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A quantitative version of Krein’s theorems
for Fréchet spaces

Carlos Angosto, Jerzy Ka̧kol, Albert Kubzdela and Manuel
López-Pellicer

Abstract. For a Banach space E and its bidual space E′′ the following
function k(H) := sup

y∈Hσ(E
′′,E′) infx∈E ‖y−x‖ defined on bounded sub-

sets H of E measures how far H is from being σ(E,E′)-relatively com-
pact in E. This concept, introduced independently by Granero (2006)
and Cascales-Marciszewski-Raja (2006), has been used to study a quan-
titative version of Krein’s theorem for Banach spaces E and spaces
Cp(K) over compact K. In the present paper a quantitative version
of Krein’s theorem on convex envelopes coH of weakly compact sets H
is proved for Fréchet spaces, i.e. metrizable and complete locally convex
spaces. For a Fréchet space E the above function k(H) reads as follows

k(H) := sup{d (h,E) : h ∈ H
σ(E′′,E′)}, where d(h,E) is the natural

distance of h to E in the bidual E′′. The main result of the paper is the
following

Theorem: For a bounded set H in a Fréchet space E the following
inequality holds k(coH) < (2n+1 − 2)k(H) + 1

2n
for all n ∈ N. Con-

sequently this yields also the following formula k(coH) ≤
√
k(H)(3 −

2
√
k(H)).

Hence coH is weakly relatively compact provided H is weakly rel-
atively compact in E. This extends a quantitative version of Krein’s
theorem for Banach spaces (obtained by Fabian, Hajek, Montesinos, Zi-
zler, Cascales, Marciszewski and Raja) to the class of Fréchet space. We
also define and discuss two another measures of weak non-compactness
lk(H) and k′(H) for a Fréchet space and provide two quantitative ver-
sions of Krein’s theorem for the both functions.
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1. Introduction

In the last decade several quantitative counterparts of some other classical re-
sults (including Gantmacher, Eberlein–Grothendieck, Grothendieck, Krein–
Smulyan’ theorems) have been proved by several specialists, see for example
[1], [2], [3], [4], [5], [8], [10], [11] and references. It turns out that these new
versions strengthen the original results and provide new applications both in
functional analysis and topology.

The classical Krein’s theorem for Banach spaces E states that for a
weakly relatively compact set K in E its closed convex envelop is weakly
compact, i.e. compact in the weak topology σ(E,E′) of E, see for example
[8, Theorem 3.5.8]. The following question which refers to this theorem was
formulated in [9]:

(*) Let H be a bounded set in a Banach space E and let BE′′ be the
closed unit ball in the bidual E′′ of E. Assume that H is a ε-weakly relatively

compact set (in short ε−WRK), i.e. H
σ(E′′,E′) ⊂ E+ εBE′′ for some ε ≥ 0.

Does the same hold for its convex envelope coH?

Clearly the answer is positive if ε = 0, which is the statement of the
Krein’s theorem. As mentioned in [9], problem (*) was motivated by some re-
sults about closed subspaces of Weakly Compactly Generated Banach spaces,
see [9, Theorem 15]. This, and the fact that the class of Weakly Compactly
Generated Fréchet spaces is sufficiently large and attracted also specialists,
see for example results of Khurana [13], motivate also the present work.

In [9, Theorem 2] it was proved by applying Ptak’s combinatorial lemma,
that whenever H is ε − WRK for some ε > 0, then coH is 2ε − WRK.
Moreover if BE′′ is σ(E′′, E′)-angelic, then coH is ε − WRK. The latter
result applies to separable Banach spaces, or more generally, Weakly Com-
pactly Generated Banach spaces or even Weakly Lindelöf Determined Banach
spaces, see again [8].

In [7, Corollary 3.4] Cascales, Marciszewski and Raja obtained more
general theorem stating that for a compact space K and uniformly bounded
H ⊂ C(K) the following evaluation holds

d̂(coH
RK
, C(K)) ≤ 2d̂(H

RK
, C(K)),

where d̂ is the Hausdorff non-symmetrized distance.

Let E be a Banach space and let E′′ be its bidual. Following [7] and
[10] define the function

k(H) := sup
y∈Hσ(E

′′,E′)
inf
x∈E
‖y − x‖

for any bounded set H in E. Clearly k(H) measures how far H is from being
weakly relatively compact in E. The above result from [7, Corollary 3.4]
implies that k(coH) ≤ 2k(H) for any bounded set H in a Banach space E,
see also [1]. Note that the equality k(coH) = k(H) fails in general, see [10],
[11].
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In the present paper we continue this line of research for the class of
Fréchet spaces. The main result as stated in Abstract implies that if H is a
bounded set in a Fréchet space E and if k(H) < ε2, then k(coH) < ε(3− 2ε)
for each ε > 0, where the function k(H) for the case E being a Fréchet space
takes the form as mentioned in Abstract, see also below.

Let E be a Fréchet space and let (Un)n be the family of absolutely
convex neighbourhoods of zero such that ( 1

nUn)n is a basis of neighbourhoods
of zero. By (E′, β (E′, E)) and (E′′, β (E′′, E′)) we mean the strong dual of E
and (E′, β (E′, E)), respectively. By ‖h‖n = sup

{
|h (u) | : u ∈ U0

n

}
we denote

the seminorm in E′′ associated with U0
n and dn means the pseudometric

defined by ‖.‖n. The restriction of ‖.‖n to E, also denoted by ‖.‖n, is the
seminorm defined by Un. The topology of E can be defined by the F -norm

d(x, y) :=
∑
n

2−n‖x− y‖n(1 + ‖x− y‖n)−1

for x, y ∈ E. Also the topology of the space (E′′, β(E′′, E′)) is defined by the
F -norm

d(x∗∗, y∗∗) :=
∑
n

2−n‖x∗∗ − y∗∗‖n(1 + ‖x∗∗ − y∗∗‖n)−1

for all x∗∗, y∗∗ ∈ E′′. Additionally, without loss of generality, we will assume
that Un+1 ⊂ Un for n ∈ N; and this clearly implies that ‖x∗∗‖n ≤ ‖x∗∗‖n+1

for n ∈ N and each x∗∗ ∈ E′′.

2. More about the measure of weak non-compactness k(H)

By a measure of the weak non-compactness we mean a function µ defined on
the family of bounded subsets of a Fréchet space E such that if A,B ⊂ E
are bounded then (i) µ(A) = 0 if and only if A is weakly relatively compact,
(ii) if A ⊂ B, then µ(A) ≤ µ(B). If H is a bounded subset of E then H0 is
a neighbourhood of zero in (E′, β (E′, E)) and the bipolar H00 is a compact
subset of (E′′, σ (E′′, E′)) which is bounded in the strong topology β(E′′, E′).
Therefore a bounded subset H of E is weakly relatively compact if and only if

H
σ(E′′,E′)

is contained in E. In [6] we introduced the following two functions
for a Fréchet spaces E.

k(H) := sup

{
d (h,E) : h ∈ Hσ(E′′,E′)

}
,

kn(H) := sup

{
dn (h,E) : h ∈ Hσ(E′′,E′)

}
.

Observe that k(H) is a measure of weak non-compactness and a bounded set
H ⊂ E is weakly relatively compact if and only if k(H) = 0 if and only if
kn(H) = 0 for each n ∈ N.

We need the following lemma which will be used for the proof of Theo-
rem 3.5.
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Lemma 2.1. If H is a bounded subset of a Fréchet space E and n ∈ N then

k(H) ≤ 2n − 1

2n
kn(H)

1 + kn(H)
+

1

2n
.

Proof. Since the function f(x) = x/(1+x) is strictly increasing and dm(h, e) ≤
dn(h, e) for each h, e ∈ E′′ and m ≤ n (recall that dm(h, e) ≤ dm+1(h, e) for
all m ∈ N), we derive that

∞∑
m=1

1

2m
dm(h, e)

1 + dm(h, e)
<

n∑
m=1

1

2m
dn(h, e)

1 + dn(h, e)
+

∞∑
m=n+1

1

2m
=

= (1− 1

2n
)

dn(h, e)

1 + dn(h, e)
+

1

2n
=

= (2n − 1)
1

2n
· dn(h, e)

1 + dn(h, e)
+

1

2n
.

Then

d(h,E) = inf
e∈E

∞∑
m=1

1

2m
· dm(h, e)

1 + dm(h, e)
≤ 2n − 1

2n

inf
e∈E

dn(h, e)

1 + inf
e∈E

dn(h, e)
+

1

2n
=

=
2n − 1

2n
· dn(h,E)

1 + dn(h,E)
+

1

2n
.

Finally, if we take the supremum over all h ∈ Hσ(E′′,E′)
, we have the following

k(H) ≤ 2n − 1

2n
sup

h∈Hσ(E
′′,E′)

dn(h,E)

1 + dn(h,E)
+

1

2n
=

2n − 1

2n
kn(H)

1 + kn(H)
+

1

2n
.

�

3. Quantitative version of Krein’s theorem

In this section we prove a promised quantitative versions of the Krein’s theo-
rem for Fréchet spaces. Our approach will use the concept of ε-interchange of
limits. This notion, originally introduced by Grothendieck in [12] for ε = 0,
was extended for ε > 0 in [9]. If ε ≥ 0 we say that H ε-interchanges limits
with a subset B of E′ if∣∣∣∣limp lim

m
up (hm)− lim

m
lim
p
up (hm)

∣∣∣∣ ≤ ε
for all sequences (up)p ⊂ B and (hm)m ⊂ H provided the involved limits
exist. For ε = 0 we say H interchanges limits with B. Fix n ∈ N and let H
be a bounded subset of a Fréchet space E. Denote

γn(H) := inf{ε ≥ 0 : H ε-interchanges limits with U0
n}.

We need the following two results from [6] and [7], respectively.
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Proposition 3.1. [6, Proposition 5] If H is a bounded subset of a Fréchet space
E and n ∈ N then

kn(H) ≤ γn(H) ≤ 2kn(H).

In particular H is weakly relatively compact if and only if γn(H) = 0 for all
n ∈ N.

Lemma 3.2. [7, Lemma 3.2] Let (In) be a sequence of pairwise disjoint finite
nonempty sets and let µn be a probability measure on P(In) for each n. Let
(Ak) be a sequence of subsets of I =

⋃
n∈N In such that, for some δ > 0,

lim infn µn(Ak ∩ In) > δ holds for every k ∈ N. Then there is a subsequence
(Aki) such that

⋂
i≤j Aki 6= ∅ for each j ≥ 1.

We need also the following somewhat technical lemma. Its proof uses
some ideas similar to those that applied in the proof of [7, Theorem 3.3].

Lemma 3.3. Fix n ∈ N. If H is a bounded subset of a Fréchet space E, then

γn(H) = γn(coH).

Proof. Choose sequences (up) ⊂ U0
n and (hm) ⊂ coH such that the involved

limits exist, and

d = lim
m

lim
p
up(hm)− lim

p
lim
m
up(hm) > 0.

Since hm ∈ coH, for each m we have hm =
∑
i∈Im tiki, where ki ∈ H, and

Im is a finite set, 0 ≤ ti ≤ 1 for all i ∈ Im and
∑
i∈Im ti = 1. Without loss

of generality we may assume that the sets Im are pairwise disjoint. Define
I =

⋃
m Im. Since the set H is bounded, there exists M > 0 such that

|up(ki)| < M for all p, i ∈ N. Consequently, we may also assume that for each
i ∈ N, there is some xi ∈ [−M,M ] such that

lim
p
up(ki) = xi. (3.1)

For each m ∈ N define

ym = lim
p
up(hm) = lim

p

∑
i∈Im

tiup(ki) =
∑
i∈Im

tixi. (3.2)

Then

d = lim
m

lim
p
up(hm)− lim

p
lim
m
up(hm) = lim

m
ym − lim

p
lim
m
up(hm)

= lim
p

lim
m

(ym − up(hm)).

Fix ε > 0. We may assume that

lim
m

(ym − up(hm)) > d− ε

for every p. Then for each p ∈ N there exists mp ∈ N such that if m > mp,
then

ym − up(hm) > d− ε. (3.3)

For every m ∈ N define µm, the probability measure on Im, as

µm(A) =
∑
i∈A

ti.
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Then we define

Ap = {i ∈ I : xi − up(ki) > d− 2ε}. (3.4)

Observe that the following holds.

d− ε
(3.3)
< ym − up(hm)

(3.2)
=

∑
i∈Im

tixi −
∑
i∈Im

tiup(ki)

=
∑

i∈Im∩Ap

ti(xi − up(ki)) +
∑

i∈Im\Ap

ti(xi − up(ki))

(3.4)

≤
∑

i∈Im∩Ap

ti2M + d− 2ε = 2Mµm(Im ∩Ap) + d− 2ε,

so µm(Im ∩Ap) > ε/(2M), and then

lim inf
m

µm(Im ∩Ap) ≥ ε/(2M).

By Lemma 3.2 there exists a subsequence (Apk)k such that
⋂
k≤lApk 6= ∅ for

each l ∈ N. So, by the definition of Ap, for each l there exists an il such that

xil − upk(kil) > d− 2ε (3.5)

for all k ≤ l. Choosing subsequences we may assume that (upk(kil))l converges
to some zk ∈ R for all k and (xil)l converges to some x ∈ R. We may also
assume that the sequence (zk)k converges to some z ∈ R. Then

lim
l

lim
k
upk(kil)

(3.1)
= lim

l
xil = x

and

lim
k

lim
l
upk(kil) = lim

k
zk = z.

Inequality (3.5) implies that

x− zk = lim
l

(xil − upk(kil)) ≥ d− 2ε,

so x− z = limk(x− zk) ≥ d− 2ε. Then we derive that γn(H) ≥ d− 2ε. Since
ε > 0 is arbitrary, we obtain that

γn(H) ≥ d = lim
m

lim
p
up(hm)− lim

p
lim
m
up(hm),

and this holds for all sequences (up) ⊂ U0
n and (hm) ⊂ coH such that the

involved limits exist. Then we conclude that

γn(H) ≥ γn(coH) ≥ γn(H), (3.6)

and the proof is finished. �

From Lemma 3.3 and Proposition 3.1 we obtain the following corollary.

Corollary 3.4. If H is a bounded subset of a Fréchet space E and n ∈ N, then

kn(coH) ≤ 2kn(H).

Now we are ready to prove the main result of the paper.
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Theorem 3.5. If H is a bounded subset of a Fréchet space E and n ∈ N, then

k(coH) < (2n+1 − 2)k(H) +
1

2n
. (3.7)

Proof. If k(H) = 0 then kn(H) = 0 for all n ∈ N, so by Corollary 3.4 we
have k(coH) = 0 and inequality (3.7) holds. Thus, we may assume that
k(H) > 0. By Lemma 2.1 and Corollary 3.4, and applying that the function
f(x) = x/(1 + x) is strictly increasing, we derive that

k(coH) ≤ 2n − 1

2n
kn(coH)

1 + kn(coH)
+

1

2n
≤ 2n − 1

2n
2kn(H)

1 + 2kn(H)
+

1

2n
. (3.8)

To finish the proof we need only to prove that

1

2n
2kn(H)

1 + 2kn(H)
< 2k(H). (3.9)

If kn(H) = 0, inequality (3.9) holds indeed. Suppose that kn(H) > 0. Then

ρ := sup
h∈Hσ(E

′′,E′)
inf
e∈E

1

2n
dn(h, e)

1 + dn(h, e)
=

1

2n
kn(H)

1 + kn(H)
> 0,

where to fix the last equality we applied the fact that the function f(x) is

strictly increasing. Fix h0 ∈ H
σ(E′′,E′)

such that

α := inf
e∈E

dn(h0, e)

1 + dn(h0, e)
> 2n−1ρ.

Since dm(h, e) ≤ dm+1(h, e) for m ∈ N and h, e ∈ E′′, we have

inf
e∈E

∞∑
m=n

1

2m
dm(h0, e)

1 + dm(h0, e)
≥ inf
e∈E

∞∑
m=n

1

2m
dn(h0, e)

1 + dn(h0, e)
=

=

∞∑
m=n

1

2m
α =

1

2n−1
α > ρ.

Therefore

k(H) = sup
h∈Hσ(E

′′,E′)
inf
e∈E

∞∑
m=1

1

2m
dm(h, e)

1 + dm(h, e)
> ρ.

Consequently we note that

1

2n
2kn(H)

1 + 2kn(H)
≤ 1

2n
2kn(H)

1 + kn(H)
= 2ρ < 2k(H),

so inequality (3.9) holds indeed and this completes the proof. �

Corollary 3.6. If H is a bounded set in a Fréchet space E such that k(H) > 0
then

k(coH) <
√
k(H) (3− 2

√
k(H)). (3.10)
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Proof. If 1/4 < k(H) ≤ 1 the inequality (3.10) holds because√
k(H)(3− 2

√
k(H)) ≥ 1 > k(coH).

Observe that, since coH is a bounded set, the inequality k(coH) < 1 holds.
Therefore we may assume that 0 < k(H) ≤ 1/4. Then there exists n ∈ N
such that

1

4n+1
< k(H) ≤ 1

4n
.

By Theorem 3.5 we conclude that

k(coH) < (2n+1 − 2)k(H) +
1

2n
. (3.11)

For each n ∈ N define two real functions

fn(x) = (2n+1 − 2)x+
1

2n
and g(x) =

√
x (3− 2

√
x).

Then
fn(1/4n) = g(1/4n), fn(1/4n+1) = g(1/4n+1).

Since (g − f)′′ < 0 in [1/4n+1, 1/4n], we deduce that g(x) ≥ fn(x) in
[1/4n+1, 1/4n]. Then by (3.11) we conclude

k(coH) < fn(k(H)) ≤ g(k(H)) =
√
k(H) (3− 2

√
k(H)).

�

Remark 3.7. If k(H) = 1/4n for some n ∈ N, then the upper bounds for
k(coH) from Theorem 3.5 and Corollary 3.6 are the same. Indeed, if we
denote fn(x) = (2n+1 − 2)x + 1

2n , then fn(x) ≤ fn+1(x) if and only if x ≥
1/4n+1, so

inf
m∈N

fm(x) = fn(x) if
1

4n+1
≤ x ≤ 1

4n
.

Then the upper bound for the function k(coH) from Theorem 3.5 is fn(1/4n),

that is equal to
√

1/4n (3− 2
√

1/4n).

Corollary 3.8 (Krein). If H is a weakly relatively compact set in a Fréchet
space, then coH is a weakly relatively compact set in E.

4. Two additional measures of weak non-compactness lk(H)
and k′(H)

We start with the definition of next two measures of weak non-compactness
for Fréchet spaces.

Definition 4.1. Let H be a bounded subset of a Fréchet space E. Set

lk(H) := sup
h∈Hσ(E

′′,E′)

∞∑
n=1

1

2n
dn(h,E)

1 + dn(h,E)
, k′(H) :=

∞∑
n=1

1

2n
kn(H)

1 + kn(H)
.

The first observation shows the relation between new defined measures
and the measure k(H) and provides their equality for the case E being a
Banach space.
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Proposition 4.2. If H is a bounded subset of a Fréchet space E then lk(H) ≤
k(H) and lk(H) ≤ k′(H). If E is a Banach space, and Un = U1 is the unit
ball for all n ∈ N, then k′(H) = k(H) = lk(H).

Proof. Since the function f(x) = x/(1 + x) is strictly increasing in [0,+∞),
for a bounded set A ⊂ [0,+∞) we have

sup
x∈A

f(x) = f(sup
x∈A

x) and inf
x∈A

f(x) = f( inf
x∈A

x). (4.1)

Then

sup
h∈Hσ(E

′′,E′)

∞∑
n=1

1

2n
dn(h,E)

1 + dn(h,E)
≤
∞∑
n=1

sup
h∈Hσ(E

′′,E′)

1

2n
dn(h,E)

1 + dn(h,E)
=

(4.1)
=

∞∑
n=1

1

2n
kn(H)

1 + kn(H)
,

so lk(H) ≤ k′(H). Next we show that lk(H) ≤ k(H). For this observe that

d(h,E) = inf
e∈E

∞∑
n=1

1

2n
dn(h, e)

1 + dn(h, e)
≥
∞∑
n=1

inf
e∈E

1

2n
dn(h, e)

1 + dn(h, e)

(4.1)
=

=

∞∑
n=1

1

2n

inf
e∈E

dn(h, e)

1 + inf
e∈E

dn(h, e)
=

∞∑
n=1

1

2n
dn(h,E)

1 + dn(h,E)
.

Taking the supremums over all h ∈ H
σ(E′′,E′)

, we conclude that lk(H) ≤
k(H). Finally, if E is a Banach space and Un = U1 is the unit ball for all
n ∈ N, then dn = dm and kn(H) = km(H) for all n,m ∈ N. Hence

d(h,E) = inf
e∈E

d(h, e) = inf
e∈E

∞∑
n=1

1

2n
d1(h, e)

1 + d1(h, e)

=

∞∑
n=1

inf
e∈E

1

2n
dn(h, e)

1 + dn(h, e)

(4.1)
=

∞∑
n=1

1

2n
dn(h,E)

1 + dn(h,E)

and then k(H) equals to

sup
h∈Hσ(E

′′,E′)

∞∑
n=1

1

2n
dn(h,E)

1 + dn(h,E)
=

∞∑
n=1

1

2n
sup

h∈Hσ(E
′′,E′)

d1(h,E)

1 + d1(h,E)

(4.1)
=

=

∞∑
n=1

1

2n
kn(H)

1 + kn(H)
.

This consequently yields the promised equalities k(H) = lk(H) = k′(H). The
proof is completed. �

For x∗∗ ∈ E′′ we have d (x∗∗, E) = 0 if and only if x∗∗ ∈ E if and only
if dn (x∗∗, E) = 0 for n ∈ N. This provides the following relations.

Proposition 4.3. For a bounded subset H of a Fréchet space E the set H is
weakly relatively compact if and only if k(H) = 0 if and only if lk(H) = 0 if
and only if k′(H) = 0 if and only if kn(H) = 0 for all n ∈ N.
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Note also the following relations between functions k(H) and k′(H) with
lk(H).

Proposition 4.4. If H is a bounded subset of a Fréchet space E and n ∈ N
then

k(H) ≤ (2n − 1) · lk(H) +
1

2n
.

Proof. The function f(x) = x/(1 + x) is strictly increasing and dm(h, e) ≤
dn(h, e) for each h, e ∈ E′′ and m ≤ n, so we derive that

∞∑
m=1

1

2m
dm(h, e)

1 + dm(h, e)
≤

n∑
m=1

1

2m
dn(h, e)

1 + dn(h, e)
+

∞∑
m=n+1

1

2m

≤ (1− 1

2n
)

dn(h, e)

1 + dn(h, e)
+

1

2n
=

= (2n − 1)
1

2n
· dn(h, e)

1 + dn(h, e)
+

1

2n
.

Then

d(h,E) = inf
e∈E

∞∑
m=1

1

2m
· dm(h, e)

1 + dm(h, e)
≤ (2n − 1)

1

2n

inf
e∈E

dn(h, e)

1 + inf
e∈E

dn(h, e)
+

1

2n
≤

≤ (2n − 1)

∞∑
m=1

1

2m
· dm(h,E)

1 + dm(h,E)
+

1

2n
.

(4.2)

This yields the following inequality when the supremum is taken over all

h ∈ Hσ(E′′,E′)
.

k(H) ≤ (2n−1) sup
h∈Hσ(E

′′,E′)

∞∑
m=1

1

2m
· dm(h,E)

1 + dm(h,E)
+

1

2n
= (2n−1)lk(H)+

1

2n
.

(4.3)
The proof is completed. �

Proposition 4.5. If H is a bounded subset of a Fréchet space E and n ∈ N
then

k′(H) < n · lk(H) +
1

2n
.

Proof. Fix m ∈ N. Then

1

2m
km(H)

1 + km(H)
= sup
h∈Hσ(E

′′,E′)

1

2m
dm(h,E)

1 + dm(h,E)
≤ lk(H). (4.4)
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Since H is a bounded set, we note the following km(H) < +∞ for all m ∈ N.
Consequently we have

k′(H) =

n∑
m=1

1

2m
km(H)

1 + km(H)
+

∞∑
m=n+1

1

2m
km(H)

1 + km(H)

(4.4)
<

<

n∑
m=1

lk(H) +

∞∑
m=n+1

1

2m
= n · lk(H) +

1

2n
,

and the proof is finished. �

The following proposition is a consequence of Proposition 3.1 and Lemma 3.3.

Proposition 4.6. Let H be a bounded set in a Fréchet space E. Then k′(coH) ≤
2 · k′(H).

We complete the paper with the following quantitative versions of Krein’s
theorem for the function lk(H). First we prove the following

Proposition 4.7. If H is a bounded set in a Fréchet space then

lk(coH) < 2n · lk(H) +
1

2n−1

for all n ∈ N.

Proof. By Proposition 4.2, Proposition 4.6 and Proposition 4.5 we conclude
that

lk(coH) ≤ k′(coH) ≤ 2k′(H) < 2(n · lk(H) +
1

2n
) = 2n · lk(H) +

1

2n−1
.

�

Corollary 4.8. If H is a bounded set in a Fréchet space such that lk(H) > 0
then

lk(coH) <
(

2 log1/2 lk(H) + 2
)
lk(H).

Proof. If 1/2 < lk(H) ≤ 1, the inequality holds because then(
2 log1/2 lk(H) + 2

)
lk(H) ≥ 1 > lk(coH).

Therefore we can assume that 0 < lk(H) ≤ 1/2. Then there exists n ∈ N
such that

1

2n+1
< lk(H) ≤ 1

2n
.

By Proposition 4.7 we conclude that

lk(coH) < 2n · lk(H) +
1

2n−1
. (4.5)

Let fn(x) = 2nx+ 1
2n−1 and g(x) = (2 log1/2 x+ 2)x for each n ∈ N. Then

fn(1/2n) = g(1/2n), fn(1/2n+1) = g(1/2n+1).
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Since (g − f)′′ < 0 in [1/2n+1, 1/2n], we deduce that g(x) ≥ fn(x) in
[1/2n+1, 1/2n] for each n ∈ N. Then, by inequality (4.5) we have

lk(coH) < fn(lk(H)) ≤ g(lk(H)) =
(

2 log1/2 lk(H) + 2
)
lk(H).

�

Remark 4.9. If lk(H) = 1/2n for some n ∈ N, then the upper bounds for
lk(coH) from Proposition 4.7 and Corollary 4.8 are the same. Indeed, if we
denote fn(x) = 2nx+ 1

2n−1 , then fn(x) ≤ fn+1(x) if and only if x ≥ 1/2n+1,
so

inf
m∈N

fm(x) = fn(x) if
1

2n+1
≤ x ≤ 1

2n
.

Then the upper bound for the function lk(coH) from Proposition 4.7 is fn(1/2n),

that is equal to
(

2 log1/2 1/2n + 2
)

1/2n.

We have also the following

Proposition 4.10. If H is a bounded set in a Fréchet space then

lk(coH) ≤ k(coH) <
(
2n+1 − 2

)
lk(H) +

1

2n
.

for all n ∈ N.

Proof. By Proposition 4.2, Lemma 2.1 and Corollary 3.4 we conclude that

lk(coH) ≤ k(coH) ≤ 2n − 1

2n
kn(coH)

1 + kn(coH)
+

1

2n
≤

≤ 2n − 1

2n
2kn(H)

1 + 2kn(H)
+

1

2n
<
(
2n+1 − 2

)
lk(H) +

1

2n
,

where the proof of the last inequality is very similar to the proof of (3.9). �

Using the same proof as in Corollary 3.6 we deduce the following corol-
lary that provides a better bound for lk(coH) for the case when lk(H) > 1

16 .

Corollary 4.11. If H is a bounded set in a Fréchet space and lk(H) > 0 then

lk(coH) ≤ k(coH) <
√
lk(H) (3− 2

√
lk(H)).
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