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Abstract

We study the order in Grammatical Inference algorithms, and its
influence on the polynomial (with respect to the data) identification of
languages. This work is motivated by recent results on the polynomial
convergence of data-driven grammatical inference algorithms. In this
paper, we prove a sufficient condition that assures the existence of
a characteristic sample whose size is polynomial with respect to the
minimum DFA of the target language.
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1 Introduction

A Grammatical Inference (GI) algorithm is a method that tries to obtain
a representation of a target language L from some information about L

[1, 2, 3]. In this work we study the inference of deterministic automata for
regular string languages using complete presentation (samples that belong or
not to the target language) [4, 5, 6, 7, 8]. We note here that there are other
results that, using the same data presentation, tackle the inference of non-
deterministic automata [9, 10] as well as results that study the identification
of languages using queries [11, 12, 13].

A common approach to the GI of regular string languages takes into
account an initial machine that represents the input data. Some states of
this machine are then merged in order to obtain some generalization. It
is worth to be noted that the generalization obtained depends both on the
data supplied as well as on the order in which the states of the machine are
traversed.

An important issue to determine whether a given GI algorithm has good
behaviour or not, is the amount of information needed to identify the target
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language. In that way it is important the concept of characteristic sample
of a target language for an inference algorithm. Given a class of languages
H, the characteristic sample for an algorithm A and a language L ∈ H is
defined as a set of words in L (usually denoted by D+) and a set of words
not in L (denoted by D−) such that: whenever the algorithm A is run with
input (D+,D−) the algorithm outputs a correct representation of L; this
representation does not change even though more words are added to the
input.

The model of learning called identification in the limit by Gold, estab-
lishes that an algorithm identifies a class of languages H in the limit if and
only if every language in the class has associated a characteristic set for that
algorithm [14]. Taking into account Gold’s work, as well as results by Pitt
[15] and Angluin[16], de la Higuera [17] defines polynomial time and data
identifiability, as an extension of Gold’s definitions which consider charac-
teristic sets of polynomial size.

As mentioned above, the most referred results on inference of regular lan-
guages from complete presentation propose algorithms based on the merging
of states: the RPNI algorithm proposed by Oncina and Garćıa [7] and the
Blue-Fringe algorithm by Lang et al. [8]. In both approaches, from an ini-
tial representation of the input information (usually a Moore machine of
the training set), the algorithms consider a fixed order to traverse of the
states of the machine, usually the canonical order. In [18], de la Higuera
et al. propose an algorithmic scheme able to consider a broader set of or-
derings (the chosen order is an input parameter of the method), including
any data-driven one. In that work, the order in which the states of the ini-
tial representation are promoted (considered as states of the automaton to
be output) is consequence of the order in which the states are merged. In
fact, the authors do not distinguish among both orders. In that article, it is
proved that, whenever the (merging) order does not consider the input data,
then, for that algorithm, there exists a polynomial characteristic sample for
any language. The authors also show that, given any size of automata,
there is at least one data-driven order for which it is possible to find au-
tomata with non-polynomial characteristic set. This seems to indicate that
any interesting data-driven order would imply an exponential characteristic
sample.

All these results leaded to the GI community to think that Blue-Fringe
algorithm (which was somewhat inspired by the results in [18]) to have no
polynomial characteristic set, because Blue-Fringe merging order is in fact
data-driven. Despite this assumption, Blue-Fringe became the state of art
algorithm because its experimental behaviour in practical tasks, which out-
performed the results of previous approaches. In fact, the merging order
used by Blue-Fringe lead this algorithm to be more data-efficient with re-
spect other GI algorithms, even when the training set does not include a
characteristic set for the target language.
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Nevertheless, it has been recently proved that Blue-Fringe algorithm has
a polynomial characteristic set [19]. The proof of this, takes into account
that the Blue-Fringe promotion order does not depend on the merging order.
This last result motivates the study of the order influence in the polynomial
convergence of GI algorithms.

2 Definitions and notation

Let Σ be a finite alphabet and let Σ∗ be the set of possible strings over Σ.
Let also λ denote the empty string. A language L over Σ is a subset of
Σ∗. For any given set q, we will denote the cardinality of q with |q|. Given
x ∈ Σ∗, if x = uv with u, v ∈ Σ∗, then u (resp. v) is called prefix (resp.
suffix) of x. Let us denote with Pr(L) the set of prefixes of L.

A Deterministic Finite Automaton (DFA) is a 5-tuple A = (Q,Σ, δ, q0, F ),
where Q is a finite set of states, Σ is an alphabet, q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states and δ : Q×Σ → Q is the transition function.
The language accepted by an automaton A is denoted L(A).

Given any DFA A, any two states p and q of A are usually said to be
equivalent if and only if, for any x ∈ Σ∗, δ(p, x) ∈ F if and only if δ(q, x) ∈ F .
This relation allows to obtain the minimal DFA for the language L(A) (the
deterministic automaton with the smallest set of states that accept the lan-
guage). We note that this minimal automaton is unique up to isomorphism.

A Moore machine is a 6-tuple M = (Q,Σ,Γ, δ, q0,Φ), where Σ (resp. Γ)
is the input (resp. output) alphabet, δ is a partial function that maps Q×Σ
in Q and Φ is a function that maps Q in Γ called output function. The
function δ can be extended in a natural way to consider strings over Σ.

Throughout this paper, the behavior of M will be given by the partial
function tM : Σ∗ → Γ defined as tM (x) = Φ(δ(q0, x)) for every x ∈ Σ∗ such
that δ(q0, x) is defined.

A DFA A = (Q,Σ, δ, q0, F ) can be simulated by a Moore machine M =
(Q,Σ, {+,−}, δ, q0,Φ), where Φ(q) = + if q ∈ F and Φ(q) = − otherwise.
Then, the language defined by M is L(M) = {x ∈ Σ∗ : Φ(δ(q0, x)) = +}.

Given two disjoint finite sets of strings D+ and D−, we define the (D+,
D−)-prefix tree Moore machine (PTMM(D+,D−)) as the Moore machine
having Γ = {+,−, ?}, Q = Pr(D+ ∪ D−), q0 = λ and δ(u, a) = ua if
u, ua ∈ Q and a ∈ Σ. For every state u, the value of the output function
associated to u is +, − or ? (undefined) depending whether u belongs to
D+, to D− or to Q − (D+ ∪ D−) respectively.

A Moore machine M = (Q,Σ, {+,−, ?}, δ, q0,Φ) is consistent with (D+,
D−) if ∀x ∈ D+ we have tM (x) = + and ∀x ∈ D− we have tM (x) = −.
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Algorithm 3.1 Inference from complete presentation. A general scheme.

Input: M = PTMM(D+,D−) = (Q,Σ, {0, 1, ?}, δ, q0,Φ);
Input: An order among the states of the input PTMM

Output: A Moore Machine consistent with respect to the input data
1: Method

2: red = {λ}
3: blue = {q ∈ Q : q = δ(p, a), p ∈ red ∧ a ∈ Σ} − red

4: while blue 6= ∅ do

5: NonEqStatesList = MergibleStatesList = ∅
6: for all q ∈ blue /* traversed following the given order */ do

7: merged = False

8: for all p ∈ red /* traversed following the given order */ do

9: if (p, q) are mergible then

10: AppendTo(MergibleStatesList, (p, q))
11: merged = True

12: end if

13: end for

14: if not merged then AppendTo(NonEqStatesList, q) end if

15: end for

16: Set option value among {merge, promote}
17: if option = promote then

18: red = red ∪ {q} : q = First(NonEqStatesList)
19: else

20: Let (p, q) ∈ MergibleStatesList be chosen following whichever cri-
terion, and deterministically merge them

21: end if

22: blue = {q ∈ Q : q = δ(p, a), p ∈ red ∧ a ∈ Σ} − red

23: end while

24: Return(M);
25: End Method.

3 Convergence of GI algorithms using polynomial

data

In this section we will prove a condition that, when fulfilled by a GI algo-
rithm, assures the existence of a polynomial characteristic set.

In order to do so, we first propose a general framework that unifies all
the previous results. This framework will be also useful to prove the main
result
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3.1 A general framework

Algorithm 3.1 summarizes the most relevant GI algorithms. Please note
that this algorithm puts aside efficiency. We now show that this algorithm
can be considered as a general framework able to implement any previous
result.

Note that, in order to implement RPNI algorithm with the proposed
scheme, it is enough to take into account which list (NonEqStatesList

or MergibleStatesList) has been first updated in order to choose among
promotion or merge (line 16). Note also that, in order to implement Blue-
Fringe algorithm, it is enough to consider the merge of states whenever the
list of promotable states is empty.

Let us recall here the algorithm scheme proposed in [18]. The fact that
this scheme does not use a PTMM to represent the training data can be
considered secondary. In order to avoid extra notation, we will describe it
in terms of a PTMM representation of the training set.

In any given iteration of that scheme, a score for every p ∈ red and
q ∈ blue is obtained, no matter whether the merge is possible or not. This
set of scores drives the traverse of the pairs of red and blue states. In the
traverse of the pairs of states, it is checked whether or not the merge of
the states is possible. If so, the pair is merged and the blue set is updated.
If the merge is not possible, the algorithm checks if the state q has been
considered to be merged with all states in the red set. In that case, the
state q is promoted to red, otherwise, the blue set is updated and the set of
scores is reseted. The algorithm ends when the blue set is empty.

Note that, in order to use Algorithm 3.1 to implement the algorithm by
de la Higuera et al., it is necessary to compute the score among the red and
blue states before the loop that traverses the blue states (line 6). The scores
obtained guide the traverse of both blue and red sets, and therefore, the
loops of lines 6 and 8 are also reduced to just one loop. The update of the
NonEqStatesList (line 14) has also to be modified (to check whether or not
all the possible merges have been considered), as well as included into the
loop. Finally, the option flag is set to merge or promote (line 6) taking into
account which list is updated first (in the same way the RPNI algorithm
was previously adapted to our scheme).

3.2 A stronger result

We now will consider the proposed framework to prove a sufficient con-
dition that assure the existence of a polynomial characteristic set for any
given regular language. We first show that, for any regular language L,
and whichever the order Algorithm 3.1 considers, it is possible to obtain a
polynomial characteristic sample that identifies L.

The usual way to compute the characteristic set for any given language
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L is based on the definition of the minimal set of test states. Thus, given
A = (Q,Σ, δ, q0, F ) the minimum DFA for L, the set S ⊂ Σ∗ is a minimal
set of test states if for every q ∈ Q there exists only one string x ∈ S such
that δ(q0, x) = q.

Usually, for each state q, the set S contains the first string in canonical or-
der that reaches q (note that, so defined, S is minimal (Card(S) = Card(Q))
and prefix closed). We note here that, for any order used by Algorithm 3.1,
no state is considered before any of its prefixes. This follows from the fact
that Algorithm 3.1 chooses a state among those in the blue set. In the
following, we will consider only this kind of effective orders.

Whichever the effective order chosen, it can be used to obtain a prefix
closed minimal set of test states.

Example 1 Let the automaton in Figure 1. Let us also consider the alpha-
betical order.

a

b b

b

a

a

a

b

Figure 1: Automaton example.

In order to obtain the minimal prefix closed test states set it is necessary
to find, for each state q, the first string that reaches q such that it does not
visit a state twice. The alphabetic order does not give priority to shorter
strings, thus, the minimal prefix closed set of test states for this example is
S = {λ, a, aa, aab}. Note that the set of test states obtained according the
canonic order would have been S = {λ, a, b, ab}.

Let us also note that, for instance, a set of test states using the alphabet-
ical order is S = {λ, a, aa, aaab}, but it is not prefix closed. Note also that,
to make this set closed under prefixes implies that it would be non-minimal.

Taking into account any prefix closed minimal set of test states, Algo-
rithm 3.2 shows the way to obtain two sets D+(S) and D−(S). A rough
bound for the size of D+(S) ∪ D−(S) is easily seen to be quadratic in the
size of Q.

In this algorithm, the condition of the loop in line 6 refers to two undis-
tinguished states, that is, two elements u and v in S such that there is no
w ∈ E such that just one of the strings uw or vw belongs to the language
L. In order to find two such states, it is possible to use the matrix T and
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Algorithm 3.2 Algorithm to obtain the characteristic set for a language L.

Input: The minimal DFA A for L

Output: The polynomial characteristic set for L

1: Method

2: Let S be the minimal set of test states for A

3: E = {λ}
4: Let S′ = SΣ − S

5: Let T be a matrix indexed by the strings u ∈ S ∪ S′ and e ∈ E that
stores the membership of the string ue to the language

6: while there exist two undistinguished u, v ∈ S and a symbol a ∈ Σ such
that T [ua, e] 6= T [va, e] for some e ∈ E do

7: E = E ∪ {ae}
8: end while

9: (D+,D−) = Data in T

10: Return(D+, D−);
11: End Method.

look for two identical rows indexed by elements in S. Example 2 illustrates
this procedure.

Example 2 Let us also consider the automaton in Figure 1 and the prefix
closed minimal set of test states S = {λ, a, aa, aab}.

Following table summarizes the process of obtaining the characteristic
set. For the sake of clarity, we represent separately the elements in S and
those in SΣ − S. Initially the only column available is the one with label
λ. The 1 and 0 entries in the table represent if the strings obtained by
concatenation of the strings that label the row and column belong or not to
the language L.

λ b

λ 0 0
a 1 1

aa 0 1
aab 1 0

b 0 1
ab 1 0

aaa 1 1
aaba 1 1
aabb 0 0

Note that, taking into account just the column labelled λ, the undistin-
guished elements in S are {λ, aa} and {a, aab}. It is possible to distinguish
the first one using the suffix b. Once the table is filled in, all the elements in
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S are distinguished, therefore, the sets D+(S) and D−(S) for the language
are the following:

D+(S)= {a, ab, bb, aaa, aab, aaab, aaba, aabab}
D−(S)= {λ, b, aa, abb, aabb, aabbb}

We now prove that, if the minimal set of test states was built using
the same order Algorithm 3.1 uses, then, the sets D+(S) and D−(S) are a
characteristic sample that identifies L.

Theorem 3 Any GI algorithm, such that the promotion of states is inde-
pendent from the input set, has a polynomial characteristic set, no matter
the order followed to carry out the merge of states.

Proof. Let us consider any order over a finite subset of Σ∗ as defined
previously. Let S ⊂ Σ∗ be a prefix-closed minimal set of test states obtained
according the defined order. Let also D+(S) and D−(S) be the positive and
negative sets of strings obtained from S.

Let us assume first that promotion has priority over merge. We first will
prove that red ⊆ S always hold.

Initially, red = {λ} and blue = Σ. Let us consider any given iteration
such that red ( S, then blue = redΣ − red ⊂ (SΣ ∪ S). Note that there
is at least one state in blue ∩ S which, by construction of the characteristic
sample, can be distinguished from any state in red. Let q denote the first
of those states, q appears also the first in NonEqStateList and is promoted
to red (line 18 in Algorithm 3.1). Eventually, all the elements in S will be
promoted and thus red = S and blue = SΣ−S. At that moment, again by the
construction of the characteristic sample, each q ∈ blue can be distinguished
from any element in S but just one. Therefore, the criterion followed to
merge the remaining states in blue is irrelevant.

Let us assume now that promotion has no priority over merge. We prove
now that the order in which the merges are carried out affects only when the
training set is not characteristic. Under this conditions, whenever red ⊂ S it
is fulfilled that blue ⊆ SΣ∪S. By construction of the characteristic sample,
for any state q ∈ blue there is only one red state p such that the pair (p, q) is
in MergibleStatesList. Once the merge of the pair of states (p, q) has been
carried out, the red set does not change and the blue set continues being
included into SΣ ∪ S. �

Example 4 Let the automaton A in Figure 1 and the characteristic sample
for the language L(A) obtained in Example 2. The PTMM(D+,D−) is the
one shown in Figure 2.

The symbol inside each state represents the output value for that state.
Note also the figure shows also the numbering of the states according the
alphabetical order. The red and blue sets are initialized respectively to
{1} and {2, 13}. The first state to analyze is state 2 and added to the
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Figure 2: PTMM for the example (characteristic) training set.

NonEqStatesList as well as state 13 which is analyzed afterwards. Thus,
the state 2 is promoted to the red set, and therefore, red = {1, 2} and
blue = {3, 11, 13}.

The second iteration analyses first the state 3 which is added to the list
of NonEqStatesList, as well as state 11 and state 13. Thus, the algorithm
only option is to promote the first state in NonEqStatesList, and thus,
red = {1, 2, 3} and blue = {4, 6, 11, 13}.

The next iteration starts analysing state 4 which is found to be mergible
with state 2, and therefore it is added to the MergibleStatesList. State 6 is
the next state took into account and it is added to NonEqStatesList because
it is not equivalent to any state in red (as well as state 11). Last state anal-
ysed is state 13 which is found to be equivalent to state 3 and therefore added
to MergibleStatesList. First, let us note that the two possible merges in this
stage consider the pairs of states (2, 4) and (3, 13) (which will be of interest
at the end of this example). In this run, we will choose first to promote
rather than to merge. Therefore, the first state in MergibleStatesList is
added to the red set, and thus red = {1, 2, 3, 6} and blue = {4, 7, 9, 11, 13, }.

The analysis of the blue states carried out in the next iteration detects
that the pair of states (2, 4) can be merged, as well as the pairs (2, 7), (1, 9),
(6, 11) and (3, 13). It is worth to be noted here that: first, each blue state can
only be merged with one red state; second that the possible merges detected
in previous iterations are also considered in this last iteration, and therefore,
when characteristic sample is used, it does not matter which choice is done
in previous iterations because the output of the algorithm is always the same.
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4 Conclusions

The experimental behaviour of Blue-Fringe algorithm proves that the merg-
ing order in a GI algorithm is important to obtain good results in applied
tasks. This is mainly due to the fact that a guided order can take profit
from evidences in the training set. In general, the consideration of a guided
orders in a GI algorithm lead to a more data-efficient method.

The proof that Blue-Fringe algorithm has a polynomial characteristic
set, which was assumed not to exist by the GI community, motivates this
work. In this paper we prove a sufficient condition for GI algorithms to
have polynomial characteristic sample. The result allows the consideration
of any interesting data-driven criterion to establish the merging order of
a GI algorithm. Thus, the use of ad-hoc orders in the application of GI
algorithms to real tasks, under some conditions, could lead on the one hand
to very efficient algorithms with respect to the data, and on the other hand,
does not threaten the polynomial convergence which can be achieved.
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