

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6109241

http://hdl.handle.net/10251/38109

Institute of Electrical and Electronics Engineers (IEEE)

Cuesta Sáez, BA.; Ros Bardisa, A.; Gómez Requena, ME.; Robles Martínez, A.; Duato
Marín, JF. (2013). Increasing the effectiveness of directory caches by avoiding the tracking
of noncoherent memory blocks. IEEE Transactions on Computers. 62(3):482-495.
doi:10.1109/TC.2011.241.

DRAFT 1

Increasing the Effectiveness of Directory
Caches by Avoiding the Tracking of

Non-Coherent Memory Blocks
Blas Cuesta, Alberto Ros, Marı́a E. Gómez, Antonio Robles, and José Duato

Abstract—A key aspect of the design of efficient multiprocessor systems is the cache coherence protocol. Although directory-based

protocols constitute the most scalable approach, the limited size of the directory caches together with the growing size of systems may

cause frequent evictions and, consequently, the invalidation of cached blocks, which jeopardizes system performance.

Directory caches keep track of every memory block stored in processor caches in order to provide coherent access to the shared

memory. However, a significant fraction of the cached memory blocks do not require coherence maintenance (even in parallel

applications) because they are either accessed by just one processor or they are never modified. In this paper, we propose to deactivate

the coherence protocol for those blocks that do not require coherence. This deactivation allows directory caches not to keep track of

non-coherent blocks, which reduces directory cache occupancy and increases its effectiveness. Since the detection of non-coherent

blocks is carried out by the operating system, our proposal only requires minor hardware modifications.

Simulation results show that, thanks to our proposal, directory caches can avoid the tracking of about 66% of the blocks accessed

by a wide range of applications, thereby improving the efficiency of directory caches. This contributes either to shorten the runtime

of parallel applications by 15% while keeping directory cache size or to maintain performance while using directory caches 16 times

smaller.

Index Terms—Multiprocessor, cache coherence, directory cache, operating system, coherence deactivation, non-coherent blocks,

efficiency

F

1 INTRODUCTION AND MOTIVATION

NOWADAYS, larger and more powerful shared-
memory multiprocessors [7], [15], [24] are increas-

ingly demanded. The efficiency of high-performance
shared-memory multiprocessor systems depends on the
design of the cache coherence protocol. Directory cache
coherence protocols represent the most scalable alterna-
tive. Unlike broadcast-based protocols, traditional direc-
tories keep track of every memory block in the system,
which allows the protocol to easily locate the cached
copies without generating large amounts of network
traffic.

Since keeping track of every memory block in the
system entails huge storage requirements, some recent
proposals [21] and commodity systems, such as the cur-
rent AMD Magny-Cours [7], only keep track of cached
memory blocks. In this case, the directory information
is only kept in small directory caches [23], [13]. Due
to the lack of a full directory, the eviction of directory
entries entail the invalidation of the cached copies of the
corresponding block. Since the size of directory caches is
limited and systems incorporate an increasingly number
of processors and cores, directory caches may suffer

• B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato are with the
Department of Computer Engineering, Universitat Politècnica de València,
Camino de Vera, s/n, 46021, Valencia, Spain.
E-mail: {blacuesa, aros, megomez, arobles, jduato}@gap.upv.es

frequent evictions and, consequently, they may exhibit
high miss rates (up to 70% as reported in some recent
studies [21], [11]). As a result, the miss rate of processor
caches may become excessively high, which can lead to
a serious performance degradation.

Although the number of directory evictions can be
reduced by using larger directory caches, this is not a
scalable solution since it entails both larger directory
access latencies and higher directory memory overhead.
Instead, we opt to increase the effectiveness of the
available space for directory caches, assuming that it
will commonly be a scarce resource, especially in large
systems. We take advantage of the fact that a significant
fraction of the memory blocks accessed by applications
does not need coherence maintenance, that is, they are
only accessed by one processor (private blocks) or not
modified by any processor (read-only blocks). As Fig-
ure 1 shows, these blocks account for 82% (on average)
of the memory blocks accessed during the execution
of a wide range of parallel applications from different
benchmark suites. Despite the fact that these blocks do
not need coherence maintenance, traditional directory
caches still keep track of them. As a consequence, most
of the information that they keep is unnecessary, which
reduces the effectiveness of the available area for direc-
tory caches. On the contrary, if directory caches avoid
the tracking of both private and shared read-only blocks,
the availability of directory entries for the blocks that
actually need coherence (i.e., shared read-write blocks)

DRAFT 2

Fig. 1. Block classification. PR stands for Private Read-

only, PW for Private read-Write, SR for Shared Read-only,
and SW for Shared read-Write. Non-coherent marks the
rate of blocks that do not require coherence.

will increase spectacularly and their capacity could be
better exploited. This way, the number of cache misses
caused by the blocks evicted from directory caches
can be reduced while maintaining the size of directory
caches, thereby improving system performance. Alterna-
tively, it may be preferred to reduce the size of directory
caches, while still maintaining system performance. This
option could be especially intended for environments
with severe silicon area constraints, such as systems on
chip (SoCs).

To improve the use of directory caches, in [8] we pro-
pose to deactivate the coherence just for private blocks.
Although most of the blocks are private (74% on aver-
age), some applications such as speechrec, raytrace, and,
mpgenc present a significant percentage of shared read-
only blocks (48.7%, 39.6%, and 22.4%, respectively). Fur-
thermore, scenarios with thread migration could make
private read-only blocks (43%) become shared read-
only. Therefore, to improve the potential of that earlier
approach and to address some of its weaknesses, in this
work we extend the mechanism proposed in [8] by being
able to additionally detect and deactivate the coherence
for read-only blocks. Thus, the proposed mechanism
prevents directory caches from tracking both private and
read-only blocks. This mechanism (1) relies on the oper-
ating system (OS) to dynamically identify non-coherent
memory blocks (i.e., both private and read-only blocks)
at page granularity, (2) deactivates the coherence for the
accesses to such blocks, and (3) triggers a coherence
recovery mechanism when a block that has initially been
identified as non-coherent becomes coherent.

This proposal only requires minor modifications in
the OS and the memory controllers. Furthermore, it
does not require dedicated hardware structures because
it takes advantage of those already used by the OS
and processors: Translation Lookaside Buffers (TLBs), page
tables, and Miss Status Holding Registers (MSHRs).

We evaluate the impact of our proposal by simulating
its implementation in a system similar to the AMD
Magny-Cours processor. Simulation results show that,
the proposed mechanism can avoid the tracking of 66%
(on average) of the memory blocks accessed by the
applications. By not storing coherence information for
those blocks, the number of evictions and, therefore, the
number of invalidations issued by memory controllers

decreases by about 70%. This results in reductions in the
miss rate of processor caches (about 40%), which is trans-
lated into performance improvements of 15%. Addition-
ally, processors can maintain performance while using
smaller directory caches. Results show that a system that
implements our proposal achieves similar performance
than a system that does not implement it and employs
a directory cache 16 times larger. When compared to a
system that deactivates coherence only for private blocks
[8], our proposal obtains similar performance when it
employs a directory cache 2 times smaller. Finally, dy-
namic energy consumption can be also reduced by about
40% on average mainly due to the elimination of accesses
to both directory caches (5%) and the memory controller
(18%), and the reduction in coherence traffic (18%).

The rest of the paper is organized as follows. Sec-
tion 2 discusses the related work. Section 3 presents
our proposal. We describe the simulation environment
in Section 5 and we present the evaluation results in
Section 6. Finally, Section 7 draws some conclusions.

2 RELATED WORK

The proposal of this paper is based on the observation
that most of the blocks referred to by parallel applica-
tions do not require coherence maintenance. We take
advantage of this fact to propose a hybrid hardware-
OS mechanism that avoids the tracking of those non-
coherent blocks. In this section, we comment on some
works that are somehow related to our proposal.

Our proposal, like some previous approaches, uses
the OS to detect private and read-only blocks. Har-
davellas et al. [14] use this detection to propose an
efficient data placement policy for distributed shared
caches (NUCA). While the mechanism for classifying the
pages is similar to ours, its application is completely
different (data placement) since it does not consider
coherence aspects. In contrast, we focus on how the
detection of private/read-only blocks can be used to
increase directory effectiveness. On the other hand, Kim
et al. [16] employ OS detection to reduce the fraction of
snoops in a token-based protocol. Unlike our proposal,
that work is based on the fact that, although most re-
ferred blocks are private or read-only, the small fraction
of shared-written blocks accounts for the majority of
the cache misses. Hence, they propose a sophisticated
mechanism that detects the sharing degree of blocks so
that broadcast messages can be replaced by multicast
ones. Unfortunately, this technique requires large TLBs
and important hardware and OS modifications. Further-
more, neither [14] nor [16] detects shared read-only data
pages. Differently, our mechanism is much simpler and
does not require complex hardware/OS modifications.
In addition, we target the fraction of private and read-
only blocks instead of the fraction of cache misses for
shared blocks.

Our proposal can be used to reduce the number of
directory entries while maintaining system performance.

DRAFT 3

Some proposals achieve similar reductions by combining
several directory entries into a single one as proposed in
[25]. However, these proposals are orthogonal to ours
and they can be used simultaneously.

Some works remove the unnecessary traffic of
broadcast-based protocols by performing coarse-grain
tracking of blocks at the expense of increasing the stor-
age requirements. Moshovos et al. [22] and Cantin et al.
[6] proposed RegionScout filters and Region Coherence
Arrays, respectively, which provide different trade-offs
between accuracy and implementation costs. Whereas
RegionScout filters have lower storage requirements and
they are less complex than Region Coherence Arrays,
the latter are more accurate identifying shared regions
and filter more unnecessary broadcast traffic. In turn,
RegionTracker [27] provides a framework for coarse-
grain optimizations that reduces the storage overhead
and eliminates the imprecision of previous proposals.
However, it requires considerable modifications in the
cache design to facilitate region-level lookups. All these
techniques share with the ours the idea of deactivating
the coherence mechanism when it is not indispensable.
However, there are two major differences. First, our
proposal is aided by the OS, which significantly reduces
the hardware overhead and complexity. Second, we do
not aim at reducing broadcast traffic, but at avoiding
to allocate in a directory cache data blocks that do not
require coherence maintenance.

Similarly to our proposal, other works take advantage
of OS structures. Ekman et al. [9] propose a snoop-
energy reduction technique for CMPs. This technique
keeps a sharing vector within each TLB entry indicating
which processors share a page. This sharing vector is
broadcast on each snoop request and prevents processors
not sharing the page from carrying out a tag-lookup in
their caches. In turn, Enright-Jerger et al. [10] extend
the region tracking structure proposed by Zebchuk et
al. [27] to keep track of the current set of sharers of a
region. Unfortunately, these techniques increase the stor-
age requirements and entail important hardware modi-
fications, which make them difficult to be implemented
in real systems. Furthermore, our technique does not
intend to keep the track of the sharers of a page, but
it only maintains information about whether the page
is private/shared read-only/read-written (2 bits) and
simply deactivates the tracking of blocks for non shared
read-written pages.

Other works also support cache coherence by means of
a combination of software and hardware. Zeffer et al. [29]
proposes a trap-based architecture (TMA), which detects
fine-grained coherence violations in hardware, triggers a
coherence trap when one occurs, and maintains coher-
ence by software in coherence trap handlers. Like our
mechanism, the trap-based architecture assumes a bit in
the TLB and relies on the OS to detect when a private
page moves to the shared state. However, in TMA, traps
are associated with coherence violations in load/store
operations, contrary to our mechanism, where they are

cache miss resolved

P0 P1 MC

cache miss on block A

coherent request issue

cache miss resolved

use coherence protocol

resolve coherent miss

(keep track in

directory cache)

A is in non−coherent page, but it should be coherent

trigger the coherence recovery mechanism

A is now in coherent page

memory load of block A

memory store of block A

A is in non−coherent page

cache miss on block A

non−coherent request issue

(do not keep track

override coherence protocol

resolve non−coherent miss

in directory cache)

OS

Fig. 2. Overview of the proposed mechanism. P0 and
P1 are processors and MC is the memory controller. The

shaded background indicates that the OS is in charge at
that moment.

associated with TLB misses. Additionally, TMA requires
extra hardware support into each processor core to speed
up the coherence trap handling. Alternatively, they pro-
pose a simple hardware mechanism that implements
the inter-node coherence protocol in software [28]. To
do this, two hardware modifications are required. First,
the inter-node coherence has to check the need for
invoking the software-coherence protocol. Second, the
memory controller must handle dirty remote data that
are evicted from the last level of cache. In this case, the
hardware overhead is low, but opposite to our proposal,
the software overhead is quite high.

Finally, Fensch et al. [12] propose a coherence protocol
that does not require hardware support to enforce cache
coherence. Rather, it avoids the possibility of incoherence
by not allowing multiple writable shared copies of pages.
Data are mapped to processor’s caches at the granularity
of pages under OS control and remote cache accesses are
supported by hardware. However, that proposal requires
release consistency, introduces extra overhead regarding
hardwired systems, and is only suitable for CMPs due
to the severe penalty caused by the remote cache access
support.

3 COHERENCE DEACTIVATION

Cache coherence protocols avoid inconsistencies among
the different cached copies of memory blocks. Although
they indiscriminately act on all the referred memory
blocks, a significant part of them cannot suffer from
inconsistencies. In particular, both the blocks accessed
only by one processor (i.e., private blocks) and those that
are never modified (i.e., read-only blocks) cannot suffer
from inconsistencies. The unnecessary use of the direc-
tory cache for maintaining the tracking of those blocks
increases its overload and makes coherence protocols
less effective.

We propose a technique that, with the help of the
OS, dynamically identifies both private and read-only
blocks and deactivates the coherence for them. Since a

DRAFT 4

first requester
(store)

first requester
(load)

former requester
(load)

former requester
(load/store)

new requester
(load/store)

PR PW
former requester

(store)

new requester
(store)

new requester
(load)

SR SW

new/former requester
(load/store)

new/former requester
(load)

new/former requester
(store)

Fig. 3. State transition diagram in view of new operations.

fine-grain detection (e.g., block granularity) may require
a huge amount of hardware resources, our proposal is
based on a coarse-grain strategy (page granularity).

The general idea is that, by default, every new page
loaded into main memory is classified as non-coherent.
The cache misses for the blocks belonging to non-
coherent pages are resolved without taking into account
the coherence protocol. As a result, directory caches do
not track the accesses to non-coherent blocks. As the OS
detects subsequent memory accesses, depending on the
requester and the access type, the page may evolve to
coherent, which requires a coherence recovery process.
This process is triggered by the OS and is in charge
of restoring the coherence for every block within the
involved page. After the recovery process completion,
the page is considered as coherent and the memory
accesses to its blocks will be tracked by the directory
caches.

Figure 2 outlines our proposal. First, P0 issues a store
operation on the memory block A, which causes a cache
miss. Assuming that A belongs to a non-coherent page,
P0 issues a non-coherent request, which is served by the
home node (i.e., the memory controller or node where
a memory block is mapped to) and no track is kept in
the directory cache of main memory (MC). Later, another
node, for instance P1, issues a load operation on the same
memory block A and a TLB miss happens. While the OS
is handling the TLB miss, it realizes that the page should
be coherent instead of non-coherent. Consequently, it
triggers the coherence recovery mechanism. When it
finishes, the page becomes coherent and the access to
the cache proceeds, resulting in a miss. Since the block
belongs to a coherent page, a coherent request is issued,
which is processed as the assumed cache coherence
protocol establishes.

Next sections explain our proposal in detail walking
through different key aspects, such as the page clas-
sification (Section 3.1), the behaviour of non-coherent
requests (Section 3.2), the updating of the page type
(Section 3.3), the TLB-updating (Section 3.4) mechanism,
and the coherence recovery mechanism (Section 3.5).

3.1 Page Classification

In order to distinguish the memory pages whose blocks
require coherence from those whose blocks do not, we

LStateV physical addressvirtual address

State Cphysical addressVvirtual address

page table entry

keeper

TLB entry

tag data

tag data

Fig. 4. TLB and page table entry format. Shaded fields
are additional fields required by our proposal. V is the

valid bit, L is the locked bit, and C is the cached-in-TLB
bit.

classify them in four types:

• PR (Private Read-only) page: Only one processor ac-
cesses its blocks. All the accesses are loads.

• PW (Private read-Write) page: Only one processor
accesses its blocks. At least one of the accesses is
a store.

• SR (Shared Read-only) page: At least two processors
access its blocks. All the accesses are loads.

• SW (Shared read-Write) page: At least two processors
access its blocks. At least one of the accesses is a
store.

According to this classification, blocks within PR, PW,
and SR pages do not require coherence, whereas blocks
in SW pages could require it. Notice that the type (or
state) of a page is not static, but it dynamically evolves
as the OS detects new accesses to its blocks. The state
transition of pages is illustrated in Figure 3.

3.2 Non-Coherent Requests

On memory references, processors first access their TLB
to translate virtual addresses into physical addresses.
As shown in Figure 4, each TLB entry is made up of
two components: the tag, which basically comprises the
virtual address of the page, and the data, which contain
the corresponding physical address along with several
properties associated to the translation. Since the TLB
entry data field often contains some reserved bits that
are not used [4], we take advantage of three of them
to include two new fields: the state field (2 bits), which
indicates the page state (PR, PW, SR, or SW), and the
locked field (1 bit), which is used to avoid undesirable
race conditions (as explained later in Section 3.5).

The page state is taken into account when a memory
reference to one of its blocks causes a cache miss. Hence,
if the cache miss is for a block within a PR, PW, or
SR page, a non-coherent request is issued. Otherwise,
a coherent request is sent out. Non-coherent requests
override the coherence protocol and are always served
by main memory. In addition, directory caches do not
track them. This behaviour has two primary advantages.
First, neither a lookup nor an insertion in the directory
cache is required, which helps to reduce the latency
of cache misses, the contention at memory controllers,

DRAFT 5

TABLE 1
Updating the page table (PT) and TLBs and use of the

TLB-updating and coherence recovery mechanism.
r/k/o-TLB stands for the requester/keeper/others’ TLB.

I (C is clear) PR PW SR SW

load (new
requester)

PT:PR+C
+Keeper
r-TLB:PR

TLB-
updating

PT:SR
r/k-TLB:SR

Coherence
Recovery

PT:SW
r/k-TLB:SW

r-TLB:SR -

store
(new

requester)

PT:PW+C
+Keeper

r-TLB:PW

Coherence
Recovery

PT:SW
r/k-TLB:SW

Coherence
Recovery

PT:SW
r/k-TLB:SW

Coherence
Recovery

PT:SW
r/k/o-

TLB:SW

-

load
(former

requester)
- - - -

store
(former

requester)

PT:PW
k-TLB:PW

-

Coherence
Recovery
*PT:SW
r/k/o-

TLBs:SW

-

and the power consumption. Second, directory caches
are less occupied and, therefore, they do a better use of
their capacity to track blocks that really need coherence.
Notice that, to instruct memory controllers to understand
non-coherent requests, only minor modifications in their
microcode will be required.

3.3 Updating the Page State

Similarly to TLBs, page tables also need to keep the
state of pages. However, in this case, three additional
fields are required, as shown in Figure 4. The state field
indicates the page type (PR, PW, SR, or SW). The keeper
field contains the identity of the first processor that
cached the page table entry in its TLB. The cached-in-
TLB bit (C) indicates whether the keeper field is valid
or not, that is, the page has been cached in any TLB.
Notice that these extra fields do not require dedicated
hardware, but only extra OS storage requirements, which
are very small. Particularly, the size of the extra fields
is 3 + log2(N) bits, where N is the number of nodes
in the system. Thus, assuming a system comprised of 8
processors, like the AMD Magny-Cours, only 6 extra bits
per entry would be required.

On a page table fault, the OS allocates a new page table
entry holding the virtual to physical address translation.
The C field of this entry is cleared, indicating that it has
not been cached in any TLB yet. When a TLB miss takes
place and once the page table entry has been cached in
a TLB, the state, C, and keeper fields of the entry may
require to be updated as indicated in Table 1. Let us
analyse each case separately.

If C is clear, no processor has accessed the page blocks
and, consequently, a load/store to that page will cause a
TLB miss. During the resolution of the TLB miss, the
page will be set to PR/PW, respectively, in both the
page table and the requester’s TLB. Furthermore, the
requester’s identity will be stored in the keeper field of
the page table and C will be set.

If C is set and the page is labelled as PR, upon a
load/store from other processor than the keeper, a TLB

Access
to cache

Access
to TLB

Non−coherent
request

Coherent
request

Access to
page table

Memory
operation

Hit

Hit Miss

Miss

Fault Hit

Operation
successful

Miss solvedMiss solved

Add page
table entry
(private)

Store page table
entry in TLB

Is updating
required?

Coherence
recovery

Shared Written
page in TLB

No Yes

Coherent page
YesNo

Mark page
accordingly

Yes No

Fig. 5. Block diagram of the general working scheme.

miss will take place. During its resolution, the page state
will have to be updated to SR/SW, respectively, in the
page table and in the requester’s and keeper’s TLBs.
In case the page transitions to a coherent state (SW),
the coherence recovery mechanism will be triggered (see
Section 3.5). This mechanism, which is initiated by the
new requester during the TLB miss handling, is in charge
of evicting all page blocks cached by the keeper and
updating the corresponding entry of the keeper’s TLB.
On the other hand, if the page is going to transition
to SR, although it remains in a non-coherent state, it is
necessary to update the keeper’s TLB. Since the requester
does not have direct access to the keeper’s TLB, the
updating is performed by means of the TLB-updating
mechanism (see Section 3.4).

If a load is issued by the keeper for a block within a
PR page, the page will remain in the same state and no
actions will be performed. In turn, if a store is issued,
the page state will have to be updated in both the page
table and the requester’s TLB. Notice that, in this case,
a TLB miss may not have occurred because the keeper
may already have an entry in its TLB. Therefore, the
updating of the page table could incur additional and
considerable delay. To avoid it, the updating of the page
table is postponed (action marked in gray) until another
node tries to access one of the page blocks (the page
becomes shared). Notice that this temporal inconsistency
between page table and keeper’s TLB has no effect while
another node does not try to share the page.

When the page state is SR, upon a load from a new
requester, it just caches the corresponding page table
entry in its TLB. However, under stores, the page table
and all the sharers’ TLBs will have to be updated. In
addition, since the page will transition to a coherent
state, the coherence of all the blocks within the involved
page needs to be restored. To this end, the coherence
recovery mechanism is used. Particularly, since nobody
keeps the list of sharers, the recovery mechanism will
have to perform a broadcast to evict from caches all
copies of blocks within the corresponding page and
updating all the sharers’ TLBs. This process is also done
in case the page is SR and a former requester wants to
store one of its blocks. However, in this case, since a TLB
miss may not happen, an especial exception (marked as

DRAFT 6

P0 P1 MC

trigger TLB−updating mechanism OS

keeper P0page P

set TLB entry to SR

unlock page P in TLB

lock page P in TLB

TIME

updating done

end TLB−updating mechanism

set page table entry to SR

page P

keeper homeinitiator

updating request

Fig. 6. TLB-updating mechanism. P0 and P1 are proces-

sors and MC is the home node.

*) is forced to update all the TLBs and the page table.
This forced exception will incur into additional delay.
However, as we will see in the evaluation, this exception
is not very frequent and, furthermore, its delay will be
largely offset by the advantages of avoiding the tracking
of blocks that do not require coherence.

Finally, when the page is PW, new loads or stores
from the keeper will cause no change. However, both
loads or stores from new requesters will cause the page
to transition to SW. In this case, during the TLB miss
resolution, the page table and the keeper’s TLB are
updated and the coherence is restored by means of the
coherence recovery mechanism.

Pages marked as SW do not require any transition
because, once they become coherent, they remain in that
state. Figure 5 outlines the interactions among system
components to solve memory operations.

3.4 TLB-Updating Mechanism

The TLB-updating mechanism is triggered when a page
transitions from PR to SR. Since the page state changes,
this mechanism is in charge of updating the keeper’s
TLB. However, as the page remains being non-coherent,
the page blocks do not need to be evicted to recover
coherence. Figure 6 shows a detailed example of this
mechanism. The initiator (node that triggers the mecha-
nism) sends an updating request to the page keeper, which
has been obtained from the page table on processing
its TLB miss. Upon its receipt, the keeper updates the
corresponding TLB entry (if present) and informs the
initiator by an updating done message. When the initiator
receives it, the mechanism finishes.

3.5 Coherence Recovery Mechanism

When a page initially considered as non-coherent be-
comes coherent, the coherence recovery mechanism must
be triggered. This mechanism ensures that from that
moment the directory cache will hold proper track of all
cached blocks within the page. Since these blocks have
not been tracked so far, we propose the simple strategy
of just evicting them from caches (flushing-based recov-
ery [8]). After the recovery process completion, since the
page will be marked as coherent, the directory cache
will be able to keep correct track of each of the page

lock page P in TLB

evict cached

blocks of P

write data

to memory

page P

wait for pending

operations

P0 P1 MC

evictions

TIME

recovery done

trigger unicast recovery OS

keeper P0page P

end unicast recovery

set page table entry to SW

set TLB entry to SW

unlock page P in TLB

keeper homeinitiator

recovery request

Fig. 7. Coherence recovery mechanism for a private
page. P0 and P1 are processors and MC is the home
node.

blocks. The coherence recovery mechanism, which is
triggered while managing either the corresponding TLB
miss or the exception forced when a former requester
tries to stored a block within a SR page (as commented
in Section 3.3), works as follows.

First, the initiator issues a recovery request (with the
address of the page to recover) to the page keeper, whose
identity was obtained from the corresponding page table
entry.

Second, on the recovery request arrival, the keeper
locks the corresponding TLB entry (L bit). This prevents
the keeper from issuing new requests for the blocks
within the page. In case the TLB entry is not present,
it is not necessary to lock it since new requests will not
be able to be issued (the initiator is accessing the page
table entry inside a critical section). After this, if the page
to recover is SR, the keeper broadcasts a recovery probe
for the page because other nodes may have cached page
blocks. On the contrary, if the page is PW or PR, this
broadcast is not necessary because only the keeper may
have cached copies.

Third, the possible receivers of the probe (if any) lock
the page in their TLBs and both they and the keeper
perform a cache lookup and flush every cached block
of the involved page. When finishing, they check their
MSHRs (Miss Status Holding Registers) which keep
track of outstanding cache misses. While there is at least
one pending cache miss for some of the page blocks, they
wait for its completion. The blocks for the outstanding
misses are not cached when the recovery mechanism
is ongoing. Therefore, once the pending misses for the
involved page are resolved, the corresponding TLB entry
is set to SW. After this, all the non-keeper nodes inform
the keeper by means of a recovery target done message.

Fourth, when the keeper has collected all the recovery
target done messages (this step is required only if a
recovery probe was broadcast), it unlocks the TLB entry
and sends a recovery done message to the initiator.

Fifth, when the initiator receives the recovery done
message, the recovery mechanism finalizes and the page

DRAFT 7

lock page P in TLB

page P

evict cached

blocks of P

lock page P in TLBlock page P in TLB

evict cached

blocks of P

wait for pending

operations

set TLB entry to SW

unlock page P in TLB

page P
acknowlegments

wait for

wait for pending

operations

set TLB entry to SW

unlock page P in TLB

page P

evict cached

blocks of P

P0 P1 P2

trigger broadcast recovery

keeper P0page P

recovery probe recovery probe

recovery probe

recovery target done

recovery target done

recovery done

end broadcast recovery

set page table entry to SW
TIME

set TLB entry to SW

unlock page P in TLB

wait for pending

operations

page P

OS

initiator sharerkeeper

recovery request

Fig. 8. Coherence recovery mechanism for a shared
page. P0, P1, and P2 are processors.

can be set to SW in both the initiator’s TLB and the
page table. Notice that, during this process, the OS has
exclusive access to the involved page table entry and
no other processor can access it so that race conditions
cannot take place.

Figures 7 and 8 illustrate the main differences between
recoveries for private pages (unicast-based mechanism)
and for shared pages (broadcast-based mechanism), re-
spectively. After completing the execution of the recov-
ery mechanism for a page, we know for sure that the
blocks belonging to it are not cached. Therefore, the
next time a processor references one of those blocks, a
coherent request will be issued and, since the page is
considered as coherent, the directory cache will be able
to keep proper track of it.

3.6 Discussion on Coherence Recovery

In this section, we discuss about the latency of the
coherence recovery mechanism and their adaptation to
systems with hardware page table walkers.

The recovery process may take a long time because
its critical path may include (1) a search in the keeper’s
cache and a search in the sharer’s caches when the page
is SR and (2) several evictions. Despite its high latency, it
must be taken into account that the recovery process is
only performed very few times. In particular, during the
lifetime of a page in main memory, at most one recovery
mechanism and one TLB-updating mechanism could
be triggered. However, during that time, the page will
probably have a large number of references according to
the locality principle. Therefore, it is not unreasonable
to expect the latency of the accesses to memory blocks
to have much more impact on the overall performance
than the latency of the coherence recovery mechanism.
In Section 6, we show quantitative data of this and
we observe that the recovery and the TLB-updating
mechanisms together are triggered less than 5 times per
1000 cache misses (on average). Thus, the impact of the
recovery mechanisms on the protocol performance is

indeed negligible since it is largely offset by the savings
in cache misses and the reduction in their latency.

Although in this work we link the description of our
proposal to traditional page tables, its application is
also possible in systems that use hardware page table
walkers. Indeed, the adjustment to that context would
be quite straightforward and simple. The page table
will require the same fields as those assumed along this
document. The single difference is that the responsibility
of detecting coherent pages will fall on hardware instead
of the OS. Therefore, some additional extra hardware
logic will be required to do it. However, since this class
of system is out of the scope of this work, we do not
carry out such an implementation.

4 CONTRIBUTIONS OF SHARED READ-ONLY

BLOCKS

The main difference between the proposal made in this
work and that in [8] is the deactivation of the coherence
protocol for the accesses to SR memory blocks. In this
section, we deal with the pros and cons of this new
proposal.

On one hand, the detection and coherence deactivation
of SR pages may present the following drawbacks:

• The detection of SR memory blocks requires addi-
tional resources. In particular, TLBs and page tables
need one additional bit to code 4 states (PR, PW,
SR, and SW). Although one additional bit does not
significantly increase the storage requirements of
this proposal, it makes the state transition and the
logic a little more complex.

• The coherence recovery process when detecting SR
memory blocks is more subtle. Furthermore, an
additional TLB-updating mechanism is necessary
to update the keeper’s TLB on detecting a page
state transitions from PR to SR. The latency of this
mechanism (analyzed in Section 6.1.3) is quite low
and, although it may increase the latency of some
TLB misses, it avoids the triggering of the coherence
recovery mechanism (which is much slower), as
done in [8].

• If a processor holds a valid TLB entry for a certain
page and the state of such a page transitions from
SR to SW, in absence of a TLB miss, an additional
OS exception will be forced to initiate the coherence
recovery mechanism for the page. Although this
additional exception is rarely required, it incurs
considerable delay.

• Since SR pages can be shared across several proces-
sors and no track is kept about it, a coherence recov-
ery mechanism based on broadcast is required. In
[8] a unicast recovery mechanism in only required.
This adds complexity to the recovery process and
increases the recovery traffic. However, compared
to the coherence traffic, it is unnoticeable.

• Due to the complexity of the recovery process, the
implementation of a coherence recovery mechanism

DRAFT 8

based on updating like the one presented in [8]
(instead of flushing) is discarded. Nevertheless, as
analyzed in [8], the flushing-based recovery is rec-
ommended as it is more easily implementable on
actual systems.

• Although the deactivation of the coherence for the
shared read-only blocks does not jeopardize the
correctness, it may cause inefficiencies. If SR blocks
are treated as coherent, cache misses for them will be
probably served by the owner processor. However,
when we consider them as non-coherent, they will
always be served from main memory. As a result,
their latency may increase considerably. Neverthe-
less, as we see in Section 6, the advantages of
avoiding the tracking of SR blocks outweigh this
possible drawback.

On the other hand, the detection and coherence deacti-
vation of SR pages provides many additional advantages
that clearly offset the drawbacks pointed out above (as
later analyzed in Section 6):

• The coherence protocol can be deactivated for a
considerably larger number of memory blocks. As
a result, the beneficial features of the proposed
technique increase, thereby leading to significant
improvements in performance and to greater scal-
ability.

• The classification of memory pages in PR, PW, SR,
and SW decreases the number of blocks misclassi-
fied as coherent due to the use of a coarse-grain
detection. As a result, the detection mechanism is
more accurate and their advantages can be better
exploited.

• Since more pages are detected as non-coherent,
the coherence recovery mechanism is triggered less
times, thereby causing less overhead.

• It partially addresses the problem that the proposal
in [8] has with respect to thread migration. Using
that proposal, all blocks privately accessed by a
thread will be identified as shared after it migrates
and the coherence cannot be deactivated for them.
On the contrary, in this proposal, the private read-
only blocks (more than 40% on average according
to data in Figure 1) of a thread after migrating will
be able to be detected as shared read-only blocks
and, as a result, they will be able to be considered
as non-coherent. Notice, though, that this proposal
does not tackle the problem of thread migration for
PW blocks.

Following sections show quantitative data of the ad-
vantages of deactivating the coherence for SR blocks.

5 EVALUATION METHODOLOGY

We evaluate our proposal with full-system simulation
using Virtutech Simics [19] running Solaris 10 and ex-
tended with the Wisconsin GEMS toolset [20], which
enables detailed simulation of multiprocessor systems.

TABLE 2
System parameters.

Memory Parameters
Processor frequency 3.2 GHz
Cache block size 64 bytes
Processor cache 2MB (32K entries), 4-way
Processor cache access latency 2ns
Directory cache 256KB (64K entries), 4-way
Directory cache access latency 2ns
Directory cache coverage ratio Typical 2×, worst-case 0.25×

Memory access latency (local bank) 60ns
Page size 4KB (64 blocks)

Network Parameters
Network topology Hypercube with extra channels
Data message size 68 and 72 bytes
Control message size 4 and 8 bytes
Network bandwidth 12.8GB/s
Inter-die link latency 2ns
Inter-processor link latency 20ns
Flit size 4 bytes
Link bandwidth 1 flit/cycle

For modeling the interconnection network, we use GAR-
NET [1], which is a detailed network simulator included
in GEMS. Finally, we also use the McPAT tool [18],
assuming a 45nm process technology, to measure the
savings in terms of energy consumption of our proposal.

For the evaluation of our proposal, we first model a
cache coherent HyperTransport system optimized with
directory caches (PFs) similar to those of the AMD
Magny-Cours. We simulate eight dies, which consti-
tutes the maximum number of nodes supported by the
Magny-Cours protocol. Although each Magny-Cours die
has actually six cores, we only are able to simulate two
of them due to time constraints. Moreover, since this
paper does not focus on the intra-die broadcast-based
coherence protocol and taking into account that such
a protocol would considerably increase the simulation
time, we do not model it either.

In Magny-Cours, dies are made coherent by using
a directory-based cache coherence protocol that imple-
ments MOESI states. Each PF is associated with a mem-
ory controller and it holds an entry for every block
cached in the system that maps to its memory bank.
The sharing code field of the PF comprises just one
pointer to the owner node (3 bits). Typically, each PF
has 256K entries and each die has 128K entries in its
cache hierarchy. Therefore, the coverage ratio of PFs
is 2× (i.e., PFs have twice as many entries as blocks
can be cached). This would be enough for tracking all
the cached blocks if they were distributed uniformly
among all the PFs. However, cached blocks may not
be distributed uniformly. Thus, the worst-case scenario
appears when all the cached blocks belong to the same
memory controller (known as hotspotting), in which the
coverage ratio dramatically decreases down to 0.25×.

We consider the described system as the base archi-
tecture and its main parameters are shown in Table 2.
Our proposal is implemented upon this system and it is
referred to as deact Priv/SR (deactivation of private/SR
blocks). The previous proposal on which this work is
based [8] is referred to as deact Priv (deactivation of
private blocks).

DRAFT 9

TABLE 3
Benchmarks and input sizes.

Benchmarks Input size

SPLASH 2 (8)
Barnes 8192 bodies, 4 time steps
Cholesky Input file tk15.O
FFT 64K complex doubles
Ocean 258 × 258 ocean
Radiosity room, -ae 5000.0 -en 0.050 -bf 0.10
Raytrace-opt Teapot
Volrend Head
Waternsq 512 molecules, 4 time steps

Scientific benchmarks (2)
Tomcatv 256 points, 5 time steps
Unstructured Mesh.2K, 5 time steps

ALPBench (4)
FaceRec Script
MPGdec 525 tens 040.m2v
MPGenc Output of MPGdec
SpeechRec Script

PARSEC (4)
Blackscholes simmedium
Canneal simmedium
Fluidanimate simmedium
Swaptions simmedium
x264 simsmall

Commercial Workloads (2)
Apache 1000 HTTP transactions
SPEC-JBB 1600 transactions

We evaluate our proposal with a wide variety of
parallel workloads (21) from 3 suites (SPLASH-2 [26],
ALPBenchs [17], and PARSEC [5]), two scientific bench-
marks, and two commercial workloads [2], which are
shown in Table 3. Due to time requirements, we are not
able to simulate these benchmarks with large working
sets. Consequently, as done in most works [6], [11], [12],
we simulate the applications assuming smaller data-sets.
To avoid altering the results, we reduce the size of both
processor caches and directory caches accordingly to ap-
plication data-sets. Particularly, the simulated caches are
four times smaller than those assumed by Magny-Cours
processors. Notice that, since the size of all the simulated
caches are proportionally reduced, the coverage ratio of
directory caches is the same as in the original Magny-
Cours (2×).

All the reported experimental results correspond to the
parallel phase of benchmarks. We account for variabil-
ity in multi-threaded workloads [3] by doing multiple
simulation runs for each benchmark and injecting small
random perturbations in the timing of the memory
system.

6 PERFORMANCE EVALUATION

We organize the evaluation of our proposal in two parts.
First, in Section 6.1, we compare our proposal with the
base system and second, in Section 6.2, we evaluate the
additional contributions that deact Priv/SR offers with
respect to those offered by deact Priv. Besides, in that
section, we also study the impact of both approaches
when the size of directory caches is reduced.

6.1 Evaluating the Coherence Deactivation

This section illustrates how the mechanism proposed in
this paper (deact Priv/SR) is able to considerable reduce

Fig. 9. Block classification.

Fig. 10. Cache miss rate (in percentage).

the amount of blocks tracked by directory caches. This
results in less processor cache misses, which leads to
performance improvements. Additionally, it also saves
energy consumption.

6.1.1 Non-Coherent Blocks

As Figure 9 shows, about 84% (on average) of the
referred memory blocks are actually non-coherent (i.e.,
PR, PW, SR, or misclassified SW) and, consequently, they
do not require coherence. Since our mechanism is based
on a coarse-grain classification of blocks, it is not able
to identify all the non-coherent blocks. In particular,
it detects that 66% (on average) of the referred blocks
do not require coherence (detected non-coherent line in
the figure). The remaining 34% are classified as SW
blocks (i.e., both actual SW and misclassified SW) and,
therefore, they require coherence. According to these
data, the use of a coarse-grain approach causes 18% of
the referred blocks to be misclassified, which offers a
good trade-off between required resources and detection
accuracy.

6.1.2 Processor Cache Misses

Since directory caches do not track cached blocks de-
tected as non-coherent, they are less congested. There-
fore, they suffer less evictions and, consequently, less
blocks are invalidated from processor caches. As a result,
the processor cache miss rate is reduced by about 45%
(on average), as Figure 10 shows. In this figure, cache
misses are classified in four groups: 3C misses are Cold,
Capacity, and Conflict misses; Coherence misses refer to
those caused by invalidations due to store operations
issued by other processors; Coverage misses are those
caused by the invalidations issued as a consequence
of evictions in directory caches; and Flushing misses
are due to invalidations performed by the recovery
mechanism. Since our proposal improves the effective-
ness of directory caches, it mainly acts on the coverage

DRAFT 10

Fig. 11. Normalized network traffic.

misses, which are significantly reduced from about 70%
in the base system to 30% when using our proposal. As
shown, our proposal is not able to completely remove all
the coverage misses. Indeed, the reduction of coverage
misses partially depends on the accuracy of the detection
mechanism. Thus, in applications like radiosity, volrend,
or tomcat (among others), few blocks are misclassified
as SW. As a result, most of the non-coherent blocks are
classified as such and directory caches omit their track-
ing. This allows directory caches to be less congested,
which leads to avoid all the coverage cache misses. This
achievement is important because, as reported in other
studies [21], [11], the number of coverage misses may be
really important in some scenarios and it is reasonable to
think that it will grow in future multiprocessor systems
since they are increasingly larger. On the other hand,
in applications like blackscholes, fluidanimate, or swap-
tions the number of misclassified blocks is considerable,
thereby leading to moderate reductions in the number
of coverage misses.

When a page transitions to SW, the recovery mech-
anism evicts from caches all its blocks, which leads to
additional misses referred to as flushing misses. Thus,
as shown in Figure 10, the recovery mechanism causes
2% (on average) of additional misses. Notice, though,
that the reduction in coverage misses is so significant
that it largely offsets that increment.

The reduction of both directory evictions and cache
misses has a meaningful impact on network traffic, as
depicted in Figure 11. Bars plot the total number of flits
transmitted through the interconnection network when
the coherence is deactivated normalized to the network
traffic generated by the base protocol. Those data include
the traffic due to the TLB-updating and the coherence
recovery mechanisms. However, this traffic is not shown
separately because it is really insignificant (lower than
0.5% on average). As shown in the figure, the coherence
deactivation causes a reduction in network traffic of
about 42% on average.

Our proposal is not only able to reduce the cache
miss rate, but also their average latency, as Figure 12
depicts. In this figure, the latency of cache misses is split
into 4 stages: request latency refers to the transmission
latency of requests to the home node; waiting is the
time that requests remain in the home waiting for the
beginning of their service; memory is the latency of the
memory controller, which also includes the latency of the
directory cache (if accessed) and main memory; finally,
response is the latency from either the issue of the mem-

Fig. 12. Normalized cache miss latency.

ory response (if required or non-coherent request) or
the forwarding of the request to another processor until
the completion of the miss (if coherent request). Since
requests for non-coherent blocks do not need a directory
cache lookup, their memory latency is smaller, which
lowers the average latency of cache misses by about 10%
on average. Notice that, for some applications like fft,
facerec, mpgdec, mpgenc, speechrec, blackscholes, and
jbb, the memory latency is equal to or higher than that of
the base system and, therefore, the average miss latency
is not reduced. This happens due to the fact that SR
blocks are considered as non-coherent. Since they are
considered as non-coherent, they must always be served
by main memory, whose response latency is highly.
On the other hand, in the base system, SR blocks are
considered as coherent. Therefore, in some cases, cache
misses for SR blocks may be served by caches instead
of by memory, which is faster. As a result, for those
applications the latency reduction of cache misses for
private blocks is balanced (or overcome) by the latency
increase of cache misses for SR blocks. Despite this fact,
the benefits of avoiding the tracking of SR blocks clearly
outweighs the possible increase of miss latency as seen
in next sections.

6.1.3 TLB-Updating/Coherence Recovery Mechanisms

Figure 13 shows the average latency of both TLB-
updating and coherence recovery mechanisms according
to the timing parameters shown in Table 2. The latency
of these mechanisms is split into several components:
request is the latency of transmitting updating/recovery
requests and, if required, recovery probes; flushing is the
latency of issuing the evictions of all the cached blocks
within the page to flush; waiting is the latency of finish-
ing the evictions (waiting, if required, for receiving the
acknowledgements from home); response is the latency
of informing to the initiator of the finalization of the
page flushing; and ack is the latency of collecting the
recovery target done packets, which are only used in case
of broadcast. As shown, the latency of the TLB-updating
mechanism (first bar of each group) is negligible because
it only comprises the latencies of updating requests
and updating done messages (responses). The latency
of the unicast recoveries (second bar) is higher than that
of the TLB-updating because they additionally include
the latencies of waiting and flushing, which are quite
important. The latency of the recoveries that require
broadcast (third bar) is even higher than that of the

DRAFT 11

Fig. 13. Average latency of the TLB-updating and recov-

ery mechanisms.

Fig. 14. Number of recoveries and TLB-updating per

1000 misses.

unicast recoveries mainly due to the need to broadcast
the recovery probes and collect the recovery target done
messages (acks). Last bar of each group shows the aver-
age latency of all these mechanisms taking into account
the number of times that every one is triggered. Thus,
since the TLB-updating and the unicast recovery are
much more frequent than the broadcast recovery, the
average latency is slightly lower than that of the unicast
recovery mechanism.

Despite the fact that the latency of the coherence
recovery mechanism can be considerable (mainly in case
of broadcast), this mechanism is not frequently used.
To illustrate this statement, we estimate the number of
times that the TLB-updating and the coherence recov-
ery mechanisms are triggered with respect to the total
number of misses. As show in Figure 14, on average,
the mechanisms are only triggered less than 5 times per
1000 cache misses (up to 26 for the jbb application). As
a result, their impact on system performance is almost
unnoticeable compared to the impact that cache misses
have on it.

6.1.4 Execution Time

Mainly due to the reduction in the number of cache
misses (and, in some cases, the additional reduction of
the cache miss latency), the runtime of applications can
significantly lower, as depicted in Figure 15. According
to these data, our proposal improves application runtime
by 15% on average. As shown, for applications where
both cache miss rate and latency are significantly re-
duced (barnes, cholesky, and waternsq among others),
the system performance considerably improves. How-
ever, for applications where the reduction of caches
misses is not so significant, the improvements on per-
formance are more moderate.

Fig. 15. Normalized runtime of applications.

Fig. 16. Normalized energy consumption.

6.1.5 Energy Consumption

Thanks to the reduction in cache misses and network
traffic, our proposal is also able to reduce system energy
consumption. Figure 16 shows the dynamic energy con-
sumption of directory caches, memory controllers, and
the interconnection network.

Since non-coherent requests do not need to access
directory caches, their consumption is reduced.

Although our proposal decreases the number of mem-
ory accesses (due to the cache miss reduction, as shown
in Figure 10), the recovery mechanism may increase it
(due to the eviction of cached blocks). However, on
average, the referred reduction offsets this increase. As
a result, the energy consumption of memory controllers
is reduced by 45% on average. Notice that, for the FFT
application, the number of flushed blocks is noticeable
and, therefore, the energy consumption of memory con-
trollers increases slightly.

Finally, our proposal also entails savings in the energy
consumption of the interconnection network due to the
reduction in network traffic, as shown in Figure 11.
Taking into account the overall consumption of directory
caches, memory controllers, and the interconnection net-
work, we can see that energy consumption is reduced by
about 40% on average.

Regarding static energy consumption (not shown in
Figure 16), it is really tight to the execution time of
applications. In particular, the reduction in static energy
consumption of memory controllers and the network is
directly proportional to the reduction in runtime.

6.2 Impact of Coherence Deactivation for SR Blocks

In this section we evaluate the contributions that the
deactivation of private/SR blocks (deact Priv/SR) offers in
comparison to deactivate the coherence just for private
blocks (deact Priv). In particular, throughout this section
we show how deact Priv/SR behaves better than deact

DRAFT 12

Fig. 17. Potential and accuracy of deact Priv and deact
Priv/SR.

Priv in scenarios with directory caches of reduced size.
We do this because, since deact Priv is effective enough
for removing almost all the coverage misses of most of
the evaluated scenarios (see Figure 10), the application
of deact Priv/SR on those scenarios only leads to small
improvements. However, as the size of directory caches
is reduced, the number of coverage misses increases and
deact Priv is not able to remove all them. In those systems
with small directory caches, the benefits of deact Priv/SR
are more visible because it improves the effectiveness
of deact Priv. To illustrate this, we compare deact Priv
against deact Priv/SR in systems using directory caches
whose sizes range from 256K to 32K. For the sake of
clarity, the graphs only show the average latency of
the applications grouped in application suites and the
average value for all the simulated applications.

6.2.1 Potential

Figure 17 illustrates the potential provided by deact
Priv/SR with respect to that of deact Priv. The total
value of bars indicates the rate of maximum number
of non-coherent blocks (private blocks in deact Priv or
private/read-only blocks in deact Priv/SR) that can be
detected in each case. Each bar is divided into detected
non-coherent blocks and undetected non-coherent blocks
(i.e., blocks misclassified as shared in deact Priv or as SW
in deact Priv/SR). The remaining represents the coherent
blocks. As shown, in applications like raytrace, mpgenc,
or speechrec, deact Priv/SR substantially increases the
number of potential blocks that can be detected as non-
coherent from 53%, 48%, and 39% to 91%, 70%, and
85%, respectively. Hence, the detection of SR blocks
allows the mechanism to increase the number of detected
non-coherent blocks. Thus, on average, deact Priv/SR
detects about 9% more non-coherent blocks than deact
Priv. Furthermore, the percentage of misclassified blocks
(undetected NC) is slightly reduced from 33% in deact
Priv to 27% in deact Priv/SR (with respect to the total
number of non-coherent blocks), which indicates that
deact Priv/SR improves the accuracy of the detection
mechanism.

6.2.2 Processor Cache misses

Figure 18 shows the cache miss rate of deact Priv and
deact Priv/SR. As the directory cache size reduces, the
number of coverage misses increases because directory

Fig. 18. Cache miss rate of deact Priv and deact Priv/SR
in systems with 256K, 128K, 64K, 32K, and 16K directory
caches.

Fig. 19. Normalized cache miss latency of deact Priv and

deact Priv/SR in systems with 256K, 128K, 64K, 32K, and
16K directory caches.

caches are not able to simultaneously track all the cached
coherent blocks. However, notice that when using deact
Priv, the cache miss rate grows much more quickly than
when deact Priv/SR is used. This happens because, as the
potential of deact Priv/SR is higher and it can act on more
blocks, directory caches do not need to track so many
blocks. As a result, the reduction of the directory cache
size affects a less number of coherent blocks, which leads
to a slower growth of the cache miss rate.

Figure 19 shows the cache miss latency normalized to
that of the base system1. For systems with 256K directory
caches, the miss latency of deact Priv is slightly smaller
than that of deact Priv/SR mainly because deact Priv
considers SR blocks as coherent and, therefore, misses for
SR blocks may be served by caches instead of memory.
As the directory cache size decreases, the number of
coverage misses increases due to the increase in evictions
of cached blocks. Thus, in deact Priv, the SR and SW
blocks that are evicted from caches will have to be served
by memory again (when they are requested) and, since
they are considered as coherent, their memory latency
includes the access to directory caches, which makes
the average latency of those cache misses increase. On
the other hand, when using deact Priv/SR, the resolution
of misses for SR blocks does not need to access the
directory cache, which makes their resolution latency
faster than in deact Priv. Hence, although in systems
with 256K directory caches, the average miss latency of
deact Priv is slightly smaller than that of deact Priv/SR,
in systems with 128K directory caches their latencies
become equal. In addition, as the directory cache size
continues to diminish, the average miss latency of deact

1. Notice that the base system assumes 256K directory caches.

DRAFT 13

TABLE 4
Comparison between TLB updating/recovery mechanisms for deact Priv and deact Priv/SR with 256K directory

caches. Overhead represents the overhead of the mechanisms in deact Priv/SR with respect to that in deact Priv. A
positive value indicates that the overhead increases, whereas a negative value indicates a reduction.

average latency (cycles) number of triggers maximum overhead of mechanisms in
Deact Priv Deact Priv/SR Deact Priv Deact Priv/SR deact Priv/SR normalized to deact Priv

SPLASH 2 707 604 1929 2120 -6.11%
scientific 587 513 1999 2269 -0.8%

ALPBench 590 495 6351 6767 -10.61%
PARSEC 545 496 4974 5238 -4.16%

commercial 611 539 22183 25231 0.34%
average 626 543 5432 5963 -4.78%

Fig. 20. Normalized runtime of applications for deact P
and deact P/SR in systems with 256K, 128K, 64K, 32K,
and 16K directory caches.

Priv/SR becomes smaller than that of deact Priv.

6.2.3 TLB-Updating/Recovery Mechanisms

Since the performance of these mechanisms does not
depend on the directory cache size, we only show the
comparison in systems with 256K directory caches. Sec-
ond and third columns of Table 4 contain the average
latency of the TLB/recovery mechanisms (considering
the number of times that each mechanism is triggered).
As shown, in deact Priv/SR the mechanisms are faster
(on average) because, as commented in Section 6.1.3, the
TLB-updating mechanism is quite fast in comparison to
the recovery mechanisms, which reduces their overall
average latency. Table 4 also shows the number of times
that the mechanisms are triggered. Since deact Priv/SR
requires the TLB-updating mechanism (which is not
used in deact Priv), in deact Priv/SR the mechanisms are
more frequently triggered. Last column of Table 4 illus-
trates the maximum overhead of deact Priv/SR respect
to the overhead of deact Priv. As shown, the reduction
of the average latency of recoveries in deact Priv/SR
offsets the increase of their triggers. As a result, in deact
Priv/SR the mechanisms have less impact on the overall
performance. Notice that coherence recovery mechanism
is triggered less times in deact Priv/SR because less pages
need to be converted from non-coherent to coherent.
Only in case of commercial applications, the overhead
is similar for both proposals. This happens because
the TLB-updating mechanism further increases the total
number of triggers when considering SW pages as SR.

6.2.4 Execution Time

Figure 20 compares how the execution time of appli-
cations varies according to the directory cache size. As

Fig. 21. Normalized dynamic energy consumption.

observed, deact Priv/SR gets better results as the size of
directory caches decreases. In particular, deact Priv/SR
achieves to reduce up to sixteen times the directory cache
size while maintaining application runtime below that of
the base system. However, in case of deact Priv, directory
caches can only be reduced eight times and, even in that
case, the runtime slightly increases with respect to that of
the base system. Hence, as directory caches are smaller,
deact Priv/SR offers better performance than deact Priv,
which indicates it provides higher scalability.

6.2.5 Energy Consumption

Figure 21 illustrates the evolution of the dynamic energy
consumption as the directory cache size is decreased. On
the one hand, the consumption of directory caches is
reduced as the directory cache size decreases because,
despite the fact that smaller directory caches suffer more
accesses (due to a larger number of entry evictions), their
access latency is lower, which offsets such an increase of
accesses.

Regarding memory controllers, their energy consump-
tion increases as the directory cache size is reduced
mainly because of the increase in the accesses to memory
controllers. Despite this, the dynamic energy consump-
tion of a system using our proposal remains lower (5%
on average) than that of the base system using directory
caches 16 times larger.

Regarding static energy consumption (not shown in
Figure 21), it is really tight to the execution time of
applications. In particular, the reduction in static energy
consumption of memory controllers and the network is
directly proportional to the reduction in runtime. With
respect to directory caches, their static energy reduction
depends on both the application runtime and their size.
Thus, when using directory caches 2, 4, 8, and 16 times
smaller than that of the base system, the static power

DRAFT 14

consumption is reduced by 48%, 74%, 86%, and 92%
respectively.

7 CONCLUSIONS

In this paper we propose a simple approach which is
able to remarkably increase the effectiveness of directory
caches. It is based on the idea of avoiding the tracking of
blocks that do not require coherence maintenance. These
blocks comprise not only private memory blocks, but
also shared read-only blocks. The OS is responsible for
dynamically classifying the accessed blocks according to
a coarse granularity. Our proposal reduces the amount of
information that has to be stored in directory caches. As
a result, the number of blocks invalidated due to evic-
tions in directory caches can be drastically reduced. This
advantage can be used not only for increasing system
performance (15%), but also for maintaining the same
performance having directory caches 16 times smaller.
The latter achievement is very useful to cope with the
silicon area constrains arisen in the design of many-core
chips.

REFERENCES

[1] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha. GARNET: A
detailed on-chip network model inside a full-system simulator.
In IEEE Int’l Symp. on Performance Analysis of Systems and Software
(ISPASS), pages 33–42, Apr. 2009.

[2] A. R. Alameldeen, C. J. Mauer, M. Xu, P. J. Harper, M. M.
Martin, D. J. Sorin, M. D. Hill, and D. A. Wood. Evaluating
non-deterministic multi-threaded commercial workloads. In 5th
Workshop On Computer Architecture Evaluation using Commercial
Workloads (CAECW), pages 30–38, Feb. 2002.

[3] A. R. Alameldeen and D. A. Wood. Variability in architectural
simulations of multi-threaded workloads. In 9th Int’l Symp. on
High-Performance Computer Architecture (HPCA), pages 7–18, Feb.
2003.

[4] AMD. AMD64 architecture programmer’s manual volume 2:
System programming. Whitepaper, June 2010.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In 17th
Int’l Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 72–81, Oct. 2008.

[6] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Improving multipro-
cessor performance with coarse-grain coherence tracking. In 32th
Int’l Symp. on Computer Architecture (ISCA), pages 246–257, June
2005.

[7] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and
B. Hughes. Cache hierarchy and memory subsystem of the AMD
opteron processor. IEEE Micro, 30(2):16–29, Apr. 2010.

[8] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato. Increas-
ing the effectiveness of directory caches by deactivating coherence
for private memory blocks. To appear in Int’l Symp. on Computer
Architecture (ISCA), June 2011.

[9] M. Ekman, F. Dahlgren, and P. Stenström. TLB and snoop energy-
reduction using virtual caches. In Int’l Symp. on Low Power
Electronics and Design (ISLPED), pages 243–246, Aug. 2002.

[10] N. D. Enright-Jerger, L.-S. Peh, and M. H. Lipasti. Virtual circuit
tree multicasting: A case for on-chip hardware multicast support.
In 35th Int’l Symp. on Computer Architecture (ISCA), pages 229–240,
June 2008.

[11] N. D. Enright-Jerger, L.-S. Peh, and M. H. Lipasti. Virtual tree
coherence: Leveraging regions and in-network multicast tree for
scalable cache coherence. In 41th IEEE/ACM Int’l Symp. on
Microarchitecture (MICRO), pages 35–46, Nov. 2008.

[12] C. Fensch and M. Cintra. An OS-based alternative to full
hardware coherence on tiled CMPs. In 14th Int’l Symp. on High-
Performance Computer Architecture (HPCA), pages 355–366, Feb.
2008.

[13] A. Gupta, W.-D. Weber, and T. C. Mowry. Reducing memory
traffic requirements for scalable directory-based cache coherence
schemes. In Int’l Conference on Parallel Processing (ICPP), pages
312–321, Aug. 1990.

[14] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Re-
active NUCA: Near-optimal block placement and replication in
distributed caches. In 36th Int’l Symp. on Computer Architecture
(ISCA), pages 184–195, June 2009.

[15] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd. POWER7: IBM’s
next-generation server processor. IEEE Micro, 30(2):7–15, Apr.
2010.

[16] D. Kim, J. Ahn, J. Kim, and J. Huh. Subspace snooping: Filtering
snoops with operating system suport. In 19th Int’l Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 111–
122, Sept. 2010.

[17] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. The
ALPBench benchmark suite for complex multimedia applications.
In Int’l Symp. on Workload Characterization, pages 34–45, Oct. 2005.

[18] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi. McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures.
In 42nd IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), pages
469–480, Dec. 2009.

[19] P. S. Magnusson, M. Christensson, and J. Eskilson, et al. Simics:
A full system simulation platform. IEEE Computer, 35(2):50–58,
Feb. 2002.

[20] M. M. Martin, D. J. Sorin, and B. M. Beckmann, et al. Multi-
facet’s general execution-driven multiprocessor simulator (GEMS)
toolset. Computer Architecture News, 33(4):92–99, Sept. 2005.

[21] M. R. Marty and M. D. Hill. Virtual hierarchies to support server
consolidation. In 34th Int’l Symp. on Computer Architecture (ISCA),
pages 46–56, June 2007.

[22] A. Moshovos. RegionScout: Exploiting coarse grain sharing in
snoop-based coherence. In 32nd Int’l Symp. on Computer Architec-
ture (ISCA), pages 234–245, June 2005.

[23] B. W. O’Krafka and A. R. Newton. An empirical evaluation of
two memory-efficient directory methods. In 17th Int’l Symp. on
Computer Architecture (ISCA), pages 138–147, June 1990.

[24] M. Shah, J. Barreh, and J. Brooks, et al. UltraSPARC T2: A highly-
threaded, power-efficient, SPARC SoC. In IEEE Asian Solid-State
Circuits Conference, pages 22–25, Nov. 2007.

[25] R. Simoni. Cache Coherence Directories for Scalable Multiprocessors.
PhD thesis, Stanford University, 1992.

[26] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological con-
siderations. In 22nd Int’l Symp. on Computer Architecture (ISCA),
pages 24–36, June 1995.

[27] J. Zebchuk, E. Safi, and A. Moshovos. A framework for coarse-
grain optimizations in the on-chip memory hierarchy. In 40th
IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), pages 314–
327, Dec. 2007.

[28] H. Zeffer and E. Hagersten. A case for low-complexity MP
architectures. In ACM/IEEE Conference on Supercomputing (SC),
pages 10–16, Nov. 2007.

[29] H. Zeffer, Z. Radović, M. Karlsson, and E. Hagersten. TMA:
A trap-based memory architecture. In 20th Int’l Conference on
Supercomputing (ICS), pages 259–268, June 2006.

