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Abstract

Nowadays, traffic jams in urban areas have become a problem that keeps

growing every year since the number of vehicles in our cities is continuously

increasing. One of the most common causes producing traffic jams are vehicle

accidents. Moreover, the arrival time of the emergency services could be raised

due to traffic congestion. Intelligent Transportation Systems (ITS) have a key

role in order to reduce or mitigate this problem. In this paper, we propose four

different approaches addressing the traffic congestion problem, comparing them

to obtain the best solution. Using V2I communications, we are able to accurately

estimate the traffic density in a certain area, which represents a key parameter

to perform efficient traffic redirection, so reducing the emergency services ar-

rival time, and avoiding traffic jams when an accident occurs. Specifically, we

propose two approaches based on Dijkstra algorithm, and two approaches based

on Evolution Strategies. Notice that, when an accident occurs, time is a critical

issue, and strategies here proposed contribute to optimal solution within a short

period of time.

Keywords: Vehicular Networks; Traffic Accidents Assistance; Evolution

Strategies;
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1. Introduction

Traffic accidents represent a big problem for drivers and a serious burden

for the economy of all the countries. A close look at traffic accidents shows that

many of the casualties and serious injured take place during the time elapsed

between the accident occurrence and the arrival of the medical assistance. The

so called ‘Golden Hour’ (Fogue et al., 2013) after a car crash is the time within

which medical or surgical intervention by a specialized trauma team has the

greatest chance of saving lives. If more than 60 minutes have elapsed by the time

the injured arrives to the operating table, the chances of survival fall sharply.

Typical arrival of medical help takes about 15 minutes, but initial access and

treatment starts 25 minutes after the accident. Transportation of the injured

to the hospital usually takes place 50 minutes later. Therefore, time is critical

for the survival of the injured in a severe crash incident, and any technology

capable of providing a fast and efficient rescue operation after a traffic accident

takes place will increase the probability of survival of the injured, and reduce

the injury severity.

Additionally, urban traffic congestion affects most cities around the world.

This scenario is getting even worse since the number of vehicles circulating in

our cities grows every year. Vehicle accidents are one of the most common

causes generating traffic jams in urban scenarios, which yield a higher cost of

fuel, increasing air pollution.

Intelligent Transportation Systems (ITS) are among those newly introduced

technologies that promise a cure-all remedy to the ever increasing traffic con-

gestion problem (Jawad and Ozbay, 2005). In the near future, ITS will help

the city traffic to be safer and more comfortable, redistributing traffic to avoid

traffic jams (Ma et al., 2012), communicating real-time information when an

accident occurs (Barrachina et al., 2012b), and using intelligent systems for

parking search (Lu et al., 2009).

Cooperative vehicle systems have become an increasingly popular trans-

portation paradigm in recent years. Wireless technologies, through vehicular
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networks, enable peer-to-peer mobile communications among vehicles (V2V), as

well as communications between vehicles and infrastructures (V2I). Using these

technologies, crashed vehicles are able to notify the emergency services about

the occurrence of an accident. In addition, emergency services can dynami-

cally redistribute traffic by communicating or suggesting new routes to vehicles.

These routes can be calculated using different methods such as Dijkstra-based

algorithms, genetic algorithms, or evolution strategies.

Evolutionary Algorithms imitate the principles of natural evolution as a

method to solve parameter optimization problems. They have been success-

fully used to solve various types of optimization problems (Greenwood et al.,

1995), since they provide an optimal solution without checking all the possible

solutions, so reducing the execution time drastically. Evolution Strategies are a

kind of Evolutionary Algorithm with the particularity that the mutation steps

are included in the chromosome. This kind of Evolutionary Algorithms obtains

very good results in numerical optimization problems, especially when working

on continuous variables.

There are several works where intelligent systems are used to avoid traf-

fic jams (e.g., Ohara et al. (2006), Sanchez-Medina et al. (2010), and Dezani

et al. (2012)). However, they do not focus on reducing the rescue time of the

emergency services, or exploit the advantages of using vehicular communication

capabilities. Additionally, in all these works, authors only consider a specific

scenario for simulations to assess their proposal, which might lead to unrepre-

sentative results and wrong conclusions.

In this paper, we propose four different approaches to minimize the emer-

gency services arrival time when an accident occurs in urban scenarios, also

trying to avoid traffic jams scenarios. In particular, two of them are based on

the Dijkstra algorithm, and the other two are based on Evolution Strategies.

Additionally, we evaluated the four proposed solutions in three different scenar-

ios with different topologies to determine the best solution, in terms of travel

times of the emergency services and the rest of vehicles.

This paper is organized as follows: In Section 2 we present our four different
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Table 1: Features of our proposals

Dijkstra Density-Based Evolution Density-Based

Dijkstra Strategy Evolution Strategy

Deterministic ✓ ✓ ✗ ✗

Nondeterministic ✗ ✗ ✓ ✓

Considering traffic ✗ ✓ ✗ ✓

density

re-routing systems (i.e., Dijkstra, Density-Based Dijkstra, Evolution Strategy,

and Density-Based Evolution Strategy). Section 3 introduces the simulation

environment used to assess our proposed schemes. Section 4 shows the obtained

results, and Section 5 reviews the related work regarding intelligent systems

used to avoid traffic jams and minimize vehicle travel times. Finally, Section 6

concludes this paper.

2. Our Proposed Vehicle Routing Systems

In this Section, we propose four different vehicle routing approaches with the

aim of ensuring that emergency services arrive at the place of the accident as

soon as possible, whereas the rest of vehicles are not significantly affected, i.e.,

their travel times do not increase considerably, avoiding the possible traffic jams

caused by the accident. Specifically, they are: (i) Dijkstra, (ii) Density-Based

Dijkstra, (iii) Evolution Strategy, and (iv) Density-Based Evolution Strategy.

Table 1 presents the main features of these proposed approaches. As shown,

the first two proposed approaches are simple and deterministic. The first one

accounts for the number of lanes of each street to find the solution, and the

second system additionally takes into account the traffic density. The other two

proposed approaches are implemented using evolution strategies, and addition-

ally, our last mechanism uses a real-time traffic density estimation to get better

solutions.
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Figure 1: Example of a traffic jam when the street priority is given by the number of lanes.

2.1. Dijkstra

This system aims at obtaining the shortest route between two map positions

by using the Dijkstra algorithm (Dijkstra, 1959), specifically adapted to roads

and streets, and taking into account the length and priority of the streets. The

priority of each street indicates the preference it has with respect to the others

for a vehicle when it arrives to an intersection.

In this system, the street priority is calculated by using the number of lanes

per street, assigning higher priority to the widest streets (i.e., with higher num-

ber of lanes). The main disadvantage of this system is noticeable when there

is a high number of vehicles in a specific area, since it might produce traffic

jams even in the widest streets. Figure 1 shows an example of this situation.

As shown, vehicles arrive to the junction through street A. Using this system

and considering the priorities shown in the figure (1.0 for street B and 9.0 for

street C ), the majority of vehicles continue their route through street C (90% of

vehicles since this street has a greater number of lanes), collapsing it. However,

street B has less traffic density, with a more fluid traffic.

This proposed system uses a static model for street priorities, where a prior-
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ity is given to each street, and priorities do not change under any circumstance.

This issue could generate two kind of problems when an accident occurs: (i)

there could be traffic jams in specific areas of the scenario, whereas other areas

present very low traffic, and (ii) the streets selected as routes for the emergency

services do not present low priority for the rest of vehicles in order to reduce

the number of potential vehicles blocking the streets.

The main advantage of this system is the low computational cost since it does

not need to know the current traffic density or the emergency service routes; in

addition, when an accident occurs, this approach can be applied immediately.

2.2. Density-Based Dijkstra

This proposed system is similar to the previous one, with the difference that,

in this case, we take into account the traffic density in the area when the street

priorities are assigned. To develop this method, those streets leading vehicles

to high traffic density areas, are penalized. When an accident occurs, all the

vehicles involved send a warning message using Vehicular Networks Communi-

cations. When control systems are notified, they apply the vehicular density

estimation approach presented in Section 3. In addition, the streets through

which emergency services circulate to arrive at the accident site are penalized

for the rest of vehicles. Specifically, in this proposed system, we proceed as

follows:

• Step 1 : we prioritize streets by normalizing the values (see Equation 1).

As shown, the normalized values start in 1 and end in 10 (Nmin and Nmax,

respectively).

Nx =
(Px − Pmin) · (Nmax −Nmin)

Pmax − Pmin

+Nmin

where :

Nmin = 1

Nmax = 10

(1)
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• Step 2 : the normalized value for the rest of the areas (Nx) is calculated

by using a proportion between the minimum and the maximum traffic

density percentages, and the traffic density of the area which we want to

calculate the normalized value (Pmin, Pmax, and Px, respectively).

• Step 3 : with the aim of penalizing streets with a high traffic density, we

apply Equation 2. In this Equation, we obtain the inverse value calculated

above (Sx), since a higher priority value has more priority, and we multiply

this value by the number of lanes of the street (Lx).

Sx = (Nmax −Nx + 1) · Lx (2)

• Step 4 : with the aim of calculating the fastest route for the emergency

services vehicle, this approach applies a simple Dijkstra algorithm for each

one, calculating the shortest route between two map positions (accident

site and hospital, police station, firehouse, etc.), regardless of traffic den-

sity. Note that, in this case, we do not take into account the street prior-

ities since emergency vehicles always have more priority than the rest of

vehicles, regardless of the street they are circulating in.

• Step 5 : as shown in Equation 3, we penalize these streets through which

emergency services circulate (Sxe
) by giving them a priority corresponding

to the number of lanes (e.g., a street with four lanes has a priority of 4).

Sxe
= Lx (3)

• Step 6 : we calculate the new vehicle routes using a Dijkstra-Based algo-

rithm taking into account the streets priorities, since the shortest path

could not be the fastest path.

Equation 4 shows an example of street priorities calculation. As shown, we

have three different areas which contain the following percentage of traffic ve-

hicles: Pmin = 20%, Pmax = 50%, and Px = 30% of the total of vehicles. Also,
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we have three streets located in the aforementioned areas with these numbers

of lanes (Lmin = 3, Lmax = 2, and Lx = 1). Since we have the maximum and

minimum normalized values (Nmin andNmax), we calculate the other street nor-

malized value (Nx) by using Equation 1. Finally, we obtain the street priorities

(Smin, Smax, and Sx) by using Equation 2, thereby obtaining street priorities

of 30, 2, and 7 respectively.

Pmin = 20, Pmax = 50, Px = 30

Nmin = 1, Nmax = 10

Lmin = 3, Lmax = 2, Lx = 1

Nx =
(Px − Pmin) · (Nmax −Nmin)

Pmax − Pmin

+Nmin

Nx =
(30− 20) · (10− 1)

50− 20
+ 1 = 4

Sx = (11−Nx) · Lx

Smin = (11− 1) · 3 = 30

Smax = (11− 10) · 2 = 2

Sx = (11− 4) · 1 = 7

(4)

This system requires from the estimated traffic density. In Section 3 we

present a system which needs to receive beacons during 30 seconds to esti-

mate the traffic density. To reduce this 30 seconds period, control units could

continuously execute the aforementioned estimation system in order to know

immediately the traffic density estimation, assuming an error of non-real-time

estimation with a maximum threshold of 30 seconds. Using this approximation,

our system would only require calculating the emergency services routes.

2.3. Evolution Strategy

Evolutionary algorithms are based on Darwinian theories of evolution to ex-

plain the origin of species (Eiben and Smith, 2003). Natural selection favors
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Algorithm 1: Evolutionary Algorithm Scheme

BEGIN

Initialize Population

Evaluation

REPEAT UNTIL ( Finish Condition ) DO

Parents Selection

Recombination

Mutation

Evaluation

Survivor Selection

END LOOP

END

those individuals competing for resources in a more effective way, i.e., better

adapted to the environmental conditions. Although there are different variants

of evolutionary algorithms, such as genetic algorithms, evolution strategies, evo-

lutionary programming, and genetic programming, all of them have the same

essence: an individual population generates descendants, and the best individu-

als are selected to obtain the next generation. All evolutionary algorithms have

the same methodology, presented in Algorithm 1.

Evolution strategies are a variant of evolutionary algorithms with the fol-

lowing features:

• They are typically used for conditions parameter optimization.

• There is a strong emphasis on mutation for creating offspring.

• Mutation is implemented by adding some random noise drawn from a

Gaussian distribution.

• Mutation parameters are changed during a run of the algorithm, achieving

faster results.
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Figure 2: Example of a genotype for street priorities.

Due to the high computational cost of calculating all possible combinations

of street priorities to find the optimal solution, we consider interesting to apply

an Evolution Strategy. Evolution Strategies are typically used to solve optimiza-

tion problems of continuous variables. As in the previous proposed approaches,

this scheme applies the Dijkstra algorithm for each emergency vehicle in order

to calculate the emergency services routes. In this case we do not take traffic

density into account, but we penalize the streets selected for the emergency ser-

vices vehicles. Then, we calculate new routes for vehicles using a priority-based

Dijkstra algorithm (with the same aims of the previously proposed system).

In the following Subsections we present the main characteristics of our Evo-

lution Strategy (i.e., definition of variables, fitness function, mutation, recom-

bination, parents selection, and survivors selection).

2.3.1. Definition of Variables

An individual, i.e., a potential solution of our system, encodes a possible

solution into a chromosome based structure (genotype) (Mester and Bräysy,

2005). In this case, a vector of float point numbers which contains the priority

value of each street (as shown in Figure 2) is considered. Street priorities are

randomly selected in the vectors of the initial population for each street for the

first time.

2.3.2. Fitness Function

Selection is a process in which solutions are selected for recombination based

on their fitness values. Here, fitness refers to a measure of profit, utility, or good-

ness to be maximized while exploring the solution space. Our system has three
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different fitness functions designed to minimize the arrival time for the emer-

gency vehicles and the travel time of the rest of vehicles: (i) Fitness Function 1

gives double importance to the arrival time of emergency services (‘e’ represents

emergency services vehicles, and ‘r ’ represents the rest of Regular vehicles) (see

Equation 5), (ii) Fitness Function 2 assigns the same importance to both arrival

times (see Equation 6), and (iii) Fitness Function 3 gives double importance to

the arrival time of the rest of vehicles (see Equation 7). Although the latter

should not perform well, since our main goal is to reduce the time required by

the emergency vehicles to reach the accident location, we consider interesting

to evaluate it to assess whether the system is able to significantly reduce the

travel time of the rest of vehicles, while slightly increasing the the emergency

services’ arrival time. Next, we compare these functions to determine which one

provides better results when simulating the testbed.

FitnessFunction1 = 2 ·
∑ne

ie=0 tie

ne

+

∑nr

ir=0 tir

nr

(5)

FitnessFunction2 =

∑ne

ie=0 tie

ne

+

∑nr

ir=0 tir

nr

(6)

FitnessFunction3 =

∑ne

ie=0 tie

ne

+ 2 ·
∑nr

ir=0 tir

nr

(7)

2.3.3. Mutation

In an Evolution Strategy there is a strong emphasis on the mutation to create

the offspring. Additionally, mutation is implemented by adding a random ‘noise’

obtained from a Gaussian distribution. Mutation parameters change during the

execution of the algorithm. In our proposal, we use an Uncorrelated Mutation

with n Step Sizes. The mutation mechanism applies the functions included in

Equation 8, where σ is the mutation step size, τ is the scale parameter for the

mutation step sizes, and n is the number of individuals.
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Figure 3: Example of genotype formed by street priorities and mutation step sizes.

σ′

i =σ · eτ ′
·N(0,1)+τ ·Ni(0,1),

x′

i =xi + σ′

i ·Ni(0, 1)

where :

τ ′ ∝ 1√
2n

τ ∝ 1
√

2
√
n

(8)

Using this kind of mutation, our genotype contains values x (street priority)

and values σ (mutation step sizes), as shown in Figure 3.

To avoid too small standard deviations providing a negligible effect, we limit

the value of the step sizes using a threshold (ε0), i.e., σ
′ < ε0 ⇒ σ′ = ε0.

2.3.4. Recombination

The basic recombination scheme in Evolution Strategies requires two parents

to create a child. For λ descendants, the recombination process is performed

λ times. There are two variants of recombination depending on how parental

alleles are recombined:

• Discrete Recombination: one of the alleles of the parents is chosen with

equal probability for both parents.

• Intermediate Recombination: the parental allele values are averaged.
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Figure 4: Example of local discrete recombination.

Furthermore, two parents can be used, randomly obtained from the popula-

tion of µ individuals, for each component (i ∈ {1...n}) of the offspring. This is

known as Global recombination, and the variant in which only two parents are

selected for the total of components is called Local recombination.

In our proposed system, we apply Local Discrete Recombination, since this

method is one of the most widely used in this kind of algorithms, and it provides

a good performance in most cases. As shown in Figure 4, each child allele is

chosen with equal probability for both parents.

2.3.5. Parents Selection

The parents selection in Evolution Strategies does not depend on their fitness

values. Parents are chosen randomly by using a uniform distribution from the

population of µ individuals.

2.3.6. Survivors Selection

The Survivors Selection consists on deterministically choosing the µ best

individuals, after creating λ descendants and calculating their fitness. There

are two kinds of Survivor Selection:

• Selection (µ, λ): only the individuals of the offspring are considered to

generate the next generation.
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• Selection (µ + λ): survivors are selected from the union of parents and

descendants.

Our proposed scheme uses Selection (µ + λ), since using Selection (µ, λ)

descendants could produce worse results, delaying the achievement of the best

solution.

2.4. Density-Based Evolution Strategy

With the aim of reducing the system runtime, we propose an Evolution

Strategy with the same characteristics as the Evolution Strategy System (pre-

sented in the previous Subsection), but in this case we do not obtain the initial

population randomly. We consider that by using the traffic density information,

our system will be able to reduce the time required to find the optimal solution

(by reducing the number of generations). Specifically, this approach combines

both the Density-Based Dijkstra and the Evolution Strategy schemes.

Instead of getting the initial population randomly, we start the procedure

by taking into account two different genotypes: (i) a genotype which contains

street priorities based on the number of lanes, and (ii) a genotype which contains

street priorities based on traffic density. The rest of individuals of the initial

population are obtained by recombining these two genotypes. Street priorities

based on the number of lanes are obtained by squaring the number of lanes

of each street, and the street priorities based on traffic density and emergency

vehicles routes are obtained by using the method proposed in the Density-Based

Dijkstra approach. Then, we make a first recombination with them, selecting

the n best descendants in order to generate a first offspring, so approaching to

the best solution. This improvement will make the system reach the optimal

solution in less time than using a random initial population.

Figure 5 shows an example of the objective of this solution. As shown,

initializing the population accounting for the traffic density and the number

of lanes could make it possible to obtain better solutions with a lower num-

ber of offsprings, thereby reducing the system runtime. As shown, while the

14



Figure 5: Example of fitness function values using both proposed intelligent systems (i.e.,

Evolution Strategy and Density-Based Evolution Strategy).

non-density-based system would have created xdb generations to obtain the ydb

fitness value, our density-based proposed system would obtain this value in its

first generation. The initial executions would be avoided and, therefore, this

approach would save crucial time.

3. Simulation Environment

Traffic simulation is known to be a very complex issue. One of the main

reasons is due to the fact that traffic simulators must model the discrete dy-

namics that arise from the interaction among individual vehicles (Benjaafar

et al., 1997). The Simulation of Urban MObility (SUMO) is an open source,

microscopic, continuous-space traffic simulator designed to handle large road

networks, and it is mainly developed by employees of the Institute of Trans-

portation Systems at the German Aerospace Center1 (Krajzewicz and Rossel,

2007).

1http://www.dlr.de/fs/en/desktopdefault.aspx
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Table 2: Attributes of SUMO Streets
Attribute Description

id The unique id of the street

from The id of the starting junction

to The id of the final junction

priority Street weight regarding the rest of the streets

The SUMO mobility generator supports several mobility models, such as

the Krauss mobility model (Krauss et al., 1997). In addition, SUMO allows

customizing a wide variety of parameters including the initial and final position

of the vehicles, the type of vehicles, the maximum speed of each street, or the

street’s priority. Table 2 shows the SUMO street attributes that we use in our

system. Moreover, each SUMO lane has an attribute indicating the street to

which it belongs. This allows us to obtain the number of lanes at every street.

We use the attributes from and to in order to determine the heading of the

street, the attribute id to link lanes with streets, and the attribute priority to

implement our proposed schemes.

To increase the level of realism of our simulations, we use real scenarios con-

sisting of downtown areas from the cities of Rome (Italy), San Francisco (USA),

and New York (USA) imported directly from OpenStreetMap (OpenStreetMap,

2012). OpenStreetMap is a project which aims at creating and providing free

geographic data, such as street and road maps. According the SJ Ratio (i.e., a

variable calculated from dividing the number of the streets and the number of

junctions), these cities are examples of the roadmaps with the highest SJ Ratio,

an intermediate SJ Ratio, and the lowest SJ Ratio, respectively (see Figure 6).

So, we assess our proposal under different and representative roadmap profiles.

All simulation results consist of an average of over 100 runs with different

scenarios, densities and fitness functions. Each simulation consist on vehicles

circulating during 600 seconds. We simulate a car accident taking place at 60

seconds. We use the first 60 seconds as a warm up period to achieve a stable

state. During this time, vehicles follow random routes. At the time of the
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(a) (b)

(c)

Figure 6: Scenarios used in our simulations. Fragments of the cities of: (a) Rome (Italy), (b)

San Francisco (USA), and (c) New York (USA).
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Table 3: Parameters used for the simulations
Parameter Value

number of simulations 100

roadmaps Rome, San Francisco, and New York

warm up time 60 seconds

roadmap size 2000m × 2000m

number of vehicles 500 and 1000

number of collided vehicles 1

warning message size 18KB (Barrachina et al., 2012b)

beacon message size 512B

warning messages priority AC3

beacon priority AC1

interval between messages 1 second

RSU deployment policy Uniform Mesh (Barrachina et al., 2012a)

MAC/PHY 802.11p

radio propagation model RAV (Martinez et al., 2012)

mobility model Krauss (Krauss et al., 1997)

channel bandwidth 6Mbps

max. transmission range 400m

accident we capture the current estimated location of all the vehicles and their

target location. Then, we apply our proposed approaches to calculate the new

vehicle routes, and to perform a comparison analysis. Additionally, we consider

a non-static start and end position for the emergence vehicle, since an ambulance

does not have to be always at the same place and the accident can occur in any

location. Table 3 shows the parameters used for the simulations.

Table 4 shows the main features of each map for the cities under study.

Specifically, we obtained the number of streets, the number of junctions, the

average distance of segments, and the number of lanes per street. We also

added a column labeled as SJ Ratio, which represents the result of dividing

the number of streets between the number of junctions, thereby indicating the

roadmap complexity. As shown, the first city (New York) presents an SJ ratio of

0.5130, which indicates that it has a simple topology, whereas the last cities in

the table present a greater SJ value, which indicates a more complex topology.

In order to obtain the real-time traffic density to provide this information to

the system, we apply the Density Estimation Function presented in (Barrachina
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Table 4: Map Features

Map Streets Junctions
avg. distance of

lanes/street SJ Ratio
segment (m.)

New York 257 500 45.8853 1.0590 0.5140

Minnesota 459 591 102.0652 1.0144 0.7766

Madrid 628 715 83.0820 1.2696 0.8783

San Francisco 725 818 72.7065 1.1749 0.8863

Amsterdam 1494 1449 44.8973 1.1145 1.0311

Sydney 872 814 72.1813 1.2014 1.0713

Liverpool 1758 1502 49.9620 1.2295 1.1704

Valencia 2829 2233 33.3653 1.0854 1.2669

Rome 1655 1193 45.8853 1.0590 1.3873

Table 5: Coefficients of our Proposed Density Estimation Equation

Coeff. Value

a 2.30375E+02

b 1.90696E+01

c -4.29461E+02

d 3.18809E+01

f 1.87953E+02

g -6.81258E+01

et al., 2013). The proposed function (see Equation 9 and the coefficients showed

in Table 5) needs the number of beacons received by each RSU (parameter x),

and the SJ Ratio (parameter y) to accurately estimate the vehicle density of a

given area.

f(x, y) = a+ b · ln(x) + c

y
+ d · ln(x)2 + f

y2
+

g · ln(x)
y

(9)

4. Simulation Results

In this Section we present the simulation results of our four proposed ap-

proaches. First, we show the results obtained using the Evolution Strategy

System. Our goal is to study the number of required generations to obtain the

function convergence values. Then, we compare the Dijkstra, the Density-Based

Dijkstra, and the Evolution Strategy Systems, demonstrating that by applying
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Table 6: Parameters used for the Evolution Strategy

Parameter Value

number of simulations 100

population number 5

number of descendants 10

number of generations 20

fitness function Equations 5, 6, and 7

mutation Uncorrelated Mutation with n Step Sizes

recombination Local Discrete

parents selection Randomly

survivors selection (µ + λ)

an evolution strategy we are able to obtain better results. Later, we present a

comparison between the Evolution Strategy and Density-Based Evolution Strat-

egy Systems, with the aim of proving that adding traffic density information

allows the evolution strategy to obtain better results using a smaller number

of generations. Finally, we study the impact of reducing the population size

and the number of descendants on the obtained results; our goal is to reduce

the system runtime, while reducing the needed time for emergency services to

arrive.

4.1. Evolution Strategy

In this Subsection, we show the obtained results using our proposed Evolu-

tion Strategy and we analyze the number of generations required to obtain the

function convergence value. Table 6 shows the parameters used for the Evolu-

tion Strategy used. Figures 7 and 8 present the obtained results. As expected,

the system obtains the best emergency services arrival times when applying

Equation 5 as a fitness function (i.e., the fitness function that gives doubled

importance to the emergency services arrival time) in all simulated scenarios.

Also, we can observe that, when using Equation 7 as a fitness function, our

system is able to reduce the travel times of the rest of vehicles, although this

solution slightly increases the emergency services arrival times. On the other

hand, results indicate that when applying Equation 6 as a fitness function we
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Figure 7: Emergency services arrival times, using the Evolution Strategy in the scenarios of:

Rome (Italy) (a) 125 vehicles/km2, and (b) 250 vehicles/km2, San Francisco (USA) (c) 125

vehicles/km2, and (d) 250 vehicles/km2, and New York (USA) (e) 125 vehicles/km2, and (f)

250 vehicles/km2.
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Figure 8: Mean travel times of the rest of the vehicles, using the Evolution Strategy in the sce-

narios of: Rome (Italy) (a) 125 vehicles/km2, and (b) 250 vehicles/km2, San Francisco (USA)

(c) 125 vehicles/km2, and (d) 250 vehicles/km2, and New York (USA) (e) 125 vehicles/km2,

and (f) 250 vehicles/km2.
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Table 7: Simulation Results
Dijkstra Density-Based Evolution

Scenario Vehicles/km
2 Dijkstra Strategy

Vehicles Emgcy. Vehicles Emgcy. Vehicles Emgcy.

Avg. t. Serv. Avg. t. Serv. Avg. t. Serv.

Rome

125 222.91 190 205.09 162 233.59 113

250 12.27 209 109.01 159 130.54 125

San 125 112.02 92.5 106.86 82.5 128.74 55.5

Francisco 250 148.08 126 145.14 82.5 189.81 62.5

New York

125 151.43 68 134.04 60.5 172.19 48

250 143.46 83.5 126.61 78.5 151.14 61.5

are able to reduce both the emergency services arrival time and the rest of ve-

hicles travel time, but they are not reduced in the same degree as when using

the other two fitness functions. Since the main goal of our proposal is to reduce

the emergency services arrival time as much as possible, we select Equation 5

as the best fitness function, which is able to minimize this time. In addition, as

shown in Figure 7, by using this configuration the system obtains the function

convergence values in 10 generations or less.

4.2. Dijkstra, Density-Based Dijkstra, and Evolution Strategy Comparison

For the purpose of knowing which one is the best system, we analyze the

results obtained with the configuration proposed in the previous Subsection (i.

e., 10 number of generations, and Equation 5 as the fitness function), since they

were the best parameter values when using the Evolution Strategy.

Table 7 shows the average travel times of the emergency vehicles and the

rest of vehicles (in seconds), when varying the roadmap scenario, the vehicle

density, and the traffic re-routing approach. As shown, when using the Density-

Based Dijkstra system we improve in all scenarios compared with the application

of pure Dijkstra. In particular, we reduce emergency services travel times by

16.84% on average (i. e., 19.33% in Rome, 22.67% in San Francisco, and 8.51%

in New York). Also, we reduce the rest of vehicles travel time by an average of

6.79% (i.e., 5.45% in Rome, 3.3% in San Francisco, and 11.61% in New York).

On the other hand, the Evolution Strategy significantly reduces the emer-

gency services arrival time, although it increases the travel time for the rest of
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the vehicles. Specifically, this system reduces emergency services travel times

by an average of 37.81% (40.36% in Rome, 45.2% in San Francisco, and 27.88%

in New York). However, it increases the travel time for the rest of the vehicles

by 13.87% on average (10.53% in Rome, 21.55% in San Francisco, and 9.53%

in New York). Although this intelligent system increases the travel time for

the rest of the vehicles (a maximum of 28.18%), it can significantly reduce the

emergency services travel time (a minimum of 26.35%).

4.3. Comparison Between Evolution Strategy and Density-Based Evolution Strat-

egy Systems

In this Subsection we compare our two proposed intelligent algorithms (i.e.,

Evolution Strategy and Density-Based Evolution Strategy). Simulations were

performed using the parameters showed in Table 6, but, in order to simplify

the comparison, we only simulate our systems using Equation 5 as the fitness

function. As shown in Figure 9, the results obtained when applying the Density-

Based Evolution Strategy system are better than when using the Evolution

Strategy. Also, we can observe that the Density-Based approach allows obtain-

ing smaller emergency services arrival times with fewer generations, since we

consider traffic density when initializing the population.

In addition, we compare the Density-Based Evolution Strategy system re-

sults with those obtained when using the Dijkstra system. As shown in Table

8, we reduce the emergency services travel times by 54.33% on average (53.58%

in Rome, 55.26% in San Francisco, and 51.16% in New York). However, this

system increases the rest of vehicles travel time by 11.49% on average (12.27%

in Rome, 10.85% in San Francisco, and 11.36% in New York). Although this

intelligent system increases the travel time for the rest of vehicles (a maximum

of 14.39%), it can significantly reduce the emergency services arrival time (a

minimum of 47.9%).

Since one of the most important goals of our approach is reducing the emer-

gency services travel times, the Density-Based Evolution Strategy system is the

best one among all the proposed solutions. Once again, we demonstrate that
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Figure 9: Evolution Strategy and Density-Based Evolution Strategy systems emergency ser-

vices arrival times on average after 100 simulations in the scenarios of: Rome (Italy) (a) 125

vehicles/km2, and (b) 250 vehicles/km2, San Francisco (USA) (c) 125 vehicles/km2, and (d)

250 vehicles/km2, and New York (USA) (e) 125 vehicles/km2, and (f) 250 vehicles/km2.

25



Table 8: Simulation Results
Dijkstra Density-Based

Scenario Vehicles/km
2 Evolution Strategy

Vehicles Emgcy. Vehicles Emgcy.

Avg. t. Serv. Avg. t. Serv.

Rome

125 222.91 190 249.36 89

250 12.27 209 126.51 93

San 125 112.02 92.5 120.21 43.5

Francisco 250 148.08 126 169.38 53.5

New York

125 151.43 68 171.06 31

250 143.46 83.5 157.44 43.5

traffic density is a key factor in vehicular scenarios.

4.4. Density-Based Evolution Strategy System Reducing Population and Number

of Descendants

As stated above, the emergency services arrival time is a critical factor when

an accidents occurs. Simulations performed by using Evolution Strategies re-

quire a high computational cost, increasing its application time. Hence, reducing

the necessary simulations would decrease the system action time which directly

affects the time required by emergency services to arrive at the accident loca-

tion. For this reason, in this Subsection we assess our best proposed system’s

performance (i.e., the Density-Based Evolution Strategy) but reducing the pop-

ulation size and the number of descendants. Table 9 presents the parameters

used in these simulations. As shown, we reduce the number of population in-

dividuals from 5 to 3, and the number of descendants from 10 to 5. Note that

we only use the Density-Based Evolution Strategy system in conjunction with

Equation 5, since we obtained the best results using this configuration.

Figure 10 shows the obtained results. As can be seen, when reducing the

number of population individuals and descendants, the emergency services ar-

rival time increases: 27.68% in Rome, 27.5% in San Francisco, and 34.21%

in New York. This occurs because we generate a smaller number of possible

population individuals in each generation, thereby restricting the probability to

achieve better individuals.
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Figure 10: Emergency services arrival times simulating 250 vehicles/km2 varying the number

of population individuals and descendants numbers in the scenarios of: (a) Rome (Italy), (b)

San Francisco (USA), and (c) New York (USA).
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Table 9: Parameters used for the Density-Based Evolution Strategy System

Parameter Value

number of simulations 100

population number 5 and 3

number of descendants 10 and 5

number of generations 20

fitness function Equation 5

mutation Uncorrelated Mutation with n Step Sizes

recombination Local Discrete

parents selection Randomly

survivors selection (µ + λ)

5. Related Work

Genetic algorithms have been widely used in the field of dynamic traffic

distribution. However, unlike our proposal, existing works do not focus on

reducing the rescue time of the emergency services. In this section, we present

some of the most relevant works related to our work.

Ohara et al. (2006) examined two routing methods to reduce the average ve-

hicle travel time: one of them used a centralized system, and the other provided

drivers some selection agents, but each driver had to select his route. Since

the number of combinations of vehicles routes exponentially increases as the

number of vehicles grows, authors employed a genetic algorithm to search for a

near-optimal route combination for all vehicles.

Yoshikawa and Terai (2009) discussed a route selection algorithm, partic-

ularly focused on a hybrid technique which combines genetic algorithms with

the Dijkstra algorithm (Dijkstra, 1959) to achieve high quality route guidance.

They presented a solution similar to The Traveling Salesman Problem (John-

son and McGeoch, 1997). Specifically, their proposal is based on an individual

vehicle which has an order of the passing points as genes. Authors estimated

distances between nodes based on Manhattan street distances, although the

topology of real urban areas are usually quite different from regular and simple

Manhattan-style roads. In addition, they only took into account route distances

for each individual vehicle without using vehicle density information to develop
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their genetic algorithm.

More recently, Dezani et al. (2012) presented an application for real-time

traffic lights control in congested urban traffic environments, taking as input

the locations and routes of the vehicles in the involved areas. Authors used V2I

communications to gather the location of vehicles in order to calculate traffic

density. Additionally, they developed a genetic algorithm to solve traffic jams

by controlling traffic lights. With respect to their proposed traffic density esti-

mation system, we consider that it is not realistic since the vehicles circulating

outside the infrastructure coverage area cannot communicate their position.

In all these previous works, authors validate their proposals just by consid-

ering a theoretical scenario. However, we consider that these simulations are

not realistic, since real-world roads do not follow a general pattern, especially

in urban scenarios.

Other authors proposed intelligent systems for traffic distribution using real

scenarios to assess their proposal. Collins and Muntean (2008) presented a novel

adaptive vehicle routing algorithm enabled by wireless vehicular networks. Their

system was based on the client-server architecture, where clients are vehicles.

They used a genetic algorithm to select the best route for each vehicle, using

a fitness function taking into account road congestion, vehicle travel time, and

fuel consumption. Specifically, they used four different kinds of simulations:

(i) the shortest route is selected, but it does not vary during the travel, (ii)

each vehicle drives towards its own destination according to the route manage-

ment solution, but without adaptation during the travel, (iii) each vehicle drives

towards its own destination according to the route management solution with

dynamic adaptation during the travel, and, (iv) the hypothetical ‘ideal’ solution

based on traffic saturation and able to dynamically re-route vehicles is selected.

However, the only scenario used in their simulations was a fragment of the city

of Boston (USA).

Sanchez-Medina et al. (2010) developed a model for traffic signal optimiza-

tion based on the combination of three key techniques: (i) genetic algorithms

for the optimization task, (ii) cellular-automata-based microsimulators for eval-
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uating every possible solution for traffic-light programming times, and (iii)

a Beowulf Cluster, which used a multiple-instruction-multiple-data (MIMD)

price/performance ratio. They tested the genetic algorithm with four different

fitness functions: (i) number of vehicles that reach their destination point easily,

(ii) mean travel time, (iii) time of occupancy and state of occupancy, and (iv)

global mean speed. Authors used a traffic model based on both Krauss (Krauss

et al., 1997), and Schadschneider and Chowdhury (Schadschneider et al., 1999)

mobility models. However, they focused their simulations on a specific scenario,

i.e., ‘La Almozara’ district in Zaragoza.

To the best of our knowledge, although there are several works where intel-

ligent systems are used to avoid traffic jams, none of them neither is focused

on reducing the arrival time of the emergency services to the accident location,

nor uses a street priority scheme to calculate vehicles routes. Additionally, in

all previous studies, authors only consider a specific scenario for simulations

in order to assess their proposal. From our point of view, simulating only one

specific scenario is inadequate when presenting a vehicle routing model (even in

real scenarios since it can lead to nonrepresentative and inaccurate results). We

consider that simulating different (and realistic) topologies is necessary, since

the roadmap topology significantly affects the obtained results (Fogue et al.,

2011).

6. Conclusions

In this paper we propose four different approaches to reduce the emergency

services arrival time when an accident occurs, trying to avoid traffic jams that

could result from this particular situation. Specifically, we present two systems

based on Evolution Strategies which obtain a sub-optimal solution in a reduced

time. Moreover, we demonstrate that traffic density is a key factor to distribute

traffic in an efficient manner.

Our proposals have been tested in three different scenarios with different

topologies and traffic densities. Results show that the best solution is to combine
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an Evolution Strategy with the traffic density information collected at the time

of the accident, which is used to initialize the population. The improvement

obtained with this approach reduces the emergency services arrival time by

a minimum of 47.9%, increasing the travel time of the rest o vehicles only a

14.39% in the worst case, compared to the rest of our proposed algorithms

that obtain an improvement of 5.99% (Density-Based Dijkstra), and 26.35%

(Evolution Strategy), respectively.
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