Document downloaded from:
http://hdl.handle.net/10251/38548
This paper must be cited as:
Kazarin, LS.; Martínez Pastor, A.; Perez Ramos, MD. (2013). A reduction theorem for a conjecture on products of two ¿-decomposable groups. Journal of Algebra. 379:301-313. doi:10.1016/j.jalgebra.2013.01.017,.

The final publication is available at
http://dx.doi.org/10.1016/j.jalgebra.2013.01.017

Copyright
Elsevier

A reduction theorem for a conjecture on products of two π-decomposable groups

L. S. Kazarin ${ }^{\text {a }}$, A. Martínez-Pastor ${ }^{\text {b,* }}$, M. D. Pérez-Ramos ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, Yaroslavl P. Demidov State University Sovetskaya Str 14, 150000 Yaroslavl, Russia
${ }^{b}$ Escuela Técnica Superior de Ingeniería Informática, Instituto Universitario de Matemática Pura y Aplicada IUMPA-UPV, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain
${ }^{c}$ Departament d'Àlgebra, Universitat de València
C/ Doctor Moliner 50, 46100 Burjassot (València), Spain

Abstract

For a set of primes π, a group X is said to be π-decomposable if $X=X_{\pi} \times X_{\pi^{\prime}}$ is the direct product of a π-subgroup X_{π} and a π^{\prime}-subgroup $X_{\pi^{\prime}}$, where π^{\prime} is the complementary of π in the set of all prime numbers. The main result of this paper is a reduction theorem for the following conjecture: "Let π be a set of odd primes. If the finite group $G=A B$ is a product of two π-decomposable subgroups $A=A_{\pi} \times A_{\pi^{\prime}}$ and $B=B_{\pi} \times B_{\pi^{\prime}}$, then $A_{\pi} B_{\pi}=B_{\pi} A_{\pi}$ and this is a Hall π-subgroup of G." We establish that a minimal counterexample to this conjecture is an almost simple group. The conjecture is then achieved in a forthcoming paper.

Keywords:

finite groups, π-structure, π-decomposable groups, products of subgroups, Hall subgroups
2000 MSC: 20D20, 20D40

1. Introduction

All groups considered in this paper are finite. In the framework of factorized groups the well-known theorem of Kegel and Wielandt, which states the solubility of a group which is the product of two nilpotent subgroups,

[^0]has been widely extended from several points of view. For instance, by considering the situation when the factors are π-decomposable groups, for a set of primes π. A group X is said to be π-decomposable if $X=X_{\pi} \times X_{\pi^{\prime}}$ is the direct product of a π-subgroup X_{π} and a π^{\prime}-subgroup $X_{\pi^{\prime}}$, where π^{\prime} stands for the complementary of π in the set of all prime numbers. X_{σ} will always denote a Hall σ-subgroup of a group X, for any set of primes σ.

In this paper we take further the study of products of π-decomposable groups carried out in [12] and [13]. Motivated by the previous development, in the second reference we stated the following conjecture:

Conjecture. Let π be a set of odd primes. Let the group $G=A B$ be the product of two π-decomposable subgroups $A=A_{\pi} \times A_{\pi^{\prime}}$ and $B=B_{\pi} \times B_{\pi^{\prime}}$. Then $A_{\pi} B_{\pi}=B_{\pi} A_{\pi}$ and this is a Hall π-subgroup of G.

This conjecture was also announced in [14] and mentioned in [4]. As a first approach, we had proved in [12] that the conjecture holds in the particular case when one of the factors is a π-group.

Theorem 1. [12, Theorem 1, Lemma 1] Let π be a set of odd primes. Let the group $G=A B$ be the product of a π-decomposable subgroup $A=A_{\pi} \times A_{\pi^{\prime}}$ and a π-subgroup B. Then $A_{\pi}=O_{\pi}(A) \leq O_{\pi}(G)$.

Equivalently, G possesses Hall π-subgroups and $A_{\pi} B=B A_{\pi}$ is a Hall π-subgroup of G.

Afterwards, in [13], other progress were achieved and the conjecture was settled when either the factors have coprime orders or they are soluble groups. More concretely, the following results were obtained:

Proposition 1. [13, Proposition 1] Let π be a set of odd primes. Let the group $G=A B$ be the product of two π-decomposable subgroups $A=A_{\pi} \times A_{\pi^{\prime}}$ and $B=B_{\pi} \times B_{\pi^{\prime}}$. Assume in addition that $\left(\left|A_{\pi^{\prime}}\right|,\left|B_{\pi^{\prime}}\right|\right)=1$. Then $A_{\pi} B_{\pi}=B_{\pi} A_{\pi}$.

Theorem 2. [13, Theorem 2] Let π be a set of odd primes. Let the group $G=A B$ be the product of two π-decomposable soluble subgroups $A=A_{\pi} \times$ $A_{\pi^{\prime}}$ and $B=B_{\pi} \times B_{\pi^{\prime}}$. Then $A_{\pi} B_{\pi}=B_{\pi} A_{\pi}$ and this is a Hall π-subgroup of G.

Examples in [12] and [13] show that analogous results to Theorems 1, 2 and Proposition 1 do not hold in general if the set of primes π contains the prime 2. Nevertheless, for this case, related positive results have been obtained in [13].

Our results extend previous ones of Berkovich [5], Arad and Chillag [3], Rowley [17] and Kazarin [10], where products of a 2-decomposable group and a group of odd order, with coprime orders, were considered. Moreover, we obtained some π-separability criteria for products of π-decomposable groups in [12] and [13], which can be seen as extensions of the above mentioned theorem of Kegel and Wielandt.

The purpose of this paper is to establish a reduction theorem which shows that a minimal counterexample for the above conjecture must be an almost simple group. That is, we reduce our study to a question concerning simple groups. Then, in a forthcoming paper [15], a case-by-case analysis will be carried out in order to conclude that no finite almost simple group can be a counterexample, showing that our Conjecture is true.

The layout of the paper is the following. In Section 2 we present some preliminaries that will be necessary in the paper, mainly referring to arithmetical properties of finite simple groups. In Section 3 we will reduce the structure of a minimal counterexample to our conjecture to the case of an almost simple group. Along the paper, if n is an integer and p a prime number, we will denote by n_{p} the largest power of p dividing n and by $\pi(n)$ the set of prime divisors of n. In particular, for the order $|G|$ of a group G we set $\pi(G)=\pi(|G|)$. Also, $\operatorname{Syl}_{p}(G)$ will denote the set all Sylow p-subgroups of G.

2. Preliminaries

We need specifically the following results on factorized groups, which will be freely used throughout the paper, usually without further reference.

Lemma 1. [1, Corollary 1.3.3] Let the group $G=A B$ be the product of the subgroups A and B. Then for each prime p there exist Sylow p-subgroups A_{p} of A and B_{p} of B such that $A_{p} B_{p}$ is a Sylow p-subgroup of G.

Lemma 2. [1, Lemma 1.3.1] Let the group $G=A B$ be the product of two subgroups A and B. If x, y are elements of G, then $G=A^{x} B^{y}$. Moreover, there exists an element z of G such that $A^{x}=A^{z}$ and $B^{y}=B^{z}$.

Next we gather some arithmetical lemmas, which will be applied later on in the paper. The proof of the following result is straightforward.

Lemma 3. Let p be an odd prime and $q=p^{\alpha}$. If $\alpha \equiv 0\left(\bmod 2^{\lambda}\right)$ with $\lambda \geq 1$, then $q-1 \equiv 0\left(\bmod 2^{\lambda+2}\right)$. (Note that the last congruence holds also
when $\lambda=0$ and $q \equiv 1(\bmod 4)$.$) In any case it holds that (q-1)(q+1) \equiv 0$ $\left(\bmod 2^{3}\right)$.

The book [7] can be taken as a general source about finite non-abelian simple groups. In particular, in this paper we will make extensive use of the detailed knowledge of the orders of the finite simple groups and of their automorphisms groups. This information can be found in [7] or in [6], and also in [16, Table 2.1] where it is perfectly collected for our purposes.

We will need the following lemmas on groups of Lie type.
Lemma 4. Let L be a simple group of Lie type defined over a finite field $G F(q)$ of characteristic p. If $|L|_{p}=p^{n}$ and $|O u t(L)|_{p}=p^{\delta}$, then either $n>3(\delta+1)$ or one of the following assertions holds:
(i) $|\pi(L)|<5$;
(ii) either $L \cong L_{3}(q)$ or $L \cong U_{3}(q)$, with $q=p \geq 7$ in both cases;
(iii) $L \cong L_{2}(q)$ with either $q \in\left\{2^{6}, 2^{8}, 3^{9}, 5^{5}\right\}$ or $q=p$ and $\mid \pi((q-1)(q+$ 1)) $\mid \geq 4$;
(iv) either $L \cong L_{3}\left(2^{4}\right)$ or $L \cong U_{3}\left(2^{4}\right)$.

Note that in all cases (i)-(iv), we have that $n \geq \delta+1$.
Proof. Denote by l the Lie rank of L and $t=\log _{p}(q)=t_{p} t_{p^{\prime}}$. By checking $|L|_{p}$ for all simple groups of Lie type we can deduce that $n \geq l t$. Now by checking $|\operatorname{Out}(L)|_{p}$ we can distinguish two cases:

- Case $|\operatorname{Out}(L)|_{p}=\left(\log _{p}(q)\right)_{p}=t_{p}$ and so $\delta=\log _{p}\left(t_{p}\right)$.

Note that in this case q is odd except for the cases $L \cong L_{2}(q), L \cong$ $P S p_{2 m}(q), m \geq 3, L \cong{ }^{2} B_{2}(q)$ or $L \cong{ }^{2} F_{4}(q)^{\prime}$.
It is easy to prove that $t_{p} \geq \log _{p}\left(t_{p}\right)+1$. Moreover, equality holds only in the cases $t_{p}=1$ and $t_{p}=2=p$. We can consider now the following subcases:
$-l>3$. We have $n \geq l t>3 t \geq 3 t_{p} \geq 3\left(\log _{p}\left(t_{p}\right)+1\right)=3(\delta+1)$.
$-l=3$. Possible exceptions to the fact $n>3(\delta+1)$ could appear when $t_{p}=1$ or $t_{p}=2=p$. If $t_{p}=1$, then $\delta=0$, and we can see that $|L|_{p}=p^{n}>p^{3}$ for all groups of Lie type with rank 3 , so $n>3$ and we are done. Now, if $t_{p}=2=p$, the only possibility is $L \cong P \operatorname{Sp}_{6}(q)$ and in this case $|L|_{p}=q^{9}$, so the inequality $n>6=3(\delta+1)$ holds again.
$-l=2$. In this case it can be proved that $2 t>3\left(\log _{p}\left(t_{p}\right)+1\right)$ whenever $t \geq 8$, and so $n \geq 2 t>3\left(\log _{p}\left(t_{p}\right)+1\right)$. Hence it remains to consider the cases $t<8$.
First assume that $t_{p}=1$, that is, $\delta=0$. By checking the orders of the Sylow p-subgroups in the groups of Lie type of rank 2 we can see that the only exception to the fact $n>3=3(\delta+1)$ appears when $L \cong L_{3}(q)$ for $q=p \geq 7$ (case (ii)).
Therefore we can assume now that $t_{p} \geq p>1$ and $t<8$, which means that $t_{p} \in\{2,3,4,5,6,7\}$. Again by computing $|L|_{p}$ when L is a simple group of Lie type of rank 2, we can prove that $n>3\left(\log _{p}\left(t_{p}\right)+1\right)$ in all possible cases.

- $l=1$. If either $L \not \not U_{3}(q)$ when $q=p$ or $L \not \approx L_{2}(q)$, it can be seen that the inequality $n>3(\delta+1)$ holds. Since the case $L \cong U_{3}(q)$ with $q=p \geq 7$ is excluded in (ii), and the case $L \cong U_{3}(q)$ with $q=p<7$ is excluded in (i), we may assume that $L \cong L_{2}(q), q=p^{t}$. Note that $|L|_{p}=p^{t}$ and $t>3\left(\log _{p}(t)+1\right) \geq 3\left(\log _{p}\left(t_{p}\right)+1\right)$ if $t>10$. Moreover, the cases $5 \leq t \leq 10$, which do not satisfy $t>3\left(\log _{p}\left(t_{p}\right)+1\right)$, are excluded by case (i). So we need only to check the cases $t<5$. Exceptions to the fact that $n>3\left(\log _{p}\left(t_{p}\right)+1\right)$ with $|\pi(L)| \geq 5$ appear when $p=2$ and $t \in\{6,8\}$, or $p=3$ and $t=9$, or $p=5=t$. Also when $t=t_{p}=1$, that is, $\delta=0$, it can occur that $|\pi(L)| \geq 5$ when $|\pi((q-1)(q+1))| \geq 4$. This provides the exceptions in (iii).
- Case $|\operatorname{Out}(L)|_{p}=p\left(\log _{p}(q)\right)_{p}=p t_{p}$ and then $\delta=\log _{p}\left(t_{p}\right)+1$.

This is the case only when $p=2$ or $p=3$. Moreover in all possible cases we have $n \geq 3 t$, so it is enough to prove $t>\log _{p}\left(t_{p}\right)+2$.
If $p=2$, then this inequality does not hold only when $t=t_{2}=2$ or $t=t_{2}=4$. Moreover, it holds that $n \geq 4 t$ for $t=t_{2}=4$ and $n>4 t+1$ for $t=t_{2}=2$, except for $L_{3}(4), U_{3}(4), L_{3}(16), U_{3}(16)$ and $P S p_{4}(4)$. Hence the possible exceptions to the fact that $n>3(\delta+1)$ with $|\pi(L)| \geq 5$ are those appearing in (iv).
If $p=3$, then the inequality $t>\log _{p}\left(t_{p}\right)+2$ does not hold only when $t=t_{3}=3$. But in all these cases $n>9=3\left(\log _{p}\left(t_{p}\right)+2\right)$.

Note that in all exceptional cases a direct calculation shows that $n \geq \delta+1$. Therefore the lemma is proved.

Lemma 5. Let L be a simple group of Lie type over a finite field $G F(q)$ of odd characteristic p. If $|L|_{2}=2^{n}$ and $|\operatorname{Out}(L)|_{2}=2^{\delta}$, then $n \geq \delta+1$.

Proof. Let $\log _{p}(q)_{2}=2^{\lambda}$. Clearly, $\lambda \leq \delta$. We consider first the following cases:

- $L \cong L_{t}(q), t \geq 2$
(i) t odd. In this case $\delta=\lambda+1$ and $n \geq(t-1)(\lambda+2)$, applying Lemma 3. So $n \geq \delta+1$.
(ii) t even. Let $d:=(t, q-1)$ and $k:=\log _{2}(t)$. Here $\delta \leq \lambda+1+\log _{2}(d) \leq$ $\lambda+1+k$. Note also that $\log _{2}(q-1) / \log _{2}(d) \leq 1$. Therefore, by Lemma 3, we can deduce that $n \geq(\lambda+k+2)+(t-3)(\lambda+2)+1$. Hence, if $t \geq 4$, we get $n \geq \delta+1$. If $t=2$, then $\delta=\lambda+1$ and $n \geq \lambda+2$, so we are also done.
- $L \cong U_{t}(q), t \geq 3$
(i) t odd. Here $\delta=\lambda+1$ and $n \geq \frac{t-1}{2}(\lambda+3)-1$. Since $t \geq 3$ we get $n \geq \delta+1$.
(ii) t even. Let $d:=(t, q+1)$ and $k:=\log _{2}(t)$. Here $\delta \leq \lambda+1+\log _{2}(d) \leq$ $\lambda+1+k$. Moreover, $\log _{2}(q+1) / \log _{2}(d) \leq 1$. Applying Lemma 3 we can deduce that $n \geq(\lambda+k+2)+\left(\frac{t-2}{2}\right)(\lambda+3)$. Since $t \geq 4$, we get $n \geq \delta+1$, and we are done.

Now, if L is a simple group of Lie type, $L \not \approx L_{t}(q), t \geq 2$, and $L \not \approx$ $U_{t}(q), t \geq 3$, then a case-by-case checking shows that $n \geq \delta+1$ and the result is proved.

Next we state some arithmetical property of the symmetric groups used later on.

Lemma 6. Let G be the symmetric group of degree k and let s be a prime. If s^{N} is the largest power of s dividing $|G|=k$!, then $N \leq \frac{k-1}{s-1}$.

Proof. The order and structure of a Sylow subgroup of the symmetric group is well-known (see, for example, [8, Section 5.9]). If we write k in base s, $k=a_{0}+a_{1} s+a_{2} s^{2}+\cdots+a_{t} s^{t}$, where $0 \leq a_{i}<s$ and some $a_{i} \neq 0$, then:

$$
\begin{aligned}
N= & a_{1}+a_{2}(s+1)+a_{3}\left(s^{2}+s+1\right)+\cdots a_{t}\left(s^{t-1}+s^{t-2}+\cdots s+1\right) \\
= & a_{1}\left(\frac{s-1}{s-1}\right)+a_{2}\left(\frac{s^{2}-1}{s-1}\right)+a_{3}\left(\frac{s^{3}-1}{s-1}\right)+\cdots+a_{t}\left(\frac{s^{t}-1}{s-1}\right)= \\
& \frac{\left(a_{0}+a_{1} s+a_{2} s^{2}+\cdots+a_{t} s^{t}\right)-\left(a_{0}+a_{1}+\cdots+a_{t}\right)}{s-1} \leq \frac{k-1}{s-1} .
\end{aligned}
$$

We end this section with the following particular result on finite simple groups.

Lemma 7. Let L be a non-abelian simple group. Then there exists a prime $s \geq 5$ such that $s \in \pi(L)$ and $s \notin \pi(\operatorname{Out}(L))$.

Proof. This follows from an exhaustive and straightforward checking of the orders of all finite simple groups and of their automorphism groups, which can be found in [16] Table 2.1, pages 18-20, as mentioned before. For simple groups of Lie type see also [16, 2.4. Proposition B].

3. The minimal counterexample: Reduction to the almost simple case

We obtain in this section detailed information about the structure of a minimal counterexample to our Conjecture and, in particular, we show that it is an almost simple group.

Hence, from now on we assume that G is a counterexample of minimal order to the Conjecture, that is, we assume the following hypotheses:
(H1) π is a set of odd primes.
(H2) G is a group of minimal order satisfying the following conditions:

1. $G=A B$ is the product of two π-decomposable subgroups $A=$ $A_{\pi} \times A_{\pi^{\prime}}$ and $B=B_{\pi} \times B_{\pi^{\prime}}$,
2. $A_{\pi} B_{\pi} \neq B_{\pi} A_{\pi}$.

For such a group G the following results hold:
Lemma 8. ([13, Proposition 2]) G has a unique minimal normal subgroup $N=N_{1} \times \cdots \times N_{r}$, which is a direct product of isomorphic non-abelian simple groups N_{1}, \ldots, N_{r}. Moreover, $G=A N=B N=A B,\left(\left|A_{\pi^{\prime}}\right|,\left|B_{\pi^{\prime} \mid}\right|\right) \neq 1$, $A_{\pi^{\prime}} \cap B_{\pi^{\prime}}=1$ and $A \cap B$ is a π-group. In particular,

$$
|N||A \cap B|=|G / N||N \cap A||N \cap B|
$$

and neither A nor B is a π-group or a π^{\prime}-group.

Lemma 9. Assume that $S \leq X$ and S is an s-group for $X \in\{A, B\}$ and a prime number $s \in \sigma$, with $\sigma \in\left\{\pi, \pi^{\prime}\right\}$. Then $\pi\left(\left|X: C_{X}(S)\right|\right) \subseteq \sigma$. In particular, $C_{X}(S)$ is not an s-group.

Proof. The first part is clear since $X_{\sigma^{\prime}} \leq C_{X}(S)$. Consequently, if $C_{X}(S)$ were an s-group, X would be a σ-group, a contradiction.

Lemma 10. $\pi(G)=\pi(N)$
Proof. We have $|N||A \cap B|=|G / N||N \cap A||N \cap B|$. Hence $|G: A \cap B|=$ $|N|^{2} /|N \cap A||N \cap B|$ and $|G: A \cap B|$ is coprime with any $q \in \pi(G) \backslash \pi(N)$. Since π is a set of odd primes and $A \cap B$ is a π-group, it is a soluble group. Let $\pi_{0}=\pi(G) \backslash \pi(N)$. Then $A \cap B$ contains a Hall π_{0}-subgroup, say Q. Since A_{π} is a soluble group we can choose some Hall π_{0}^{\prime}-subgroup of A_{π}, say \tilde{A}_{π} such that $A_{\pi}=\tilde{A}_{\pi} Q$. Let $\tilde{A}:=\tilde{A}_{\pi} \times A_{\pi^{\prime}}$ and $\tilde{G}:=\tilde{A} N$. Consider now $\tilde{B}_{\pi}:=B_{\pi} \cap \tilde{G}=B_{\pi} \cap \tilde{A}_{\pi} N$ and $\tilde{B}:=\tilde{B}_{\pi} \times B_{\pi^{\prime}}$. Since $A_{\pi} N=B_{\pi} N$ and B_{π} also contains Q we can deduce that $B_{\pi}=B_{\pi} \cap A_{\pi} N=Q\left(B_{\pi} \cap \tilde{A}_{\pi} N\right)=\tilde{B}_{\pi} Q$ and \tilde{B}_{π} is a Hall π_{0}^{\prime}-subgroup of B_{π}. Moreover $\tilde{A}_{\pi} \cap B_{\pi}=\tilde{A}_{\pi} \cap \tilde{B}_{\pi}$. Since $(|Q|,|N \cap A|)=1=(|Q|,|N \cap B|)$ it is easy to see that $|\tilde{G}|=|G| /|Q|=$ $|\tilde{A} \tilde{B} Q| /|Q|=|\tilde{A}||\tilde{B}| /\left|\tilde{A}_{\pi} \cap \tilde{B}_{\pi}\right|=|\tilde{A} \tilde{B}|$ and so $\tilde{G}=\tilde{A} \tilde{B}$ is a subgroup of G. If $\tilde{G}<G$, then by the choice of G we deduce that $\tilde{A}_{\pi} \tilde{B}_{\pi}=\tilde{B}_{\pi} \tilde{A}_{\pi}$ is a subgroup. Therefore $A_{\pi} B_{\pi}=Q \tilde{A}_{\pi} \tilde{B}_{\pi}=Q \tilde{B}_{\pi} \tilde{A}_{\pi}=B_{\pi} A_{\pi}$ is also a subgroup, which is a contradiction. This implies that $\pi_{0}=\emptyset$ and the assertion follows.

Corollary 1. $|\pi(N)| \geq 5$. In particular, $\left|\pi\left(N_{i}\right)\right| \geq 5$ for $i=1, \cdots, r$.
Proof. By Theorem 2 either $A_{\pi^{\prime}}$ or $B_{\pi^{\prime}}$ is non-soluble. Hence $\left|\pi^{\prime} \cap \pi(G)\right| \geq 3$. On the other hand, $|\pi \cap \pi(G)| \geq 2$ by Lemma 1. So $|\pi(N)|=|\pi(G)| \geq 5$ and we are done.

The remainder of the section is devoted to prove that N is a simple group and G is then almost simple.

We introduce some notation and facts which will be used in this section, related to the action by conjugacy of the subgroups A and B on the set $\Omega=\left\{N_{1}, \cdots, N_{r}\right\}$. The subsequent results lead to the desired conclusion that $r=1$.

Notation and facts on the action by conjugacy of A and B on the set $\Omega=\left\{N_{1}, \cdots, N_{r}\right\}$.

The following facts will be often used: A and B act transitively on Ω, $A=A_{\pi} \times A_{\pi^{\prime}}, B=B_{\pi} \times B_{\pi^{\prime}}$ and $|N||A \cap B|=|G / N||N \cap A||N \cap B|$.

Set $\left\{\sigma, \sigma^{\prime}\right\}=\left\{\pi, \pi^{\prime}\right\}$.
(i) The orbits of A_{σ} and the orbits of B_{σ} are the same.

This is clear since $B_{\sigma} N=A_{\sigma} N$ and N normalizes each N_{i}, for $i=$ $1, \ldots$, r.
(ii) Let \triangle_{σ} be an orbit of A_{σ} on Ω of minimal length. Since $\triangle_{\sigma}{ }^{v a}=$ $\triangle_{\sigma}{ }^{a v}=\triangle_{\sigma}{ }^{v}$ for any $a \in A_{\sigma}$ and any $v \in A_{\sigma^{\prime}}$, we deduce that $\triangle_{\sigma}{ }^{v}$ and also $\triangle_{\sigma} \cap \triangle_{\sigma}{ }^{v}$ are orbits of A_{σ}. But the choice of \triangle_{σ} having minimal length implies that $\triangle_{\sigma} \cap \triangle_{\sigma}{ }^{v}$ is either empty or coincides with \triangle_{σ}, for each $v \in A_{\sigma^{\prime}}$. Hence there is a partition of Ω of the form

$$
\Omega=\triangle_{1} \cup \ldots \cup \triangle_{k}
$$

where $\triangle_{i}=\triangle_{\sigma}{ }^{v_{i}}$ for some $v_{i} \in A_{\sigma^{\prime}}$, for $i=1, \ldots, k$, and $v_{1}=1$.
In particular, $\triangle_{1}, \ldots, \triangle_{k}$ are the orbits of A_{σ}, and the orbits of B_{σ}, on Ω and they all have the same length.
Note that $A_{\sigma^{\prime}}$, and also $B_{\sigma^{\prime}}$, act transitively on the set $\left\{\triangle_{1}, \ldots, \triangle_{k}\right\}$.
(iii) It follows from (ii) that $r=k m$, where $k \geq 1$ and $m \geq 1$ are divisors of r, and m is the length of any orbit of A_{σ} on Ω.
(iv) The length of an orbit of $A_{\sigma^{\prime}}$ on Ω is k. In particular, m is the number of different orbits of $A_{\sigma^{\prime}}$ on Ω, and $(k, m)=1$.
Denote by Θ an orbit of $A_{\sigma^{\prime}}$ on Ω. Clearly $|\Theta| \geq k$ and $|\Theta|$ divides $r=k m$. Now, since $\sigma \cap \sigma^{\prime}=\emptyset$ and the length of an orbit of A_{σ} on Ω divides $\left|A_{\sigma}\right|$ it follows that $|\Theta|$ divides k. But then the equality holds.
(v) Without loss of generality we may set $M_{\triangle_{\sigma}}=\prod_{N_{i} \in \triangle_{\sigma}, i=1, \ldots, m} N_{i}$. Then $M_{\triangle_{\sigma}}$ is a minimal normal subgroup of $N A_{\sigma}$.
Moreover, if $R \leq N, R \unlhd N A_{\sigma}$, there exists a subset $\left\{v_{i_{1}}, \ldots, v_{i_{d}}\right\} \subseteq$ $\left\{v_{1}, \ldots, v_{k}\right\}$ such that $R=M_{\triangle_{\sigma}}^{v_{i_{1}}} \times \ldots \times M_{\triangle_{\sigma}}^{v_{i_{d}}}$.
The same assertion is true for B_{σ} instead of A_{σ}.
(vi) With $M_{\Delta_{\sigma}}=N_{1} \times \ldots \times N_{m}$, if $m>1$, define the subgroups $F_{1}=$ $N_{2} \times \ldots \times N_{m}$ and $F_{i}=F_{1}^{v_{i}}$ for $i=2, \ldots, k$. Note that, in this case, the subgroup $F_{\Delta_{\sigma}}:=F_{1} \times \ldots \times F_{k}$ does not contain any $M_{\Delta_{\sigma}}^{v_{i}}$ for $i=1, \ldots, k$.
(vii) If $m>1$, then $F_{\Delta_{\sigma}} \cap A_{\sigma^{\prime}}=1=F_{\triangle_{\sigma}} \cap B_{\sigma^{\prime}}$.

Observe that $F_{\triangle_{\sigma}} \cap A_{\sigma^{\prime}} \leq E:=\cap_{a \in A_{\sigma}}\left(F_{\triangle_{\sigma}}\right)^{a}$ and $E \leq F_{\triangle_{\sigma}}$ is a normal subgroup of N normalized by A_{σ}. Hence $F_{\triangle_{\sigma}} \cap A_{\sigma^{\prime}}=E=1$ by (v) and (vi).
Analogously it follows that $F_{\triangle_{\sigma}} \cap B_{\sigma^{\prime}}=1$.
(viii) If $k>1$, then $A_{\sigma} \cap M_{\Delta_{\sigma}}=1=C_{A_{\sigma}}\left(M_{\triangle_{\sigma}}\right)$.

If $A_{\sigma} \cap M_{\triangle_{\sigma}} \neq 1$, since this is an $A_{\sigma^{\prime}}$ invariant subgroup, we have that for any $v_{i}, i=2, \ldots, k, A_{\sigma} \cap M_{\triangle_{\sigma}}=\left(A_{\sigma} \cap M_{\triangle_{\sigma}}\right)^{v_{i}} \leq M_{\Delta_{\sigma}} \cap M_{\Delta_{\sigma}}^{v_{i}}=1$, a contradiction.
Now, since $C_{A_{\sigma}}\left(M_{\triangle_{\sigma}}\right)=C_{A_{\sigma}}\left(\left(M_{\Delta_{\sigma}}\right)^{a}\right)$ for every $a \in A$, we deduce that $C_{A_{\sigma}}\left(M_{\Delta_{\sigma}}\right) \leq C_{G}(N)=1$.

Lemma 11. Let $s \in \pi(N) \cap \sigma^{\prime}$ and let m be the length of an orbit of A_{σ} on Ω. Suppose that $\left|N_{1}\right|_{s}=s^{n}$ and $\left|\operatorname{Out}\left(N_{1}\right)\right|_{s}=s^{\delta}$. Then

$$
n(m-2) \leq \delta+\frac{k-1}{k(s-1)}
$$

In particular, $n(m-2)<\delta+1$.
Proof. We recall that $r=k m$, with the previous notation. If $m=1$, then the assertion holds. Assume that $m>1$. Let A_{s} be a Sylow s-subgroup of A and B_{s} a Sylow s-subgroup of $B, A_{s} \leq A_{\sigma^{\prime}}$ and $B_{s} \leq B_{\sigma^{\prime}}$. Recall that the subgroup $F_{\Delta_{\sigma}}$ defined in (vii) above is a normal subgroup of N and has trivial intersection with $N \cap A_{\sigma^{\prime}}$. Hence $\left|N \cap A_{s}\right| \leq\left|N: F_{\triangle_{\sigma}}\right|_{s}=s^{k n}$. Analogously, $\left|N \cap B_{s}\right| \leq s^{k n}$.

On the other hand, from (v) and (viii) above, and replacing σ by σ^{\prime}, we have that the subgroup $M:=M_{\Delta_{\sigma^{\prime}}}$ is a normal subgroup of N normalized by $A_{\sigma^{\prime}}$ and $A_{\sigma^{\prime}} \cap M=1=C_{A_{\sigma^{\prime}}}(M)$. Hence $A_{\sigma^{\prime}} \cong A_{\sigma^{\prime}} C_{G}(M) / C_{G}(M) \lesssim$ $\operatorname{Aut}(M)$. We may assume that $M=N_{1} \times \cdots \times N_{k}$ and so $\operatorname{Aut}(M) \cong$ $\left[\operatorname{Aut}\left(N_{1}\right) \times \cdots \times \operatorname{Aut}\left(N_{k}\right)\right] S_{k} \cong \operatorname{Aut}\left(N_{1}\right)$ < S_{k}, the natural wreath product of $\operatorname{Aut}\left(N_{1}\right)$ with S_{k}, the symmetric group of degree k. Since $s \in \sigma^{\prime}$ we deduce that $\left|A_{s}\right|$ divides $|A u t(M)|_{s}$ and so $s^{(\delta+n) k} s^{\frac{k-1}{s-1}}$ by Lemma 6.

Now denote $|G / N|_{s}=s^{\gamma}$ and recall that $|G / N|_{s}=\left|A_{s} N / N\right|=\left|B_{s} N / N\right|$. We have that $|G|_{s}=|N|_{s}|G / N|_{s}=s^{n r} s^{\gamma}$. On the other hand, $\left|B_{s}\right|=$ $\left|N \cap B_{s}\right|\left|B_{s} / N \cap B_{s}\right|$ divides $s^{k n} s^{\gamma}$. Since $|G|_{s}$ divides $|A|_{s}|B|_{s}$ we deduce

$$
s^{n r+\gamma} \leq s^{(\delta+n) k} s^{\frac{k-1}{s-1}} s^{k n+\gamma} .
$$

Consequently, $r n \leq \delta k+2 k n+\frac{k-1}{s-1}$. Since $r=k m$ we get $k n(m-2) \leq$ $\delta k+\frac{k-1}{s-1}$, that is:

$$
n(m-2) \leq \delta+\frac{k-1}{k(s-1)}
$$

In particular, $n(m-2)<\delta+1$.
Lemma 12. Let $s \in \pi(N) \cap \sigma^{\prime}$. Suppose that $\left|N_{1}\right|_{s}=s^{n},\left|\operatorname{Out}\left(N_{1}\right)\right|_{s}=s^{\delta}$ and assume that $n \geq \delta+1$. Then the length of an orbit of A_{σ} on Ω is at most 2.

Proof. Let m be the length of an orbit of A_{σ} on Ω. From Lemma 11, if $m \geq 3$, then $\delta+1>n(m-2) \geq n$. So the assertion holds.

Corollary 2. Let $\left|N_{1}\right|_{s}=s^{n}$, where $s \in \pi\left(N_{1}\right)$ does not divide $\left|\operatorname{Out}\left(N_{1}\right)\right|$. If $s \in \sigma^{\prime}$, then the length of an orbit of A_{σ} on Ω is at most 2.

Proof. Note that such a prime exists by Lemma 7. Now the result follows from Lemma 12.

Lemma 13. If there exist primes $s_{1} \in \pi \cap \pi\left(N_{1}\right)$ and $s_{2} \in \pi^{\prime} \cap \pi\left(N_{1}\right)$ such that $\left(s_{1} s_{2},\left|\operatorname{Out}\left(N_{1}\right)\right|\right)=1$, then either $r=1$ or $r=2$.

In particular, this is the case when N_{1} is either a sporadic group or an alternating group.

Proof. Let m be the length of an A_{π}-orbit on Ω and k be the length of an
 Corollary 2 we have that $m \leq 2$ and $k \leq 2$. But the length of an A_{π}-orbit must be odd since $\left|A_{\pi}\right|$ is odd. Therefore, $m=1$ and $r=k m=k \leq 2$, by (iii) and (iv) in the notation above.

Lemma 14. The case $r=2$ is not possible.
Proof. Suppose that $r=2$. Then the length of an A_{π}-orbit must be 1 since $\left|A_{\pi}\right|$ is odd. This means that A_{π} normalizes each $N_{i} \in \Omega$. Denote by L the normalizer in G of N_{1}. It is clear that $A_{\pi}, B_{\pi} \leq L,\left|A_{\pi^{\prime}}: L \cap A_{\pi^{\prime}}\right| \leq 2, \mid B_{\pi^{\prime}}$: $L \cap B_{\pi^{\prime}} \mid \leq 2$ and $|G: L|=2$, because $r=2$. Clearly $G=A L=B L=A B$, since $N \leq L$. Hence

$$
2=|G / L|=\frac{|L||A \cap B|}{|L \cap A||L \cap B|} .
$$

But, since $A \cap B=A_{\pi} \cap B_{\pi}$ by Lemma 8 , we have that $A \cap B \cap L=A \cap B$. Therefore:

$$
2=|G / L|=\frac{|L|}{|(L \cap A)(L \cap B)|}
$$

Take now any $g \in G$ and write $g=b a$ with $a \in A, b \in B$. We have $(L \cap A) \cap(L \cap B)^{g}=(L \cap A) \cap(L \cap B)^{a}=(L \cap A \cap B)^{a}$ and so $\mid(L \cap A) \cap(L \cap$ $B)^{g}|=|L \cap A \cap B|$, for any $g \in G$. Hence $|(L \cap A)(L \cap B)|=|(L \cap A)(L \cap$ $B)^{g}|=|(L \cap A) g(L \cap B)|$ for any $g \in G$, and consequently the number of ($L \cap A, L \cap B$)-double cosets in L should be 2 . If $N \subseteq(L \cap A)(L \cap B)$, then $(L \cap A)(L \cap B)=(L \cap A) N(L \cap B)=(L \cap A N)(L \cap B)=L$, a contradiction.

Hence we may assume that $(L \cap A) N_{1}(L \cap B) \neq(L \cap A)(L \cap B)$ and $(L \cap A) N_{1}(L \cap B)=L$. Now, since N_{1} is normal in L, we can consider $L / N_{1}=$ $\left((L \cap A) N_{1} / N_{1}\right)\left((L \cap B) N_{1} / N_{1}\right)$ which is a product of two π-decomposable groups. By the choice of G we can deduce that $K:=A_{\pi} B_{\pi} N_{1}=\left(L \cap A_{\pi}\right)(L \cap$ $\left.B_{\pi}\right) N_{1}$ is a subgroup of G. Set $H=\left\langle A_{\pi}, B_{\pi}\right\rangle \leq K$. By [1, Lemma 1.2.2], $N_{G}(H)=N_{A}(H) N_{B}(H)$ and hence, if $N_{G}(H)$ were a proper subgroup of G, we could deduce that $A_{\pi} B_{\pi}$ is a subgroup, a contradiction. So $1 \neq H \unlhd G$
and $N \leq H$. But this means that $K=A_{\pi} B_{\pi} N_{1}=H \unlhd G$. Therefore, the soluble residual $K^{\mathcal{S}}$ of K is a normal subgroup of G contained in N_{1}, which implies that $K^{\mathcal{S}}=1$, that is, K is soluble. But this is a contradiction since $N_{1} \leq K$.

Corollary 3. If N_{1} is either sporadic or an alternating group, then $r=1$ and G is an almost simple group.

Lemma 15. If N_{1} is a simple group of Lie type defined over the field $G F(q)$ of characteristic $p \in \sigma^{\prime}$, then the length of an orbit of A_{σ} on Ω is at most 2.

Proof. Let $\left|N_{1}\right|_{p}=p^{n}$ and $\left|O u t\left(N_{1}\right)\right|_{p}=p^{\delta}$. By Lemma 4, it holds that $n \geq \delta+1$. Then by Lemma 12 and Corollary 1 we have that the length of an A_{σ}-orbit on Ω is at most 2 .

Lemma 16. Let N_{1} be a simple group of Lie type. Then the length of an A_{π}-orbit on Ω equals 1 .

Proof. Let m be the length of an A_{π}-orbit. We will prove that $m \leq 2$ and since m divides $\left|A_{\pi}\right|$ and $\left|A_{\pi}\right|$ is odd, we may assume that $m=1$.

Let p be the characteristic of the group N_{1} of Lie type. If $p \in \pi^{\prime}$, then we get the conclusion from Lemma 15. So we may assume that $p \in \pi$ and, in particular, p is odd.

Let $\left|N_{1}\right|_{2}=2^{n}$ and $\left|\operatorname{Out}\left(N_{1}\right)\right|_{2}=2^{\delta}$. Then, by Lemma 5, it holds that $n \geq \delta+1$. Therefore, we get $m \leq 2$, by using Lemma 12 for the prime $s=2$, and we are done.

Lemma 17. Assume that N_{1} is a simple group of Lie type of characteristic p. If $p \in \pi$, then $r=1$. If $p \notin \pi$, then $A \cap B=1$.

Proof. Assume that $p \in \pi$. By Lemma 15 the length of an orbit of $A_{\pi^{\prime}}$ on Ω is at most 2 . But since the case $r=2$ is not possible and the length of an $A_{\pi \text {-orbit on }} \Omega$ equals 1 by Lemma 16, we get that $A_{\pi^{\prime}}$ has orbits of length 1 on Ω and then $N=N_{1}$, that is, $r=1$.

Assume now that $p \in \pi^{\prime}$. There exists a Sylow p-subgroup $P=A_{p} B_{p}$ of G which is a product of some $A_{p} \in \operatorname{Syl}_{p}(A)$ and some $B_{p} \in \operatorname{Syl}_{p}(B)$. Since $A \cap B$ is a π-group by Lemma 8 , it centralizes each Sylow p-subgroup of both A and B, and so it centralizes also P. Consequently, $A \cap B$ centralizes $1 \neq P \cap N_{1} \in \operatorname{Syl}_{p}\left(N_{1}\right)$. But $A \cap B \leq A_{\pi}$ normalizes N_{1} by Lemma 16, which implies that $\left[A \cap B, N_{1}\right]=1$, since a Sylow p-subgroup of N_{1} is self-centralizing in $\operatorname{Aut}\left(N_{1}\right)$ by [11, 1.17]. Hence $\left[A \cap B, N_{1}^{a}\right]=1$ for each $a \in A_{\pi^{\prime}}$, and then $A \cap B \leq C_{G}(N)=1$ because $A_{\pi^{\prime}}$ acts transitively on Ω; i.e., $A \cap B=1$.

Lemma 18. Assume that N_{1} is a simple group of Lie type. If $r \leq 3$, then $r=1$.

Proof. Assume that $r=3$. Hence $N=N_{1} \times N_{2} \times N_{3}$ and A and B act transitively on the set $\Omega=\left\{N_{1}, N_{2}, N_{3}\right\}$. Let $R:=\cap_{i=1}^{3} N_{G}\left(N_{i}\right)$ the subgroup of G normalizing every N_{i}. By Lemma 16 the subgroups A_{π} and B_{π} are in R. Clearly, G / R is isomorphic to a transitive subgroup of S_{3}, the symmetric group of degree 3, and hence isomorphic either to S_{3} or C_{3}.

Let $A_{0}:=R \cap A$ and $B_{0}:=R \cap B$. Recall that by Lemma 17 we have that $|A \cap B|=1=\left|A^{y} \cap B\right|$ for every $y \in G$. Then, since $G=R A=R B=A B$, we have that

$$
\frac{|R||A \cap B|}{|R \cap A||R \cap B|}=\frac{|R|}{\left|A_{0}\right|\left|B_{0}\right|}=|G / R|
$$

On the other hand, the size of a double coset $A_{0} y B_{0}$, for any $y \in G$, is equal to $\left|A_{0}\right|\left|B_{0}\right| /\left|A_{0}^{y} \cap B_{0}\right|=\left|A_{0}\right|\left|B_{0}\right|$. Hence $|G / R|$ is equal to the number of different double cosets in R with respect to the pair (A_{0}, B_{0}).

We claim that there exists a subgroup $X=N_{i} N_{j}, i, j \in\{1,2,3\}$ (eventually, $i=j$ and $X=N_{i}$), such that $A_{0} X B_{0}$ is a subgroup of G. Assume this is not true. In particular, $A_{0} N_{i} N_{j} B_{0} \neq R$ for each choice of $1 \leq i, j \leq 3$.

We will now count the number of different double cosets with respect to $\left(A_{0}, B_{0}\right)$ in R. We will prove first that for each $i \neq j$ we have $A_{0} N_{i} B_{0} \neq$ $A_{0} N_{i} N_{j} B_{0}$ and $A_{0} N_{t} B_{0} \nsubseteq A_{0} N_{i} N_{j} B_{0}$, for $t \in\{1,2,3\} \backslash\{i, j\}$.

Indeed, if $A_{0} N_{i} B_{0}=A_{0} N_{i} N_{j} B_{0}$, then for $t \in\{1,2,3\} \backslash\{i, j\}$ we have $A_{0} N_{t} N_{i} B_{0}=N_{t} A_{0} N_{i} B_{0}=N_{t} A_{0} N_{i} N_{j} B_{0}=A_{0} N_{t} N_{i} N_{j} B_{0}=A_{0} N B_{0}=R$. This is a contradiction. Hence $A_{0} N_{i} B_{0} \neq A_{0} N_{i} N_{j} B_{0}$ for each $i \neq j$.

Suppose now that $A_{0} N_{t} B_{0} \subseteq A_{0} N_{i} N_{j} B_{0}$, for $t \in\{1,2,3\} \backslash\{i, j\}$. Then $A_{0} N_{i} N_{j} B_{0}=A_{0}\left(N_{i} N_{j}\right)^{2} B_{0}=N_{i} N_{j} A_{0} N_{i} N_{j} B_{0} \supseteq N_{i} N_{j} A_{0} N_{t} B_{0}=A_{0} N B_{0}=$ R. This is also a contradiction.

It follows that $A_{0} N_{i} B_{0}$ contains at least two different $\left(A_{0}, B_{0}\right)$-cosets, including $A_{0} B_{0}$.

We will prove now that $A_{0} N_{i} N_{j} B_{0}$ contains at least 4 different $\left(A_{0}, B_{0}\right)$ cosets. Indeed, if $n_{1} \in N_{1}, n_{1} \notin A_{0} N_{2} B_{0}$ and $n_{2} \in N_{2}, n_{2} \notin A_{0} N_{1} B_{0}$, then $n_{1} n_{2} \notin A_{0} N_{1} B_{0} \cup A_{0} N_{2} B_{0}$. Hence $A_{0} N_{1} N_{2} B_{0} \neq A_{0} N_{1} B_{0} \cup A_{0} N_{2} B_{0}$. Since $A_{0} N_{1} B_{0} \cup A_{0} N_{2} B_{0}$ contains at least 3 different (A_{0}, B_{0})-cosets, it follows that $A_{0} N_{1} N_{2} B_{0}$ contains at least 4 different $\left(A_{0}, B_{0}\right)$-cosets. Note that the sets $A_{0} N_{1} N_{2} B_{0}$ and $A_{0} N_{1} N_{3} B_{0}$ are different and do not contain each other. Hence the number of double cosets contained in $A_{0} N_{1} N_{2} B_{0} \cup A_{0} N_{1} N_{3} B_{0}$ is at least 5 .

Moreover, $A_{0} N_{2} B_{0}$ is not contained in $A_{0} N_{1} N_{3} B_{0}$ and $A_{0} N_{3} B_{0}$ is not contained in $A_{0} N_{1} N_{2} B_{0}$. Hence we can choose elements $n_{2}^{\prime} \in N_{2}$ and
$n_{3}^{\prime} \in N_{3}$ such that $n_{2}^{\prime} \notin A_{0} N_{1} N_{3} B_{0}$ and $n_{3}^{\prime} \notin A_{0} N_{1} N_{2} B_{0}$. We claim that $n_{2}^{\prime} n_{3}^{\prime} \notin A_{0} N_{1} N_{3} B_{0} \cup A_{0} N_{1} N_{2} B_{0}$. Indeed, if $n_{2}^{\prime} n_{3}^{\prime} \in A_{0} N_{1} N_{3} B_{0}$, then $n_{2}^{\prime} \in$ $A_{0} N_{1} N_{3} B_{0}\left(n_{3}^{\prime}\right)^{-1} \subseteq A_{0} N_{1} N_{3} B_{0} N_{3}=A_{0} N_{1} N_{3} B_{0}$ which is not the case. By the same reason $n_{2}^{\prime} n_{3}^{\prime} \notin A_{0} N_{1} N_{2} B_{0}$.

Hence the set $A_{0} N_{1} N_{3} B_{0} \cup A_{0} N_{1} N_{2} B_{0} \cup A_{0} N_{2} N_{3} B_{0}$ consists of at least 6 different $\left(A_{0}, B_{0}\right)$-cosets. Now we choose elements $n_{i}^{\prime \prime} \in N_{i}$ such that $n_{i}^{\prime \prime} \notin A_{0} N_{j} N_{t} B_{0}$ with $\{i, j, t\}=\{1,2,3\}$. As above it is easy to see that $n_{1}^{\prime \prime} n_{2}^{\prime \prime} n_{3}^{\prime \prime} \notin A_{0} N_{1} N_{2} B_{0} \cup A_{0} N_{1} N_{3} B_{0} \cup A_{0} N_{2} N_{3} B_{0}$. This means that the number of different $\left(A_{0}, B_{0}\right)$-cosets in R is at least 7, a contradiction (recall that the number of $\left(A_{0}, B_{0}\right)$-cosets in R is $\left.|G / R| \leq 6\right)$. The claim is proved.

Now, if $T=A_{0} X B_{0}$ is a subgroup of R for some proper normal subgroup X of N, then $T / X=\left(A_{0} X / X\right)\left(B_{0} X / X\right)$ is a product of two π-decomposable groups and, by minimality, we have that $A_{\pi} B_{\pi} X / X$ is a Hall π-subgroup of T / X. In particular, $A_{\pi} B_{\pi} X$ is a subgroup of G. Consider now the subgroup $U:=\left\langle A_{\pi}, B_{\pi}\right\rangle \leq T$. If $N_{G}(U)=N_{A}(U) N_{B}(U)$ is a proper subgroup of G, then $A_{\pi} B_{\pi}$ is a subgroup, a contradiction. So $1 \neq U \unlhd G$ and $N \leq U$. But this means that $A_{\pi} B_{\pi} X=U \unlhd G$ and the soluble residual $U^{\mathcal{S}}$ of U is a normal subgroup of G with $U^{\mathcal{S}} \leq X$. Then $U^{\mathcal{S}}=1$ and U is soluble. But this is a contradiction since $X \leq U$.

Hence $r<3$ and applying Lemma 14 we deduce that $r=1$.
Lemma 19. Assume that $r>1$ and let $\hat{N}_{i}=\prod_{j=1, j \neq i}^{r} N_{j}$, for $i=1,2, \cdots, r$. If A_{σ} has an orbit on Ω of length 1 , then $A_{\sigma} \cap \hat{N}_{i}=1$, for each $i \leq r$.

Proof. If A_{σ} has an orbit on Ω of length 1 , then $A_{\sigma^{\prime}}$ acts transitively on Ω. If $A_{\sigma} \cap \hat{N}_{i} \neq 1$, then \hat{N}_{i} contains an $A_{\sigma^{\prime}}$-invariant subgroup, which is a contradiction.

Lemma 20. Assume that N_{1} is a simple group of Lie type. If $r>1$, then $\pi \cap \pi\left(N_{1}\right) \subseteq \pi\left(\operatorname{Out}\left(N_{1}\right)\right)$.

Proof. Let $s \in \pi \cap \pi\left(N_{1}\right)$ and assume that $\left|N_{1}\right|_{s}=s^{n}$ and $\left|\operatorname{Out}\left(N_{1}\right)\right|_{s}=s^{\delta}$. In particular, $n \geq 1$. From Lemma 16 we have that the lenght of an A_{π}-orbit on Ω is $m=1$ and so the length of an $A_{\pi^{\prime}}$-orbit on Ω is $k=r$. Hence by Lemma 11 it follows that $(r-2) n \leq \delta$. Now if $\delta=0$, that is, s does not divide $\left|\operatorname{Out}\left(N_{1}\right)\right|$, we get a contradiction, since we are assuming $r>1$ and so $r>2$ by Lemma 14 .

Lemma 21. If N_{1} is a non-abelian simple group of Lie type of characteristic p, then $r=1$.

Proof. Assume that N_{1} is a non-abelian simple group of Lie type of characteristic p and $r>1$. We recall that $2 \notin \pi$ and $|\pi \cap \pi(G)| \geq 2$ by Lemma 1 . Consequently, there exists $s \in \pi \cap \pi(G)$ such that $s \geq 5$. Let P be a Sylow s-subgroup of G. We may write $P=A_{s} B_{s}$, for some $A_{s} \in \operatorname{Syl}_{s}(A)$ and some $B_{s} \in \operatorname{Syl}_{s}(B)$. Since $P \cap N \in \operatorname{Syl}_{s}(N), P \cap N \unlhd P$ and $A_{\pi} N=B_{\pi} N$ it follows easily that $P=A_{s} B_{s}=A_{s}(P \cap N)=B_{s}(P \cap N)$.

We know from Lemma 16 that $G=R A_{\pi^{\prime}}$, where $N A_{\pi} \leq R=\cap_{i=1}^{r} N_{G}\left(N_{i}\right)$. In particular, $A_{\pi^{\prime}}$ acts transitively on Ω. Then G / N is isomorphic to a subgroup, say \bar{G}, of $\operatorname{Out}\left(N_{1}\right)$ 亿 S_{r}, the natural wreath product of $\operatorname{Out}\left(N_{1}\right)$ with S_{r}, the symmetric group of degree r. We denote by \bar{A}_{π} and $\bar{A}_{\pi^{\prime}}$, the images of $A_{\pi} N / N$ and $A_{\pi^{\prime}} N / N$ in $\operatorname{Out}\left(N_{1}\right)$ 亿 S_{r}, respectively, and $F:=$ $L_{1} \times L_{2} \times \cdots \times L_{r}$, where $L_{i}=\operatorname{Out}\left(N_{i}\right)$ for every $i=1, \ldots, r$, the base group of the wreath product. Set $E=\bar{G} \cap F$. Then $\bar{A}_{\pi} \leq E$ and $F \bar{A}_{\pi^{\prime}} \cap S_{r}$ acts transitively on $\left\{L_{1}, L_{2}, \ldots, L_{r}\right\}$. In particular, for each $i=2, \ldots, r$, there exists an element $a_{i} \in \bar{A}_{\pi^{\prime}}$ such that $L_{1}^{a_{i}}=L_{i}$. We claim that $C_{E}\left(\bar{A}_{\pi^{\prime}}\right) \leq\left\{y_{1} y_{1}^{a_{2}} \cdots y_{1}^{a_{r}} \mid y_{1} \in L_{1}\right\} \cong L_{1}$. Let $z \in C_{E}\left(\bar{A}_{\pi^{\prime}}\right)$. We have $z=y_{1} y_{2} \cdots y_{r} \in F$, where $y_{i} \in L_{i}$, for every $i=1, \ldots, r$, and this expression is unique. Then $z=y_{1} y_{2} \cdots y_{r}=z^{a_{i}}=y_{1}^{a_{i}} y_{2}^{a_{i}} \cdots y_{r}^{a_{i}}$, which implies that $y_{i}=y_{1}^{a_{i}}$, for every $i=2, \ldots, r$. Consequently, $z=y_{1} y_{1}^{a_{2}} \cdots y_{1}^{a_{r}}$, with $y_{1} \in L_{1}$, and the claim follows.

Therefore, $\bar{A}_{\pi} \leq C_{E}\left(\bar{A}_{\pi^{\prime}}\right)$, which implies that $A_{\pi} N / N$ is isomorphic to a subgroup of $\operatorname{Out}\left(N_{1}\right)$. In particular, a Sylow s-subgroup of G / N is isomorphic to an s-subgroup of $\operatorname{Out}\left(N_{1}\right)$ and has order dividing $\left|\operatorname{Out}\left(N_{1}\right)\right|_{s}$.

Let $L_{n}^{\epsilon}(q)$, where $\epsilon= \pm$, as follows: $L_{n}^{+}(q)=L_{n}(q)$, whereas $L_{n}^{-}(q)=$ $U_{n}(q)$. Similarly, let $G L_{n}^{\epsilon}(q)$, for $\epsilon= \pm$, as follows: $G L_{n}^{+}(q)=G L_{n}(q)$, $G L_{n}^{-}(q)=G U_{n}(q)$.

By checking the structure of $\operatorname{Out}\left(N_{1}\right)$, we distinguish two possibilities:
(i) $A_{s} N / N=B_{s} N / N$ is cyclic, or
(ii) $A_{s} N / N=B_{s} N / N$ is metacyclic (non cyclic). This is the case only when $N_{1} \cong L_{n}^{\epsilon}(q), n \geq 5$, with s dividing $\left(q-\epsilon 1, n, \log _{p}(q)\right)$.
Note that $P \cap N=\left(P \cap N_{1}\right) \times \cdots \times\left(P \cap N_{r}\right)$ and $\Phi(P \cap N)=\Phi\left(P \cap N_{1}\right) \times$ $\cdots \times \Phi\left(P \cap N_{r}\right)$ char $P \cap N \unlhd P$, where $\Phi(X)$ denotes the Frattini subgroup of any group X. We also denote by ${ }^{\sim}$ the corresponding factor subgroups of P over $\Phi(P \cap N)$. In particular, the group $U:=\widetilde{P \cap N}=(P \cap N) / \Phi(P \cap N)$ is an elementary abelian s-group. We consider the group

$$
\widetilde{P}=P / \Phi(P \cap N)=U \widetilde{A_{s}}=U \widetilde{B_{s}}=\widetilde{A_{s}} \widetilde{B_{s}}
$$

If we let

$$
\left|\widetilde{P \cap N_{i}}\right|=\left|\left(P \cap N_{i}\right) / \Phi\left(P \cap N_{i}\right)\right|=s^{t}, t \geq 1
$$

it is clear that $|U|=s^{r t}$. Moreover, we claim that $\left|\widetilde{A_{s}} \cap U\right| \leq s^{t}$ and, analogously, $\left|\widetilde{B_{s}} \cap U\right| \leq s^{t}$. Since $A_{\pi^{\prime}}$ acts transitively on Ω, we may assume that for each $i=2, \ldots, r$, there exists an element $x_{i} \in A_{\pi^{\prime}}$ such that ($P \cap$ $\left.N_{1}\right)^{x_{i}}=P \cap N_{i}$ and $\Phi\left(P \cap N_{1}\right)^{x_{i}}=\Phi\left(P \cap N_{i}\right)$. Now, since $s \in \pi$ and $\left[A_{\pi}, A_{\pi^{\prime}}\right]=1$, if we let $\hat{N}_{i}=\prod_{j=1, j \neq i}^{r} N_{j}$ for each $i=1,2, \cdots, r$, we have that:

$$
\begin{gathered}
A_{s} \cap \Phi\left(P \cap N_{1}\right)\left(P \cap \hat{N}_{1}\right)=\left(A_{s} \cap \Phi\left(P \cap N_{1}\right)\left(P \cap \hat{N}_{1}\right)\right)^{x_{i}} \leq \\
\leq \Phi\left(P \cap N_{1}\right)^{x_{i}}\left(P \cap \hat{N}_{1}\right)^{x_{i}} \leq \Phi\left(P \cap N_{i}\right) \hat{N}_{i}
\end{gathered}
$$

for each $i=2, \ldots, r$. Therefore:

$$
\begin{aligned}
& A_{s} \cap \Phi\left(P \cap N_{1}\right)\left(P \cap \hat{N}_{1}\right) \leq \cap_{i=1}^{r}\left(\Phi\left(P \cap N_{i}\right) \hat{N}_{i}\right)= \\
& =\Phi\left(P \cap N_{1}\right) \cdots \Phi\left(P \cap N_{r}\right)\left(\cap_{i=1}^{r} \hat{N}_{i}\right)=\Phi(P \cap N)
\end{aligned}
$$

and so, $A_{s} \cap \Phi\left(P \cap N_{1}\right)\left(P \cap \hat{N}_{1}\right)=A_{s} \cap \Phi(P \cap N)$. Using this fact, it follows that

$$
\widetilde{A_{s}} \cap U=\frac{\left(A_{s} \cap N\right) \Phi(P \cap N)}{\Phi(P \cap N)} \cong \frac{\left(A_{s} \cap N\right) \Phi\left(P \cap N_{1}\right)\left(P \cap \hat{N}_{1}\right)}{\Phi\left(P \cap N_{1}\right)\left(P \cap \hat{N}_{1}\right)},
$$

which is isomorphic to a subgroup of

$$
\frac{\frac{P \cap N}{P \cap \hat{N}_{1}}}{\frac{\Phi\left(P \cap N_{1}\right)\left(P \cap \hat{N}_{1}\right)}{P \cap \hat{N}_{1}}} \cong \frac{P \cap N_{1}}{\Phi\left(P \cap N_{1}\right)}
$$

where $\left|\left(P \cap N_{1}\right) / \Phi\left(P \cap N_{1}\right)\right|=s^{t}$. So the claim follows.
Observe that $\widetilde{A_{s}} \cap U$ is a normal subgroup both of $\widetilde{A_{s}}$ and U, so it is normal in $\widetilde{P}=U \widetilde{A_{s}}$. Analogously, $\widetilde{B_{s}} \cap U$ is normal in \widetilde{P}. Hence the subgroup $V:=\left(\widetilde{A_{s}} \cap U\right)\left(\widetilde{B_{s}} \cap U\right)$ is normal in \widetilde{P} and $|V|$ divides $s^{t} s^{t}=s^{2 t}$.

Consider now the group

$$
\widetilde{P} / V=\left(\widetilde{A_{s}} V / V\right)\left(\widetilde{B_{s}} V / V\right)=(U / V)\left(\widetilde{A_{s}} V / V\right)=(U / V)\left(\widetilde{B_{s}} V / V\right) .
$$

It follows from [9, Theorem III.11.5] and [2, Theorem 1.3] that:
(i) If $A_{s} N / N=B_{s} N / N$ is cyclic, then the Prüfer rank of \widetilde{P} / V is at most 2 ,
(ii) If $A_{s} N / N=B_{s} N / N$ is metacyclic (non cyclic), then the Prüfer rank of \widetilde{P} / V is at most 4 . This is the case only when $N_{1} \cong L_{n}^{\epsilon}(q), n \geq 5$, and s divides $\left(q-\epsilon 1, n, \log _{p}(q)\right)$.

On the other hand, in any case the Prüfer rank of \widetilde{P} / V is at least $r t-2 t=$ $(r-2) t$, since $|U / V| \geq s^{r t-2 t}$. Hence we deduce that:
(i) If $A_{s} N / N=B_{s} N / N$ is cyclic, then $(r-2) t \leq 2$.
(ii) If $A_{s} N / N=B_{s} N / N$ is metacyclic, then $(r-2) t \leq 4$.

From now on we will study each case separately:
(i) $A_{s} N / N=B_{s} N / N$ is cyclic.

First observe that the case $(r-2) t=2$ is not possible, because the cyclic subgroups $\widetilde{A_{s}} V / V$ and $\widetilde{B_{s}} V / V$ intersect trivially with the normal subgroup U / V of the metacyclic group \widetilde{P} / V. Hence we deduce:

$$
(r-2) t \leq 1
$$

where $t \geq 1$. Then $r \leq 3$, and so $r=1$ by Lemma 18 .
(ii) $A_{s} N / N=B_{s} N / N$ is metacyclic (non cyclic).

Recall that this case can happen only if $N_{1} \cong L_{n}^{\epsilon}(q), n \geq 5$, with s dividing $\left(q-\epsilon 1, n, \log _{p}(q)\right)$. Assume that $r>3$. We have that U / V is an elementary abelian group of order at most s^{4}. On the other hand, $\widetilde{A_{s}} V / V \cap U / V$ is trivial and $C_{\widetilde{A_{s}} V / V}(U / V)$ is also trivial. Hence $\left|\widetilde{A_{s}} V / V\right| \leq|\operatorname{Aut}(U / V)|_{s} \leq\left|G L_{4}(s)\right|_{s}$. In particular $\left|\widetilde{A_{s}} V / V\right| \leq s^{6}$. Note also that $\widetilde{A_{s}} V / V \cong A_{s} N / N$. Hence we have:

$$
\left|A_{s}\right|=\left|A_{s} N / N\right|\left|A_{s} \cap N\right| \leq s^{6}\left|N_{i}\right|_{s}
$$

since $A_{s} \cap \hat{N}_{i}=1$ by Lemma 19, and so $A_{s} \cap N \cong\left(A_{s} \cap N\right) \hat{N}_{i} / \hat{N}_{i} \leq$ $N / \hat{N}_{i} \cong N_{i}$.
If we denote by s^{u} the order of a Sylow subgroup of N_{i}, it follows that:

$$
s^{r u} \leq|P| \leq\left|A_{s}\right|\left|B_{s}\right| \leq s^{12} s^{2 u} .
$$

This implies $4 u \leq r u \leq 12+2 u$ and $u \leq 6$.
Now recall that there exists a non-cyclic abelian s-subgroup of $G L_{n}^{\epsilon}(q)$ of rank at least n with elements of the form $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}\right)$, where
$\lambda_{i} \in G F(q)$ for $\epsilon=+$ and $\lambda_{i} \in G F\left(q^{2}\right)$ for $\epsilon=-$. Since s divides $q-\epsilon 1$ this implies that a Sylow s-subgroup of $L_{n}^{\epsilon}(q)$ has an abelian s-subgroup of rank at least $n-2$. Hence it follows that $n-2 \leq u \leq 6$, that is $n \leq 8$.
Therefore in this case we can deduce that either $r \leq 3$ or $n \leq 8$. This latter case can be discarded since we may choose $s \in \pi \cap \pi\left(\operatorname{Out}\left(N_{1}\right)\right)$ (by Lemma 20), $s \geq 5$, such that s does not divide ($n, q-\epsilon 1, \log _{p}(q)$). Hence $r \leq 3$ and we deduce that $r=1$, applying Lemma 18 .

From Corollary 3 and Lemma 21 we conclude that $r=1$ and then N is simple and G is an almost simple group, as desired.

We gather in the next result the gained information about the structure of our minimal counterexample G.

Theorem 3. Assume that G is a counterexample of minimal order to our Conjecture, that is:
(H1) π is a set of odd primes.
(H2) G is a group of minimal order satisfying the following conditions:

1. $G=A B$ is the product of two π-decomposable subgroups $A=$ $A_{\pi} \times A_{\pi^{\prime}}$ and $B=B_{\pi} \times B_{\pi^{\prime}}$,
2. $A_{\pi} B_{\pi} \neq B_{\pi} A_{\pi}$.

Then G is an almost simple group, i.e., G has a unique minimal normal subgroup N, which is a non-abelian simple group; in particular, $N \unlhd G \leq$ Aut(N).

Moreover, the following properties hold:
(i) $G=A N=B N=A B$; in particular, $|N||A \cap B|=|G / N||N \cap A||N \cap B|$.
(ii) $\left(\left|A_{\pi^{\prime}}\right|,\left|B_{\pi^{\prime}}\right|\right) \neq 1, A_{\pi^{\prime}} \cap B_{\pi^{\prime}}=1$ and $A \cap B$ is a π-group.
(iii) Neither A nor B is a π-group or a π^{\prime}-group.
(iv) $\pi(G)=\pi(N) \geq 5$.
(v) If, in addition, N is a simple group of Lie type of characteristic p and $p \notin \pi$, then $A \cap B=1$.

Acknowledgements. The second and third author have been supported by Proyecto MTM2010-19938-C03-02, Ministerio de Economía y Competitividad, Spain. The first author would like to thank the Universitat de València and the Universitat Politècnica de València for their warm hospitality during the preparation of this paper. He has been also supported by RFBR project 13-01-00469.

References

[1] B. Amberg, S. Franciosi, F. de Giovanni, Products of Groups, Clarendon Press, Oxford, 1992.
[2] B. Amberg, L.S. Kazarin, On the rank of a product of two finite p-groups and nilpotent p-algebras, Comm. Algebra 27 (1999) 38953907.
[3] Z. Arad, D. Chillag, Finite groups containing a nilpotent Hall subgroup of even order, Houston J. Math. 7 (1981) 23-32.
[4] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, De Gruyter, Berlin/New York, 1992.
[5] Ya.G. Berkovich, Generalization of the theorems of Carter and Wielandt, Sov. Math. Dokl. 7 (1966) 1525-1529.
[6] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985; http://brauer.maths.qmul.ac.uk/Atlas/v3/
[7] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Number 3, Math. Surveys and Monographs, vol. 40.3, Amer. Math. Soc., Providence, RI, 1998.
[8] M. Hall Jr., The Theory of Groups, Chelsea Publishing Co., New York, 1976 (reprinting of the 1968 edition).
[9] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
[10] L.S. Kazarin, Criteria for the nonsimplicity of factorable groups, Izv. Akad. Nauk SSSR, Ser. Mat. 44 (1980) 288-308.
[11] L.S. Kazarin, On a problem of Szép, Math. USSR Izvestiya 28 (1987) 467-495.
[12] L.S. Kazarin, A. Martínez-Pastor, M.D. Pérez-Ramos, On the product of a π-group and a π-decomposable group, J. Algebra 315 (2007) 640-653.
[13] L.S. Kazarin, A. Martínez-Pastor, M.D. Pérez-Ramos, On the product of two π-decomposable soluble groups, Publ. Mat. 53 (2009) 439-456.
[14] L.S. Kazarin, A. Martínez-Pastor, M.D. Pérez-Ramos, Extending the Kegel-Wielandt theorem through π-decomposable groups, in: C.M. Campbell et al.(Eds.), Proceedings of Groups St Andrews 2009 in Bath. Lond. Math. Soc. Lect. Note Ser. 388, Vol. 2, Cambridge University Press, 2011, pp. 415-423.
[15] L.S. Kazarin, A. Martínez-Pastor, M.D. Pérez-Ramos, On the product of two π-decomposable groups, preprint.
[16] M.W. Liebeck, C.E. Praeger, J. Saxl, The maximal factorizations of the finite simple groups and their automorphism groups, Mem. Amer. Math. Soc. 86, No. 432, Am. Math. Soc., Providence, RI, 1990.
[17] P.J. Rowley, The π-separability of certain factorizable groups, Math. Z. 153 (1977) 219-228.

[^0]: *Corresponding author
 Email addresses: kazarin@uniyar.ac.ru (L. S. Kazarin), anamarti@mat.upv.es (A. Martínez-Pastor), dolores.perez@uv.es (M. D. Pérez-Ramos)

