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1 Introduction and preliminaries

Hörmander [2] and Lojasiewicz [6] proved that for each polynomial P and each (tempered)
distribution T there exists a (tempered) distribution S such that T = PS. The division
problem in the space S′(Rn) of tempered distributions on Rn can be stated as follows: Let
F be a multiplier of the space S(Rn) of rapidly decreasing functions, i.e. a smooth function
F satisfying FS(Rn) ⊂ S(Rn). Find conditions on F to ensure that for each tempered
distribution T ∈ S′(Rn) there is a tempered distribution S such that T = FS. It is known
that F ∈ E(Rn) is a multiplier in S(Rn) if and only if for each k ∈ N there exist C > 0 and
j ∈ N such that |F (α)(x)| ≤ C(1+ |x|2)j for each multiindex α with |α| ≤ k. Here |x| denotes
the Euclidean norm on Rn. The space of multipliers on S(Rn) is denoted by OM (Rn) and
OM in case n = 1. See [4] and [10].

A multiplier F ∈ OM (Rn), F 6= 0, gives a positive solution for the division problem in
S′(Rn) if and only if the multiplication operator MF : S(Rn) → S(Rn), f → Ff , has closed
range rg(MF ). Indeed, observe first that the transpose M t

F of the operator MF : S(Rn) →
S(Rn) coincides with the multiplication operator S → FS on S′(Rn). Now, necessity is
an immediate consequence of the Closed Range Theorem [9, Theorem 26.3] since M t

F is
surjective. The sufficiency follows since the operator MF is injective between Fréchet spaces
whenever it has closed range, hence it is an isomorphism onto its image when it has closed
range. The injectivity of MF when it has closed range can be concluded as follows: If MF is
not injective, F must have a zero in which all the derivatives of F vanish. We may take this
point in the boundary of the zero set of F and may assume without loss of generality that
this point is 0. By a result of Whitney [11, Corollaire V.1.6], the function f := ϕF/|x|2, with
ϕ ∈ D(Rn), ϕ(x) = 1, |x| ≤ 1, is in the closure of the range of MF . Since the range is closed,
we can find G ∈ S(Rn) such that GF = f . Now we select a sequence (xk)k in Rn tending to
0 such that F (xk) 6= 0. This implies G(xk) = 1/|xk|2 for each k and G(0) is not well defined.

If F ∈ E(Rn) is an arbitrary smooth function, the division problem for distributions is
also equivalent to the fact that the multiplication operator MF : E(Rn) → E(Rn) has closed
range. The characterization for arbitrary dimension seems to be still open. However, in the
one variable case, it was already known by Schwartz [10, Chap. V] that a smooth function
F ∈ E(R) satisfies that MF : E(R) → E(R) has closed range if and only if F has only isolated
zeros of bounded order. Although there is a close relation between the two cases and they
are equivalent in case F is a polynomial (cf. [10]), there is no analog characterization of those
multipliers F ∈ OM such that the range of MF : S(R) → S(R) is closed. This is the question
we consider in this paper.

A fundamental system of seminorms of the Fréchet space S(Rn) of rapidly decreasing
functions of Schwartz is given by

‖f‖s := max
|α|≤s

max
x∈Rn

(1 + |x|2)s|f (α)(x)|, s ∈ N.

In particular ||f ||0 := maxx∈Rn |f(x)|. Our notation for the theory of distribution and func-
tional analysis is standard. We refer the reader to [4], [9], [3] and [10]. An excellent survey
about the division of distributions is due to Malgrange [8].

Given a function F , we denote by ZF the set of zeros of F . An element x ∈ ZF is said to
have finite order whenever there exists α ∈ Nn

0 such that F (α)(x) 6= 0. If x ∈ ZF , the order
oF (x) of x in F is the minimum of the natural numbers |α| satisfying this condition. If x does
not belong to ZF then the order of x is defined as oF (x) = 0.
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Our purpose is to characterize the multipliers F ∈ OM (R), F 6= 0, such that the operator
MF : S(R) → S(R) has closed range in terms of the zeros of F in the one variable case. This
is obtained in Theorem 2.1. Clearly it is possible to use Fourier transform to formulate our
result in terms of a characterization of surjective convolution operators on S′(R). We will
not state these consequences explicitly in this paper. It is important to remark that in the
present setting it is not possible to use complex analytic methods and weighted spaces of
entire functions as in the treatment of surjectivity of convolution operators on other spaces
of distributions, see [3]. Our characterization in Theorem 2.1 permits us to show in Theorem
2.3 that if MF : S(R) → S(R) has closed range, then it admits a continuous linear left
inverse. This result does not longer hold in the case of several variables even for polynomials
F , as follows from results due to Langenbruch [5]. We conclude our paper with an example
showing that two conditions stated by Hörmander in the remark after Theorem 1 in [2] are
not necessary for a multiplier F to satisfy that MF has closed range.

The following lemma is well-known, we include the proof for the sake of completeness.

Lemma 1.1 If F ∈ OM (Rn), F 6= 0, satisfies that MF : S(Rn) → S(Rn) has closed range
then there exists m ∈ N such that oF (x) ≤ m for all x ∈ Rn.

Proof. For simplicity, during all the proof C > 0 denotes a constant not depending on
ε > 0 which can change at every step. Since F 6= 0, the operator MF : S(Rn) → S(Rn) is
injective; see the argument indicated above. Since the range of MF is closed, the operator is
an isomorphism into and there exist s ∈ N, C > 0 such that

∥∥∥∥
f

F

∥∥∥∥
0

≤ C‖f‖s (1.1)

for each f ∈ rg(MF ). We fix x ∈ ZF and we consider a test function φ with compact support
in the ball B(0, 1) of center 0 and radius 1 and such that φ(0) = 1. For 0 < ε < 1 we define
fε(y) := φ

(y−x
ε

)
F (y). Assume oF (x) > s, i.e. F (α)(x) = 0 for each |α| ≤ s. The Taylor

polynomials of each F (β) up to order s− |β| centered at x are null for each |β| ≤ s. We apply
Taylor’s theorem to get that, for each |β| ≤ s and y ∈ B(x, ε), there exists ξ in the segment
linking x and y such that

F (β)(y) =
∑

β≤γ,|γ|=s+1

Cγ,βF (γ)(ξ)(y − x)γ−β.

Hence there exists C > 0 such that |F (β)(y)| ≤ Cεs+1−|β| for y ∈ B(0, ε). We apply
Leibniz formula to fε to get that there exists C such that for each |α| ≤ s, and y ∈ B(x, ε)

|f (α)
ε (y)| =

∣∣∣∣∣∣
∑

β≤α

Cα,βε−(|α|−|β|)φ(α−β)((y − x)/ε)F (β)(y)

∣∣∣∣∣∣
≤ Cεs+1−|α| ≤ Cε.

Finally, if we put in (1.1) fε we get

1 ≤ C

∣∣∣∣∣ sup
|α|≤s,y∈B(x,ε)

(1 + |y|2)sf (α)
ε (y)

∣∣∣∣∣ ≤ Cε,

a contradiction. 2
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From Rolle’s theorem it easily follows that if F is a C∞ one variable function then every
z in the accumulation of ZF belongs to ZF and has infinite order. Hence from Lemma 1.1 we
get that, in the one variable case, if F ∈ OM , F 6= 0, satisfies that MF : S(R) → S(R) has
closed range, then ZF is discrete.

2 Closed range multipliers in OM(R)

In our next Theorem we use the following notation. If T ∈ N and x ∈ R, we set Ix,T :=
[x− 1/(1 + |x|2)T , x + 1/(1 + |x|2)T ].

Theorem 2.1 A multiplier F ∈ OM , F 6= 0, satisfies that MF : S(R) → S(R) has closed
range if and only if there exists an N ∈ N and T, c > 0 such that F satisfies the following two
conditions for each x ∈ R:

(a) The cardinality of the set ZF ∩Ix,T , the zeros counted with their multiplicities, is smaller
than N .

(b) (1 + |x|2)T |F (x)| ≥ c
∏k

i=1 |x− xi|, (xi)k
i=1 being the zeros of F in Ix,T counting multi-

plicities.

Proof. 1) Assume first that MF has closed range. We can find s ∈ N and C > 0 be such
that

∥∥∥∥
f

F

∥∥∥∥
0

≤ C‖f‖s (2.1)

for every f ∈ rg(MF ) (with the corresponding extensions at ZF ). If we suppose that (a) is
not satisfied, we can take in (2.1) s big enough such that there is a sequence (yn) tending to
infinity in absolute value, a sequence (εn)∞n=1 such that (1 + |yn|)T εn tends to zero for each
T > 0 and, if we denote In := [yn− εn, yn + εn], then kn :=

∑
x∈In

oF (x) > s. By Lemma 1.1,
shrinking the intervals In if necessary, we can assume the sequence (kn)n bounded.

Now we consider ZF ∩ In = {x1, . . . , xkn}, the zeros counted with their multiplicities, and
we define the functions gn(x) :=

∏
1≤i≤kn

(x − xi). We take the polynomials Hn in In that
are the solution of the Hermite interpolation at ZF ∩ In of the function F and its derivatives
up to the order of each zero (cf.[1, Chapter 4, section 7]), i.e. we have that these Hn are
the identically null polynomial for each n ∈ N. Hence, by the remainder theorem for these
approximation polynomials [1, Chapter 4 (7.3),(7.4)], we have that for each y ∈ In there is
ξ ∈ In such that F (y) = F (y)−Hn(y) = 1

kn!gn(y)F (kn)(ξ). Now we apply that F ∈ OM and
(kn)n is bounded to get C > 0 and l ∈ N such that

sup
y∈In

∣∣∣∣
F (y)
gn(y)

∣∣∣∣ ≤ C sup
y∈In

|F (kn)(y)| ≤ sup
y∈In

C(1 + |y|)l ≤ C(1 + |yn|2)l. (2.2)

In the rest of the proof the constant C > 0 can change from step to step but it is
independent on n. Take a function φ ∈ D(]− 1, 1[) such that φ|]−1/2,1/2[ ≡ 1 and define φn :=
φ((x− yn)/εn), and hn := gnφn. Observe that hn has more zeros than F and oF (z) ≤ ohn(z)
for each z ∈ ZF . Hence, as a consequence of Taylor theorem we get that the quotient hn/F
can be extended to ZF ∩ In as a C∞ function. Thus hn/F ∈ D(R) ⊂ S(R), and hn is in the
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range of MF . We evaluate the inequality (2.2) at the interval Jn :=]yn − εn/2, yn + εn/2[, in
which hn = gn, to get

inf
y∈Jn

∣∣∣∣
hn(y)
F (y)

∣∣∣∣ ≥
1

C(1 + |yn|2)l
. (2.3)

Using Leibniz formula we have, for each k ∈ N,

h(k)
n (y) =

∑

0≤j≤k

Cj,kε
−j
n φ(j)((y − x)/εn)g(k−j)

n (y).

At this point, recall (a consequence of) the Markov inequality. Given k ∈ N, there exists
C > 0 such that for each polynomial P with degree less or equal than k, for each interval I
and for each 0 ≤ l ≤ k

max
x∈I

|P (l)(x)| ≤ C
maxx∈I |P (x)|

length(I)l
.

Since gn(y) are polynomials and In are intervals with diameter εn, we can apply Markov’s
inequality above to obtain C > 0, which is independent of n since the degree kn of the
polynomials is bounded, such that

sup
y∈In

|g(l)
n (y)| ≤ C

εl
n

sup
y∈In

|gn(y)| = C

εl
n

sup
y∈In

kn∏

i=1

|y − xi| ≤ C

εl
n

εkn
n = Cεkn−l

n . (2.4)

Hence we can estimate

sup
0≤k≤s,y∈In

|h(k)
n (y)| ≤ Cε−j

n εkn−k+j
n ≤ Cεkn−s

n ≤ Cεn (2.5)

since kn > s for all n. Thus, as (kn)n is bounded, putting hn in (2.1), since hn ∈ rgMF , we
have

∥∥∥∥
hn

F

∥∥∥∥
0

≤ C sup
y∈In,0≤j≤s

(1 + |y|2)s|h(j)
n (y)| ≤ C(1 + |yn|2)sεn. (2.6)

Taking C big enough such that (2.3) and (2.6) hold simultaneously and evaluating at an
arbitrary y ∈ Jn = [yn − εn/2, yn + εn/2] we obtain

1
C2

≤ (1 + |yn|2)s+lεn,

which contradicts the choice of (εn)n.
To prove (b) we consider φ as the same test function as in the proof of the necessity of (a)

and we denote Jx,T := [x−1/(2(1+ |x|2)T )), x+1/(2(1+ |x|2)T ))] and gx(y) :=
∏k

i=1(y−xi),
where T > 0 satisfies (a) and {x1, . . . , xk} are the zeros of F in Ix,T counting multiplicities
with cardinality k depending on x (but bounded by N since we are assuming (a)). Consider
now the function fx(y) := φ((y − x)(1 + |x|2)T ))gx(y). We have that fx = gx in Jx,T and
suppfx ⊂ Ix,T . Hence fx is in rg(MF ) because fx is a compactly supported C∞ function
which vanishes at ZF at least of the same order as F . Moreover, for each l ∈ N, since the
polynomials gx are of bounded degree, we proceed as in (2.4) to get C > 0 (which may change
during the rest of the proof but is always independent of x) such that
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sup
y∈Ix,T ,0≤l≤k

|g(l)
x (y)| ≤ C(1 + |x|2)−T (k−l) ≤ C. (2.7)

Applying Leibniz formula as in (2.5) we get C > 0 such that

sup
y∈Ix,T ,0≤l≤s

|f (l)
x (y)| ≤ (1 + |x|2)TsC. (2.8)

Therefore

∣∣∣∣∣
∏k

i=1(x− xi)
F (x)

∣∣∣∣∣ ≤ sup
y∈Jx,T

∣∣∣∣
gx(y)
F (y)

∣∣∣∣ ≤ sup
y∈Ix,T

∣∣∣∣
fx(y)
F (y)

∣∣∣∣ ≤

≤ C sup
y∈Ix,T ,0≤i≤s

(1 + |y|2)s|f (i)
x (y)| ≤ C(1 + |x|2)M

for M = (T + 1)s, and we have (b).

2) Assume that F ∈ OM satisfies conditions (a) and (b). We first show that there exist C > 0
and s ∈ N such that if f ∈ S(R) satisfies that ZF ⊆ Zf and the order of f at x is not smaller
than the corresponding order of F for each x ∈ ZF , then

∥∥∥∥
f

F

∥∥∥∥
0

≤ C‖f‖s. (2.9)

To prove (2.9) take x in R \ZF and let Jx,T as in the proof of the necessity of (b). Again
we consider ZF ∩ Ix,T = {x1, · · · , xk}, the zeros counted with multiplicities, and k depending
on x but bounded for a fixed N ∈ N. If we interpolate f and its derivatives up to their order
in F at ZF ∩ Ix,T with the corresponding Hermite polynomial, since the order in f is at least
equal, we can use the remainder formula [1, chapter 4] to get that for each y ∈ Ix,T there
exists ξ ∈ Ix,T such that f(y) =

∏
(y − xi)f (k)(ξ)/k!. Now we use (b) to compute

∣∣∣∣
f(x)
F (x)

∣∣∣∣ ≤ sup
y∈Ix

∣∣∣∣
f(y)
F (y)

∣∣∣∣ = sup
y∈Ix

∣∣∣∣∣
∏k

i=1(y − xi)f (k)(ξ)/k!
F (y)

∣∣∣∣∣ ≤

≤ sup
y∈Ix

C(1 + |y|2)T |f (k)(ξ)| ≤ C(1 + |ξ|2)T |f (k)(ξ)| ≤ C‖f‖T .

This completes the proof of (2.9). We have to use what we have proved so far to show that if
F ∈ OM satisfies (a) and (b), then MF has closed range. We must show that the estimates
for the zero norm (2.9) suffice to conclude that MF has closed range. To see this observe that
F 2n

also is in OM , it satisfies conditions (a) and (b), possibly for other N , T and c > 0, and,
for 1 ≤ j ≤ n,

(1 + |x|2)n

(
f

F

)(j)

(x) = (1 + |x|2)n gj

F 2j (x). (2.10)

Moreover, x 7→ (1 + |x|2)ngj(x) is a rapidly decreasing function which vanishes at Z
F 2j with

at least the same orders as F 2j
. Here each gj is a linear combination of products of derivatives
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of f of order at most j and powers of F and its derivatives, which are polynomially bounded,
and thus for each k ∈ N there are C > 0, l ∈ N such that ‖gj‖k ≤ C‖f‖l for each f satisfying
the required conditions. This fact together with (2.10) imply that MF is an isomorphism
into.

2

Corollary 2.2 If F ∈ OM satisfies that MF has closed range and there is t > 0 such that |x−
y| > t for each x, y ∈ ZF , x 6= y, then there exists C, T > 0 such that (1+x2)T |F (o(x))(x)| ≥ C
for each x ∈ ZF .

Theorem 2.3 Let F ∈ OM be not identically zero. The operator MF : S(R) → S(R) pos-
sesses a continuous linear left inverse if and only if its range is closed in S(R).

Proof. We only have to show that if MF has closed range, then the range is complemented.
We take a test function ψ ∈ D(R) such that suppψ = [−3/4, 3/4], ψ = 1 on [−1/4, 1/4] and
ψ is symmetric and positive. We can also assume that ψ(x) + ψ(1 − x) = 1, x ∈ [0, 1]. We
define ψk(x) := ψ(x − k), k ∈ Z, and (ψk)k∈Z is a C∞ partition of unity. Let ν : R → R
be a diffeomorphism such that ν(x) = xS for |x| ≥ 1/4, with S odd. Setting ψ̃k := ψk ◦ ν
we get that (ψ̃k)k∈Z is a new C∞ partition of unity and each x ∈ R belongs at most to two
supports. We show that S can be taken big enough such that the number of zeros of F
counting multiplicities contained in each Ik := supp ψ̃k, k ∈ Z, is uniformly bounded. Since
MF has closed range, by Theorem 2.1 there exists T > 0 such that for each |x| ≥ 1 the
number of zeros counting multiplicities of F in [x, x + 1/|x|T ] is bounded by T , and the zeros
in [-1,1] are also bounded by T . We prove that for S > T + 1 there exists k0 such that for
k > k0 there are no more than T zeros in Ik. For k < −k0 the computation is analogous. For
k > 1 the support of ψ̃k is

[xk, yk] := ν−1([k − 3/4, k + 3/4]) = [(k − 3/4)1/S , (k + 3/4)1/S ].

We want to show that, if S > T + 1 then there is k0 such that xk + 1
|xk|T > yk, which implies

the bound for the number of zeros counting mulpiplicities of F in Ik for k ≥ k0. The desired
inequality holds if and only if (k + 3/4)1/S − (k − 3/4)1/S < (k − 3/4)−T/S . This is satisfied
whenever 3/2 ≤ (k − 3/4)

S−1−T
S , which is true for large k.

Now we consider the polynomial Hk = Hk(f) that is the solution of the Hermite in-
terpolation of f at ZF ∩ Ik up to the corresponding multiplicities of each zero. The de-
grees of the polynomials Hk are bounded. Define P (f) =

∑
k ψ̃k(x)Hk(x). We claim that

id− P : S(R) → S(R) is a projector onto rg(MF ). Since rg(MF ) is closed, it coincides with
the ideal (see [11, Corollaire V.1.6] for E(R) and use a standard argument for S(R)).

I := {f ∈ S(R) : f (j)(z) = 0 for all z ∈ ZF , 0 ≤ j < oF (z)}. (2.11)

We prove that P (S(R)) ⊂ S(R). We proceed to check this inclusion. We have to show
that given N ∈ N there is M ∈ N and C > 0 such that

max
0≤j≤N

sup
x∈R

(1 + |x|)N |P (f)(j)(x)| ≤ C max
0≤j≤M

sup
x∈R

(1 + |x|)M |f (j)(x)|.

Denote by n0 the smallest integer bound of the sequence of the degrees (deg(Hk))k∈Z. In
the following computations C will be a constant which depends on n0 but not on k and may
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change at every step. First we obtain estimates on the polynomials Hk. By Markov inequality,
there is C > 0 such that

sup
x∈Ik

max
0≤j≤n0

|H(j)
k (x)| ≤ C

length(Ik)n0
sup
x∈Ik

|Hk(x)|.

If k ≥ 1, then yk = (xS
k + 3/2)1/S and there is C such that Cxk ≥ yk for all k ≥ 1. Hence we

can apply the equality yS
k − xS

k = (yk − xk)(yS−1
k + yS−2

k xk + · · ·+ xS−1
k ) to get that there is

a constant C such that
length(Ik) ≥ 1

C(xk)S−1
.

By the symmetry of the supports, if we denote Ik := [yk, xk] for k < 0, the constant C > 0
can be taken such that

1
length(Ik)

≤ C(1 + |xk|)S−1,

for each k ∈ Z. Therefore

sup
x∈Ik

max
0≤j≤n0

|H(j)
k (x)| ≤ C(1 + |xk|)n0(S−1) sup

x∈Ik

|Hk(x)|

for each k ∈ Z. By the formula for the terms in the Hermite interpolation polynomials [1,
Chapter 4, Section 7], there exists C > 0 such that

sup
x∈Ik

|Hk(x)| ≤ C(1 + |xk|)n0 max
0≤j≤n0

sup
x∈Ik

|f (j)(x)|.

Hence
sup
x∈Ik

max
0≤j≤n0

|H(j)
k (x)| ≤ C(1 + |xk|)n0(S−1) sup

x∈Ik

|Hk(x)| ≤

≤ C(1 + |xk|)n0S max
0≤j≤n0

max
z∈Ik

|f (j)(z)|.

For |k| ≥ 1, ψ̃
(j)
k (x) = ψ(j)(xS − k). Therefore, for N fixed we can choose C in such a way

that there exists L > N such that

sup
x∈Ik

|ψ̃(j)
k (x)| ≤ C(1 + |xk|)L

for 0 ≤ j ≤ N . Obviously C can be taken to satisfy such inequality also for I0.
As each x ∈ R may belong at most to two supports, we can take C > 0 such that

max
0≤j≤N

sup
x∈R

(1 + |x|)N |P (j)(f)(x)| ≤ C
∑

k∈Z
(1 + |xk|)N max

0≤j≤N
max
0≤i≤j

sup
x∈Ik

|ψ̃(i)
k (x)H(j−i)

k (f)(x)|.

Consequently, for M := N + L + n0S, we get ξk ∈ Ik and 0 ≤ j0 ≤ n0 such that

max
0≤j≤N

sup
x∈Ik

(1 + |x|)N |P (j)(f)(x)| ≤ C(1 + |xk|)M max
0≤j≤N

sup
z∈Ik

|f (j)(z)| =

= C(1 + |xk|)M |f (j0)(ξk)| ≤ C max
0≤j≤M

sup
ξ∈R

(1 + |ξ|)M |f (j)(ξ)|,
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with C > 0 is independent from k. These estimates also show that P : S(R) → S(R) is
continuous.

We see now that (id − P )(I) = I. In fact, since (ψ̃k)k∈Z is a C∞ partition of unity and
each ψ̃k(x) is identically zero outside Ik, we get, for f ∈ S(R), x ∈ ZF and 0 ≤ j < oF (x),

P (f)(j)(x) =
∞∑

k=−∞

j∑

i=0

ψ̃k(x)f (j)(x) = f (j)(x).

Hence (id − P )(S(R)) ⊆ I. Moreover for each f ∈ I each Hk is the null polynomial, hence
(id− P ) coincides with id on I. 2

We conclude this article with the following example. Hörmander stated in the remark after
Theorem 1 in [2] that each C∞ multiplier F having all the zeros of uniform bounded order
(condition (4.2) in [2]) and satisfying certain inequalities (condition (4.10) in [2]) satisfies that
the range of MF is closed. In case all the zeros are of order one, this condition (4.10) consists
of the following inequalities (see the comments before introducing (4.10) and Lemma 2 in [2]):
There exist µ1, µ2, µ3 ∈ N and C > 0 such that

|F (x)| ≥ C
d(x,ZF )µ1

(1 + |x|2)µ2
for all x ∈ RN (2.12)

and

|F ′(x)| ≥ C
1

(1 + |x|2)µ3
for all x ∈ ZF (2.13)

Let F1(x) := sin(x) and F2(x) := sin(x+αe−x2
), α being a positive number small enough

to ensure that the map x 7→ x+αe−x2
a diffeomorphism. We consider the multiplier F = F1F2.

Since F1 and F2 satisfy conditions (a) and (b) in our Theorem 2.1, as it is easily checked,
both MF1 and MF2 are isomorphisms into, hence the multiplier MF = MF1 ◦MF2 has closed
range, too. However, as a consequence of Taylor’s theorem we have

F ′(nπ) ' αe−(nπ)2 ,

thus (2.13) does not hold. Accordingly, Hormander’s conditions 2.12 and 2.13 are not neces-
sary for a multiplier F to satisfy that MF has closed range.
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