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New families of symplectic splitting methods for

numerical integration in dynamical astronomy
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Abstract

We present new splitting methods designed for the numerical integra-
tion of near-integrable Hamiltonian systems, and in particular for plan-
etary N-body problems, when one is interested in very accurate results
over a large time span. We derive in a systematic way an independent
set of necessary and sufficient conditions to be satisfied by the coefficients
of splitting methods to achieve a prescribed order of accuracy. Splitting
methods satisfying such (generalized) order conditions are appropriate in
particular for the numerical simulation of the Solar System described in
Jacobi coordinates. We show that, when using Poincaré Heliocentric co-
ordinates, the same order of accuracy may be obtained by imposing an
additional polynomial equation on the coefficients of the splitting method.
We construct several splitting methods appropriate for each of the two
sets of coordinates by solving the corresponding systems of polynomial
equations and finding the optimal solutions. The experiments reported
here indicate that the efficiency of our new schemes is clearly superior to
previous integrators when high accuracy is required.
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1 Introduction

Symplectic integrators have several features that turn out to be particularly
appropriate when integrating numerically for long times evolution problems in
dynamical astronomy. They preserve by construction the symplectic structure
of the original Hamiltonian problem, so that the numerical solution inherits the
qualitative properties of the exact one [20]. In particular, by using backward
error analysis, it is possible to prove that this numerical solution is in fact
exponentially close to the exact solution of a modified Hamiltonian. Moreover,
although the energy is not conserved along the trajectory, the error introduced
by a symplectic method of order r used with constant step size τ is of order
O(τ r) for exponentially long time intervals under rather general assumptions,
whereas the error in position typically grows linearly with time [7].

Assume that, as is often the case, the Hamiltonian function is of the form
H(q, p) = T (p) + U(q), where the potential energy U(q) depends on positions
and the kinetic energy T (p) is a function of the conjugate momenta. Then
the equations of motion corresponding to T (p) are trivially solvable, and the
same happens with U(q). By composing the flows of these two special Hamil-
tonian systems one gets a symplectic first order approximation to the exact
flow. This simple composition constitutes an example of a symplectic splitting
method. Higher order approximations can be obtained by composing the flows
corresponding to T (p) and U(q) with certain coefficients obtained by solving
the so-called order conditions [16]. There exist in the literature a vast num-
ber of high order integrators constructed along this line (see, e.g., [1], [7], and
references therein).

The non-relativistic gravitational N-body problem, in particular, belongs to
this class of systems. If one considers the motion of n + 1 particles (the Sun,
with mass m0, and n planets with masses mi, i = 1, . . . , n) only affected by
their mutual gravitational interaction, the corresponding equations of motion
can be derived from the Hamiltonian

H =
1

2

n∑
i=0

‖pi‖2

mi
−G

∑
0≤i<j≤n

mimj

‖qi − qj‖
, (1)

where qi and pi = mi q̇i denote the position and momenta of the n+1 bodies in
a barycentric reference frame. Typically, the planets evolve around the central
mass following almost Keplerian orbits, so that by an appropriate change of
coordinates one can rewrite the Hamiltonian (1) as H = HK + HI , where in
some sense |HI | � |HK |, or equivalently, as the sum of the Keplerian motion
of each planet around the central mass and a small perturbation due to the
gravitational interaction between planets. Jacobi and Heliocentric coordinates
constitute paradigmatic examples of canonical set of coordinates possessing this
feature. Thus, the Hamiltonian (1) written as H = HK + HI is a particular
example of a near-integrable Hamiltonian system, i.e, it can be expressed as

H(q, p; ε) = H [a](q, p) + εH [b](q, p), (2)

where ε � 1 and H [a] is exactly integrable. It makes sense, then, to take
into account this special structure when designing integration methods to ap-
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proximate its dynamics. The idea consists in constructing splitting schemes as
compositions of the flows corresponding to H [a](q, p) and H [b](q, p), assuming
that they are explicitly computable or sufficiently well approximated [8, 26]. In
fact, since the parameter ε is small, it is possible to design methods which be-
have in practice as high order integrators with less severe restrictions concerning
the order conditions than the usual split into kinetic and potential energy. This
approach was systematically pursued by McLachlan [14], obtaining families of
splitting schemes of order 2 and 4 which eliminate the most relevant error terms
in ε, and further analyzed by Laskar & Robutel [12] in the context of planetary
motion.

By incorporating the idea of processing, even more efficient schemes can be
constructed for the Hamiltonian (2) [2]. In that case, both the kernel and the
processor are taken as compositions of the flows associated with H [a] and H [b],
so that the exactly symplectic character of the integration scheme is ensured.
With this approach, all terms of first order in ε in the truncation error expansion
can be annihilated with the processor [15, 27].

Although the symplectic methods developed in [12] and [14] for near-integra-
ble Hamiltonian systems have proved their usefulness in long term integrations
of the Solar System [11], the design of new and more efficient higher order in-
tegrators is of interest for numerical simulations of its evolution over large time
spans, either by speeding up the algorithms or by providing better accuracy in
the position of the different objects. Relevant examples where the new integra-
tors could be useful include the numerical integration of the Solar System for
more than 60 million years backward in time to cover the Palaeogene period to
determine insolation quantities of the Earth and calibrate paleoclimatic data,
studies of the planetary orbits over several billion years, etc. [13]. To this pur-
pose, it is essential that the numerical solutions obtained are not contaminated
by error accumulations along the integration and that the computations are
done in a reasonable time.

These long-time numerical integrations can be combined with standard tech-
niques of classical perturbation theory, such as the expansion of the equations
of motion up to a certain order in the perturbation parameters and the use of
averaging (see, e.g. [9]).

The purpose of this work is to present new families of symplectic splitting
methods specifically designed for Hamiltonian systems of the form (2) appear-
ing in many problems of dynamical astronomy, when one is interested in highly
accurate results over a large time span. The schemes we propose will be useful
in particular in the long time integration of the Solar System, both in Jacobi
and Poincaré Heliocentric coordinates, and are more efficient than the schemes
designed in [12] and [14]. Although they involve the computation of more el-
ementary flows per step than other methods, their small error terms allow to
use larger steps, which results in more efficient schemes. Obtaining these new
methods requires deriving previously the necessary and sufficient order condi-
tions to be satisfied by the coefficients (which is done here in a systematic way)
and then solving these polynomial equations to get the best solutions according
with some appropriately chosen optimization criteria. This is discussed in more
detail in sections 2, 3 and the appendix, whereas in section 4 we consider the

3



application of the new schemes to the integration of the Solar System. The
new methods obtained in section 3 are suitable to be applied when using Jacobi
coordinates and also Poincaré Heliocentric coordinates.

It is worth stressing that, while the main motivation of this work is the long
time integration of Hamiltonian problems arising in dynamical astronomy, and
in particular in planetary systems, the new symplectic splitting methods ob-
tained here can also be applied to more general perturbed differential equations
arising in different fields when high accuracies are required.

2 Order conditions

2.1 Preliminaries

To establish the framework for the construction and analysis of the new families
of integrators, we consider a generic differential equation of the form

x′ = f [a](x) + εf [b](x), x(0) = x0 ∈ RD, (3)

where |ε| � 1 and each part

x′ = f [a](x), x′ = εf [b](x) (4)

is exactly solvable (or can be numerically solved up to round off accuracy) with
solutions

x(τ) = ϕ[a]
τ (x0), x(τ) = ϕ[b]

τ (x0)

respectively, at t = τ , the time step. If we denote by ϕτ (x0) the exact solution of

(3), it is well known that ψτ = ϕ
[b]
τ ◦ ϕ[a]

τ provides a first-order approximation,
i.e., ψτ (x0) = ϕτ (x0) + O(τ2) and that higher order approximations can be
obtained by taking more compositions in ψτ ,

ψτ = ϕ[a]
as+1τ ◦ ϕ

[b]
bsτ
◦ ϕ[a]

asτ ◦ · · · ◦ ϕ
[b]
b1τ
◦ ϕ[a]

a1τ (5)

for appropriately chosen coefficients ai, bi. The splitting method ψτ is said to
be of order r if for all x ∈ RD,

ψτ (x) = ϕτ (x) +O(τ r+1) as τ → 0. (6)

It is straightforward to check that the method is at least of order 1 for arbi-
trary problems of the form (3) if and only if the coefficients ai, bi satisfy the
consistency condition

s+1∑
i=1

ai = 1,

s∑
i=1

bi = 1. (7)

We are mainly interested in symmetric methods, that is, integrators verify-
ing ψ−τ = ψ−1τ , or equivalently as+2−i = ai, bs+1−i = bi (so that the composi-
tion (5) is left-right palindromic). In that case, they are automatically of even
order. In particular, if a symmetric method satisfies the consistency condition
(7), then it is at least of order 2.
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Since the last flow ϕ
[a]
as+1τ can be concatenated with the first ϕ

[a]
a1τ at the

next step when scheme (5) is iterated, the number of flows ϕ
[a]
τ and ϕ

[b]
τ per

step is precisely s. This number is usually referred to as the number of stages
in the composition.

2.2 Deriving the order conditions via the BCH formula

The conditions that the coefficients ai, bi must satisfy for a splitting method
to be of order r (the so-called order conditions) can be conveniently derived
by considering series of linear differential operators. We denote by A and B
the Lie operators associated with f [a] and f [b], respectively. For each smooth
function g : RD → R, Ag and B g are smooth functions defined as

Ag(x) =
d

dτ

∣∣∣∣
τ=0

g(ϕ[a]
τ (x)), B g(x) =

d

dτ

∣∣∣∣
τ=0

g(ϕ[b]
τ (x)),

for each x ∈ RD, that is,

Ag(x) = f [a](x) · ∇g(x), B g(x) = f [b](x) · ∇g(x). (8)

The near-integrable Hamiltonian system (2) corresponds in this general frame-
work to considering equation (3) with

x = (q, p), f [a](x) = J ∇H [a](q, p), and f [b](x) = J ∇H [b](q, p),

being J the canonical symplectic matrix. Therefore, for each smooth function
g one has

Ag = f [a] · ∇g =
∑
j

∂H [a]

∂pj

∂g

∂qj
− ∂H [a]

∂qj

∂g

∂pj
,

and a similar expression for B g.
It is well known that for any smooth function g, the τ -flow of (3) satisfies

g(ϕτ (x)) = eτ(A+εB)g(x),

where eτ(A+εB) is defined as a series of linear differential operators

eτ(A+εB) =

∞∑
k=0

τk

k!
(A+ εB)k.

The same is true for each part in (3):

g(ϕ[a]
τ (x)) = eτ A g(x), g(ϕ[b]

τ (x)) = eτ εB g(x). (9)

Analogously, for the integrator ψτ in (5), one has

g(ψτ (x)) = Ψ(τ) g(x),

where Ψ(τ) is a series of linear differential operators defined as

Ψ(τ) = ea1τA eb1τεB · · · easτA ebsτεB eas+1τA. (10)
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Notice that the exponentials of Lie derivatives in (10) appear in the reverse
order with respect to the maps in the integrator (5).

One of the standard ways of deriving the order conditions for splitting meth-
ods is the following. By applying repeatedly the Baker–Campbell–Hausdorff
(BCH) formula [24] to the factorization (10) corresponding to a consistent (i.e.,
satisfying (7)) splitting method, one is able to express Ψ(τ) as the formal ex-
ponential of only one operator:

Ψ(τ) = eτ(A+εB+E(τ,ε)), (11)

where

E(τ, ε) = τ ε pab[A,B] + τ2 ε paba[[A,B], A] + τ2 ε2 pabb[[A,B], B])

+τ3 ε pabaa[[[A,B], A], A] + τ3ε2pabba[[[A,B], B], A] (12)

+τ3ε3 pabbb[[[A,B], B], B] +O(τ4).

Here the symbol [A,B] stands for the commutator of the Lie operators A and
B, and pab, pabb, paba, pabbb, . . . are polynomials in the parameters ai, bi of the
splitting scheme. In particular,

pab =
1

2
−

s∑
i=1

bici, paba =
1

2

s∑
i=1

bici(1− ci)−
1

12
,

where

ci =
i∑

j=1

aj , i = 1, 2, . . . , s (13)

and cs+1 = 1. The integrator is of order r if E(τ, ε) in (12) is of size O(τ r),
so that Ψ(τ) agrees with the series of linear operators eτ(A+εB) of the exact
flow up to terms of size O(τ r). In consequence, the order conditions read
pab = pabb = paba = · · · = 0 up to the order considered. For symmetric methods,
Ψ−τ = Ψ−1τ , and thus E(−τ, ε) = E(τ, ε), so that E(τ, ε) only involves even
powers of τ , that is, pw = 0 for any word w with an even number of letters in
the alphabet {a, b}.

In (12) we have considered the classical Hall basis associated to the Hall
words a, b, ab, abb, aba, abbb, abba, abaa, . . . [19]. The coefficients pw in (12) cor-
responding to each Hall word w can be systematically obtained using the results
in [18] in terms of rooted trees and iterated integrals. An efficient algorithm
(based on the results in [18]) of the BCH formula and related calculations that
allows one to obtain expression (12) up to terms of arbitrarily high degree is
presented in [3].

2.3 Generalized order

We are particularly interested in the manner in which the local error ψτ (x) −
ϕτ (x) decreases as ε → 0. For instance, from the results in the precedent
subsection, it is clear that for any consistent symmetric method the local error
satisfies ψτ (x) = ϕτ (x) +O(ε τ3). Alternatively,

Ψ(τ)− eτ(A+εB) = O(ε τ3) as (τ, ε)→ (0, 0).
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If in addition paba = 0 in (12), then

ψτ (x) = ϕτ (x) +O(ε τ5 + ε2 τ3) as (τ, ε)→ (0, 0).

In that case, we say that such a method is of (generalized) order (4, 2). More
generally, we will say [14] that an integration method for the system (3) is of
generalized order (r1, r2, . . . , rm) (where r1 ≥ r2 ≥ · · · ≥ rm) if the local error
satisfies that

ψτ (x)− ϕτ (x) = O(ετ r1+1 + ε2τ r2+1 + · · ·+ εmτ rm+1).

Recall from Subsection 2.2 that for symmetric integrators, the remainder E(τ, ε)
in (11) is even with respect to τ , and thus the generalized order (r1, r2, . . . , rm)
of symmetric schemes must have even rj .

2.4 Generalized order conditions

The conditions that the coefficients ai, bi must satisfy for a splitting method to
be of a prescribed (generalized) order (r1, r2, . . . , rm) can be obtained, of course,
by computing the polynomials pw in expression (12) with the BCH formula and
then equating each term to zero up to the considered order. Thus, in particular,
a consistent symmetric scheme of order (6, 2) requires that paba = pabaaa = 0.

There exist, however, other more systematic procedures to derive these order
conditions. In what follows, we present a strategy that allows us to get in a
direct way a set of necessary and sufficient independent order conditions for
generic splitting methods.

As a first step, we consider Z(τ) = eτ(A+εB)e−τA, which is the formal
solution of the initial value problem

d

dτ
Z(τ) = εZ(τ)C(τ), Z(0) = I, (14)

where

C(τ) = eτABe−τA =

∞∑
n=1

τn−1Cn, (15)

with

C1 = B, Cn =
1

(n− 1)!
[A, [A, ..., [A︸ ︷︷ ︸

n−1 times

, B]]], n > 1.

On the other hand, applying repeatedly the identity eτAehBe−τA = ehC(τ) to
eq. (10) and taking into account (13), we arrive at

Ψ(τ) = Ẑ(τ) ecs+1τA, where Ẑ(τ) = eε b1τ C(c1τ) · · · eε bsτ C(csτ). (16)

Notice that, if the splitting method is consistent, then cs+1 = 1. We thus have
that a splitting method is of order (r1, r2, . . . , rm) if and only if cs+1 = 1 and

Ẑ(τ)− Z(τ) = O(ετ r1+1 + ε2τ r2+1 + · · ·+ εmτ rm+1). (17)
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We then expand both Z(τ) and Z̃(τ) as power series of ε and compare their
coefficients. First, applying Neumann iteration to (14) we get

Z(τ)− I = ε

∫ τ

0
Z(s1)C(s1) ds1

= ε

∫ τ

0
C(s1) ds1 + ε2

∫ τ

0

∫ s1

0
C(s2)C(s1) ds1 ds2

+ ε3
∫ τ

0

∫ s1

0

∫ s2

0
C(s3)C(s2)C(s1) ds1 ds2 ds3 + · · ·

=
∑
k≥1

εk
∑

j1,...,jk≥1

τ j1+···+jk

(j1 + · · ·+ jk) · · · (j1 + j2)j1
Cj1 · · ·Cjk ,

where in the last equality we have introduced explicitly the expression for C(τ)
given by (15). On the other hand, by expanding the exponentials of Z̃(τ) in
(16), we have

Ẑ(τ)− I = τ ε
s∑
i=1

biC(ciτ)

+τ2 ε2

 s∑
i=1

b2i
2
C(ciτ)2 +

s−1∑
i=1

s∑
j=i+1

bibjC(ciτ)C(cjτ)

+ · · ·

=
∑
k≥1

τkεk
∑

1≤i1≤···≤ik≤s

bi1 · · · bik
σi1···ik

C(ci1τ) · · ·C(cikτ)

=
∑
k≥1

εk
∑

j1,...,jk≥1
τ j1+···+jk

 ∑
1≤i1≤···≤ik≤s

bi1 · · · bik
σi1···ik

cj1−1i1
· · · cjk−1ik

 Cj1 · · ·Cjk ,

where

σi1···ik = 1 if i1 < · · · < ik,

σi1···ik =
1

`!
σi`+1···ik if i1 = · · · = i` < i`+1 ≤ · · · ≤ ik.

In this way a splitting method is of order (r1, . . . , rm) if and only if∑
1≤i1≤···≤ik≤s

bi1 · · · bik
σi1···ik

cj1−1i1
· · · cjk−1ik

=
1

(j1 + · · ·+ jk) · · · (j1 + j2)j1
(18)

for each k = 1, . . . ,m and each multi-index (i.e., k-tuple of positive integers)
(j1, . . . , jk) such that j1 + · · ·+ jk ≤ rk.

Conditions (18) (one condition for each multi-index) have been obtained
in [23] in the context of order conditions of splitting operators for unbounded
operators A and B. Nevertheless, such order conditions are not all independent.
For instance, it can be checked that if condition (18) holds for the multi-indices
(1, 2), (2), and (1), then the condition for (2, 1) is also fulfilled. That kind
of dependencies are a consequence of the fact that both Z(τ) and Ẑ(τ) are
exponentials of Lie series in the non-commuting indeterminates C1, C2, . . .. A
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set of independent order conditions can be obtained (by virtue of Theorems 3.2
and 6.1 in [19]) by considering a particular subset of multi-indices, the so-called
Lyndon multi-indices. Let us consider the lexicographical order < (i.e., the
order used when ordering words in the dictionary) on the set of multi-indices.
A multi-index (i1, . . . , im) is a Lyndon multi-index if (i1, . . . , ik) < (ik+1, . . . , im)
for each 1 ≤ k < m. For instance, the subset of Lyndon multi-indices (j1, . . . , jk)
such that j1 + · · ·+ jk ≤ 5 is

{(1), (2), (3), (4), (5), (1, 2), (1, 3), (1, 4), (2, 3), (1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 1, 1, 2)}.

Taking into account these considerations, we finally arrive at the following
result.

Theorem 1 A splitting method of the form (5) is of generalized order (r1, . . . , rm)
if and only if cs+1 = 1 and (18) holds for k = 1, . . . ,m and each Lyndon multi-
index (j1, . . . , jk) such that j1 + · · · + jk ≤ rk. For symmetric methods, only
Lyndon multi-indices (j1, . . . , jk) with odd j1 + · · ·+ jk need to be considered.

For illustration, in Table 1 we collect explicitly conditions (18) corresponding
to some particular multi-indices, whereas in Table 2 we specify which particu-
lar Lyndon multi-indices one has to consider, or equivalently which conditions
(18) must hold for each consistent symmetric splitting method of the given
generalized order, according to Theorem 1.

Multi-index Condition

(j), j ≥ 1

s∑
i=1

bi c
j−1
i =

1

j

(1, 2)

s∑
i=1

1

2
b2i ci +

∑
1≤i<j≤s

bibjcj =
1

3

(1, 4)
s∑
i=1

1

2
b2i c

3
i +

∑
1≤i<j≤s

bibjc
3
j =

1

5

(2, 3)

s∑
i=1

1

2
b2i c

3
i +

∑
1≤i<j≤s

bibjcic
2
j =

1

10

Table 1: Generalized order condition associated with each Lyndon multi-index.

At this point some remarks must be done. The set of order conditions
given by Theorem 1 is completely equivalent to the order conditions that can
be obtained by following the standard approach described in subsection 2.2.
On the one hand, the free Lie algebra L(C1, C2, C3, . . .) generated by the non-
commuting indeterminates C1, C2, C3, . . ., admits a basis (the Lyndon basis [19])
in one-to-one correspondence with the set of Lyndon multi-indices. Clearly, if
instead of directly comparing the series expansions of Z(τ) and Ẑ(τ) as above,
we compare the formal logarithms log(Z(τ)) and log(Ẑ(τ)), we could obtain
one order condition per element in the Lyndon basis. On the other hand, the
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Generalized order Lyndon multi-indices

(2n, 2) (3), (5), . . . , (2n− 1)
(8, 4) (3), (5), (7), (1, 2)
(10, 4) (3), (5), (7), (9), (1, 2)
(8, 6, 4) (3), (5), (7), (1, 2), (1, 4), (2, 3)
(10, 6, 4) (3), (5), (7), (9), (1, 2), (1, 4), (2, 3)

Table 2: Lyndon multi-indices corresponding to consistent symmetric splitting meth-
ods of a given generalized order.

approach in subsection 2.2 gives one order condition per element in a basis of
the free Lie algebra L(A,B) generated by the noncommuting indeterminates
A and B, and Lazard elimination theorem [19] shows that, as vector spaces,
the direct sum of L(C1, C2, C3, . . .) with the linear span of A is isomorphic to
L(A,B) (sending C1, C2, C3, . . . to B, [A,B], 12 [A, [A,B]], . . . respectively).

3 New numerical schemes

There are two different types of symmetric composition schemes (5): one in
which the first and last flows correspond to the A part (and thus appropriately
called ABA composition),

ABA: ϕ[a]
a1τ ◦ ϕ

[b]
b1τ
◦ ϕ[a]

a2τ ◦ · · · ◦ ϕ
[a]
a2τ ◦ ϕ

[b]
b1τ
◦ ϕ[a]

a1τ (19)

and the other in which the role of ϕ
[a]
τ and ϕ

[b]
τ is interchanged (BAB composi-

tion):

BAB: ϕ
[b]
b1τ
◦ ϕ[a]

a2τ ◦ ϕ
[b]
b2τ
◦ · · · ◦ ϕ[b]

b2τ
◦ ϕ[a]

a2τ ◦ ϕ
[b]
b1τ
. (20)

Notice that both types of composition are closely related: an s-stage BAB
method is just an (s+ 1)-stage ABA scheme with a1 = 0, so that to construct
BAB methods one has to solve the same order conditions as for ABA com-
positions. Although A and B are qualitatively different here, and therefore
both types of composition may lead in principle to integrators with different
performances, in practice, and for the examples analyzed, we have not found
substantial differences, so that in what follows we only consider ABA methods
for clarity in the presentation.

Constructing particular methods requires solving polynomial equations (e.g.
the order conditions of Table 1 for methods of Table 2), a problem whose com-
plexity grows enormously with the number of equations and variables involved.
This task can be handled by computer algebra systems when this number is
relatively low. In that case one is able to get all the solutions and select the one
that verifies some previously fixed optimization criterion, such as minimizing
error terms at higher orders and the sum of the absolute value of the coefficients.
In practice, we have followed this procedure when there are no free parameters
and the number of equations to be solved is at most seven. When this number is
larger than seven or there are additional parameters, another strategy based on
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homotopy continuation methods has been applied. In the appendix we provide
a detailed treatment of the procedure for a particular method.

3.1 New methods in the ABA class

Symmetric schemes of generalized order (2n, 2) can be obtained just by solving,
in addition to consistency, the order conditions corresponding to the Lyndon
multi-indices (3), (5), . . . , (2n−1) (first line in Table 1). These equations result
from approximating the integral

∫ τ
0 C(s)ds in the expression of Z(τ) by the

quadrature rule
s∑
i=1

biC(ciτ) =

s∑
i=1

bi
∑
j≥1

cj−1i τ j−1Cj

in the expansion of Z̃(τ). Equivalent order conditions were previously derived
in [12, 14, 15], and so the same methods are obtained here. Methods in this
family have all their coefficient positive and good stability properties. In the
tests carried out in this paper we will take the most efficient ABA scheme of
order (8, 2) for comparison, which we denote by ABA82.

Generalized order (10,4). According with Table 2, there are five order
conditions in addition to consistency (7), for a total number of seven equations
to be satisfied by the coefficients. As a consequence, the minimum number of
stages is six. A more efficient method can be obtained, however, by taking an
additional stage and choosing the corresponding free parameter to reduce the
error terms at a higher order. The sequence of coefficients is

a1 b1 a2 b2 a3 b3 a4 b4 a4 b3 a3 b2 a2 b1 a1 (21)

and their values are collected in Table 3 (method denoted by ABA104). Observe
that, as expected, one of the ai and one of the bj coefficients are negative (it is
known that this feature is unavoidable for any splitting method of order higher
than two [6, 21, 22]), but they have a relatively small absolute value.

Generalized order (8,6,4). Here we have, in addition to consistency, six
order conditions, for a total of eight equations, so that the minimum number of
stages is seven. Hence the sequence of coefficients for the resulting methods is
also as in (21). There are 30 real solutions, and the one referred to as method
ABA864 in Table 3 minimizes the sum of the absolute values of its coefficients.

Generalized order (10,6,4). An additional stage is required in this case to
verify the order condition associated with multi-index (9) in Table 1. Therefore,
the minimum number of stages is eight, with sequence

a1 b1 a2 b2 a3 b3 a4 b4 a5 b4 a4 b3 a3 b2 a2 b1 a1. (22)

By following the construction strategy exposed in the appendix, we have ob-
tained several solutions for the order conditions. Among those possessing rea-
sonably small coefficients, we have selected the solution with the smallest lead-
ing terms of the local error. This corresponds to method ABA1064 in Table 3.

11



id order stages ai, bi

ABA104 (10, 4) 7

a1 = 0.04706710064597250612947887637243678556564

a2 = 0.1847569354170881069247376193702560968574

a3 = 0.2827060056798362053243616565541452479160

a4 = -0.01453004174289681837857815229683813033908

b1 = 0.1188819173681970199453503950853885936957

b2 = 0.2410504605515015657441667865901651105675

b3 = -0.2732866667053238060543113981664559460630

b4 = 0.8267085775712504407295884329818044835997

ABA864 (8, 6, 4) 7

a1 = 0.0711334264982231177779387300061549964174

a2 = 0.241153427956640098736487795326289649618

a3 = 0.521411761772814789212136078067994229991

a4 = -0.333698616227678005726562603400438876027

b1 = 0.183083687472197221961703757166430291072

b2 = 0.310782859898574869507522291054262796375

b3 = -0.0265646185119588006972121379164987592663

b4 = 0.0653961422823734184559721793911134363710

ABA1064 (10, 6, 4) 8

a1 = 0.03809449742241219545697532230863756534060

a2 = 0.1452987161169137492940200726606637497442

a3 = 0.2076276957255412507162056113249882065158

a4 = 0.4359097036515261592231548624010651844006

a5 = -0.6538612258327867093807117373907094120024

b1 = 0.09585888083707521061077150377145884776921

b2 = 0.2044461531429987806805077839164344779763

b3 = 0.2170703479789911017143385924306336714532

b4 = -0.01737538195906509300561788011852699719871

Table 3: Coefficients for ABA symmetric splitting methods of generalized order
(10, 4), (8, 6, 4) and (10, 6, 4).

3.2 A simple example

To illustrate the efficiency of these schemes we take the perturbed Kepler prob-
lem with Hamiltonian

H =
1

2
(p21 + p22)−

1

r
− ε

2r3

(
1− 3q21

r2

)
, (23)

where r =
√
q21 + q22. This Hamiltonian is a first approximation used to de-

scribe the dynamics of a satellite moving into the gravitational field produced
by a slightly oblate spherical planet and whose motion takes place in a plane
containing the symmetry axis of the planet [17].

We consider this simple problem to test the relative performance of the
methods obtained in this work in comparison with schemes presented in [12, 14].
The following schemes are used:

• ABA82: The 4-stage (8,2) ABA method given in [12, 14].

• ABA84: The 5-stage (8,4) ABA method of [14].

• ABA104: The 7-stage (10,4) method given in Table 3.

• ABA864: The 7-stage (8,6,4) method of Table 3.
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• ABA1064: The 8-stage (10,6,4) method whose coefficients are collected in
Table 3.

For the numerical experiments we take as initial conditions q1 = 1 − e,
q2 = 0, p1 = 0, p1 =

√
(1 + e)/(1− e), with e = 1/4, which would correspond

to the eccentricity of the unperturbed Kepler problem. For this system, the
strength of the perturbation depends both on the choice of the small parameter,
ε, and the initial conditions. We integrate along the interval t ∈ [0, 10000]
and compute the averaged error in energy as well as the averaged error in
position and momenta (measured in the 2-norm) of the numerical solutions
evaluated at tk = 20 · k, k = 1, 2, . . . , 500. We take as the exact solution an
accurate approximation obtained using a high order method with a sufficiently
small time step. This numerical test is repeated several times for each method
using different time steps (changing the computational cost for the numerical
integration). Finally, we plot the average errors versus the time step scaled by
the number of stages per step, i.e. τ/s, in double logarithmic scale, to show how
the error depends on the computational cost (the cost is inversely proportional
to τ/s, and the best methods should provide a given accuracy with the largest
value of τ/s).

Figure 1 shows the results obtained for ε = 10−2, 10−3. In diagrams (a) and
(c) we show the average error in positions and momenta, whereas in pictures (b)
and (d) we measure the average error in energy. Notice how the new methods
collected in Table 3 are clearly more efficient than ABA82 and ABA84.

It should be stressed that, although the coefficients in Table 3 have 40 digits
of accuracy, the results displayed in Figure 1 have been obtained, for the sake
of illustration, with a standard Fortran compiler in double precision. The code
generating the results for the averaged error in energy is available at the website
www.gicas.uji.es/software.html.

3.3 Splitting methods with approximate flows

We have so far assumed that the exact τ -flow maps ϕ
[a]
τ and ϕ

[b]
τ in the splitting

method (5) are both available. This is the case for the simple example (23)
considered in the precedent subsection, where the Hamiltonian is split as the
sum of a Keplerian Hamiltonian H [a](q, p) and a perturbation εH [b](q) that only
depends on the positions. However, if instead of the perturbation of example
(23), one has a perturbation that depends on both positions q and momenta p,

then, in general, the exact ϕ
[b]
τ will no longer be available. In that case, instead

of the splitting method (5), we will consider a composition of the form

ψ̃h = ϕ[a]
as+1τ ◦ ϕ̃

[b]
bsτ
◦ ϕ[a]

asτ ◦ · · · ◦ ϕ
[a]
a2τ ◦ ϕ̃

[b]
b1τ
◦ ϕ[a]

a1τ , (24)

where ϕ̃
[b]
τ is an approximation of ϕ

[b]
τ obtained by applying some numerical

integrator to the Hamiltonian εH [b](q, p).

In what follows, we assume that ϕ̃
[b]
τ represents one step of some 2nd-order

symmetric method. In that case, the series of differential operators correspond-

ing to ϕ̃
[b]
τ is of the form

Φ̃[b]
τ = eτεB+(τε)3D3+(τε)5D5+···
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Figure 1: Average error in positions and momenta (panels (a) and (c)) and average
error in energy (panels (b) and (d)) versus the scaled time step, τ/s, in a double
logarithmic scale for the numerical integration of the Hamiltonian system (23) along
the time interval t ∈ [0, 10000] and measured at times tk = 20 · k, k = 1, 2, . . . , 500.

instead of just eτεB, and thus, the series Ψ̃h of differential operators correspond-
ing to the method (24) can be obtained from (10) by replacing each ebjτεB by

Φ̃
[b]
bjτ

= ebjτεB+(bjτε)
3D3+(bjτε)

5D5+···.

In consequence, the leading term of the difference Ψ̃τ − Ψτ of the respective
series corresponding to methods (24) and (5) is s∑

j=1

b3j

 ε3τ3D3.

It is then natural to impose, in addition to the generalized order conditions
obtained in subsection 2.3, the condition

s∑
i=1

b3i = 0, (25)

with the aim of reducing the effect of replacing ϕ
[b]
τ by ϕ̃

[b]
τ in (5).
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The order conditions of scheme (24) (ϕ̃
[b]
τ being one step of arbitrary sec-

ond order symmetric integrator applied to y′ = εf [b](y)) can be systematically
obtained by generalizing the approach presented in section 2, just by replacing
Ẑ(τ) in (16) by

Z̃(τ) = eG(ε b1τ,c1τ) · · · eG(ε bsτ,csτ),

where

G(σ, τ) = eτA(σ B + σ3D3 + σ5D5 + · · · )e−τA

=
∞∑
n=1

τn−1(σ Cn + σ3E3,n + σ5E5,n + · · · ),

with

Ei,1 = Di, Ei,n =
1

(n− 1)!
[A, [A, ..., [A︸ ︷︷ ︸

n−1 times

, Di]]], n > 1.

Thus, the scheme (24) will have generalized order (r1, r2, r3, . . . , rm) if (5) is of
generalized order (r1, r2, r3, . . . , rm) (see subsection 2.3) and in addition,

Z̃(τ)− Ẑ(τ) = O(ε3τ r3+1 + ε4τ r4+1 + · · ·+ εmτ rm+1).

In particular, we have that

Z̃(τ)− Ẑ(τ) =

 s∑
j=1

b3j

 ε3τ3D3 +

 s∑
j=1

b3jcj

 ε3τ4[A,D3]

+
1

2

 s∑
j=1

b3jc
2
j

 ε3τ5[A, [A,D3]] +O(ε3τ6 + ε4τ4).

This shows that, if the method (24) is applied with the coefficients of a standard
symmetric splitting method (5) of generalized order (r, 4), the resulting method
has generalized order (r, 4, 2). If the additional condition (25) holds, then (24)
recovers the generalized order (r, 4) (recall that generalized order (r1, r2, . . . , rm)
of symmetric methods have even rj).

We have constructed several symmetric methods of ABA-type

ϕ[a]
a1τ ◦ ϕ̃

[b]
b1τ
◦ ϕ[a]

a2τ ◦ · · · ◦ ϕ
[a]
a2τ ◦ ϕ̃

[b]
b1τ
◦ ϕ[a]

a1τ

(with a1 6= 0) satisfying the additional condition (25). Notice that ABA-type
compositions are more convenient than BAB-type methods, since the last stage
of the method in the current step can be concatenated with the first stage at
the next step. This is not possible with BAB compositions (20), because

ϕ̃
[b]
biτ
◦ ϕ̃[b]

bjτ
6= ϕ̃

[b]
(bi+bj)τ

.

By following a similar strategy as for the methods collected in section 3,
we have constructed symmetric schemes within this family of generalized order
(8,4), (8,6,4) and (10,6,4), all of them involving the minimum number of stages.
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The corresponding coefficients are collected in Table 4. For schemes (8,4) we
have found all the real solutions and selected the solution that minimizes the
sum of the absolute values of the coefficients (method ABAH844). This method
has the following structure

ψτ = ϕ[a]
a1τ ◦ϕ̃

[b]
b1τ
◦ϕ[a]

a2τ ◦ϕ̃
[b]
b2τ
◦ϕ[a]

a3τ ◦ϕ̃
[b]
b3τ
◦ϕ[a]

a4τ ◦ϕ̃
[b]
b3τ
◦ϕ[a]

a3τ ◦ϕ̃
[b]
b2τ
◦ϕ[a]

a2τ ◦ϕ̃
[b]
b1τ
◦ϕ[a]

a1τ .

The procedure for constructing method ABAH1064 is detailed in the appendix,
and a similar strategy has been used to build scheme ABAH864.

id order stages ai, bi

ABAH844 (8, 4) 6

a1 = 0.2741402689434018761640565440378637101205

a2 = -0.1075684384401642306251105297063236526845

a3 = -0.04801850259060169269119541715084750653701

a4 = 0.7628933441747280943044988056386148982021

b1 = 0.6408857951625127177322491164716010349386

b2 = -0.8585754489567828565881283246356000103664

b3 = 0.7176896537942701388558792081639989754277

ABAH864 (8, 6, 4) 8

a1 = 0.06810235651658372084723976682061164571212

a2 = 0.2511360387221033233072829580455350680082

a3 = -0.07507264957216562516006821767601620052338

a4 = -0.009544719701745007811488218957217113269121

a5 = 0.5307579480704471776340674235341732001443

b1 = 0.1684432593618954534310382697756917558148

b2 = 0.4243177173742677224300351657407231801453

b3 = -0.5858109694681756812309015355404036521923

b4 = 0.4930499927320125053698281000239887162321

ABAH1064 (10, 6, 4) 9

a1 = 0.04731908697653382270404371796320813250988

a2 = 0.2651105235748785159539480036185693201078

a3 = -0.009976522883811240843267468164812380613143

a4 = -0.05992919973494155126395247987729676004016

a5 = 0.2574761120673404534492282264603316880356

b1 = 0.1196884624585322035312864297489892143852

b2 = 0.3752955855379374250420128537687503199451

b3 = -0.4684593418325993783650820409805381740605

b4 = 0.3351397342755897010393098942949569049275

b5 = 0.2766711191210800975049457263356834696055

Table 4: Coefficients for ABA symmetric splitting methods of generalized order (8,4),

(8,6,4) and (10,6,4) especially adapted to be used when the flow ϕ
[b]
τ is approximated

by a symmetric 2nd-order method ϕ̃
[b]
τ . This happens, in particular, when Heliocentric

coordinates are used for the integration of the Solar System, as it is shown in section
4.

4 Application to the integration of the Solar System

In this section we illustrate how the new families of methods proposed here
behave when they are used in the numerical integration of the simplest model
of the Solar System, i.e., a main massive body (the Sun) and a set of particles
(the planets) orbiting the Sun following almost Keplerian trajectories. It is not
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our intention to carry out a detailed treatment of this problem, but rather to
check the performance of the new methods and compare them with other well
established schemes designed for near-integrable Hamiltonian systems such as
those presented in [12] and [14]. We instead refer the reader to reference [4],
where this issue is handled in much more detail.

As stated in the Introduction, integrating numerically the gravitational N-
body problem requires first to choose a convenient set of canonical coordinates.
Two widely used coordinate systems where the corresponding Hamiltonian (1)
adopts the form (2), suitable to the application of the integration schemes
developed in this work, are Jacobi and Heliocentric coordinates. In the former,
the position of each planet is taken relative to the barycenter of the previous i
bodies, whereas in the later the position of each planet is taken with respect to
the Sun.

Methods of Table 3 are particularly appropriate for long time integrations of
the N-body problem in Jacobi coordinates, and extensive numerical experiments
with different planetary configurations have been carried out in [4]. Here we
will restrict ourselves to Heliocentric coordinates.

In this set the coordinates ri are the relative positions of each planet with
respect to the Sun:

r0 = q0, ri = qi − q0, i = 1, . . . , n (26)

whereas the conjugate momenta read

r̃0 = p0 + · · ·+ pn, r̃i = pi (27)

and the Hamiltonian (1) is given by [10]

HHe =
n∑
i=1

(
1

2
‖r̃i‖2

m0 +mi

m0mi
−Gm0mi

‖ri‖

)
+

∑
0<i<j≤n

(
r̃i · r̃j
m0

−Gmimj

∆ij

)
, (28)

where ∆ij = ‖ri − rj‖ for i, j > 0.
Heliocentric coordinates have the advantage, compared with Jacobi coordi-

nates, that adding a new body to the model does not change the origin and
the new Hamiltonian is easily updated. On the other hand, the perturbation
H [b] depends on both positions and momenta and is not integrable by itself.
Hence, when considering the splitting (3), the equation x′ = f [b](x) is not ex-

actly solvable. Nevertheless, if the corresponding flow ϕ
[b]
τ is approximated by

a 2nd-order method, we can use the new splitting methods of Table 4. Notice
that H [b] is the sum of two terms, one depending only on positions and the
other depending only on momenta

H [b](r, r̃) = H [ba](r̃) +H [bb](r) =
∑

0<i<j≤n

(
r̃i · r̃j
m0

−Gmimj

∆ij

)
,

so each equation x′ = f [bi](x), with f [bi](x) = J∇H [bi](x), is exactly solvable

with flow ϕ
[bi]
τ . Therefore, we can approximate ϕ

[b]
τ by the second order sym-

metric scheme
ϕ̃
[b]
biτ

= ϕ
[ba]
biτ/2

◦ ϕ[bb]
biτ
◦ ϕ[ba]

biτ/2
. (29)
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Another possibility consists in taking splitting methods of the form

ψτ = ϕ[a]
as+1τ ◦ ϕ

[bb]
csτ ◦ ϕ

[ba]
bsτ
◦ ϕ[a]

asτ ◦ · · · ◦ ϕ
[bb]
c1τ ◦ ϕ

[ba]
b1τ
◦ ϕ[a]

a1τ

and obtaining the appropriate coefficients ai, bi, ci satisfying the required order
conditions. These can be derived, for instance, by analyzing the free Lie algebra
generated by the three Lie derivatives corresponding to each piece of the Hamil-
tonian. The number of order conditions grows rapidly with the order, however,
in comparison with splitting schemes involving only two parts. In particular,
(10,6,4) methods require, in addition to consistency, 22 order conditions, while
methods of the form (24) with (29) only need to satisfy 8 order conditions. This
being the case, in what follows we consider splitting methods of the form (24),

with the approximate flow ϕ̃
[b]
τ given by the leapfrog composition (29).

In Figure 2 we can see the results achieved by the new ABA splitting schemes
of Table 4 on the N-body problem in Heliocentric coordinates for different
planetary configurations. Method ABA82 refers here to the composition (24)
with the coefficients of the ABA scheme of generalized order (8, 2) given in

[12, 14], but with the flow ϕ
[b]
τ approximated by the leapfrog (29). Diagram

(a) corresponds to the four inner planets (Mercury, Venus, Earth and Mars),
picture (b) to the four outer planets (Jupiter, Saturn, Uranus and Neptune)
and finally diagram (c) is obtained when the eight planets in the Solar System
(Mercury to Neptune) are taken into account. Initial conditions and mass
parameters have been taken from the INPOP10a planetary ephemerides [5]
(http://www.imcce.fr/inpop/).

We have integrated the same initial conditions for each scheme using differ-
ent step sizes τ . For each step size (τi = 1/2i for i = 1, 15) we have computed
the numerical trajectory over niter = 105 evaluations of the integration scheme
(i.e. if τ = 0.5, then the final time is tf = 50000years). For each trajectory we
plot the maximum variation in energy along the trajectory versus the inverse
of the computational cost, τ/s, both in logarithmic scale.

All the simulations have been done in Fortran using extended double preci-
sion and compensated summation during the evaluation of the inner stages of
each scheme.

Notice that in the case of the four inner planets (Figure 2 (a)) the perfor-
mance for the different ABA schemes in Table 4 are better than method ABA82,
but there is not much difference between the ABA schemes ABAH844, ABAH864
and ABAH1064. Nevertheless, if we look at the results for the four outer planets
and the whole Solar System (Figure 2 (b) and (c) respectively) we can see that
ABAH864 and ABAH1064 show better results than ABAH844.

Despite the fact that the size of the perturbation for the different planetary
configurations presented can be very different [4], we believe that the difference
between the performance of the schemes for the inner and the outer planets in
the Solar System is mainly due to Mercury. Its fast orbital period and relatively
high eccentricity are the main limiting factors when one tries to improve the
efficiency of the higher order schemes. Notice that for the inner planets the
orbital period is much shorter than for the outer planets, and so, according
with [25], this imposes a restriction on the step size to be used and the number
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of evaluations per orbital period.
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Figure 2: Comparison between ABA schemes of order (8,4), (8,6,4) and (10,6,4) of

the form (24), with the approximate flow ϕ̃
[b]
τ given by the leapfrog composition (29)

and ABA82 (also with the approximation (29)). Panel (a): the 4 inner planets; panel
(b): the 4 outer planets and panel (c): the whole Solar System. The x-axis represents
the (inverse of the) cost τ/s, and the y-axis the maximum energy variation for one
integration with constant step size τ . Both are in logarithmic scale.

5 Concluding remarks

In reference [12], symplectic splitting methods of generalized order (2n, 2) up
to n = 5 (first described in [14]) were systematically derived and tested on the
Sun–Jupiter–Saturn system over 25000 years in Jacobi coordinates, observing
an improvement in the accuracy with respect to the leapfrog integrator by
several orders of magnitude at the same computational cost. Methods in this
family have all the coefficients positive and good stability properties. Scheme
(8, 2) in particular has been used in several long term simulations of the whole
Solar System (e.g., [11, 13]) and corresponds to method ABA82 in the examples
reported here. All the tests carried out in [12] showed that the error term
ε2τ3 was the main limiting factor in the performance of the integrators, so
the natural question was whether schemes of higher order (and thus already
involving some negative coefficients) could be useful for integrating planetary
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N-body problems.
As a matter of fact, methods of order (8, 4) obtained in [14] do improve

the performance of ABA82 for this problem in Jacobi coordinates, as the exper-
iments reported in [4] show. In this work we have pursued this line of research
and constructed new families of higher order splitting methods specifically ori-
ented to the numerical integration of near-integrable Hamiltonian systems, and
in particular for planetary N-body problems, both in Jacobi and Poincaré He-
liocentric coordinates. For this purpose, first we have derived explicitly the set
of independent necessary and sufficient order conditions that splitting methods
must verify to achieve a certain order of accuracy and then we have solved these
equations. A non-trivial task that requires the use of homotopy continuation
techniques and optimization criteria to select the most appropriate solution.

Although the new methods involve some negative coefficients, and thus one
could think that their numerical stability might be compromised, they have been
selected to minimize the error terms at higher orders and the sum of the absolute
values of their coefficients. As a result, the size of the negative coefficients of
our new methods is relatively small. In any case, the experiments reported here
clearly indicate that the new methods of order (8, 6, 4) and (10, 6, 4) achieve
accuracy up to round off error with larger step sizes than 2nd-order schemes.

There are near-integrable systems of the form (3) where the exact flow ϕ
[b]
τ

corresponding to the perturbation is not available. In that case, we have con-

structed splitting methods of the form (24), where ϕ̃
[b]
τ is a 2nd-order symmetric

approximation of the exact flow. This class of schemes has shown to be particu-
larly efficient for long time integrations of N-body planetary systems in Poincaré
Heliocentric coordinates when the leapfrog approximation (29) is considered.

Numerical simulations show that the efficiency of the new integrators pre-
sented here is essentially similar in both Jacobi and Heliocentric coordinates.
We believe this result is worth remarking, since canonical Heliocentric variables
provide very often a more convenient formulation of the problem. The improve-
ment of the new integrators presented here (in particular, methods of order
(8, 6, 4) and (10, 6, 4)) with respect to previous schemes is most notably exhib-
ited when they are applied for the numerical integration of the outer planets.
When the whole Solar System is considered, although methods of order (8, 6, 4)
and (10, 6, 4) still provide the best results, it is Mercury with its relatively high
eccentricity and fast orbital period which constitutes the main limiting factor
in all simulations.

When designing the new methods of generalized order (8, 6, 4) and (10, 6, 4),
we have only considered compositions with the minimum number of stages to
solve all the order conditions. It might be the case, as in other contexts, that
introducing more stages with additional free parameters could lead to more
efficient schemes. We intend to explore this possibility and eventually collect
the new methods obtained, both in the ABA and BAB classes, in our website
(www.gicas.uji.es/software.html).
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Appendix

To illustrate the numerical procedure we have followed to obtain the methods
with s > 7 stages in this work we now describe in detail the construction of
method ABAH1064 of generalized order (10,6,4), whose coefficients are collected

in Table 4. It has the form (24), where ϕ̃
[b]
τ represents one step of some 2nd-

order symmetric method used to approximate the flow ϕ
[b]
τ . This is the case,

for instance, when Heliocentric coordinates are used for the integration of the
Solar System.

We consider nine-stage methods with the following sequence of coefficients:

a1 b1 a2 b2 a3 b3 a4 b4 a5 b5 a5 b4 a4 b3 a3 b2 a2 b1 a1. (30)

Symmetric splitting methods of generalized order (10, 6, 4) for Heliocentric co-
ordinates must satisfy ten order conditions, that is, consistency

a1 + a2 + a3 + a4 + a5 =
1

2
, 2(b1 + b2 + b3 + b4) + b5 = 1,

the special constraint (25) for Heliocentric coordinates, and the order conditions
related to the Lyndon multi-indices (3), (5), (7), (9), (1,2), (1,4), (2,3) in Table 1
(recall that the ci are given by (13)). We thus have ten polynomial equations and
ten unknowns, which we collect in a vector x = (a1, . . . , a5, b1, . . . , b5) ∈ R10.
The system of algebraic equations one aims to solve can then be written in the
compact form f(x) = 0. Recall that any solution of such system must have at
least one negative ai and one negative bj . We are interested in finding solutions
with a small Euclidean norm ‖x‖ = ‖(a1, . . . , a5, b1, . . . , b5)‖ (to ensure that the
negative ai and bj have small absolute values).

In order to do that, we first split the system f(x) = 0 into

f1(x) = 0, f2(x) = 0, (31)

where f2(x) = 0 corresponds to the conditions for the Lyndon multi-indices
(1,2), (1,4), and (2,3), whereas f1(x) = 0 collects the remaining seven equations.
We then proceed as follows:

• We determine the point x0 = (a01, . . . , a
0
5, b

0
1, . . . , b

0
5) ∈ R10 as the (unique)

solution of the following constrained minimization problem:

min
a3=a4=0,f1(a1,...,a5,b1,...,b5)=0

5∑
i=1

(b2i + a2i ).
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It is not difficult to check that the sequence of coefficients

a01 b
0
1 a

0
2 (b02 + b03 + b04) a

0
5 b

0
5 a

0
5 (b02 + b03 + b04) a

0
2 b

0
1 a

0
1

corresponds precisely to the 5-stage symmetric ABA method of general-
ized order (10,2) with positive coefficients considered in [12, 14, 15]. Thus,
it is our starting point in the search of an efficient (10,6,4) method.

• We then choose an arbitrary orthogonal matrix M ∈ R3×10, and for a
randomly chosen complex number γ ∈ C, consider the following one-
parameter family of systems of polynomial equations:

f1(x) = 0, t f2(x) + (1− t) γM · (x− x0) = 0. (32)

For a generic M and γ, there exists a unique continuous curve x = ρ(t) ∈
C10 of solutions of this family of polynomial systems such that ρ(0) = x0.
Here t ∈ [0, 1) denotes the continuation parameter. If x = ρ(1) ∈ R10,
then x is a real solution of the original system (31). We have applied a
numerical continuation algorithm to compute such a solution for several
values of γ ∈ C, and found two real solutions. The solution x with
smaller norm ‖x‖ gives the method ABAH1064 of generalized order (10,6,4)
displayed in Table 4. Notice the small absolute value of both a3 and a4 in
the resulting scheme (recall that this solution has been obtained starting
with x0 such that a03 = a04 = 0).

We have followed a similar procedure to compute solutions starting with x0

such that a0i = a0j = 0 for indices (i, j) 6= (3, 4). Such procedure leads to non-
real solutions x for some of the choices of (i, j), and for other choices gives real
solutions with larger norm ‖x‖ and larger error terms than method ABAH1064.
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