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Abstract

Almost all manufacturing facilities need to use production planning and schedul-

ing systems to increase productivity and to reduce production costs. Real-life pro-

duction operations are subject to a large number of unexpected disruptions that may

invalidate the original schedules. In these cases, rescheduling is essential for minimiz-

ing the impact on the performance of the system. In this work we consider �owshop

layouts that have been seldom studied in the rescheduling literature. We generate

and employ three types of disruptions that interrupt the original schedules simultane-

ously. We develop rescheduling algorithms to �nally accomplish the twofold objective

of establishing a standard framework on the one hand and of proposing rescheduling

methods that seek a good trade-o� between schedule quality and stability on the

other hand.
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1 Introduction

Although the �rst studies on quantitative scheduling started to appear in the 1950s (Salveson,

1952), from the early twentieth century, the work of Henry Gantt and other pioneers had started

to introduce some formal methods into real manufacturing plant operations (Gantt, 1919). A vast

∗Corresponding author. Tel: +34 96 387 99 52, ext: 79952. Fax: +34 96 387 74 99

1



body of research including a wide range of problem characteristics can be found in the schedul-

ing literature. However, the practical use of scheduling techniques is still meager. King (1976)

was one of the �rst who openly recognized the gap between theory and practice in production

scheduling due to the simpli�cation of complex real situations in order to construct mathematical

models. The scheduling problem, as commonly de�ned in academic literature, emphasizes only

a limited part of the scheduling task. Following the original schedule in real process facilities

exactly as it was designed is practically impossible since it is very di�cult to have accurate time

estimations for the process data and also because of the unforeseen disturbances that a�ect the

system. Pinedo (2008, pg. 430) enumerates 12 principal di�erences between the theoretical mod-

els and the real-life scheduling problems:

1) New jobs constantly arrive in the system. 2) The rescheduling problem is important. 3) The

machine environments are more complicated. 4) The weights (priorities) of jobs �uctuate over

time. 5) Preferences in the selection of machines are important. 6) There are restrictions in

machine availability according to working shift patterns or timetables. 7) Non linear penalty

functions. 8) More than one objective is often considered. 9) The available capacity (workload,

work shifts) can be in�uenced. 10) Processing times do not follow statistical distributions. 11)

Processing times on the same machine tend to be highly positively correlated. 12) Processing

time distributions may be subject to change due to learning or deterioration.

He remarks that the rescheduling problem is not emphasized su�ciently in the literature of

scheduling models. When designing a scheduling system, uncertainties need to be taken into ac-

count, since as time goes by, production schedules become inaccurate or infeasible and eventually

a new schedule will be needed.

In recent years, more attention has been given to the consideration of uncertainties while design-

ing scheduling models, since in real manufacturing systems it is impossible to know exactly a

priori all parameters associated with scheduling decisions. Shop �oor conditions, material avail-

ability, market demand and other parameters are highly likely to be a�ected by unexpected

disturbances with respect to time. In the rescheduling literature, a plethora of approaches

and techniques can be found to deal with uncertainties, focusing mainly on machine break-

downs, new job arrivals and stochastic process times. However, the great part of the existing

work addresses these disruptions only independently (Church and Uzsoy, 1992; Allahverdi, 1996;

Mehta and Uzsoy, 1999; Vieira et al., 2000; Hall and Potts, 2004; Rangsaritratsamee et al., 2004;

Arnaut and Rabadi, 2008; Kopanos et al., 2008). These sources of disturbances and many others

such as order cancelations, priority and release time changes due to material unavailability, may

a�ect the current schedule simultaneously. Hence for real-life manufacturing scheduling it turns

out to be crucial in coping with di�erent types of unexpected disruptions at the same time.

With respect to the rescheduling approaches found in the literature, many authors employ math-

ematical models to generate optimal solutions for the considered rescheduling problem (Qi et al.,

2006; Kopanos et al., 2008). However, these approaches and results remain well-grounded only
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within the speci�c considered problem with its restrictions, and generally can not be extended

to more complex and larger sized problems. Similarly, simulation is employed in several pa-

pers to validate the proposed rescheduling methods and algorithms (Sabuncuoglu and Kizilisik,

2003; Pfei�er et al., 2007), and hence, results must be interpreted in the context of the simulated

system. An existing benchmark of problems and disruptions for reproducing the results and

comparing other methods with existing ones, does not exist.

Another gap in the scheduling literature is represented by re�ecting the economic performance

of the scheduling system only with classical e�ciency performance measures such as makespan,

maximum �ow time, earliness, tardiness, etc. It is important to point out that as times goes

by, the original schedule will become inaccurate and rescheduling actions will be needed to ad-

dress new situations. Introducing frequent schedule changes can give rise to additional costs,

like setup costs, material handling costs, storage costs, etc. Consequently, it is important to

reduce schedule nervousness, a term coined by Steele (1975), that started being used in the con-

text of Material Requirement Planning Systems (MRP) and meant signi�cant changes in MRP

plans (Vollmann et al., 2005). While e�ciency measures are comprehensively studied and have

appeared in academic research for decades, only a few studies address the drawbacks of continu-

ously introducing changes in the schedule (Rangsaritratsamee et al., 2004).

In view of the aforementioned considerations, in this work our main objective is to de�ne a

rescheduling framework and methods in order to e�ectively address the rescheduling problem in

more realistic manufacturing layouts, where the parameters of the scheduling system are always

changing and the production schedules need to be updated continuously. In order to accomplish

this goal, we consider �owshop layouts that have been seldom studied in the rescheduling litera-

ture, at least when compared to the wealth of literature on the single machine layout. We generate

and employ three types of disruptions that simultaneously interrupt the original schedules and

we develop rescheduling algorithms to cope with these uncertainties. Therefore, our research has

a twofold aim: the �rst one is to establish a standard framework, that includes a rescheduling

benchmark for ensuring reproducibility of the results, and the second one is to propose reschedul-

ing methods that seek a good trade-o� between schedule quality and nervousness.

The rest of the paper is organized as follows: In Section 2 we provide a brief review of the most

relevant publications in the rescheduling literature. Sections 3 and 4 present a thorough de-

scription of the innovative rescheduling framework and the methods proposed in this paper. In

Section 5, we present a complete comparative evaluation of the performance of the proposed

rescheduling algorithms. We end with some concluding remarks in Section 6.

2 Existing terminology and rescheduling research

As previously discussed, a great deal of e�ort has been spent in generating optimal production

schedules. Many scheduling studies employ a standard three �eld classi�cation scheme for de�n-
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ing scheduling problems (Graham et al., 1979). This scheme describes a scheduling problem as

a triplet α|β|γ where α represents the scheduling environment, β the job characteristics and

restrictions and γ the objective function. Herrmann et al. (1993) and Pinedo (2008) present a

comprehensive reference guide for de�ning and classifying static scheduling problems. On the

contrary, there is not a standard classi�cation scheme for dynamic and stochastic rescheduling

problems. There is a variable use of concepts and terminology.

2.1 Terminology de�nition

The process of modifying an existing production schedule in response to disruptions or other

changes is commonly known as Rescheduling. Vieira et al. (2003) make an e�ort to give a standard

de�nition of the terms used in the existing rescheduling literature. They classify the rescheduling

environments that de�ne the set of jobs to be scheduled into two main groups: static and dy-

namic. In a static scheduling environment, there is a �nite set of jobs to be scheduled, whereas in

a dynamic one jobs arrive on a continuous basis. Moreover, a static environment can be broken

down into a deterministic one, where all system parameters are exactly known and there is no

uncertainty for the future, and stochastic environment, where there is a �nite set of jobs, but

some variables are uncertain such as the case in which the processing times of tasks are modeled

as random variables. In dynamic rescheduling environments, jobs arrive continuously over time.

Similarly, the existing rescheduling strategies are classi�ed into three main categories: dynamic,

robust and predictive-reactive. A dynamic scheduling strategy uses system information to dis-

patch jobs employing heuristics or priority rules when necessary (Church and Uzsoy, 1992). It is

often referred to as online, real-time or completely reactive scheduling (Vieira et al., 2003). The

robust scheduling approaches also known as proactive schemes (Sabuncuoglu and Goren, 2009),

address the problem of creating a schedule which, when implemented, minimizes the e�ect of

disruptions on the primary performance measure of the schedule. The predictive-reactive policy

includes two main phases: generation and control. In the �rst step, an initial schedule that

represents the desired behavior of the shop �oor is generated. The second step updates the pre-

dictive schedule in response to unexpected system disruptions to minimize their e�ect on system

performance (Akturk and Gorgulu, 1999).

In Vieira et al. (2003) a classi�cation of the three main existing rescheduling techniques can also

be found. Under the periodic technique, rescheduling actions are only taken periodically at

the beginning of the de�ned rescheduling interval. Under the event driven rescheduling policy,

rescheduling actions are taken every time the system is a�ected by unexpected events and a hybrid

rescheduling policy reschedules the system periodically and also when special (or major) events

take place. Hozak and Hill (2009) address the impact of replanning and rescheduling frequencies

on the system performance and highlight the pros and cons of frequent rescheduling actions.

As stated, the robust rescheduling strategy aims at producing schedules that are able to

face disruptions without requiring new schedules. A solution for a scheduling problem is robust
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if it can be adapted to external events/disruptions with little changes. An example is a �ow-

shop schedule that has intended gaps where machines are left idle so that new jobs arriving into

the system can be processed in those gaps without altering all other previously sequenced jobs.

In the last years, schedule robustness has been widely studied. Some recent reviews consider-

ing robustness in scheduling can be found in Artigues et al. (2005), Herroelen and Leus (2005),

Sabuncuoglu and Goren (2009) and Ghezail et al. (2010), among others.

Most of the published papers about schedule robustness consider proactive scheduling ap-

proaches, using measures to quantify the robustness of the solutions according to the capac-

ity to maintain the schedule in a disturbed environment: Yang and Yu (2002), Jensen (2003),

Pierreval and Durieux-Paris (2007), Al Kattan and Maragoud (2008), Goren and Sabuncuoglu

(2008), among others. However, the majority of the papers about robustness are focused on one

single type of disruption and/or simple machine environments, that is, in scheduling, one ma-

chine problems. When the number of di�erent events/disruptions increases, the reactive approach

seems to be more suitable as it is not possible to obtain a schedule that is robust against any

possible type of event. Moreover, when a rescheduling method based on a reactive approach is

applied, one of the possible objectives might be to maintain the stability of the original schedule,

which usually is also the main objective in robust scheduling. Therefore, proactive and reactive

approaches can be combined together: �rstly a robust schedule is created in the predictive phase

and then, the disruptions are handled at the moment they occur (O'Donovan et al., 1999). In this

paper, several disruptions are considered at the same time for the �owshop scheduling problem,

so rescheduling based on reactive approaches seem to be the most suitable scheme.

2.2 Disruptions classi�cation

As previously mentioned, the actual performance of manufacturing settings often di�ers from the

planned or scheduled one. The majority of the deviations are negative, i.e., they negatively a�ect

system performance leading to deterioration or infeasibility. The unforseen disturbances, that

a�ect the normal operations of real-life manufacturing settings have been classi�ed into two big

categories (Cowling and Johansson, 2002; Vieira et al., 2003):

1. Capacity disruptions: i.e., disturbances related to manufacturing resources like machine

breakdowns, unavailability of tools, operators absence, etc.

2. Order disruptions: i.e., job related disturbances like rush jobs, job cancelation, raw material

shortage, change in priority, rework, etc.

When disruptions upset system performance or lead to infeasibility, rescheduling is triggered

to reduce the impact. Hence, these unexpected events are often de�ned as rescheduling fac-

tors (Dutta, 1990). Typical disruptions frequently encountered in manufacturing facilities are,

amongst others: machine failures, rush orders, order cancelations, priority and due date modi�ca-

tions, workforce unavailability, material arrival delays, raw materials shortage, delay in transport,
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rework, variation of process times, variation of set-up times, outsourcing, machine performance

deterioration, etc.

2.3 Existing research

The aforementioned unexpected events have been analyzed in several research studies. Vieira et al.

(2003) and Li and Ierapetritou (2008) review in detail rescheduling methods, politics and trends

developed to address the problem of dealing with uncertainty in production scheduling. In this

section we will present a summary of the research papers on rescheduling with uncertainties fo-

cusing especially on single machine, parallel machine, �owshop and jobshop environments and on

the types of events considered in every one.

2.3.1 Single machine environment

The single machine scheduling problem is the process of assigning a group of tasks to a single

machine or resource with the objective of optimizing one or many performance measures. Sin-

gle machine models are important since practical scheduling problems with more complicated

machine environments are often decomposed into subproblems that deal with single machines.

For example a complicated machine environment with a single bottleneck may give rise to a

single machine model (Pinedo, 2008). Bean et al. (1991) present a framework for rescheduling

production facilities when disruptions, like machine breakdowns, tool unavailability, release or

due date changes and order quantity increases, invalidate the original schedule. Their reschedul-

ing strategy is based on matching up with the preschedule after every disruption occurrence.

Adiri et al. (1991) consider the problem of single machine scheduling with a single breakdown to

minimize stochastically the number of tardy jobs. Church and Uzsoy (1992) address the problem

of rescheduling production systems in the face of dynamic job arrivals. Hall and Potts (2004)

consider a single machine scheduling problem where a set of original jobs has already been sched-

uled to minimize some cost objective, and a new set of jobs arrives and creates a disruption.

Liao and Chen (2004) address a single machine problem with sequence-dependent setup times

under machine breakdowns. They propose a heuristic method to maximize the total setup time

(or the total idle time) subject to due date constraints. Qi et al. (2006) analyze the problem of

updating a machine schedule when random or anticipated disruptions occur. They focus on cases

in which the SPT schedule is optimal for the original problem and analyze single and parallel

two-machine problems.

2.4 Parallel machine environment

In the parallel machine scheduling problem, there is a set of n jobs that have to be scheduled

on m parallel machines. A bank of machines in parallel is a generalization of a single machine

model. Many production stages consist of several of machines in parallel (Pinedo, 2008).
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Vieira et al. (2000) present analytical models that predict the performance of rescheduling strate-

gies for parallel machine systems. They consider dynamic job arrivals and setups between job

families. Azizoglu and Alagoz (2005) consider a rescheduling problem for parallel machines with

breakdowns. They provide a polynomial-time algorithm that �nds a set of e�cient schedules with

respect to two di�erent criteria. Curry and Peters (2005) address the problem of nervousness re-

duction in parallel machine settings under dynamic job arrivals. Lee et al. (2006) address the

problem of two machine scheduling under disruptions with transportation costs considerations.

They propose polynomial and pseudo-polynomial algorithms for optimally solving the problem.

Arnaut and Rabadi (2008) provide new repair and rescheduling algorithms for the unrelated par-

allel machine environment. They compare four repair rules and conclude that the FJR method

(Fit Job Repair) performed best when schedule quality and stability were simultaneously opti-

mized. Ozlen and Azizoglu (2009) provide a branch and bound algorithm to deal with the parallel

machine scheduling problem subject to random machine disruptions. Huatuco et al. (2009) com-

pare the impact of �ve rescheduling strategies on the performance of a parallel machine setting

a�ected by stochastic machine breakdown arrivals.

2.4.1 Flowshop environment

In a �owshop scheduling problem there aremmachines and n jobs that have to be processed in the

same order on the m machines. An assembly line is an example of a �owshop. Allahverdi (1996)

considers a two-machine proportionate �owshop scheduling problem with random breakdowns

and the objective of minimizing the maximum lateness. He demonstrates that if breakdowns oc-

cur only in the �rst machine, the longest processing time policy obtains the best results and when

they occur only in the second, the best policy is the shortest processing time. Akturk and Gorgulu

(1999) suggest a strategy by which, after machine failures, part of the initial schedule is resched-

uled to match up with the preschedule at some point in time. Caricato and Grieco (2008) address

the problem of the insertion of new orders in production plans that have already been scheduled

with the objective of controlling the number of changes with respect to the existing plan and

minimizing the delays due to new job arrivals. They consider a hybrid �owshop setting and

single job arrivals to be inserted in the current schedule. Zandieh and Gholami (2009) propose

an immune algorithm for makespan minimization in a hybrid �owshop with sequence-dependent

setups and machines a�ected by random breakdowns.

2.4.2 Jobshop environment

In a jobshop scheduling problem there are n jobs and each job visits a number of machines fol-

lowing a prede�ned route that depends on each job. Abumaizar and Svestka (1997) proposed

the A�ected Operations Algorithm (AOR) for the jobshop under random machine disruptions

problem and showed that it outperformed the right shift procedure or the total rescheduling over

all the scenarios. Muhlemann et al. (1982) consider dynamic jobshops a�ected by continuous job

7



arrivals in the shop �oor, machine breakdowns and uncertainty in measuring the process times.

They use simulation to compare the performance of di�erent machine loading rules with respect to

several classic jobshop performance measures. Rangsaritratsamee et al. (2004) address the prob-

lem of dynamic jobshop scheduling and propose a rescheduling methodology based on periodic

rescheduling, in which a multicriteria objective function is used as the �tness function for a ge-

netic local search procedure to generate schedules at each rescheduling point. Subramaniam et al.

(2005) analyze the jobshop repairing problem subject to internal and external disturbances. After

a careful analysis of seemingly complicated disruptions, they conclude that they can be broken

down into a few simple basic steps: insert idle time, insert adjustment time and insert opera-

tion. Therefore, they employ the mAOR heuristic (modi�ed a�ected operations algorithm) that

repairs the complicated disruptions by successively performing the sequence of generic repair ac-

tions previously mentioned. Pfei�er et al. (2007) propose a simulation-based evaluation technique

for testing, validation and benchmarking of rescheduling methods.

2.5 Existing research conclusions

We can observe that the disruptions considered by the great majority of the current literature

are principally machine breakdowns and new job arrivals. Most of the papers study the negative

e�ects of only one type of disruption on system performance, di�erently from realistic situations

in which systems may be a�ected by several types of events simultaneously. Diverse strategies

and approaches have been developed to cope with several unexpected situations, but most of the

work is simulation based, and hence must be interpreted in the context of the speci�c simulated

system. There does not exist a body of standard practices, procedures, and rules when dealing

with dynamic and stochastic manufacturing settings.

In this work we will present a novel approach for addressing the problem of the event driven

rescheduling of a permutation �owshop subject to random simultaneous unexpected events, which

has been seldom studied in the literature.

3 Our rescheduling framework

The objective of this work is to propose a rescheduling framework and methods for permutation

�owshop environments subject to simultaneous random disruptions. Thus, according to the

classi�cation given in Section 2, we will consider a stochastic and dynamic environment, we will

implement a predictive-reactive approach and will apply an event driven rescheduling policy.

The deterministic �owshop problem (FSP) is one of the most exhaustively studied settings in

the scheduling literature. In the FSP we have a set N = {1, . . . , n} of n jobs to be processed

on a set M = {1, . . . ,m} of m machines. Each job has to be processed on each one of the m

machines. All jobs must follow the same route, i.e., they follow the same machine order in the

shop, starting from machine 1 and �nishing on machine m. The objective is to �nd a permutation
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of jobs π that optimizes a certain criterion. The criterion that is most commonly studied in the

literature is the minimization of the maximum completion time, also called makespan (Cmax), of

the production sequence. Let pij denote the processing time of job j, j ∈ N on machine i, i ∈ M .

In this work processing times are deterministic and are known a priori. After completion on one

machine, each job joins the queue at the next machine. If all queues are assumed to operate

under the First In First Out (FIFO) discipline, i.e., the processing sequence on the �rst machine

is maintained throughout the remaining machines, the �owshop is referred to as permutation

�owshop. The resulting problem is called the permutation �owshop problem (PFSP) and with

the makespan criterion it is denoted as F/prmu/Cmax (Pinedo, 2008). A schedule S provides

the start and completion times of all jobs on every machine. At every rescheduling point, our

problem is to �nd a new schedule such that both e�ciency and stability measures are minimized.

In this work we propose a predictive-reactive approach made up by two steps: generation and

control. In the �rst step we generate a schedule considering only the deterministic problem, i.e.,

solving the classical PFSP. We refer to this type of schedule as predictive schedule or baseline and

denote it by B. We have used the Iterated Greedy algorithm (IG) of Ruiz and Stützle (2007) to

solve a subset of the standard benchmark testbed of Taillard (1993) for the PFSP with makespan

criterion. The IG method makes use of a destruction operator that randomly removes some

jobs from the sequence and a construction operator that reinserts the previously removed jobs

following the constructive heuristic of Nawaz et al. (1983). The predictive schedules represent

the desired behavior of the shop �oor but it is highly unlikely that they will be executed exactly

as they were developed. Thus, the reactive step updates the predictive schedule in response to

unexpected disruptions to minimize their e�ect on system performance.

3.1 Rescheduling factors generation

In many industrial processes machine failures continuously a�ect the planned activities. Pre-

ventive maintenance may reduce the breakdown rate, but it is almost impossible to eradicate

this type of disruption from the system. Similarly, other parameters like material availability

and market demand are highly likely to undergo modi�cations and hence, it is crucial to react

rapidly and produce new schedules that take into account the new system variables. Three types

of events that will disrupt the predictive schedules are generated for this work:

1. Machine breakdowns

2. New job arrivals

3. Job ready time variations

For every baseline B originated in the predictive step, we simulate its shop �oor execution

by generating disruptions randomly at time t, 0 ≤ t ≤ Cmax(B) where Cmax(B) denotes the

makespan of the baseline B. There are several reasons for generating disruptions until the end
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of the baseline and not of the revised schedule: Firstly, jobs continuously arrive in the system

postponing the completion time of the revised schedule and hence the process of disruption gen-

eration would be unending if halted at the completion of each revised schedule. Secondly, we

want to generate a con�ned benchmark of disruptions and assure reproducibility of the results

when comparing di�erent rescheduling techniques. Since the revised schedule clearly depends

on the algorithm providing the best solution, the disruptions generated after the completion

time of the baseline are strongly related to the shop�oor status determined by this algorithm

and hence we can not assure the reproducibility of the results, similarly to a simulation process.

We try to to avoid lengthy and di�cult-to-reproduce simulation processes. Moreover, unless

the new job arrival rate is set to a very high level, as time goes by, the number of jobs to be

scheduled decreases and the problems resolved at every rescheduling point tend to become trivial.

The reason for having initially considered only these three types of events relies fundamentally

on the fact that the concern of the research is not to address all the types of disruptions that may

a�ect manufacturing settings. The objective is to propose and validate a rescheduling framework

that initially simultaneously considers three relevant types of events and then, in the future, to

extend it including other types of disruptions and improved methods.

3.1.1 Machine disruptions generation

For this research we assume that the breakdown time and interval are not known a priori. We

simulate the schedule disruption by generating random machine breakdowns at time t, 0 ≤ t ≤
Cmax(B). The downtime duration is determined immediately after the event occurs. Down times

are generated using a uniform distribution in the range U [1, . . . , 99]. A job that is preempted

due to a machine breakdown, resumes its processing from the point at which the interruption

occurred. At the beginning of every machine failure, corrective actions are triggered to cope with

the event and to improve system performance.

3.1.2 Arrivals of new jobs

In our research, a dynamic problem scenario is considered by generating job arrivals randomly

in the system. Speci�cally, there is a probability of generating one job arrival at every t, 0 ≤
t ≤ Cmax(B). All jobs are characterized by the arrival time, which is the time they enter the

system, the ready times that identify the time at which they can be released to the shop �oor and

the processing times of operations on all shop �oor machines. The distribution of the processing

times for the new jobs is �xed to U [1, . . . , 99] following Taillard's processing times generation.

When a new job arrives in the system, reactive procedures are prompted to �nd the best way to

introduce the new job in the ongoing schedule.
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3.1.3 Job ready times variation

Pinedo (2008) de�nes the ready or release date as the earliest time at which a job can start

its processing. In our work, the release variation scenario is reproduced by simulating random

ready time delays for the collection of jobs to be scheduled. According to a probability value

PR that denotes the likelihood for jobs to undergo unexpected release variation, at every time t,

0 ≤ t ≤ Cmax(B), we generate ready times �xed to U [1, . . . , 99] for the job starting its processing

at t. We will employ rj , j = (1, . . . , n) to denote these release times.

3.2 Interaction between the events

The three types of events may occur together, i.e., we may have a machine breakdown, a new job

arrival and a release time delay simultaneously. At the beginning of every disturbance, reactive

actions are prompted to accommodate the disruptions and to pursue a balance between schedule

performance on the one hand, and stability on the other hand. It is important to point out that

at every time t at which an event occurs, we can only rearrange the part of the permutation

that has not already started its processing on the �rst machine. Since we are considering a

permutation �owshop environment, the order of the jobs in progress on the �rst machine, must

be maintained throughout the remaining machines. With respect to the example of Figure 1, we

can change the permutation order of only the jobs 2,4,1. We de�ne the partial �xed sequence

including the jobs that have already been executed or are in progress on the �rst machine at the

moment of the disruption by πpf . Similarly, we will denote by πp the permutable subsequence

containing the jobs which succession order can be modi�ed. All the disruptions are saved as

a rescheduling events benchmark to be used for algorithm comparison purposes and can be

downloaded from http://soa.iti.es/. This benchmark can be used at any time to rapidly

compare di�erent rescheduling techniques and avoids launching long simulation experiments. As

previously discussed, there does not exist any similar benchmark of disruptions, even for a single

type of event and consequently, it is not possible to do comparisons with the results of other

rescheduling methods from the literature in an easy and straightforward way.

3.3 Objective function

We propose a bi-objective performance measure as the objective function to be used for evaluating

schedules in the reactive step. Our objective function consists of e�ciency measured by makespan,

and instability, measured by the number of tasks whose starting times have been altered in the

new schedule. As previously pointed out, stability is an important measure for manufacturing

settings. Applying standard scheduling methods that only consider shop e�ciency (time-based

measures such as makespan, maximum �ow time etc.), may yield new schedules that signi�cantly

deviate from the preschedules, compromising other planning activities based on the baseline like

materials management, manpower planning, etc. (Kopanos et al., 2008). Throughout this work,
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Figure 1: A simpli�ed example of a machine breakdown a�ecting a �owshop with 5 jobs
and 5 machines.

we refer to the schedule before the disruption as ongoing schedule and denote it by S and to

the adapted schedule after the disruption as new schedule and denote it by S∗. Our goal is

to simultaneously minimize makespan and instability at every rescheduling point. We apply

the weighted sum method to cast the bi-objective problem into a single objective optimization

problem by multiplying every single objective by a user-supplied weighting parameter α, whose

value is to be chosen according to the relative importance of each objective in the problem.

Furthermore, in view of the fact that makespan and instability values are measured in di�erent

units and may have di�erent orders of magnitude, we apply a normalization process that scales

their values so that they all fall in the range from 0 to 1. Therefore, the objective function to

minimize at every rescheduling point, has the following structure:

Z = α ·Mn(S
∗) + (1− α) · In(S∗) (1)

where Mn(S
∗) and In(S

∗) represent the normalized makespan and instability, respectively. They

are calculated as follows:

Mn(S
∗) =

Cmax(S
∗)−min(Cmax)

max(Cmax)−min(Cmax)
(2)

In(S
∗) =

Q(S∗)−min(Q)

max(Q)−min(Q)
(3)

where

Q(S∗) =
m∑
i=1

n∑
j=1

Uij (4)

Uij =

{
1, if | O∗

ijs−Oijs |> h

0, otherwise

In expression (2), min(Cmax) and max(Cmax) represent the lower and upper bounds for

makespan at the moment t of the disruption, respectively. Similarly, in expression (3), min(Q)
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and max(Q) represent the lower and upper bounds for instability at the moment of the event. In

expression (3), Q(S∗) represents the instability calculated as the sum of operations whose starting

times have been anticipated or delayed in the new schedule S∗. It is important to highlight that

the number of jobs n and hence, the number of operations, is not constant, since new jobs arrive

continuously in the system. In expression (4), Oijs
∗ denotes job j's starting time on machine i

after the rescheduling action, and Oijs refers to the starting times of the same task before the

disturbance. In real-life manufacturing settings jobs' starting times are continuously altered. We

use the parameter h to indicate that altering operations starting times up to h time units does

not a�ect schedule stability. Clearly the value of this parameter depends on the type of the

environment and the desired level of accuracy for considering or not an operation as a�ected.

By setting its value to 0, we consider the more general situation in which every single change

contributes to the instability �nal value.

3.3.1 Makespan lower and upper bounds

At every rescheduling point, in order to measure the values of the objective function given by all

methods, we have to calculate makespan lower and upper bounds identi�ed by min(Cmax) and

max(Cmax) in expression (2). The makespan lower bound is calculated as follows:

• Step 1: Determine πpf and πp.

• Step 2: Determine Cmax(πpf ), i.e., the makespan of πpf given by the completion time of the

last job of πpf on the last machine. According to the example of Figure 1, the Cmax(πpf )

is equal to 480.

• Step 3: We calculate the total processing time of all jobs of πp on the last machine, and

sum it to Cmax(πpf ) of the previous step to obtain the makespan lower bound:

min(Cmax) = Cmax(πpf ) +

n(πp)∑
j=1

pmj (5)

Figure 2 shows how the makespan lower bound is obtained at the rescheduling point t = 100.

The lower bound in the example is 720.

The makespan upper bound max(Cmax) calculation is straightforward. We determine πpf and

πp. For every job in πp, we consider that it can not start before the termination of the previous

job in the sequence. Figure 3 illustrates this calculation process. The �rst job in πp, i.e., the job

number 2 can only start after the termination of the job number 3, the job number 4 after the

termination of the job number 3 and so on.
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Figure 2: Example of makespan lower bound calculation.
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3.3.2 Instability lower and upper bounds

Similarly to makespan, the instability objective has been normalized to limit all values between

0 and 1. In expression (3), min(Q) and max(Q) represent the lower and upper bounds for this

second objective. Clearly, the trivial lower bound is accounting for not moving any operation,

hence, min(Q) is 0 at every rescheduling point, whereas the upper bound is calculated considering

as altered all operations starting times, therefore is calculated as m× n.

It is important to remark that makespan and instability lower and upper bounds are needed

for normalizing the objective values in the weighted bi-objective function. Therefore, there is no

need for particularly strong lower or upper bounds.

4 Rescheduling methods

One of the objectives of this work is to propose simple rescheduling methods that outperform

the typical repair actions taken in manufacturing plants, when faced with unexpected system

disturbances. The principal concern of this paper is not to propose state-of-the-art methods for

the considered setting but rather to compare reasonable approaches for a complex setting with

multiple machines and several types of simultaneous disruptions. In the �rst part of our work we

came up with a testbed of events of three categories: machine breakdowns, new job arrivals and

release time delays. Given Taillard's instances and baselines, the predictive-reactive scenario in

this work is reproduced by computing the following principal steps:

• Step 1: Load the baseline schedule previously generated and its makespan Cmax(B).

• Step 2: At every time t, 0 ≤ t ≤ Cmax(B) we examine if there is any event in the testbed

that a�ects the ongoing schedule. If so, the rescheduling methods are triggered to accom-

modate the disruption. In this work we propose a novel scheme by which all the proposed

methods are launched together at every rescheduling point. The main motivation is to make

fair comparison of their results, considering that every method will face the same problem

di�culty, i.e., the same disruption a�ecting the same system state. The objective function

presented in Section 3.3 is used to evaluate the schedules produced by every method. The

best schedule becomes the solution S∗ of the rescheduling point and will be used as an

ongoing schedule until the next rescheduling point. Therefore, our rescheduling approach

has a twofold aim: to accommodate the disruption and, at the same time, to generate a

predictive schedule for the future that achieves a good tradeo� between schedule quality

and instability.

4.1 Schedule repair

The �rst method implemented, de�ned as schedule repair, derives from the companies' common

practices to cope with unexpected disruptions. We have implemented three types of disruption
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recovery routines, each one depending on the type of event that disturbs the system. The schedule

repair routine for machine breakdowns basically performs a right shift on the operations a�ected

by the event. If the machine failure disrupts any operation, its execution is continued after the

breakdown interval from the point it was interrupted. The schedule repair routine for a new job

arrival, introduces the job at the end of the ongoing schedule. When a release time delay occurs,

the repair routine sets the starting time of the a�ected job to the new release time value. As a

result, all a�ected operations are delayed.

4.2 Local search one single pass

The second method implemented, de�ned as LS, is a local search algorithm based on the insertion

neighborhood. This neighborhood is de�ned as the set of solutions that can be reached by

extracting one job from the sequence πp and inserting it into all n(πp) positions of the partial

permutation consisting of n(πp)− 1 jobs. Algorithm 1 presents the pseudocode for this method.

The bi-objective function Z is evaluated for all neighbors and the permutation with the lowest

value is chosen as the rescheduling method solution. Local search algorithms typically allow

one to shift from solution to solution in the space of candidate solutions (the search space)

until a local optimal solution is found or a time limit is elapsed. According to Hoos and Stützle

(2004), �. . . LS methods are surprisingly simple, and the respective algorithms are rather easy to

understand, communicate and implement. Yet, these algorithms can often solve computationally

hard problems very e�ciently and robustly.� A condition for their good performance, however,

is the use of speedups or accelerations, that greatly depend on the problem. Therefore, in order

to obtain a faster algorithm, we have implemented some accelerations. The objective function Z

consists of the weighted sum of the normalized makespan and instability and hence we need to

evaluate jobs starting and completion times in πp in accordance with the following formulae:

O1,πp(1)s = max
{
O1,πpf (k)f ; r1

}
O1,πp(j)s = max

{
O1,πp(j−1)f ; rj

}
, j = (2, . . . , n(πp))

Oi,πp(j)s = max
{
Oi,πp(j−1)f ;Oi−1,πp(j)f

}
, i = (2, . . . ,m),

j = (2, . . . , n(πp))

Oi,πp(j)f = Oi,πp(j)s+ pi,πp(j), i = (1, . . . ,m), j = (1, . . . , n(πp))

where Oijf is the completion time of job j at machine i. The completion times are evaluated as

follows:

Cπp(j) = Om,πp(j)f, j = (1, . . . , n(πp))

And Cmax:

Cmax = max
{
Cπp(1), Cπp(2), . . . , Cπp(n(πp))

}
As algorithm 1 shows, without considering the �rst evaluation of the �rst step, Z is evaluated
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n(n− 1) times. Thus, in order to obtain a faster algorithm, we have implemented some accelera-

tions, taking into account the fact that, for every job, we have to calculate the complete schedule

only for the �rst two neighbors. The third neighbor has the same job in the �rst position as

the second neighbor and can use its starting and �nishing times. The fourth neighbor has the

same jobs in the �rst and the second position as the third neighbor and, hence, can use their

starting and �nishing times, and so on. Note that these accelerations in �owshop problems have

been known for some time already, as they where initially proposed by Taillard (1990) for the

makespan criterion. However, for other criteria, �partial� accelerations are the only possibility,

as explained in detail in Vallada and Ruiz (2010).

Algorithm 1: Local Search one single pass
Input: Instance data, makespan and instability upper and lower bounds, πpf , πp

Output: permutation π∗
p

begin

Set Z∗ to the current value of Z ;
Set π∗

p to πp;

for j = 1 to n(πp) do
for i = 1 to n(πp) do

if i ̸= j then
insert job πp(j) in position i;
if new objective value Z < Z∗ then

set Z∗ to Z;
set j∗ to j;
set i∗ to i;

insert job πp(j
∗) in position i∗;

return π∗
p ;

4.3 Complete local search

The third method implemented is very similar to the �rst one: we iterate the single pass local

search of the previous section until a local optimal solution with respect to the insertion neigh-

borhood is encountered. Similarly to the single pass procedure, the calculation of the objective

function has been accelerated taking into account the features of the insertion neighborhood.

4.4 Iterated Greedy

The Iterated Greedy algorithm (IG), proposed by Ruiz and Stützle (2007), iterates between two

phases: the destruction and the construction phase. In the former, some jobs are randomly

eliminated from the solution, whereas in the latter, the eliminated jobs are reinserted into the

sequence using the NEH construction heuristic of Nawaz et al. (1983). The main loop that incudes

these two phases continues until a stopping criterion is met. In our problem, at every rescheduling
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point, IG is applied to the partial sequence πp, that, as already pointed out, is the only part of

the a�ected permutation that we can optimize. Therefore, the destruction procedure is applied

to the permutation πp of n(πp) jobs. At the beginning of the destruction step, d jobs are chosen

randomly and are then removed from πp. As a result of this procedure, we have two subsequences,

the �rst being the partial sequence πd with n(πp)− d jobs and the second being a sequence of d

jobs denoted as πr. πr contains the jobs that have to be reinserted into πd in the opposite order in

which they were removed from πp. The number of jobs d to be extracted in the destruction phase

is �xed to 4 for permutations πp with more than 5 jobs, following Ruiz and Stützle (2007) and

some preliminary tests. The construction phase consists in the application of step 3 of the NEH

heuristic until obtaining a complete sequence of all n(πp) jobs. Note that in our implementation

of IG, we have to deal with the permutation πpf of jobs already scheduled, πd and πr. Every job

j of πr is inserted in the position k of πd that minimizes Z and therefore, the objective function

Z is evaluated at each insertion step. Similarly to the two previous rescheduling routines, the

construction step has been accelerated considering that when inserting the job j in position k of

πd, all Oi,hs and Oi,hf , h = {k− 1, k− 2, . . . , 1} were already calculated in the previous insertion

step.

5 Computational and statistical analysis

All the proposed methods have been implemented in Delphi 2007 and run on a Dual Core PC

with a 2.4 GHz processor and 2 GB of main memory. The stopping criterion for IG is given by a

CPU time limit depending on the size of the permutation πp, since IG needs more time for larger

instances. The time limit TL is calculated as follows:

TL = t · n(πp) ·
m

2
(6)

where t is a time input parameter. For our experiments, t has been �xed to 150 milliseconds

as a good compromise between quality and CPU time. To test our rescheduling framework and

methods we have employed the well known set of problems of Taillard (1993) that is composed

of 120 instances ranging from 20 jobs and �ve machines to 500 jobs and 20 machines. For our

experiments we included the instances with up to 100 jobs and 20 machines. The reason for

limiting the Taillard's set of problems considering only the instances with up to 100 jobs relies

fundamentally on the considerable computational time required for the larger of the problems.

For each of the considered problems we generated the baseline in the predictive phase and per-

formed R = 5 independent runs applying the proposed methods at every rescheduling point. The

experimental tests were carried out using, in each of Taillard's instances, the events benchmark

and three values for the parameter α that represent the relative importance of each objective in

the problem. More precisely, the experiments were executed setting α to 0.1, 0.5 and to 0.9. As

a measure for the results, we calculate the relative deviation over the best found solution value
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in percent, and take the average over the set of events for instances with the same number of

jobs and machines. At every rescheduling point i, we evaluate the objective value given by each

one of the four methods. Once the best value is known, i.e., the lowest Z value, we calculate the

relative percentage deviation over the best solution for each method as follows:

RPDi =
Heusoli −Bestsoli

Bestsoli
· 100

Where Heusoli is the solution obtained by the method and Bestsoli is the best solution value

at rescheduling point i. Obviously, the method or methods that give the best solution will have

a RPD of 0. Our objective is to evaluate the average relative percentage deviation (RPD) for

every method, taken over all the set of events grouped by the initial Taillard's problem size.

RPD =

∑T
i=1RPDi

T ·R

Where T denotes the total number of rescheduling points within the group of instances with the

same initial problem size and R the number of independent runs for each instance. Tables 1, 2

and 3 report the RPD for the three analyzed values of α with respect to the initial problem size.

α = 0.1 RPD

Problem REPAIR a LS b LSLO c IG d

Ta20× 5 46.65 4.56 2.48 0.00

Ta20× 10 35.87 12.32 8.17 0.00

Ta20× 20 38.88 10.36 7.11 0.00

Ta50× 5 129.82 17.83 8.17 0.00

Ta50× 10 104.56 22.35 7.61 0.00

Ta50× 20 57.94 12.13 6.05 0.00

Ta100× 5 320.06 16.84 7.83 0.00

Ta100× 10 217.36 21.45 8.83 0.00

Ta100× 20 131.99 15.93 4.72 0.00

Average 120.35 14.86 6.77 0.00

a Generic repair action b Local search one single pass (LS).
c LS iterated until local optimum d Iterated Greedy of Ruiz and Stützle (2007)

Table 1: RPD Average relative percentage deviation over the best solution, α = 0.1.
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α = 0.5 RPD

Problem REPAIR a LS b LSLO c IG d

Ta20× 5 42.28 4.02 2.16 0.00

Ta20× 10 30.18 10.39 6.73 0.00

Ta20× 20 35.31 9.38 6.23 0.00

Ta50× 5 121.31 15.02 7.78 0.00

Ta50× 10 81.42 21.77 8.26 0.00

Ta50× 20 57.55 10.88 4.91 0.00

Ta100× 5 232.28 16.56 6.72 0.00

Ta100× 10 186.57 18.88 7.28 0.00

Ta100× 20 107.06 15.59 4.45 0.00

Average 99.33 13.61 6.06 0.00

a Generic repair action b Local search one single pass (LS)
c LS iterated until local optimum d Iterated Greedy of Ruiz and Stützle (2007)

Table 2: RPD Average relative percentage deviation over the best solution, α = 0.5.

α = 0.9 RPD

Problem REPAIR a LS b LSLO c IG d

Ta20× 5 59.43 3.56 1.47 0.00

Ta20× 10 30.21 6.86 3.11 0.00

Ta20× 20 28.32 5.12 2.60 0.00

Ta50× 5 113.37 19.27 8.42 0.00

Ta50× 10 100.49 17.71 6.83 0.00

Ta50× 20 41.40 9.62 3.92 0.00

Ta100× 5 187.38 15.27 6.37 0.00

Ta100× 10 127.85 16.49 4.73 0.00

Ta100× 20 75.94 12.22 4.16 0.00

Average 84.93 11.79 4.62 0.00

a Generic repair action b Local search one single pass (LS)
c LS iterated until local optimum d Iterated Greedy of Ruiz and Stützle (2007)

Table 3: RPD Average relative percentage deviation over the best solution, α = 0.9.

In the �rst set of experiments, we set the value of α to 0.1 to analyze the case in which more

importance is given to the normalized instability, and hence, less weight is given to makespan.

As the experimental results show, IG always obtains the lowest value of the objective function Z,

across all rescheduling problems and, therefore, its excellent performance does not depend on the

type of the disruption that a�ects the system. On the contrary, the repair mechanism yields the

highest values of RPD for all rescheduling problems. The other two local search methods based

on the insertion neighborhood, obtain solutions with RPD in the range of 2.48% and 22.35%.

The LSLO procedure, when compared to the schedule repair results, shows an excellent perfor-

mance. This is a good result considering the simplicity and the speed of the algorithm. In the

second and the third set of experiments, the results are very similar to the previous case. As

Tables 2 and 3 show, IG yields the best results across all events and instances, demonstrating
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that, with respect to the other three methods, IG is able to �nd the lowest value of the objective

function Z, no matter the type of event or the value of α. These attributes are very signi�cant,

since we are strongly interested in designing and implementing algorithms that always obtain

excellent results, no matter the performance measures or the features of the rescheduling envi-

ronment. The simple schedule repair is the lowest performing method that yields the highest

RPD for all values of α. This is an important result for practical manufacturing settings, where

schedule repair is one of the most usual ways to deal with unexpected disruptions. In Table 4,

the results are statistically tested by means of an Analysis of Variance (ANOVA, Montgomery,

2007). The multifactor ANOVA procedure is used to describe the impact of the two

factors Algorithm and Objective Weight (Alpha), on the dependent variable RPD.

We consider a �xed-e�ects model since we are interested in only three values (lev-

els) of Alpha: 0.1, 0.5 and 0.9. For our 2-way ANOVA procedure, the possible null

hypothesis are: 1) There is no di�erence in the means of factor Algorithm. 2) There

is no di�erence in the means of factor Alpha. 3) There is no interaction between

factors Algorithm and Alpha.

The ANOVA procedure divides the overall variability observed among all measure-

ments of RPD into several components: a component which measures the variability

explained by the Algorithm, a component which measures the variability explained

by Alpha, a component attributable to the interactions between the two factors and

a residual component, which measures the variability amongst subjects at identical

levels of the factors. These components are estimated by the mean square calculated

for all e�ects (simple factors and interactions). When the null hypothesis is true,

the e�ects mean squares and the error mean squares (also known as residual mean

square) estimate the same quantity (error variance), and should be of approximately

equal magnitude. If the mean square of an e�ect is signi�cantly larger than the

residual mean square, it implies that there is a real e�ect at a population level and

hence the e�ect is considered to be statistically signi�cant. The F-ratio, that is the

ratio between the mean square of an e�ect and the residual mean square, is used to

determine the statistically signi�cance of the factors and their interactions. Alter-

natively, the p-value can be used to determine if the observed variability in the RPD

values may have occurred by chance. The smaller the p-values and the stronger the

evidence of the existence of the correspondent e�ect. In our test, we analyze the

following factors: Algorithm with four categorical variants, Alpha with three �xed

numerical levels and their interaction. The F-ratios and the p-values are reported

in Table 4. Since the 3 p-values are smaller than 0, 01, that is the signi�cance level

for this test, these factors have a statistically signi�cant e�ect on RPD at a 99% con-

�dence level. The 99% Tukey con�dence intervals serve to determine which of the

di�erences in the mean RPD values are statistically signi�cant, since the ANOVA
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Variability source F-ratio P-value

A: Algorithm 2364.74 0.0000

B: Alpha 49.48 0.0000

AB: Interaction 38.79 0.0000

Table 4: Analysis of variance for RPD.

F-test only permits to reject the null hypothesis, but does not determine which are

the groups with di�erent mean values. The Tukey's HSD (honestly signi�cative dif-

ference) intervals are designed for comparing all pair of means. The interval limits

are calculated using Student's t distribution and the residual mean square from the

ANOVA table. Since the interaction between the factors is statistically signi�cant,

it means that the e�ect of one factor depends on the levels of the other factor. Fig-

ure 4 shows the interaction plot with the RPD mean values at all combinations of

the two factors and the 99% Tukey's con�dence intervals. The analysis con�rms that

the repair mechanism yields the highest values of RPD for all rescheduling problems.

The mean RPD values of the repair mechanism depend clearly on the value of the

objective weighting factor. The repair routine performance worsens, when greater

importance is given to stability. In order to zoom the results of the other three meth-

ods, we present another interaction plot in Figure 5, eliminating the repair algorithm

from the study. Since the 99% Tukey's con�dence intervals do not overlap, we can

state, with a 99% con�dence level, that the means are statistically di�erent from one

another and IG is the best performing method and its results do not depend on the

alpha value.
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Figure 4: Interactions and 99% Tukey con�dence intervals for all rescheduling methods

Table 5 reports the average execution times for all methods taken over all

rescheduling problems. The number of jobs to be scheduled varies at every point

within every Taillard's instance and the values of α do not a�ect the methods ex-

ecution times. As expected, the Iterated Greedy algorithm is the slowest method
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Figure 5: Interactions and 99% Tukey con�dence intervals for IG, LSLO and LS methods

among all the rescheduling algorithms implemented, since its stopping criterion is

�xed and depends on the number of machines and jobs that can be rescheduled. Its

execution times vary from 0.75 seconds for problems with a small number of jobs, to

150 for the largest problems with 100 jobs. The IG time limit calculation is given by

expression (6) presented in the beginning of this section. The remaining methods

are almost immediate.

Method Alpha Minimum Maximum Average

IGa 0.1 0.75 150.00 62.93

0.5 0.75 150.00 62.93

0.9 0.75 150.00 62.93

LSLOb 0.1 <0.01 3.13 0.06

0.5 <0.01 3.03 0.05

0.9 <0.01 3.05 0.08

LSc 0.1 <0.01 0.39 0.02

0.5 <0.01 0.39 0.02

0.9 <0.01 0.39 0.02

REPAIRd 0.1 <0.01 0.02 <0.01

0.5 <0.01 0.02 <0.01

0.9 <0.01 0.02 <0.01

a Iterated Greedy of Ruiz and Stützle (2007) b LS iterated until local

optimum c Local search one single pass d Generic repair action

Table 5: Minimum, maximum and average execution times (seconds) for all instances and
the three tested α values.

6 Conclusions and future research

In the �rst part of this work we presented a comprehensive review of the rescheduling literature,

evidencing the lack of a standard methodology when dealing with dynamic and stochastic manu-
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facturing settings and the existence of a gap between theory and practice in production schedul-

ing. In this work we have addressed the problem of �owshop rescheduling under three types of

simultaneous random disruptions: machine breakdowns, new job arrivals and release time delays.

These disturbances are very common in every day manufacturing operations and negatively a�ect

the overall system performance. Hence, the �rst achievement of this work is the generation of

a new disruption benchmark to be used for comparing the proposed rescheduling methods. We

employed Taillard's set of �owshop instances (Taillard, 1993) to implement a predictive-reactive

approach and to simulate random schedule disruptions. Note that this work deals with �owshop

scheduling problems. However, interesting venues of research open for other �owshop problems

(Samarghandi and ElMekkawy, 2011), parallel machine problems (Purushothaman et al., 2009)

or even single machine scheduling problems (Valente and Schaller, 2010).

Our next objective has been to �nd a rescheduling method able to obtain a good trade-o� be-

tween schedule quality and instability, since the two objectives together re�ect the economic

performance of the scheduling method. For this purpose, we implemented four simple disruption

recovery routines: a simple repair mechanism, a local search procedure of one single pass based

on the insertion neighborhood, a local search procedure iterated until a local optimum and the

Iterated Greedy algorithm (IG) of Ruiz and Stützle (2007). In this work, we bring forward a

novel approach to deal with disruptions: we trigger the four methods together at every reschedul-

ing point. The objective function presented is used to evaluate the schedules produced by every

method. The best found solution becomes the solution of the rescheduling point and will be used

as the ongoing schedule until the next rescheduling point. Therefore, our rescheduling approach

accomplishes the twofold objective of accommodating the disruption and, at the same time, gen-

erating a predictive schedule for the future that achieves a good balance between schedule quality

and stability. The results of the experiments carried out demonstrate that IG outperforms the

rest of the methods, no matter the type of disruption or the relative importance of makespan and

instability in the objective function, whereas the repair routine presents the poorest performance

for all values of α. The local search procedures, when compared to the schedule repair results,

show an excellent performance, considering their simplicity and speed. Therefore, the use of the

repair actions is not justi�ed and should be replaced by other rescheduling procedures such as

the LS methods when very fast execution times are required and by the IG method, when time

is not a concern and higher quality solutions are necessary.

In the future we intend to detect stagnation situations in the IG, in order to reduce its execution

times without signi�cantly reducing the quality of the solutions. In this work we considered only

three types of disruptions that a�ect dynamically the shop �oor layout, but real-life manufactur-

ing operations are a�ected by other types of events that need to be accommodated. Therefore,

looking forward, we intend to extend the types of events considered, taking into account other

critical rescheduling factors. The shop �oor layout considered in this work is a permutation

�owshop, yielding to very sti� permutations that can be reoptimized only partially at every

24



rescheduling point. In the future our intention is to consider more realistic situations including

other shop �oor layouts and consider the bi-objective problem of improving schedules quality and

stability by means of Pareto-based multiobjective optimization methods.
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