim u,, (hy,) — limlim w, (hy,)| < €
p m m o p

for all sequences (u,), C B and (hy,)m C H provided the involved limits
exist. For ¢ = 0 we say H interchanges limits with B. Fix n € N and let H
be a bounded subset of a Fréchet space E. Denote

Yn(H) := inf{e > 0 : H e-interchanges limits with UC}.

We need the following two results from [6] and [7], respectively.
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Proposition 3.1. [6, Proposition 5] If H is a bounded subset of a Fréchet space
E and n € N then

o (H) < yn(H) < 2k (H).
In particular H is weakly relatively compact if and only if v, (H) = 0 for all
n € N.

Lemma 3.2. 7, Lemma 3.2] Let (I,,) be a sequence of pairwise disjoint finite
nonempty sets and let u, be a probability measure on P(I,) for each n. Let
(Ag) be a sequence of subsets of I = U, ey In such that, for some 6 > 0,
liminf,, g, (A N 1,) > 6 holds for every k € N. Then there is a subsequence
(Ak,) such that (\;<; Ak, # 0 for each j > 1.

We need also the following somewhat technical lemma. Its proof uses
some ideas similar to those that applied in the proof of [7, Theorem 3.3].

Lemma 3.3. Fizn € N. If H is a bounded subset of a Fréchet space E, then
Y (H) = vn(coH).

Proof. Choose sequences (u,) C U2 and (h,,) C coH such that the involved

limits exist, and

d = limlimuy(hy,) — limlim u,(hy,) > 0.

m p p m
Since h,, € coH, for each m we have h,, = Zielm t;k;, where k; € H, and
I, is a finite set, 0 < t; < 1 for all ¢ € I,;, and Z%elm t; = 1. Without loss
of generality we may assume that the sets I,,, are pairwise disjoint. Define
I = U,, Im- Since the set H is bounded, there exists M > 0 such that
lup(k;)| < M for all p,i € N. Consequently, we may also assume that for each
i € N, there is some z; € [-M, M| such that

limu, (k;) = ;. (3.1)
P

For each m € N define
Ym = hm Up(hm) = hm Z tiup(k Z tix;. (3.2)
i€y, i€ L,
Then

d = lmlimuy(hy,) — Umlim wy (hy,) = lim y, — lim lim u, (hy,)
m.p p m m p m

= lim Um(y,m, — up(hm)).
p m

Fix € > 0. We may assume that
Hm (Y, — up(him)) > d —¢
m
for every p. Then for each p € N there exists m;, € N such that if m > m,,
then
Ym — Up(hy) > d — €. (3.3)
For every m € N define p,,, the probability measure on I,,, as

A)=>"t;.

i€EA



6 C. Angosto, J. Kakol, A. Kubzdela and M. Lépez-Pellicer

Then we define
A, ={iel:z;—uy(k;)>d— 2} (3.4)
Observe that the following holds.
(33)

d—e < ym— up(hm) 22) Z tix; — Z tiug(k;)

i€l €1,

= > tilwi—up(k))+ Y tilwi — uy(ki))
i€lmNA, €I \A,

(3.4)
<Y t2M +d— 2 =2Mpy (I N Ap) +d — 2,

- i€LnNA,

SO Ly (I;m N Ap) > e/(2M), and then

lim inf g, (I, N Ap) > e/(2M).
By Lemma 3.2 there exists a subsequence (A,, )i such that (), ., 4,, # 0 for
each [ € N. So, by the definition of A, for each [ there exists an 4, such that

@iy, — Up, (k) > d — 2e (3.5)

for all k& < [. Choosing subsequences we may assume that (u,, (k;,)); converges
to some z; € R for all k and (x;,); converges to some x € R. We may also
assume that the sequence (z) converges to some z € R. Then

li{n lilgn Up, (Ki,) = lilm Ty =
and

lilgn li}n Up, (ki) = lilzn 2z = 2.
Inequality (3.5) implies that
T — 2 = hlrn(xiz — Upy, (ki) > d — 2e,

so & — z = limy(x — z) > d — 2¢. Then we derive that v, (H) > d — 2¢. Since
e > 0 is arbitrary, we obtain that

Yo(H) > d = limlimu,(hy,) — Uimlim u, (b, ),
m p

P m

and this holds for all sequences (u,) C U2 and (h,,) C coH such that the
involved limits exist. Then we conclude that

u(H) = 7 (coH) = 7o (H), (3.6)

and the proof is finished. O

From Lemma 3.3 and Proposition 3.1 we obtain the following corollary.

Corollary 3.4. If H is a bounded subset of a Fréchet space E andn € N, then
kn(coH) < 2k, (H).

Now we are ready to prove the main result of the paper.
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Theorem 3.5. If H is a bounded subset of a Fréchet space E and n € N, then

1
k(coH) < (2! —2)k(H) + TR (3.7)
Proof. It k(H) = 0 then k,(H) = 0 for all n € N, so by Corollary 3.4 we
have k(coH) = 0 and inequality (3.7) holds. Thus, we may assume that
k(H) > 0. By Lemma 2.1 and Corollary 3.4, and applying that the function
f(z) = 2/(1 + ) is strictly increasing, we derive that
9" — 1 kn(coH) 19" —1 2k, (H) 1

k(coH) < — < —. .
(coH) < on 1+k:n(coH)+2"_ on 1+2kn(H)+2n (3.8)

To finish the proof we need only to prove that
1 2k, (H)
27 1+ 2k, (H)
If k,(H) = 0, inequality (3.9) holds indeed. Suppose that k,(H) > 0. Then
1 dup(h,e) 1 k,(H)

= su inf — = — >0,
P e een 2T dy () 20 1t kg (H)

< 2k(H). (3.9)

where to fix the last equality we applied the fact that the function f(z) is
—o(E",E")
such that
d (h07 ) —1
=inf ———— > 2"""p.
“ eleE 1+ dn(hOa ) P
Since dp,(h, €) < dpm11(h,e) for m € N and h,e € E”, we have

> 1 dm(ho,e) . io: L dn(han)

inf = TmV R S ipf —_— =
eer 2 I 11 dy(ho,e) ~ ee 2= 2 11 dy(ho, ¢)

—Zia——l o>
- om _2n71 p-

m=n

strictly increasing. Fix hg € H

Therefore
k(H)=  sup inf i L .¢)
pepe BB eEB A 2 (h e)
Consequently we note that
T 5] S BT~ % < D)
so inequality (3.9) holds indeed and this completes the proof. (Il

Corollary 3.6. If H is a bounded set in a Fréchet space E such that k(H) > 0

then
k(coH) < \/k(H) (3 —2/k(H)). (3.10)
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Proof. If 1/4 < k(H) < 1 the inequality (3.10) holds because

VE(H)(3 = 2\k(H)) > 1> k(coH).
Observe that, since coH is a bounded set, the inequality k(coH) < 1 holds.

Therefore we may assume that 0 < k(H) < 1/4. Then there exists n € N
such that

1 1
et <KH) < 4
By Theorem 3.5 we conclude that
1
k(coH) < (2" — 2)k(H) + 7 (3.11)

For each n € N define two real functions
falw) = @~ 20+ o and gla) = VT (3~ 2V).
Then
fa(1/47) = g(1/4%),  fa(1/4"F1) = g(1/47F1).
Since (g — f)” < 0 in [1/4""1 1/4"], we deduce that g(x) > f.(x) in
[1/47+1 1/4™]. Then by (3.11) we conclude

k(coH) < fu(k(H)) < g(k(H)) = VE(H) (3 = 2/ k(H)).
O

Remark 3.7. If k(H) = 1/4™ for some n € N, then the upper bounds for
k(coH) from Theorem 3.5 and Corollary 3.6 are the same. Indeed, if we
denote fr(z) = (2" = 2)x + 3=, then fn(x) < foy1(x) if and only if x >
1/4"+1 ) 50

. L, 1 1

;L%fom(@ = fu(z) if yrEsy <z < YR
Then the upper bound for the function k(coH) from Theorem 3.5 is f,(1/4™),
that is equal to \/1/4™ (3 — 2,/1/47).
Corollary 3.8 (Krein). If H is a weakly relatively compact set in a Fréchet
space, then coH is a weakly relatively compact set in E.

4. Two additional measures of weak non-compactness /k(H)
and k'(H)

We start with the definition of next two measures of weak non-compactness
for Fréchet spaces.

Definition 4.1. Let H be a bounded subset of a Fréchet space E. Set

=1 d,(hE) , =1 k,(H)
Ik(H):=  sup — L F(H) =)
= it BB T aG,8 M= ST )

The first observation shows the relation between new defined measures
and the measure k(H) and provides their equality for the case E being a
Banach space.
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Proposition 4.2. If H is a bounded subset of a Fréchet space E then lk(H) <
k(H) and Ik(H) < k'(H). If E is a Banach space, and U,, = Uy is the unit
ball for allm € N, then k'(H) = k(H) = lk(H).

Proof. Since the function f(z) = x/(1 + x) is strictly increasing in [0, +00),
for a bounded set A C [0, +00) we have

:ggf( z) = f(ilelpz) and  inf f(z) = f(inf ). (4.1)
Then
=1 d,(hE) > 1 dn(h,E)
sup — < up =
heHd(E” E’) el 2” 1 + dn(h,E) ni:lheH (E” E') 2 1 + d (h E)
(a1 x~ 1 ko(H)
T L T k()
so lk(H) < k'(H). Next we show that [k(H) < k(H). For this observe that
1 du(he) . .1 dy(he) ()
d(h, B) = inf S — 2\ p L _dulhe) @
(h, E) JQE 27 T+ dy(h ) —;JQE 27 1+ dy(h, €)
&1 e =y B
— 2n1+in]i;dn(h,e) 27 1+d,(h,E)’
= ec n=1

Taking the supremums over all h € FU(E ) , we conclude that lk(H) <
k(H). Finally, if E is a Banach space and U,, = U; is the unit ball for all
n € N, then d,, = d,,, and k,(H) = k,,(H) for all n,m € N. Hence

1 dlhe
f d(h,e) = inf
fuf d(he) = inf ZQ"l—i—dlhe)

o0

1 dy(he) @ ~=1 d,(hE)
= Z inf ———— "= —
—ecE 2" 1+ dy(h,e) 21+ dn(h, E)

d(h, E)

and then k(H) equals to

. 01 da f: 1 sup di(h,E) (1)
hEHG(E” E’) 2" 1 —+ d —1 n hGHG(E” B') 1 + d1 (h E)
-3 wrvetn
A k )'
This consequently yields the promised equalities k(H) = lk(H) = k'(H). The
proof is completed. O

For z** € E” we have d (z**, E) = 0 if and only if ** € E if and only
if d,, (x**, E) = 0 for n € N. This provides the following relations.

Proposition 4.3. For a bounded subset H of a Fréchet space E the set H is
weakly relatively compact if and only if k(H) = 0 if and only if Ik(H) = 0 if
and only if k¥'(H) = 0 if and only if k,(H) =0 for all n € N.
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Note also the following relations between functions k(H ) and k'(H) with
Ik(H).

Proposition 4.4. If H is a bounded subset of a Fréchet space E and n € N
then
1

k(H) < (2" = 1) h(H) + 5.

Proof. The function f(z) = x/(1 4 z) is strictly increasing and d,,(h,e) <
dy(h,e) for each h,e € E"” and m < n, so we derive that

| (h,e) "1 dy(he) |
77< P St R/ i
mZ: Wt dy (b ) _mZ:l2ml+dn(h,e) +m§+1 o
(_i) dp(h,e) 1
- 27’1 +d,(h,e) 2"
_ (o )L dn(hoe) 1
N 2n 1+d,(h,e) 27
Then
o0 inf d,(h,e)
1 dpn(he) 1 oegh
dh,E)=inf ¥ —. . _<@n 1) 24— <
(hB) =1L ) o T e = )2n1+ig£dn(h,e)+2n—

N =1 dm(h, E) 1
@D S T B T

m=1
(4.2)
This yields the following inequality when the supremum is taken over all
o(E",E' )
heH’
1 dn(h,E) 1 1
kK(H) < (2"-1 — L = (2" =1)lk —.
<@ -  sup 2 om T+ (b, B) Tan ~ T DRHE) 5
heH m=1
(4.3)
The proof is completed. O

Proposition 4.5. If H is a bounded subset of a Fréchet space E and n € N
then

1
K (H) <n-lk(H)+2—n.
Proof. Fix m € N. Then
1 kn(H) 1 dn(hE)

= 7<lkH. 4.4

2 Lt kn(H) 5 E) =
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Since H is a bounded set, we note the following k,,(H) < 400 for all m € N.
Consequently we have

n

’ _ 1 = i km H) (4.4)
W(H) = Z2m1+k Z 27 1+ ko (H)
<Zlk(H)+ i i:n-lk(Hwi
2m 2n’
m=1 m=n+1
and the proof is finished. O

The following proposition is a consequence of Proposition 3.1 and Lemma 3.3.

Proposition 4.6. Let H be a bounded set in a Fréchet space E. Then k'(coH) <
2.k (H).

We complete the paper with the following quantitative versions of Krein’s
theorem for the function Ik(H). First we prove the following

Proposition 4.7. If H is a bounded set in a Fréchet space then

1
for alln € N.

Proof. By Proposition 4.2, Proposition 4.6 and Proposition 4.5 we conclude
that
1
gn—1"
O

lk(coH) < K'(coH) < 2K'(H) < 2(n - lk(H) + 2%) =2n-lk(H) +

Corollary 4.8. If H is a bounded set in a Fréchet space such that Ik(H) > 0
then

lk(coH) < (2 log,  lk(H) + 2) Ik(H).
Proof. 1t 1/2 < lk(H) < 1, the inequality holds because then
(2 log, o lk(H) + 2) Ik(H) > 1> lk(coH).

Therefore we can assume that 0 < [k(H) < 1/2. Then there exists n € N
such that

1 1
PTESERN lk(H) < o0
By Proposition 4.7 we conclude that
1
lk(coH) < 2n - 1k(H) + o1 (4.5)

Let fn(z) = 2nz + 5= and g(z) = (2log; o @ + 2)z for each n € N. Then

fa1/27) = g(1/2"), fa(1/2"F1) = g(1/2771).
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Since (g — f)” < 0 in [1/27"11/2"], we deduce that g(z) > f,(x) in
[1/27+11/2"] for each n € N. Then, by inequality (4.5) we have
lk(coH) < fo(Ik(H)) < g(Ik(H)) = (2 log,  lk(H) + 2) Ik(H).
(]

Remark 4.9. If Ik(H) = 1/2™ for some n € N, then the upper bounds for
lk(coH) from Proposition 4.7 and Corollary 4.8 are the same. Indeed, if we
denote fo(z) = 2nz + 5:tx, then fo(z) < foy1(x) if and only if z > 1/2"F1,
50 . I .

%Ié%fm(l') = fu(z) if ontl <z < on
Then the upper bound for the function lk(coH) from Proposition 4.7 is f,(1/2™),
that is equal to (2 logy /o 1/2" + 2) 1/2™.

We have also the following

Proposition 4.10. If H is a bounded set in a Fréchet space then
1
lk(coH) < k(coH) < (2"*! —2) lk(H) + o
for alln € N.
Proof. By Proposition 4.2, Lemma 2.1 and Corollary 3.4 we conclude that
2" —1  ky(coH) 1 <
2n 14 k,(coH) 27 —
2" —1 2k, (H) 1 1
— < (2" —2)Ik(H) + —
S o Tramm Tar < JIk(H) + 50
where the proof of the last inequality is very similar to the proof of (3.9). O

lk(coH) < k(coH) <

Using the same proof as in Corollary 3.6 we deduce the following corol-
lary that provides a better bound for lk(coH) for the case when lk(H) > 1¢.

Corollary 4.11. If H is a bounded set in a Fréchet space and lk(H) > 0 then
lk(coH) < k(coH) < \/lk(H) (3 —2+/lk(H)).
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