
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://link.springer.com/chapter/10.1007/978-3-642-21257-4_32

http://hdl.handle.net/10251/37976

Springer Verlag (Germany)

Oncina Carratalá, J.; Vidal, E. (2011). Interactive structured output prediction: Application to
chromosome classification. En Lecture Notes in Computer Science. Springer Verlag
(Germany). 6669:256-264. doi:10.1007/978-3-642-21257-4_32



Interactive Structured Output Prediction:

Application to Chromosome Classification

Jose Oncina1 and Enrique Vidal2

1 Dept. Lenguajes y Sistemas Informáticos
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Abstract. Interactive Pattern Recognition concepts and techniques are
applied to problems with structured output; i.e., problems in which the
result is not just a simple class label, but a suitable structure of labels.
For illustration purposes (a simplification of) the problem of Human
Karyotyping is considered. Results show that a) taking into account la-
bel dependencies in a karyogram significantly reduces the classical (non-
interactive) chromosome label prediction error rate and b) they are fur-
ther improved when interactive processing is adopted.
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1 Introduction

Classification is one of the most traditional Pattern Recognition (PR) frame-
works [2]. For a given input x, the set of possible output hypotheses is a finite
(and typically small) set of class-labels, or just integers {1, . . . , C}, where C is
the number of classes. In this case, the search needed to solve the recognition
problem amounts to a straightforward exhaustive exploration of the correspond-
ing C posterior probability values, Pr(h | x); that is,

ĥ = argmax
1≤h≤C

Pr(h | x) (1)

While classification is in fact a useful framework within which many ap-
plications can be naturally placed, there are many other practical problems of
increasing interest which need a less restrictive framework where hypotheses are
not just labels, but some kind of structured information. This is the case, for
example, of Automatic Speech or Handwritten Text Recognition (ASR, HTR),
Machine Translation (MT), etc. In these cases, the inputs, x, are structured as
sequences of feature vectors (ASR, HTR) or words (MT) and the outputs, h, are
sequences of words or other adequate linguistic units. Many applications admit
this kind of input and output sequential structuring, but there are also other



practical problems, many of them in the field of Image Processing and Com-
puter Vision, which require more complex structures such as input and output
arrays or graphs of vectors and labels, respectively.

Let H be the structured hypotheses space. Now (1) is written as:

ĥ = argmax
h∈H

Pr(h | x) (2)

Depending on the exact nature of H, this optimization can become quite com-
plex, but several adequate algorithmic solutions or approximations, such as
Viterbi search [12,3], A⋆ [1,7], etc., have been developed over the last few decades.

In this paper we are interested in applying Interactive PR (IPR) [11] ap-
proaches to problems with structured output because it is in this kind of prob-
lems where the IPR framework is likly to be most fruitful.

To illustrate concepts, problems and approaches in this framework, we will
consider here a simplification of a classical PR problem: the recognition of hu-
man karyotypes. While individual chromosome recognition [10,5] is a typical PR
example of classification, the recognition of a whole karyotype [8,6] properly
corresponds to the case of structured input/output, as will be discussed below.

A karyotype is the number and appearance of chromosomes in the nucleus
of a eukaryote cell. Normal human karyotypes contain 22 pairs of autosomal
chromosomes and one pair of sex chromosomes. Normal karyotypes for females
contain two X chromosomes, males have both an X and a Y chromosomes. Any
variation from the standard karyotype may lead to developmental abnormalities.
The chromosomes are depicted (by rearranging a microphotograph) in a stan-
dard format known as a karyogram or idiogram: in pairs, ordered by size and
position of centromere for chromosomes of the same size3. Each chromosome is
assigned a label from {“1”, . . . , “22”, “X”, “Y ”}, according with its position in
the karyogram [8].

In this work we consider the problem of karyotype recognition and we explore
IPR approaches to increase the productivity with respect to a traditional, non
interactive or “offline” PR approach.

In order to focus on the most relevant aspects of the problem we will not
consider the real, full karyotype recognition problem, but a simpler setting in
which only single chromosome images, rather than pairs, are considered and
sex chromosomes, “X”, “Y ”, are ignored. Then a karyotype is represented by a
sequence or vector of chromosome images x = (xi)

22
i=1. Our task is to obtain the

corresponding karyogram; i.e., a corresponding sequence or vector h = (hi)
22
i=1,

where each hi is the label or class of the chromosome image xi, i ∈ {1, . . . , 22}.
For example, h4 = 7 means that the chromosome image x4 belongs to class 7 or
has the label “7” in the karyogram.

3 For the sake of simplicity, we ignore here the initial image segmentation task and
assume that each of the 46 chromosomes in a normal unsorted karyotype is already
represented as an individual image. Moreover, we do not take into account recent
advances in karyotype analysis, such as fluorescent dye based spectral karyotyping [9],
which allow obtaining coloured chromosome images and may significantly simplify
the real human karyotyping problem.



From now on, we assume that a reliable PR system is available for classi-
fying individual chromosome images. For each image xi, i ∈ {1, . . . , 22}, the
system provides us with adequate approximations, P (j | xi), to the posterior
probabilities Pr(j | xi), j ∈ {“1”, . . . , “22”}.

2 Non-interactive and Interactive frameworks

We explore three different frameworks: One non interactive or “offline” and two
interactive called “active” and “passive”.

The names active and passive refer to who takes the supervision “initiative”.
In the active case, the system “actively” proposes items to supervise, while in
the passive case, it just “passively” waits for the user to decide which items need
supervision and/or correction.

Offline: The system proposes a vector of labels h. This vector is supervised
by a user who corrects all the errors. User’s effort is measured in two ways: a) the
number of karyograms with at least one misclassified chromosome. In this case we
are assuming that the same effort is needed to correct a single chromosome label
as to correct several; b) the number of misclassified chromosomes. We assume
that the effort is proportional to the number of label corrections needed.

Passive: The system proposes a karyogram hypothesis h. Then the user
examines its labels h1, h2, . . . sequentially until the first error is found. After
correcting this error, the system proposes a new karyogram consistent with all
the previously checked and/or corrected elements. Note that this protocol can
be equivalently formulated as follows: The system, sequentially for i = 1, . . . , 22,
proposes the candidate label hi for the chromosome image xi. At each step, the
user corrects the possible label error. In this framework the obvious measure of
effort is counting the number of corrections the user has to make. However, we
will also report the number of karyograms that need at least one correction.

Active: The system sequentially proposes a pair (i, j) as an hypothesis that
the chromosome xi is of the class hi = j in the karyogram. Like in the previous
case, the effort is measured as the number of times the user should correct the
possible system hypothesis error.

3 Offline framework

In this case, classical, non-interactive processing is assumed. Different scenarios
are considered, depending on which errors we want to minimize.

3.1 Offline Individual Chromosomes

This is perhaps the simplest setting in which individual chormosome images
have to be classified without taking into account that they may belong to a
karyotype. This is the setting we find in the majority of PR papers dealing with
chromosome recognition (e.g., [10,5]).



In traditional PR [2], decision theory is used to minimize the cost of wrong
hypotheses. A 0/1 cost or loss function corresponds to minimizing the number
of wrong hypotheses. Under this minimal error loss, the best hypothesis is shown
to be one which maximises the hypothesis posterior probability.

In this case, the individual chromosome error is minimised by maximizing
the posterior probability for each chromosome image; that is, for all x and for
each i ∈ {1, . . . , 22}:

ĥi = argmax
j∈{1,...,22}

P (j | xi) (3)

3.2 Offline Karyotype Global

Here we aim to minimize complete-karyogram errors. According to decison the-
ory, for each x we have to search for the most probable karyogram, ĥ; that
is:

ĥ = argmax
h∈H

Pr(h | x) (4)

Assuming independence beyond the impossibility of assigning two different
labels to the same chromosome image, we can write:

Pr(h | x) =

{

C
∏22

i=1
Pr(hi | xi) if h ∈ H′

0 otherwise
(5)

where C is a normalization constant and H′ = {h ∈ H : hi 6= hj ∀i 6= j} is the
set of valid hypothesis (those without repeated labels). This way (4) becomes:

ĥ = argmax
h∈H′

22
∏

i=1

P (hi | xi) (6)

To approximately solve this difficult maximization problem, a greedy strategy
is adopted. First we compute (̂i, ĵ) = argmaxi,j P (j | xi) and we assign hî = ĵ.

Then, we eliminate the chromosome xî and label ĵ from the argmax searching
set and repeat the process until all elements of h have been assigned.

3.3 Offline Karyotype Unconstrained

This setting is similar to the previous one in that each batch of 22 chromosome
images, x, is considered to be a complete karyotype. But here we aim to minimize
the number of chromosome (rather than complete-karyogram) errors.

Let h be a proposed hypothesis and h
⋆
the “correct” hypothesis. The loss

function in this case is not 0/1, but the total number of missclassified chromo-
somes in h. This loss is given by the Hamming distance:

d(h,h
⋆
) =

22
∑

1=1

[hi 6= h
⋆
i] (7)



where [P ] denotes the Iverson bracket, which is 1 if P is true and 0 otherwise.
Then, the conditional risk [2] (i.e., the expected number of errors when a hy-
pothesis h is proposed for a given x) is:

R(h | x) =
∑

h′∈H

d(h,h′) Pr(h′ | x) (8)

and the hypothesis that minimises this risk is:

ĥ = argmin
h∈H

∑

h′∈H

d(h,h′) Pr(h′ | x) (9)

= argmin
h∈H

22
∑

i=1

∑

h′∈H

[hi 6= h′
i] Pr(h

′ | x) (10)

= argmax
h∈H

22
∑

i=1

∑

h′∈H

[hi = h′
i] Pr(h

′ | x) (11)

And now, since the i-summation terms are independent, the maximisation can
be split into 22 maximization problems, one for each hi.

ĥi = argmax
j∈{1,...,22}

∑

h∈H
hi=j

Pr(h | x) (12)

= argmax
j∈{1,...,22}

∑

h∈H′

hi=j

22
∏

k=1

P (hk | xk) (13)

= argmax
j∈{1,...,22}

P (j | xi)
∑

h∈H′

hi=j

22
∏

k=1
k 6=i

P (hk | xk) (14)

Finally, it is interesting to see that, if we assume in (14) that the individ-
ual chromosome probabilities are reasonably well approximated, the summation
would not vary enough to dominate the big variations of P (i | xj) and, therefore,

ĥi ≈ argmax
j∈{1,...,22}

P (j | xi) (15)

which is identical to the classical solution to the Offline Individual Chromosome
setting. Note that, as in that setting, here we are not restricting ĥ to be a valid
hypothesis. That is, in the optimal ĥ we may have ĥi = ĥj , i 6= j.

We can enforce finding only valid hypothesis through a simple heuristic: at
each step, select the chromosome label that maximises P (j | xi), provided j was
not used in a previous step. It may be argued that introducing this restriction
will lead to more accurate predictions. However, with the approximation (15),
this heuristic exactly leads to the greedy solution to the Offline Karyotype Global
problem discussed at the end of section 3.2.



4 Interactive Passive framework

In this framework two approaches have been considered: Karyotype and Kary-
otype Unconstrained. In both cases, it is assumed that the karyogram elements
are explored in a left–to–right sequential order. In what follows, suppose we are
at the ith interaction step and let h′ denote the hypothesis provided by the
system in the previous step, i − 1. Given the left–to–right exploration, all the
elements h′i−1

1 of h′ are known to be correct.

4.1 Interactive Passive Left–to–Right Karyotype Global

In this strategy we look for a hypothesis, compatible with the known correct
information in h′i−1

1 , which minimises the expected number of whole karyogram
errors. That is:

ĥ = argmax
h∈H

Pr(h | x, h′i−1

1 ) (16)

= argmax
h∈H

h
i−1
1

=h′i−1
1

Pr(h | x) (17)

= argmax
h∈H′

h
i−1
1 =h′i−1

1

22
∏

k=i

P (hk | xk) (18)

As in Offline Karyotype Global, a greedy approach is used for this max-
imisation. First all the labels known from the previous step are assigned; i.e.,
hi−1
1 = h′i−1

1 . Next we obtain (k̂, ĵ) = argmaxi≤k≤22,j 6∈h′i−1
1

P (j | xk) and assign

ĥ
k̂
= ĵ. Then, the chromosome x

k̂
and the label ĵ are removed from the searching

set and the process is repeated until all elements of ĥ have been assigned.

4.2 Interactive Passive Left–to–Right Karyotype Unconstrained

In this case, at each step ith we just look for the most probable label for the ith

chromosome image, assuming all the labels assigned in previous steps are correct.
Clearly, in this way we do not explicitly care about possible label repetitions for
the labels to be assigned in further steps and this is why this strategy is called
“unconstrained”. However, since the single label to be assigned at each step is
restricted to be different from those assigned in previous steps, the final result
obtained at the end of the process is guaranteed to be valid karyogram.



Formally, we look for the most probable label hi for the chromosome image
xi, given that all the labels h′i−1

1 of h′ are correct. That is:

ĥi = argmax
j∈{1,...,22}

∑

h∈H
hi=j

Pr(h | x, h′i−1

1 ) (19)

= argmax
j∈{1,...,22}

∑

h∈H
hi=j

h
i−1
1 =h′i−1

1

Pr(h | x) (20)

= argmax
j∈{1,...,22}

P (j | xi)
∑

h∈H′

hi=j

h
i−1
1 =h′i−1

1

22
∏

k=i+1

P (hk | xk) (21)

As in the Offline Karyotype Unconstrained case, if we assume that the sum-
mation is going to change less than P (j | xi). Then,

ĥi ≈ argmax
j∈{1,...,22}

j 6∈h′i−1
1

P (j | xi) (22)

4.3 Interactive Active framework

In this framework, at the step ith, the system chooses which chromosome and
class label has to be supervised. In the previous karyogram, h′, we write h′

k = 0
if an only if we don’t know whether the kth label in h′ is correct. Let c(h′) =
{j : j = hk 6= 0, 1 ≤ k ≤ 22} be the set of correct labels in h′. An optimal
chromosome-label pair to be supervised is:

(k̂, ĵ) = argmax
k:hk=0

j 6∈c(h′)

∑

h∈H
hk=j

Pr(h | x) (23)

= argmax
k:hk=0

j 6∈c(h′)

P (j | xk)
∑

h∈H′

hk=j

22
∏

l=1
l 6=k

P (hl | xl) (24)

As in previous cases, if the variation is dominated by Pr(j | xk):

(k̂, ĵ) ≈ argmax
(k,j)

h′
i 6=0,j 6∈c(h′)

P (j | xk) (25)

5 Experiments

The experiments presented in this work have been carried out using the so-
called “Copenaghen Chromosomes Data Set”. The raw data, preprocessing and
representation are described in detail in [4,10]. Chromosome images are finally
represented as variable-length strings of symbols, each of which represents the



variation of the image grey-level along the chromosome median axis. The cen-
tromere position was marked using a special symbol at the corresponding string
position [10]. In total, 200 karyotypes and 4,400 chromosome samples are avail-
able in this data set.

These samples were split into two balanced blocks of 100 karyotipes (2,200
chromosome samples) and every experiment entailed two runs following a two-
blocks Cross-Validation scheme. The classification error-rates reported below are
the average result of these two runs.

The probabilities needed to apply the methods described in the previous sec-
tions where obtained with the so-called ECGI approach [10]. Models used in this
approach can be seen as a kind of Hidden Markov Models where the topology
is automatically derived from the training strings. For each chromosome class
j ∈ {1, . . . , 22}, a model was trained using the training strings of this class. Then,
for each test string x, its corresponding 22 class-likelihoods P (x | j) were com-
puted by parsing x through the 22 trained models. The posterior probabilities
P (j | x), j ∈ {1, . . . , 22}, were obtained by normalizing the likelihoods assuming
uniform priors for the 22 possible classes.

Using these probabilities, the error rate for individual chromosome classifi-
cation was 5.7% [10]. This is the baseline for the experiments here presented.

The following methods have been tested: “Offline Individual Chromosomes”
(OIC, eq. 3), “Offline Karyotype Global” (OKG, eq. 6), “Interactive Passive
Left-to-Right Karyotype Unconstrained” (IPU, eq. 22), “Interactive Passive Left-
to-Right Karyotype Global” (IPG, eq. 18) and “Interactive Active” (IAC, eq. 25).
The “Offline Karyotype Unconstrained” framework has not benn tested because,
as noted in Section 3.3, approximations and greedy solutions make solutions
for this framework identical to those of “Offline Individual Chromosomes” or
“Offline Karyotype Global”.

It is worth noting that all these methods, except IPU (eq. 22), are insensible
to the order in which the chromosomes appear in x. Nevertheless, each experi-
ment has been carried out twice, one with the original order of the chromosomes
in the data set and another with the reverse of this order. Results are averaged
for these two runs.

6 Results

Empirical results are shown in Table 1. As expected the Global methods lead
to the best karyotype-level results (and also at the chromosome level). On the
other hand, interactive processing clearly requires far fewer label correction: 44%
fewer for both PKU relative to OIC and PKG relative to OKG. Finally, the IAC
approach achieves the overall best results.

7 Discussion and Conclusions

This work shows how to apply interactive Pattern Recognition concepts and
techniques to problems with structured output. For illustration purposes these



Table 1. Karyotype and chormosome error corrections needed (in %).

Method Equation Karyotype Chromosome

Offline Indivual Chromosome (OIC) (3) 56 5.7
Offline Karyotype Global (OKC) (6) 27 3.7

Pasive Karyotype Unconstrained (PKU) (22) 40 3.2
Pasive Karyotype Global (PKG) (18) 27 2.1

Active (IAC) (25) 27 1.9

techniques are applied to (a simplification of) the problem of Human Karyotyp-
ing. Results show that a) taking into account label dependencies in a karyogram
significantly reduces the classical (noninteractive) chromosome label prediction
erros and b) performance is further improved when interactive processing is
adopted. These results have been obtained using both search and probability
computation approximations. Further improvements are expected by improving
the accuracy of these computations.

References

1. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality
of A*. J. ACM 32, 505–536 (July 1985), http://doi.acm.org/10.1145/3828.3830

2. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley (1973)
3. Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press (1998)
4. Kao, J.h., Chuang, J.h., Wang, T.: Chromosome classification based on the band

profile similarity along approximate medial axis. Pattern Rec. 41, 77–89 (2008)
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