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Highlights: 

The ABCG25 and ABCG40 ABA-transporters catalyze ATP-dependent efflux of ABA 

from vascular tissues and uptake by target tissues, respectively. 

Regulation of ABI3 and ABI5 stability by the 26S proteasome plays an important role in 

ABA signaling during germination and early seedling growth.  

AIP2, KEG, PRT6 and CUL4-based ubiquitin E3 ligases negatively regulate ABA 

signaling, whereas SDIR1 and RH2a are positive regulators. 

The expression of ABFs/AREBs is regulated by WRKY transcription factors. 
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The recent identification of abscisic acid (ABA) transporters provides an important 

insight into the delivery of ABA from the vascular system and its uptake by target cells. 

A putative connection with PYR/PYL receptors is envisaged, linking ABA uptake and 

intracellular perception by a fast and efficient mechanism. Downstream signaling of the 

core pathway involves regulation of ABA-responsive element binding factors 

(ABFs/AREBs) through phosphorylation, ubiquitination and sumoylation in the case of 

ABI5. Several E3 ligases appear to regulate ABA signaling either positively or 

negatively, although relatively few targets are known yet. ABFs/AREBs are themselves 

subjected to transcriptional regulation, and some transcription factors harboring the 

WRKY domain (WRKYs) appear to regulate their expression through W-box sequences 

present in the promoters of ABFs/AREBs.   
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Introduction 

The phytohormone abscisic acid (ABA) represents a key signal to regulate plant growth 

and development as well as plant response to abiotic and biotic stress [1]. In the plant 

field, the pivotal role played by ABA to coordinate the plant adaptive response under 

drought stress and hence potential applications in agriculture have led to numerous 

studies focused on the elucidation of ABA perception and downstream signaling. 

Challenging our perspective as plant biologists, the discovery of ABA in humans and its 

prophylactic and therapeutic efficacy in mouse models of diabetes and atherosclerosis 

have further extended the interest in this animal/plant molecule [2
●
,3

●
]. In 2009, the 

plant family of PYR/PYL/RCAR ABA receptors was discovered and its connection 

with key elements of the pathway, i.e. PP2Cs and SnRK2s, was established (Figure 1). 

The module receptor-ABA-phosphatase controls phosphorylation signaling cascades in 

a ligand-dependent manner through regulation of ABA-activated SnRK2s and in 

concert with other kinases, e.g. calcium-dependent kinases (CPKs/CDPKs) (Figure 1). 

These findings have been extensively reviewed recently and they will not be the main 

topic of this review [1,4–10]. Instead, we will focus on other emerging aspects of the 

ABA pathway, such as the identification of ABA transporters, an update on the effect of 

protein degradation/stability in ABA signaling, the connection between ABFs/WRKYs 

transcription factors (TFs) as well as new reports on Mg-chelatase function. 

 

Efflux and uptake of ABA  

Since ABA biosynthesis occurs predominantly in vascular parenchyma cells and ABA 

has systemic effects, a requirement for efficient intercellular transport of ABA, beyond 

that of passive diffusion, had been envisaged [11–13]. For instance, ABA2, AAO3 and 

NCED3, key enzymes of the ABA biosynthetic pathway, are expressed in specific areas 

of vascular tissues, which suggested the existence of a transport system to deliver ABA 

to target tissues and cells [11–13]. In 2010, two ABA transporters were identified by 

genetic screenings [14
●●

,15
●●

]. A search for Arabidopsis ABA-hypersensitive mutants 

in germination and seedling growth led to the identification of the abcg25 mutant 

[14
●●

]. The ABCG25 gene, which encodes an ATP-binding cassette (ABC) transporter, 

is expressed mainly in vascular tissues and the protein is localized at the plasma 

membrane (Figure 1). A transport assay with vesicle membranes obtained in transfected 
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insect cells indicated that ABCG25 might have ATP-dependent ABA-efflux activity in 

plant cells. Indeed, overexpression of ABCG25 in Arabidopsis led to reduced sensitivity 

to ABA-mediated inhibition of growth, probably because the cells remove ABA by 

active transport, and reduced water loss, probably because this transporter facilitates the 

delivery of ABA to guard cells.  

 ABA delivery from vascular tissues to the apoplast of guard cells might be 

connected with ABA uptake from the apoplast to the cytosol through another plasma 

membrane-localized transporter, ABCG40/PDR12 (Figure 1). ABCG40 was identified 

by direct screening for potential ABA transporters in the PDR-type subfamily of ABC 

transporters [15
●●

]. To this end, seed germination and stomatal response were analyzed 

in 13 out of 15 knockout mutants (abcg29-41), and as a result, the mutant abcg40 was 

identified as having marked differences with respect to wild type (wt). Stomata of 

abcg40 showed reduced stomatal closure and lower inhibition of stomatal opening in 

the presence of ABA, and therefore, abcg40 plants showed enhanced wilting under 

drought stress and reduced increase in leaf temperature in response to ABA. ABCG40 

function is also required in cell types other than guard cells, although gene expression in 

guard cells was higher than in mesophyll cells. Thus, experiments conducted in rosette 

tissue also showed delayed and reduced expression of three ABA-responsive genes in 

abcg40. Results obtained with abcg40 seeds are more difficult to interpret, because 

although these seeds were less-sensitive to inhibition of germination mediated by 

exogenous ABA, they also showed faster germination on medium lacking ABA. 

Finally, biochemical experiments in the yeast heterologous system and tobacco cell 

suspensions showed that ABCG40 is a high-affinity (Km = 1 M) and specific uptake 

ABA transporter.   

 Although both transporters belong to the large ABC subfamily G, they are 

grouped in different branches because of an important structural difference, i.e. 

ABCG25 belongs to the branch of half-size transporters (AtABCG1–28) and ABCG40 

to that of full-size transporters (AtABCG29–43) [16]. Since ABCG25 belongs to a large 

gene family, functional redundancy might explain why the abcg25 mutant does not 

show aerial phenotypes. However, ABCG40 also belongs to a gene family and, 

nevertheless, the stomatal response of abcg40 was notably affected. Since abcg40 also 

affects ABA-response of mesophyll cells, the authors could assess the contribution of 

ABCG40 to ABA uptake in Arabidopsis protoplasts, concluding that this gene product is 
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the major ABA importer in leaf-cell protoplasts. Moreover, an apparent paradox is now 

solved. The pH-dependent diffusion of undissociated ABA is a component of ABA 

uptake, which would be markedly reduced under drought stress that increases the pH of 

xylem sap [17]. The discovery of ABCG40 offers a reasonable alternative, under 

drought-stress less ABA would be nonspecifically trapped by passive diffusion in 

nontarget tissue and more ABA would be available for pH-independent uptake [15
●●

]. 

 

Protein degradation and transcriptional regulation 

The ubiquitin/26S proteasome pathway plays a key role in the perception and 

transmission of environmental and hormonal signals [18]. For instance, perception of 

auxins, jasmonates and gibberellins are closely linked to this pathway, and ethylene and 

ABA signaling also involve components of this protein degradation pathway [19]. 

Either negative or positive transcriptional regulators of these hormonal pathways are 

targets of the 26S proteasome, and therefore, inactivation of transcriptional repressors or 

ceasing degradation of activators, respectively, leads to hormone signaling. ABA 

signaling is affected in different mutants that show lesions either in a regulatory subunit 

of the 26S proteasome [20], different E3 ligases [21–24
●●

,25
●
] or substrate receptors of 

E3 ligases [26
●●

] (Figure 2). Additionally, sumoylation, which can act competitively on 

targets regulated by ubiquitination to regulate protein stability, also affects ABA 

signaling through negative regulation of ABI5 activity [27,28
●●

]. Indeed, pioneering 

work on the regulation of ABI5 protein stability was crucial to link the 26S proteasome 

and ABA signaling [29].   

 Mutants of some proteolysis-related components have a pleiotropic effect 

including impaired ABA signaling. For instance, the rpn10 mutant, which is impaired in 

a subunit of the 19S regulatory particle of the 26S proteasome, is affected in a number 

of processes and it shows hypersensitivity to ABA in seed germination and root growth 

assays as well as stabilization of the short-lived ABI5 transcription factor [20]. 

Pleiotropic effects, including ABA hypersensitivity, were also found in the siz1 mutant, 

which was impaired in a SUMO E3 ligase. SIZ1 negatively regulates ABA signaling 

through sumoylation of ABI5, which inactivates the protein and prevents its 

proteasome-mediated degradation [28
●●

]. ABI5 transcript accumulation, protein 

stability and protein phosphorylation are highly regulated by ABA [29]. In the absence 
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of ABA, ABI5 is degraded to allow germination and postgerminative growth, whereas 

ABA induces ABI5 stabilization, when applied between 48 and 60 h poststratification, 

to prevent early growth under osmotic stress conditions [29]. The RING E3 ligase KEG 

is required for ABI5 degradation under normal growth conditions and ABA causes 

ABI5 accumulation by promoting KEG degradation [22,26
●●

]. Phosphorylation of KEG 

is required for its ABA-induced degradation, which opens a possible link with the 

SnRK2s of the core ABA signaling pathway.  

 ABI5 seems to be a highly courted TF, since also CUL4-based E3 ligases 

regulate its stability through the proteins DWA1 and DWA2, which are the components 

of the ligase that mediate substrate recognition [30
●●

]. Finally, another element that 

regulates ABI5 protein levels is ABI five binding protein (AFP); however, its 

mechanism of action is not yet clear. AFP belongs to a small family of proteins, AFP1–

4, that are able to interact with ABI5 [31,32]. Initially, it was proposed that AFP might 

promote ABI5 degradation by the 26S proteasome [31]; however, AFP is not an E3 

ligase. Instead, a characteristic feature of AFP1–4 proteins is the presence of an 

ethylene-responsive element binding factor-associated amphiphilic repression (EAR) 

motif at the N-terminus. The EAR motif is a hallmark of transcriptional repressors such 

as AUX/IAA and NINJA proteins, which function as adaptor proteins to recruit the 

Groucho/Tup1-type co-repressor TOPLESS (TPL) [33
●
]. Interaction of AFP2 and AFP3 

with TPL has been observed by yeast two-hybrid assays, which suggests the tempting 

hypothesis that some AFP proteins and TPL (or TPL-related proteins) form a high-

molecular mass complex, acting as transcriptional repressors of ABA signaling by 

blockade of ABI5 function [33
●
]. 

 ABI3 is another target of the 26S proteasome and the RING E3 ligase AIP2 is a 

negative regulator of ABA signaling that promotes ABI3 degradation [21,34]. Thus, 

during vegetative growth, ABA promotes ABI3 degradation through enhancement of 

AIP2 function [21]. Conversely, ABA promotes the accumulation of ABI3 during seed 

maturation and the time period when post-germination growth arrest occurs, via 

transcriptional and post-translational mechanisms. PRT6 (Proteolysis6) is another type 

of E3 ligase that negatively regulates seed sensitivity to ABA [24
●●

]. PRT6 is an N-

recognin E3 ligase that recognizes amino-terminal destabilizing residues of proteins, 

targeting them for degradation at the 26S proteasome. Mutant prt6 seeds are very 

hypersensitive to ABA-mediated inhibition of seed germination and according to 
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genetic interactions with various abi mutants, it has been hypothesized that PRT6 might 

degrade a positive regulator of ABA signaling during seed after-ripening. The E3 

ligases described up to now are genetically defined as negative regulators of ABA 

signaling. However, other E3 ligases, such as the RING finger E3 ligases SDIR1 (salt- 

and drought-induced ring finger1) and RHA2a (ring-H2), are genetically characterized 

as positive regulators because sdir1 and rha2a mutants show reduced sensitivity to 

ABA in seed germination and early seedling growth assays, and in the case of sdir1, 

also reduced stomatal closure by ABA [23,25
●
]. Therefore, these ligases might be 

involved in the degradation of transcriptional repressors or negative regulators of ABA 

signaling. 

 

ABFs, WRKYs and Mg-chelatase in ABA signaling 

Different families of transcription factors regulate ABA signaling in a positive or 

negative manner [1]. Among the best known positive regulators of ABA signaling and 

key targets of SnRK2s are the bZIP-type ABFs/AREBs, which recognize the ABA-

responsive elements in the promoters of ABA-inducible genes. A comprehensive 

analysis of the AREB1/ABF2, AREB2/ABF4 and ABF3 TFs has been performed 

through the generation of multiple combinations of mutants [35
●
]. During seed 

germination, none of the mutants showed different sensitivity to ABA compared to wt. 

However, vegetative responses to ABA were particularly impaired in the triple mutant 

areb1 areb2 abf3, as illustrated by its resistance to ABA-mediated inhibition of root 

growth and diminished expression of stress-responsive genes. Compared to this, the 

triple mutant only shows a modest increase in water-loss rate compared to wt, indicating 

that other targets of ABA-activated SnRK2s, different than bZIP-type AREB/ABFs, are 

mostly responsible for the regulation of stomatal aperture.  

 Different rice and Arabidopsis WRKY TFs have been implicated in ABA 

signaling [36–38
●
,39

●
,40

●
]. Usually, WRKYs have been described as TFs inducible by 

pathogen infection or salicylic acid treatment, and indeed, a large number of pathogen-

inducible genes contain W-box sequences that are recognized by WRKY proteins. 

Interestingly, ABA signaling genes as ABF2, ABF4, ABI4 or ABI5 contain W-box 

sequences in their promoter regions [38
●
,40

●
]. Thus, WRKY63 positively regulates 

expression of ABF2 through binding to W-boxes of its promoter (Figure 3), but 
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intriguingly, wrky63 shows enhanced sensitivity to ABA during seed germination and 

seedling growth, whereas it is ABA-hyposensitive for stomatal closure [38
●
]. Using 

ChIP analysis, Shang et al. [40
●
] have shown that WRKY40 binds the promoters of 

ABF2, ABF4, ABI4 and ABI5, and for instance, represses ABI5 expression (Figure 3). 

Accordingly, the wrky40 mutant shows enhanced sensitivity to ABA-mediated 

inhibition of germination and early seedling growth. In agreement, Chen et al. [39
●
] 

obtained similar results during the characterization of wrky40. In contrast, conflicting 

results were obtained with respect to ABA sensitivity of wrky18 and wrky60 mutants, 

which are defined as positive regulators of ABA signaling [39
●
], whereas Shang et al. 

[40
●
] catalogued them as repressors. Finally, this article poses a model for Mg-chelatase 

H subunit (CHLH/ABAR)-mediated ABA signaling that involves recruitment of 

WRKY40 at the cytosol upon ABA perception by the cytosolic tail of CHLH [40
●
]. 

This model faces important criticisms since two groups have failed to show ABA 

binding by barley or Arabidopsis CHLH [41
●
, 42

●
], apparently the carboxylate group of 

ABA, which is required for bioactivity, is not required for ABA binding by CHLH [43, 

44
●
] and finally, no alteration in regulation of stomatal aperture was reported in any of 

the single or combined wrky mutants [40
●
]. In spite of this controversy, it seems well 

supported that CHLH affects ABA signaling in stomatal guard cells, since impairment 

of its function in RNAi lines [45, 46
●●

] or the missense mutants cch (encoding 

chlh
P642L

) [45] and rtl1(encoding chlh
L690F

) [42
●
] led to enhanced water-loss and lack of 

ABA-induced stomatal closing. Since another mutant impaired in a different subunit of 

Mg-chelatase, CHLI, shows impaired stomatal closure, it has been suggested that the 

Mg-chelatase complex as a whole plays an indirect role in ABA signaling, likely 

through regulation of Ca
++

 mobilization from chloroplastic stores [42
●
].  Structural 

evidence supporting ABA-binding by CHLH would be a definitive answer to the above 

described controversy.  
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Conclusions 

The recent identification of PYR/PYL intracellular ABA-receptors nicely matches with 

the discovery of an active transport system for ABA-uptake, which allows fast delivery 

of ABA to target cells for efficient inactivation of clade A PP2Cs through PYR/PYL 

receptors. It somehow seemed ABA signaling was inefficiently designed, spending so 

much investment on the core pathway, i.e. receptors-phosphatases-kinases, and 

depending exclusively on passive diffusion for intracellular ABA delivery. In addition 

to protein phosphorylation, regulation of protein stability by the 26S proteasome is an 

important mechanism for ABA signaling, particularly during germination and early 

seedling growth. Several E3 ligases are involved in this process, acting either positively 

or negatively. Additionally, a few E3 ligase mutants, e.g. sdir1 and dwa1 dwa2, are also 

known to be affected in the regulation of stomatal aperture, and this phenotype can´t be 

explained with the reduced number of targets identified so far. Therefore, an important 

question for the future is the identification of additional targets of E3 ligases beyond of 

ABI3 and ABI5.  Finally, transcriptional regulation of ABFs/AREBs by WRKYs is a 

novel finding in the complex regulation of gene expression in response to ABA.  
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Figure legends.  

Figure 1. A simplified model of the ABA pathway that integrates ABA transport and 

signaling. PYR/PYL/RCAR receptors perceive ABA intracellularly, either at cytosol or 

nucleus, and form stable ternary complexes with clade A PP2Cs. Thus, phosphatases are 

inactivated, which allows the activation of downstream targets of the PP2Cs, for 

instance SnRK2.2, 2.3 and 2.6/OST1. These kinases are either autophosphorylated or 

activated by putative upstream activating kinases (UAKs), leading to ABA-induced 

regulation of plasma membrane and nuclear targets, such as NADPH oxidase, KAT1, 

SLAC1 and ABFs/AREBs (reviewed in 1, 4-10). In addition to SnRK2s, the calcium-

dependent protein kinases (CPKs) also regulate ion fluxes and transcriptional response 

to ABA, and for instance, the CPK and SnRK2 branches converge on the anion channel 

SLAC1. TFs are supposed to act in the context of chromatin and components of 

chromatin remodeling complexes, e.g. type SWI/SNF and histone deacetylases 

(HDAC), have been shown to regulate ABA signaling [47–51]. ABA and its glucose 

ester (ABA–GE) are subjected to intercellular and likely intracellular transport. The role 

of ABC transporters, ABCG25 and ABCG40, in ABA transport is highlighted and 

putatively connected with ABA perception. BG1 is an intracellular b-glucosidase 

localized to ER that releases ABA from ABA–GE stored in the vacuole or imported 

from the vascular system [52].  
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Figure 2. Ubiquitin and SUMO E3 ligases as regulators of ABA signaling. Whereas 

ubiquitin-modified proteins are targeted for degradation by the 26S proteasome, the fate 

of sumoylated proteins depends on the target. In the case of ABI5, sumoylation by SIZ1 

protects it from proteasome degradation and maintains the TF in an inactive form. AIP2, 

KEG, PRT6 and DWA1/2-DDB1-CUL4 promote degradation of positive regulators of 

ABA signaling (ABI3 by AIP2, ABI5 by both KEG and DWA complex). Conversely, 

SDIR1 and RH2a are supposed to promote degradation of unidentified negative 

regulators. RPN10 is a regulatory subunit of the proteasome that mediates degradation 

of ABI5.  

 

Figure 3. Transcriptional regulation of ABF2 and ABI5 expression by WRKY TFs. 

Several WRKYs have been involved in ABA signaling, namely WRKY2, WRKY18, 

WRKY40, WRKY60 and WRKY63. Binding to W-box sequences of ABF2 promoter 

by WRKY63 or ABF4, ABI4 and ABI5 promoters by WRKY40 has been demonstrated. 

WRKY63 activates expression of ABF2, whereas WRKY40 represses expression of 

ABI5.  
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