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Abstract 

This paper is focused on the validation by means of physical fault injection at pin level of a 

time-triggered communication controller: the TTP/C versions C1 and C2. The controller is a 

commercial off-the-shelf product used in the design of by-wire systems. Drive-by-wire and fly-

by-wire active safety controls aim to prevent accidents. They are considered to be of critical 

importance because a serious situation may directly affect user safety. Therefore, dependability 

assessment is vital in their design.  

This work was funded by the European project ‘Fault Injection for TTA’ and it is divided into 

two parts. In the first part, there is a verification of the dependability specifications of the TTP 

communication protocol, based on TTA, in the presence of faults directly induced in 

communication lines. The second part contains a validation and improvement proposal for the 

architecture in case of data errors. Such errors are due to faults that occurred during writing 

(or reading) actions on memory or during data storage. 
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1. Introduction 

Embedded systems are becoming increasingly complex. Their technological advance has 

allowed results that were inconceivable some years ago. This is the case of the ‘by-wire’ 

concept in the automotive industry – with a constant increase in the number of electronic control 

units (ECUs) with each new car model. The number of ECUs is not negligible and they are 

normally distributed throughout the vehicle and share a required fail-safe communication 

network.  

Dependability assessment is vital in the design of by-wire active safety controls for preventing 

accidents. Both reliability and safety are critical attributes of dependability in these control 

systems because a serious situation may directly affect user safety. Reliability concerns the 



continuity of a correct service during a time interval, while safety is the probability that a 

catastrophic failure does not happen.  

An architecture considered as dependable will give the system the ability to detect errors and 

recover in time to continue offering a correct service. An example is the Time-Triggered 

Architecture (TTA) [1] that places reliability and safety as the most important issues. However, 

although the TTA provides a worthy structure in the development of by-wire systems, the 

fulfilment of the expectations concerning reliability and safety mainly depend upon 

communication protocols. There are several protocols based on TTA such as: FlexRay [2]; 

TTCAN [3]; FTT-CAN [4]; Time-Triggered Ethernet [5]; or Time-Triggered Protocol (TTP) 

[6]. TTP was originally focused on backbone communication buses for automotive systems and 

is now open to the high safety standards required in the aerospace industry.  

TTP has been comprehensively verified by formal methods [6] and surpasses the other protocols 

because it uses fault injection techniques to achieve a precise dependability validation. Two 

European Commission projects: PDCS (‘Predictably Dependable Computing Systems’ 1992-

1993); and FIT (‘Fault Injection for TTA’ 2000-2002)
1
 funded research into fault injection. The 

FIT project is the most recent project and presented tools with improved technology for 

validating distributed systems. It helped to improve the TTP-C1 and the TTP-C2 

communication-controller chips with cost-optimal safe solutions. The TTP/C chips are 

commercial off-the-shelf products, hence the importance of their validation. Techniques used 

during the project were: Software Implemented Fault Injection by the Vienna University of 

Technology; Heavy Ion Radiation by Chalmers University in Sweden; C-Sim Simulation by the 

Czech Technical University in Prague and the University of West Bohemia; VHDL-based Fault 

Injection and Physical Fault Injection at Pin-level, both by the Universidad Politécnica de 

Valencia in Spain. All the techniques have been demonstrated to be compatible and sufficiently 

enriching to merit individual study.  

This paper is focused on fault injection at pin-level. This was the only technique that enabled 

the direct injection of faults without overhead. Injections are made on buses or control lines, 

emulating a wide variety of real faults that can occur inside the chip as, well as in the pins and 

control lines themselves. The technique is applied to a real prototype of the system, so enabling 

observation of the reaction of the communications protocol, as well as observation of the 

goodness of the supporting physical layer.  

This paper is organized as follows: Section 2 briefly describes the target of our experiments. 

Section 3 reviews the most frequent causes of physical faults and how they can be modelled in 

an experimental context. This section also gives the details of the pin-level fault injection, as 

well as a description of the tool used in the experiments. Section 4 describes the experiments, 



Sections 5 and 6 offer an in-depth analysis of the experimental results. Finally, section 7 

summarizes the paper.  

 

2. TTP/C: target of the experiments 

A by-wire control system includes many components – ranging from basic input-output devices 

to computational electronic units, plus the communication network and the protocol used to 

enable sharing: all of which are part of the architecture [7]. Both reliability and safety are 

critical in most of by-wire applications (steer-by-wire, brake-by-wire, etc.) and consequently, 

require a very dependable architecture. Architectures for distributed systems can be divided into 

Event-Triggered Architectures and Time-Triggered Architectures. Generally speaking, an 

Event-Triggered Architecture is more flexible than a Time-Triggered Architecture (TTA). 

However, TTA places reliability and safety before flexibility. TTA [1] always guarantees a 

consistent state, even in the presence of faults. Besides, TTA assures known latency times in the 

detection of communication errors. However, although the theoretical description of TTA 

presents such commendable characteristics, the error detection coverage and continuity of 

service depend on the communication protocol. Therefore, differences exist among the time-

triggered protocols with regard to implemented (or non-implemented) services. 

 

2.1. The Time-Triggered Protocol 

The Time-Triggered Protocol (TTP) [6] is oriented to systems of n units (TTP nodes) 

synchronized and interconnected using two replicated broadcast channels. The TTP nodes 

access the replicated channels according to a Time Division Multiple Access (TDMA) scheme. 

Every node in the system has a unique time slot for transmitting (transmission window) which is 

specified in a static data structure of the TTP/C controller chip.  

Figure 1 shows an example of transmission. There are four interconnected TTP nodes (A, B, C 

and D). The space between consecutive transmission windows is the Inter Frame Gap, used for 

internal updates. The figure shows two rounds of transmission: TDMA i and TDMA i+1.  

In TDMA, the sequence of transmission is fixed. After transmitting node D in window j, node C 

will follow in window j+1. Node C then succeeds node D. Node B is the successor of the 

successor of node D because it transmits in window j+2. Finally, node A is the successor of node 

B because it transmits in window j+3.  

Frames can be transmitted redundantly by both channels - window j, TDMA i - or not - window j, 

TDMA i+1 – but fault tolerance is not provided for non-redundant transmissions. However, a 

node must always transmit a frame using both channels during its window. In case of ‘nothing 

to transmit’, the node sends a special frame containing its C-state (or internal state consisting of 
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several parameters). The C-state is always transmitted explicitly or implicitly with data. 
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Figure 1. TDMA example 

To maintain the TDMA scheme, TTP implements:  

 A Global Time Base that allows the nodes to maintain their local clocks as synchronised 

as possible.  

 A TDMA scheme known a-priori by all the TTP nodes. If a node does not transmit 

during its window because of an error, its partners will realize the problem during that 

same window. The scheme is stored in nodes as the Message Description List (MEDL).  

 There are services implemented at communication layer that guarantee the consistency 

of the system: after a node sends a frame it needs a mutual confirmation of reception 

and a global acceptance of this confirmation. In case of disagreement, the majority 

group with the same knowledge will remain non-faulty and connected, while those that 

are in minority will assume an error and are disconnected.  

Services used as error detection mechanisms are membership, acknowledgement, and clique 

detection:  

 The membership service maintains a membership vector with a flag per node. The flag 

indicates when the node is non-faulty and active or not. The C-state contains the 

membership vector. When a frame is transmitted, the controller compares its vector with 

the vector received from the successor. In case of disagreement, it compares both with the 

successor of the successor. In case of agreement between successors, the node assumes 

that it has made an error; otherwise, it assumes a successor error.  

 When a node transmits a frame, it needs a global acknowledgement from at least half of 

the connected nodes. When a frame is incorrectly received (for example, the CRC does 

not match), the receiving node sets the node transmitter as non-active in its membership 

vector. Acknowledgment is then given only if the membership vectors from receiver and 



transmitter agree.  

 A clique division means that there is not a common knowledge of the system: 

membership vectors differ among the nodes. Clique detection executed individually by 

each node will avoid this situation if it is assumed that the majority knowledge group 

always prevails. 

 

2.2. The TTP/C controller 

In a TTP system, one TTP node consists of the host processor, the TTP/C controller, and the 

Communication Network Interface (CNI) [6]. The host processor has three software layers: the 

time-triggered operating system, the fault-tolerant communication layer (FTcom), and the 

application layer. The FTcom layer is responsible for reading/writing redundant messages 

to/from the CNI. It performs the mapping of redundant messages (frames sent redundantly by 

both channels) on to a single message, thus making the message redundancy transparent to the 

application. The CNI is a data exchange interface between the host and the communication 

controller and it is implemented using a dual ported RAM.  

The static communication schedule is stored in the MEDL – which stores information about 

message size, message type, message sending/receiving point in time, and other information 

related to the communication schedule and configuration of the node. The MEDL is prepared 

off line and cannot be changed at runtime.  

Several versions such as TTP/C-C1 and TTP/C-C2 controllers deploy an additional unit called 

Bus Guardian (BG). The BG enables and disables the transmission accesses to the bus. The BG 

prevents a faulty node from sending a message outside its transmission window, avoiding 

collisions in the bus.  

TTP/C-C1 is a 16-bit controller organized around the Protocol Control Unit (PCU). The PCU 

executes high level protocol mechanisms such as message redundancy, membership, etc. – and 

controls the interaction of some internal blocks such as the Time Control Unit (TCU) and the 

CRC Unit. The TCU maintains the Global Time Base algorithms, and the CRC unit supports the 

calculation of cyclic redundancy check sums. The CRC unit allows the concurrent calculation of 

two checksums, one for each channel. The frame data is added to the check sum word or byte 

wise.  

The main changes in the TTP/C-C2 version are the extended length of the frames, the MEDL on 

chip, and the addition of some new blocks. 

 

3. Validation by Fault Injection 

To carry out a consistent experimental validation with regard to physical faults, we need 

previously to analyze which are their sources in current sub-micron technologies.  



Firstly, this section summarizes the most frequent causes of physical faults and how they can be 

experimentally modelled. Secondly, the details for the pin-level fault injection are summed up, 

as well as the description of the tool used in the experiments.  

 

3.1. Physical faults in current semiconductors  

Most electronic devices are designed taking into account the possibility of physical disturbances 

due to electromagnetic interferences (EMI), power variations, radiation, and other possible 

causes. Moreover, higher operational frequencies and integration densities combined with the 

lower power voltages of technologically advanced semiconductor devices make them more 

susceptible to the effects of neutron and alpha particles [8] [9] [10]. The sources of radiation are 

cleverly and concisely described in [11]. For example, the U-238 and Th-232 radioactive 

isotopes, being natural alpha emitting particles in semiconductors, are the cause of soft errors in 

the form of transient bit-flips in memory. The special case of Pb-210 must be taken into account 

as a source of alpha particles from the solder bumps in flip chip packages, but only for a limited 

period of time. Some soft errors, and less probable hard errors [12], are also caused by cosmic 

radiation. A relevant phenomenon is the induction of secondary particles; the nature, energy, 

and direction of which could result in complex chain reactions [13] [14], as for example, the 

case of the B-10 isotope [15]. Due to a neutron incidence, this isotope is capable of fission into 

a Li-7 recoil nucleus, a gamma photon, and an alpha particle.  

The number of transistors belonging to different memory cells which are upset by a single 

incidence increases with integration density. Besides the possibility of multiple incidences, high 

energy ions can induce multiple bit upsets if crossing through sensitive adjacent regions – either 

due to a single ion track or secondary particles caused by an ion collision [16] [17].  

Apart from radiation, the environmental working conditions of some critical systems, and the 

resulting degradation as a result of device wear are also sources of physical faults [18] [19].  

A challenge for experimental validation is the modelling of harmful environmental effects 

(crosstalk, junction defects, bad connectors, coupling, etc.), degradation problems, as well as 

radiation. In this field, a recent study regarding fault models can be found in the documentation 

of the European funded project DBench (‘Dependability Benchmarking’ 2001-2004) [20] and 

[21]. Both permanent and intermittent faults, as well as transient faults, are modelled at the 

Logic and Register Transfer (RT) levels. The study traces the representation of the electrical 

stress, hot e-trapping, ionic contamination, electromigration, thin-oxide breakdown, radiation or 

temperature variation effects in the form of permanent and intermittent faults modelled as 

shorts, open-lines, stuck-at, stuck-open, indetermination in voltage values, and delays in 

transmitted signals. Causes of transient faults are radiation, interconnection shrinking at high 

frequencies, transients in power lines, crosstalk, or temperature variation.  



In addition to this study, there are several relevant considerations concerning solder joints and 

metallizations:  

- The risk of shorts due to undesirable whiskers produced by electromigration and thermal 

coefficient mismatches in junction elements increases with new packages and deep 

submicron circuits that feature smaller pad distances and internal metallizations.  

- Excessive intermetallic compound formation or silicon cratering [22], and mechanical 

stress are manufacturing defects which produce coarse junctions.  

High current density and junction temperatures, as well as moisture and ionic contamination, are 

factors which speed up solder fatigue and metal migration and result in microcracks and open-

lines – regardless of whether manufacturing defects are present. Microcracks increase the 

resistance of a junction in a signal transmission and would be likely to cause a delayed 

reception. The problem is significant at high frequencies where wire distance shrinkage worsens 

the coupling capacities. The variation of resistance and capacity at high frequencies could result 

in signal attenuation at indeterminate voltage values.  

With improved understanding of the causes of faults, and the methods in which these can be 

modelled in an experimental environment, the next step is to look for techniques and tools 

which enable us to work with these models.  

 

3.2. Fault injection at pin level 

There are three general categories of fault injection (FI): (i) Simulated FI; (ii) Software 

Implemented FI (SWIFI); and (iii) Hardware Implemented FI (HWIFI). 

 Simulated FI mainly refers to tools that model the system using high level languages. 

Hardware description languages such as Verilog or VHDL are currently often used. An 

example is VHDL-based fault injection [23], a powerful technique with a wide range of 

fault models.  

 SWIFI consists in reproducing, at software-accessible RT level, errors caused by physical 

faults in the hardware or by hidden bugs in the software. It provides a relatively cost 

effective and simple methodology.  

 HWIFI tools disturb the electrical properties of hardware components, and indirectly 

affecting the software components as well. Some examples are heavy ion radiation, laser 

radiation, electromagnetic interferences, and pin-level FI. An advantage is the application 

of the technique on a real system prototype. It enables us to observe both the reaction of 

the software and the goodness of the hardware.  

Two HWIFI tools were applied in the FIT project: heavy ion FI, and FI at pin level. Together 

they provide the effect of faults injected with laser radiation or electromagnetic interferences. FI 

at pin-level is a technique based on the notion of perturbing integrated circuits: usually by 



means of shorts on the pins or by sticking them at a predefined value. Pins belong to address or 

data buses, control lines, clock or oscillator inputs, peripheral inputs or outputs, etc. The 

technique emulates both external and internal physical faults [24].  

Location, duration, and persistence (transient, intermittent, or permanent) of the injections are 

easily controlled in FI at pin-level. Faults can be injected in one or several points at the same 

time (reproducing common mode faults) or correlated in a short period of time. There is no 

overhead but a degree of intrusiveness is caused by an increment in the capacity of the line.  

One restriction of FI at pin-level is chip accessibility. However, when this technique is used in 

the validation of a communication protocol (more specifically in the validation of a 

communication controller chip) this restriction becomes less effective if fault injections are 

focused on the communication lines. For example, Figure 2 shows injections in the TTP/C1 

chip at pin-level: (i) lines that connect the communication units with the 82C250 CAN driver (in 

the physical layer for TTP/C1 chip) or the MAX3485 driver (for TTP/C2); and (ii) the CNI host 

memory busses.  

 CNI Co mmunication Memory

Protoco l Control Unit 
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RxD RxD

TxD TxD
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Time Control Unit
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CRC Unit
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Figure 2. Location of faults at pin-level in the TTP/C1 chip 

Location of faults injected on the TTP/C chips:  

Faults at communication-pin level on the TTP/C1 chip are located a: (1) the Bus-

Guardian line (BG) that enables transmission only during the transmission window 

assigned to the node, (2) the Output-Enable line (OE) which enables the drivers, (3) the 

Clear-To-Send line (CTS) which sets the transmission init; and (4) both the 

Transmission and Reception TTL lines (TxD and RxD). Lines controlled by the Bus 

Guardian in the TTP/C2 chip are not accessible, and injections are only located on the 

TxD and RxD and the Reset line.  



Faults at host-pin CNI level are located on the Chip Enable line (CE), the Write Enable 

line (WE), the Output Enable line (OE), as well as the address and data buses. 

Faults injected at pin level cause three possible types of alteration in the signal: the generation 

of non-existing pulses, the removal of the signal, or the variation of a pulse shape.  

Depending on the location, persistence of the injected fault and type of alteration observed in 

the signal fault models reached by FI at pin level are shown in Tables 1 and 2.  

Table 1. FI at pin-communication level: Fault Models  

Location Persistence Type of alteration Fault Model 

BG, OE 
Transient, 

Intermittent 
Non-existing pulses Pulses 

TxD Transient Non-existing pulses Bit-flips 

Any line Permanent Signal removal Stuck-at 

TxD, RxD Transient Signal Shape Variation 
Delay, Indeterminate 

voltage at high frequency 

Any control line Transient Signal Shape Variation Delay 

 

Table 2. FI at pin-host CNI level: Fault Models  

Location Persistence Type of alteration Fault Model 

CNI buses Transient Non-existing pulses Bit-flips 

CNI WE, CE, OE Transient Signal removal Transient faults at RT level 

Any line Permanent Signal removal Stuck-at 

Any control line Transient Signal Shape Variation Delay 

 

For example, Figure 3 (A) shows two examples of non-existing pulses generated in a control 

signal. Figure 3 (B) shows the effect of a stuck-at-0 in a memory bus line.  

Original signal

Generation of 
non-existing 

pulses  

(A)  

Original signal

Memory access cycles
Injected value (0) expected value (1)  

(B)  

Figure 3. Generation of non-existing pulses  

It depicts a transient fault injected over a short time, but long enough to modify the original 

signal in consecutive memory accesses, thereby distorting the information (bit-flips) of several 

words. Likewise, a transient on the TxD line can flip one or several bits that belong to the 

transmitted frame.  



Besides, any pin permanently stuck-at-0 or at-1 will remove the original signal maintaining the 

line at the injected value. But if it is a transient fault, the pin-level fault injection emulates those 

transient faults at RT level that may cause an execution error.  

Finally, the variation of a pulse shape is focused on yielding violations of set-up and hold times.  

 

3.3. The injection tool: AFIT 

Three processes are involved in an experimental validation: fault injection, data acquisition, and 

the analysis of results [25].  

Fault injection: In the FIT project, the injection process at pin level was in charge of AFIT: 

Advanced Physical Fault Injection Tool at pin level. AFIT was developed at the Universidad 

Politécnica de Valencia [30] with several updates [24]. The tool is completely external and, 

it is not necessary to halt or delay the target execution. AFIT runs automatically, enabling 

many experiments to be conducted without supervision. Faults are injected by sticking the 

lines at-0 or at-1 logic values.  

Data acquisition: The last version of AFIT was designed for distributed systems [25]. This 

version incorporates a monitor as acquisition tool – combined with software tasks running in 

the host processors of the TTP nodes. The tasks obtain read-outs of the detected errors and 

failures. Failures can appear in either the injected node or another node connected to the 

network, which is known as ‘error propagation’. Injection and acquisition are synchronized. 

Each experiment lasts from the injection to the last reaction of the system (i.e. fault 

effectiveness, error activation, error detection, error treatment including diagnostics, 

isolation and recovery, error propagation and failure). Fault effectiveness has a special 

importance in physical fault injection. It determines whether the fault has caused a real 

perturbation. The injected fault is not always effective, for example, if we stuck-at-1 a line 

whose logic value was already 1 the fault will be ineffective and the experiment is useless.  

The collection and structured storage of system events in the presence of a fault, together 

with required measured latencies from the error activation to its detection or failure, are all 

parts of the acquisition process.  

Analysis of results: It would be desirable to have an automatic processing of the ‘injection-

acquisition’ that takes up the smallest possible period of time per experiment (i.e. up to one 

second in the TTP/C experiments). Post-processing these results, which is usually a time 

consuming task, would then be accepted if data storage is well conducted during the 

campaign and generate databases which contain all the required information for tracing back 

an observed event. An analysis of results may reveal defects in the injection and data 

acquisition processes that could be rectified in a new injection campaign (feedback).  

 



4. Experimental description 

The experimental system was a cluster of four TTP nodes with two configurations:  

A) TTP nodes with a TTP/CTM-C1 controller and a Motorola MC68360 used as host.  

B) TTP nodes with a TTP/CTM-C2 and a Motorola power PC PPC555.  

The workload was a brake-by-wire (BBW) simulation program designed by Volvo 

Technological Development. It was a distributed control system that required four TTP nodes:  

 The pedal brake: angled to calculate the brake force.  

 The vehicle: calculates the speed of the vehicle body in m/s, the speed of the four wheels, 

and the distance covered by the vehicle. It uses two parameters, the acceleration torque 

on one wheel, and the frictional force on one side of the wheel brake disc. The vehicle 

sends the speed of the vehicle body and the speed of the front left wheel.  

 The front left wheel: implements the ABS control algorithm – requiring as inputs the 

speed of the front left wheel in rad/s during the last cycle, the speed of the vehicle body 

in m/s, and the pedal force. As outputs, the node sends the pressure applied to one wheel 

brake pad’s piston and the new speed of the front left wheel, and resends the received 

data from the vehicle node.  

 The replica of the left wheel. The injection takes place in the front left wheel node. The 

replica runs free of faults. Messages transmitted by the replica are compared with those 

transmitted by the ‘front left wheel’ node in order to detect communication failures or 

errors propagated in the message data.  

Experiments are divided into two groups: (i) at the communication-pin level and, (ii) at the host-

pin CNI level.  

Experiments at pin-communication level  

In general, failures at the communication level are grouped under a limited number of 

modes. For example, the loss of connection either due to a crash in a unit or a 

communication-link-fault, both of which cause the unit to omit messages; babbling-idiot 

transmissions including commission failures [26] and physical disturbances; the 

Slightly-Off-Specifications (SOS) problems [27] [28]; Byzantine messages [29], and 

masquerading failures that occur when a unit assumes the identity of another unit and 

damages the system. In safety-critical systems, the communications protocol must 

guarantee a dependable behaviour despite failure or shutdown and reinstatement 

actions.  

The TTP detection mechanisms used by TTP to ensure consistency at the 

communication layer are membership, acknowledgment, and clique detection. 

Experiments evaluate their effectiveness in the presence of faults shown in Table 1.  

Experiments at pin-host CNI level  



The distribution of control algorithms in by-wire applications involves exposing the 

data values to physical faults during a long period. TTP guarantees the consistency of 

the system and the continuity of service at the communication layer. However, physical 

faults can also appear at the application level or during the transference of data between 

the application and the TTP/C chip.  

Because dependability should be achieved at every level in the architecture, the 

experiments carried out in this section try to identify error patterns caused in the 

presence of faults in Table 2. It also analyses error detection coverage with Error 

Detection Codes.  

 

5. Results at communication-pin level 

The TTA bus topology admits a network with channel redundancy. Therefore, TTP uses two 

channels. It sends a copy of the frame can be sent through each of the channels. If one copy 

does not arrive or is disrupted, the receiver will use the second copy –  as both arrive at the same 

time.  

In a sample of 3000 injection experiments on BG, OE, CTS, TxD and RxD (see section 3.2), 

TTP correctly accomplished the ‘single fault’ hypothesis. In other words, the protocol maintains 

its consistency in the presence of any single fault at pin level. 

But, double faults were also injected: one fault per channel simultaneously.  

 

5.1. Control lines 

Table 3 shows the failures that FI at pin level can explicitly induce. Faults are located in BG and 

OE lines.  

Table 3. Emulated failures with faults at BG and OE lines 

Description of the 

emulated failure 

Signal 

alteration 
Synchronism 

Persistence and 

multiplicity 

TTP Activated 

mechanisms 

Message omission Signal removal 
Frame 

transmission 

Double transient 

faults 
Membership 

Halts an on-going 

transmission 

Signal shape 

variation 

Frame 

transmission 

Double transient 

faults 
Membership 

Babbling-idiot 

spurious pulses 

Non-existing 

pulses 

Frame 

reception 

Single transient 

faults 

Clique avoidance 

Membership 

 

Failures occurring during the frame transmission were solved with the TTP membership service. 

Because frames were not received or not correctly received by the receivers (and all nodes are 

receivers in TTP), they will set the transmitter as faulty and outside the membership vector. 



Since the membership vector is always sent as part of the message, the transmitter only needs to 

compare its own vector with its successors to recognise the failure.  

A special case of failures are the babbling-idiot spurious pulses. These pulses emulate a faulty 

node that tries to transmit outside its transmission window. In the experiments, faults were 

synchronised with a frame reception. Ten out of every 500 single injections resulted in 

common-mode faults: frames received by both channels became disrupted. In these cases, 

failure should be detected by the clique avoidance algorithm. The faulty receiver sees the frames 

as invalid, but failed to coincide with the majority (it only needed to compare the membership 

vectors). However, clique avoidance did not detect the failure if the fault was injected during a 

reception just before its own transmission. The faulty node transmits and does not recognise the 

failure until the execution of the membership service. Therefore, both mechanisms are needed to 

achieve 100% detection coverage.  

 

5.2. TxD and RxD lines 

FI at pin level can change correct frames into syntactically or semantically incorrect frames. 

Faults are overlapped with the transmission of real frames, emulating internal errors to the 

controller, and defects in the communication channel or in the physical layer. Faults frequently 

cause syntactically incorrect frames. Only rarely (1 in 1000 instances) does the frame remain 

syntactically correct. Mechanisms used to detect these erroneous frames are CRC and message 

replication.  

FI at pin level can speed up the validation in the case of physical faults which cause errors in 

both channels. When injecting faults in either TxD signals or RxD signals, Slightly-Off-

Specifications failures appear. SOS indicates that the effect of the fault is marginal: it is detected 

as a fault by some components but accepted as a non-fault by others [28].  

An SOS failure is not necessarily produced by a malicious or ‘absent-minded’ node. Its origin is 

diverse, and ranges from an incoherency between system design and system integration to 

architectural weaknesses. Coherency will be achieved by replacing or redesigning some 

components. However, architectural weaknesses require conceptual change. For example, 

TTP/C developers have appealed for a change in the network topology towards a central star 

unit.  

SOS failures in a bus topology are divided into: SOS in time domain and SOS in value domain. 

SOS in time domain: 

In a TTP system, nodes have slight differences in their reception windows, i.e. because 

the precision of the oscillators drift away from each other.  

There are several parameters in a TTP window. For example, in Figure 4 (in TTP/C 

specifications), a sender opens its window at tAT s but starts the transmission at time 



tAT’s: it waits for any receiver to open its window. Δrw r defines the limits of valid 

receptions. In the middle, the frame is expected at tAT’ r, while treception r indicates the real 

reception init.  

 r

 s

rw r

Treception r

tAT r

tAT s

tAT’ s

tAT’ r

 

Figure 4. Some parameters in a TTP frame transmission 

Spurious short pulses between tAT s and Δrw r left limit, can generate SOS failures in the 

time domain.  

Differences in the window openings divide the cluster into: (1) nodes that receive the 

fault and the real frame, and (2) nodes that only receive the real frame.  

TTP avoids clique formation by comparing the number of valid received frames with 

the number of invalid frames. Before transmission, valid frames should exceed the 

number of invalid frames and silences (non-receptions during a window).  

In the experiments, it was observed that nodes in case (1) in TTP/C-C1 (version 0.1) 

increased the invalid frames counter by two (the fault and the frame). Subsequently, in a 

four TTP node system it was possible to observe the consecutive shutdown of the four 

nodes due to the fact that none were able to count more valid than invalid frames. 

Version 1.1 in TTP/C-C2 changes the concept of the valid frames counter into an agreed 

slots counter. By limiting the number of potential invalid receptions to one per window, 

shutdowns can be avoided and the protocol can be made more reliable.  

SOS in value domain:  

SOS failures in value domain are those generated by a marginal incorrect encoding or 

by an indeterminate value, for example, a signal attenuated below the established 

threshold.  

The experiments emulate SOS failures with double faults. For example, the RxD lines 

of Nodes 1 and 2 are stuck-at-0 while Node 3 receives the signal free of faults. Faults 

are aimed to cause discrepancies and the behaviour of the protocol is observed.  

In the experiments, it was seen that the TTP always avoids discrepancy by means of a 

Never Give Up strategy [6] that forces a clean restart and recovery. Such a strategy 

enables the system to work degradedly, maintaining minimumal functionality which 



reduces the system recovery latency.  

The SOS experiments were carried out with AFIT and reproduced positively with VFIT [33]. It 

produces more reliable results.  

 

5.3. Reinstatement actions 

After a node or nodes recover their functionality, they may perform reinstatement actions. In the 

context of validation, it is important to verify that reinstatement actions are safe and do not 

involve any correlated failure.  

We observed a new sample of 5000 experiments on the reset line. The reinstatement of one or 

more nodes did not result in any frame collision. Nevertheless, only 4 out of every 1500 

achieved reinstatement in just one TDMA. A faster reinstatement is a difficult challenge for any 

communication protocol. For this reason, it is recommended to replicate nodes with critical 

functions in the system.  

 

6. Results at host-pin CNI level  

When variables calculated by the application are available (for example, the wheel speed) the 

host writes these in a dedicated part of the CNI memory: the message memory. Message 

memory writing (or reading) is susceptible to electromagnetic interferences, radiation, solder 

joint degradation, etc. Likewise, data stored in the message memory can be exposed to single 

event upsets (i.e. radiation) that cause bit-flip errors.  

In TTP network transmission, frames are protected with a Cyclic Redundant Check (CRC) code. 

However, before the CRC calculation, data is not protected either during writing (or reading) 

actions on the message memory, or during data storage in the memory. Moreover, multiple 

faults are possible, and these would be correlated but not necessarily common-mode faults.  

 

6.1. Errors patterns  

There are different references regarding the reality of error multiplicity on data [16], [17], [25] 

and [31]. Bit-flips are the consequence of such faults, and depending on the source of the fault, 

they appear following different patterns. In general, it is possible to observe unidirectional or 

random errors.  

Unidirectional errors: 

Unidirectional errors are caused by stuck-at lines. For example, in a serial transmission, 

a line stuck-at-0 changes adjacent bits in the sequence into ‘0’. In a parallel 

transmission, bits stuck at 0 are those transmitted through the same bus line, belonging 

to different words but adjacent in the transmission sequence. Figure 5 shows an example 

of unidirectional errors in a 16-bit parallel bus transmission. Each vertical combination 



represents a bus line and each horizontal combination represents a word read or 

written on memory in consecutive cycles. The left-hand side of Figure 5 is free of faults, 

while the right-hand side contains 2 bit-flips due to a transient fault in line 6.  
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Figure 5. Unidirectional errors 

Random errors:  

Random means that bits do not necessarily change into the same value ‘0’ or ‘1’:  

 Shorts or open lines cause changes in adjacent bits but not to a fixed value.  

 Memory or register bit-flips. 

 Ineffective attempt: Transient faults during accesses to memory have a negative 

impact on the logic. Figure 6 shows an example where the host does not 

manage to update all the selected message memory addresses [25].  
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Figure 6. Ineffective writing attempt. 

Similar effects can be emulated by changing specific control registers [32].  

Furthermore, if the fault alters the destination memory address, it has a double effect. 

Firstly, data is not updated in the expected memory addresses. Secondly, data 

overwrites non-expected memory addresses.  

 

6.2. Detection coverage without Error Detection Codes  

The detection of bit-flips during writing, reading, or storage in message memory is outside the 

scope of the TTP, but not outside the scope of TTA architecture – which must guarantee system 

dependability at every level. Because these errors occur prior to frame formation, the CRC field 

calculated in TTP to protect the frame is not enough. End-to-end error detection mechanisms at 

the application level could protect data held in memory and waiting to be transmitted (or after 



reception).  

In the experiments, using a synthetic application, we observed several events caused by FI at 

pin-level when no end-to-end mechanism is implemented:  

 Host Exception (HostE): A bus error is detected by the host.  

 Operating System Exception (OSE): The task in execution did not finish before the 

assigned deadline.  

 Sender Status Flag (SSF): The sender status flag of a word is received as false. The 

status flag indicates if the word has been updated in the last TDMA round. It is a very 

simple end-to-end
2
 mechanism that sends an additional word in which one bit is assigned 

to each word indicating its status [6].  

 Unidirectional Error (UE): At least one word of the faulty node differs in i bits from the 

received word of the golden node (the wheel replica node). The variable i depends on the 

number of faulty lines.  

 Ineffective Write Attempt (IWA): At least one word was not effectively updated (see 

Figure 6).  

 HostE + UE or OSE + UE: Despite the exception, an incorrect data block is sent 

containing a unidirectional error.  

 HostE + SSF or OSE + SSF: A missing update is detected and an exception occurs 

simultaneously.  

 HostE + IWA or OSE + IWA: The missing update remains undetected and the incorrect 

data block is sent. The fault causes an exception as a secondary effect.  

Table 4 shows the percentages obtained in a sample of 3000 experiments. 1500 faults stuck-at- 

0 one line with a 76.39% of effectiveness, and 1500 faults stuck-at-1 one line with a 94.95% of 

effectiveness. Faults were injected on data bus lines with duration uniformly distributed in  

[500ns…5s]. 

Table 4. Percentage of events caused by faults at CNI pin level 

 HostE OSE SSF UE IWA 

Type: Errors/Faults HostE HostE+UE HostE+SSF HostE+IWA OSE OSE+UE OSE+SSF    

Stuck-at-0: 76.39% 19.28% 1.54% 1.54% 0.0% 0.0% 0.0% 0.0% 0.37% 37.10% 16.57% 

Stuck-at-1: 94.95% 49.25% 0.0% 15.54% 0.53% 16.37% 0.53% 1.73% 0.0% 11.01% 0.0% 

 

There is a 55.21% rate of undetected errors with stuck-at-0 faults and a 12.07% rate with stuck-

at-1 faults. Error Detection Codes (EDC) on data would improve the error detection coverage. 

The following section analyses some proposals.  

 

 



6.3. Improving the detection coverage  

A fault at pin-level on the TTP/C sticks a line during one or several CNI memory accesses. The 

reason must be found in the memory access model of the TTP/C controller. Memory accesses 

are also Time-Triggered and in predefined points of time, the host processor reads or writes a 

block of words. The size of the block depends upon the application. Because the words of a 

block are accessed consecutively, the stuck-at line will affect one or several words causing 

unidirectional or random errors. This relation is shown in Figure 7. For example, a fault in the 

range of [2s…<2.7s] causes up to two unidirectional errors or four ineffective updates, while 

a fault in the range of [4.3s…<5s] causes up to three unidirectional errors or seven ineffective 

updates.  
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Figure 7. The fault duration determines the number of bit-flips 

This section analyses two vertical codes to improve the error detection coverage. They consist 

in separable codes that add some bits (codeword) to those to be protected (information bits).  

 

6.3.1. CRC per bus line  

As well as in serial transmissions, data transferred in parallel can be protected by a CRC 

assuming a serial alignment of data in the CRC calculus. The number of undetected patterns of 

errors by a CRC will be 2
n-k

-1 in 2
n
, n being the number of transferred bits – and k the generator 

polynomial grade. Theoretically, CRC coverage is very high. However, from a practical 

viewpoint, the coverage depends upon where bit-flips in the data are spread. For example, 

Figure 8 shows several errors undetected by a CRC16 (generator polynomial: 

x
16

+x
12

+x
11

+x
8
+x

5
+x

4
+1); bit-flips can be caused by an ineffective update (examples 1, 2, 3, and 

4), stuck lines (example 5), upsets due to radiation (example 6), or an upset combined with an 

ineffective update (example 7).  

                                                                                                                                                                          
2
 A mechanism implemented at the sender application level and checked at the receiver application level. 
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Figure 8. Undetected errors; bits susceptible to flip by the fault effects appear in black; bit-flips 

in red 

Vertical codes will present a good coverage in such cases. With one codeword per bus line (or 

vertical combination in the data block), the more vertical combinations that contain bit-flips, the 

better the detection coverage will be. Since each combination is checked independently, the 

possibility of detecting at least one bit-flip increases. A CRC per bus line combines the high 

coverage of this EDC with the advantages of vertical codes in a parallel transmission.  

Experimentally we used a CRC3 (generator polynomial: x
3
+1). The block size is 11 words: 7 

words of information plus 4 words for the CRC codewords.  

The experimental sample produced 1376 single effective faults and 1411 double effective faults. 

1758 messages were transmitted with errors, both UE and IWA.  

Figure 9 compares the estimated percentage of uncovered errors with the percentage observed in 

the sample.  
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Figure 9. Percentage of uncovered errors: estimated and observed in the sample 

The optimistic coverage observed in the sample with faults longer than 4.3µs is due to the low 

variation in the transferred values: the variables calculated by the control algorithms are 

normally stabilized at fixed values (although these vary according to how the vehicle is driven). 



The estimated coverage includes every undetectable error in 2
n
 combinations (2

11
 in the 

example), but many of these undetectable errors never appear in the experiments, and 

differences are produced between estimated and observed. 

However, percentages of uncovered errors, both estimated and experimental, are still high. 

Detection coverage near of 99% would be advisable. 

 

6.3.2. A vertical parity code  

The simplest EDC is a parity code of a bit per memory bus line. However, the effectiveness of 

the code decreases with the fault duration (Figure 7).  

It may be possible to improve our experimental coverage bearing in mind the parity. For 

example, a Berger code can detect any unidirectional error and many random errors. We 

presented in [25] a separable error detection vertical code, based on Berger code. The code is 

focused on covering unidirectional errors but with a good coverage for random errors. It is 

based on two definitions:  

Definition: with m being the number of bits to be protected by a codeword, where C is the set 

of 2
m
 binary m-tuples. C can be structured as the U

m

i
iC

0

, in such a way that Ci= 

{ !)!(

!

10 ,...,, i im

m

iii ccc  }, denoting i the number of 1’s in the information bits, where Ci  Cj=, if 

ij. 

Definition: with n being the number of bits which form the codeword, where Un denotes the 

set of 2
n
 binary n-tuples. Each n-tuple is a codeword. uk  denotes the set of codewords with k 

number of 0’s, for all k from 0 to n. Codewords that belong to Un can be ordered in a vector Y. 

For example, Y = [
)12(10 ,...,,

nyyy ]. To order the vector, we consider that if yi belongs to uk and 

yj belongs to up where kp, then yi<yj if it is satisfied that k<p. But, if yi and yj belong to the 

same uk, their relative position within their own group is insignificant. Thus, it is possible to 

obtain several vectors. From these, the chosen vector must accomplish the following condition 

in the assignment:  

Assignment: One codeword yi that belongs to a vector Y is assigned to all combinations 

included in Ck C, and k number of 1’s in the information bits. 

Condition: yi, yj being two codewords that belong to a Y vector, then 0<i<j<2
n
-1. yi can be 

assigned to Ck, with k number of 1’s, and yj can be assigned to Ck+1 if the minimum Hamming 



distance (yi, yj )  2.  

Algorithm (m information bits, n code bits): 

1. If 2
n
 –1 = m, go to step 4. 

2. If 2
n
 –1 > m, and m odd. Then, 2

n
-(m+1) consecutive codewords have to be removed 

from the used vector Y taking into account the Condition. Go to step 4. 

3. If 2
n
 –1  > m, and m even, go to step 7.  

4. With Y being the used vector, m codewords are needed; the codeword y0 is assigned 

to 0
0c C0 

5. y1 is assigned to all combinations included in C1, y2 is assigned to all combinations 

included in C2, and so on so that yi is assigned to all combinations included in Ci, i= 

1,...,m-1. 

6. The codeword ym  is assigned to 0
mc Cm. Break. 

7. Being Y the used vector, m+1 codewords are needed, the codeword y0 is assigned to 

0
0c C0 

8. There is a Ck for k=0,...,m where the number of 0’s in any combination ck that belong 

to Ck is equal to the number of 1’s. Ck is the biggest group of C and can be divided into 

two subgroups Ck’ and Ck’’. Assignments are made following step 5 by taking into 

account that Condition is a strong requirement. Thus, because of the necessary use of 

two codewords for Ck’ and Ck’’, then, with yi, yj being two codewords that belong to a 

vector Y, 0<i<j<2
n
-1, yi can be assigned to Ck’ and yj can be assigned to Ck’’, if the 

distance (yi, yj)=1, such that, being yu the codeword of Ck-1 and yv the codeword of Ck+1, 

the minimum distance between either (yu, yi), (yu, yj), (yv, yi), (yv, yj), is  2. 2
n
-(m+2) 

codewords of the used vector Y are unused. 

9. The codeword ym+1  is assigned to 0
mc Cm. Break. 

Apart from unidirectional bit errors, a codeword covers many random bit-flips. ci Ci could 

reach another valid cj Cj, being  i  j, only if the non-unidirectional inversion of at least three 



bits occurs. This means that three bits should change to different ‘0’ or ‘1’ values. This is useful 

because it enables a satisfactory mix of solutions, one of which consists in using the code 

together with a couple of additional bits to cover any random change in three consecutive bits. 

 

Two additional bits have been added to every y codeword. These are calculated in a similar 

manner to the CRC3, but only LSB and (LSB-1) are needed.  

The experimental sample produced 1497 single effective faults and 1575 double effective faults. 

1969 messages were transmitted with errors, both UE and IWA. Figure 10 shows the 

improvement in the detection coverage.  
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Figure 10. Detection coverage: CRC3 and mixed solutions 

Percentages of undetected errors in the graph of mixed solutions are below 1%. This is a good 

result and means detection coverage is higher than 99%.  

However, in general, vertical codes entail a considerable overhead in the message. The final 

decision must be made by the human integrator. References for making a balanced decision are 

the criticality of the data and the dedicated field length within the frame.  

 

7. Summary  

This paper is part of the work carried out in the European funded project FIT (‘Fault Injection 

for TTA’). The objective was the validation by means of fault injection techniques of a 

commercial-off-the-shelf product: the Time Triggered Protocol chip, versions TTP/C-C1 and 

C2, used in the automotive and aerospace industries.  

TTP/C chips are used in active safety controls implemented in vehicles. Nowadays, these are 

implemented under the ‘by-wire’ concept using specific dependable architectures as the Time-

Triggered Architecture (TTA).  

Critical distributed systems need to be validated with techniques such as fault injection before 



manufacture. This paper is focused on the validation of a TTP/C chip controller by means of 

fault injection at pin-level. Firstly, the paper traces the representativeness of the injected faults 

by looking for  

their causes in current sub-micron technologies and how they can be emulated in an 

experimental environment with different fault models. Secondly, experiments are divided into 

two groups, those oriented towards protocol communication and those oriented towards 

message data.  

Faults at communication-pin level help enable observation of protocol service behaviour in the 

presence of failures in message omission, on-going transmission halting, babbling-idiot spurious 

pulses, SOS failures, and reinstatement actions. In the first three cases, an experimental 

coverage of 100% was obtained.  In the case of SOS failures, a defect in the TTP/C-C1 chip 

controller solved in version 1.1. of TTP/C-C2 chip was observed. Experiments also tested the 

worthiness of strategies such as Never Give Up or the reinstatement implemented in TTP/C. In 

general, results highlighted the importance of avoiding the clique formation, as well as the 

improved reliability provided by a membership service implemented at the data link level to 

maintain system consistency.  

The set of experiments oriented to message data have been concentrated on the CNI message 

memory. Injections are synchronised with memory accesses causing multiple bit-flips. The 

detection of these bit-flips caused by physical faults during writing, reading, or storage in 

message memory is outside the scope of TTP, but not outside the scope of the TTA architecture 

– which must guarantee system dependability at every level. Because these errors occur prior to 

frame formation, the CRC field, calculated in TTP to protect the frame, is not enough.  

Two EDC’s have been considered in this paper and evaluated experimentally: a cyclic 

redundant check per bus line; and vertical parity code. The second proposal produces detection 

coverage higher than 99%. However, since data bytes increase with error detection codes, the 

final decision about data protection rests with human integrators searching for a balanced 

solution.  
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