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Abstract.- We have performed an experimental study of the crystal structure, lattice 

dynamics, and optical properties of silver chromate (Ag2CrO4) at ambient temperature 

and high pressures. In particular, the crystal structure, Raman-active phonons, and 

electronic band gap have been accurately determined. When the initial orthorhombic 

Pnma Ag2CrO4 structure (Phase I) is squeezed up to ∼4 GPa, a previously undetected 

phase (Phase II) has been observed with a 0.95% volume collapse. The structure of 

Phase II can be indexed into a similar orthorhombic cell as Phase I, and the transition 

can be considered as an isostructural transition. This collapse is mainly due to the 

drastic contraction of the a axis (∼1.3%). A second phase transition to Phase III occurs 

at ∼13 GPa, to a structure not yet determined. First-principles calculations have been 

unable to reproduce the isostructural phase transition likely due to electronic 

considerations in chromium atoms. Calculations propose the stabilization of a spinel-

type structure at 11 GPa. This phase is not detected in experiments probably due to the 

presence of kinetic barriers. 
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1.- Introduction 

Silver chromate has been extensively studied at ambient conditions due to its 

unusual red color, which makes this compound unique as pigment and for colouring 

applications. Although it remains as a controversial subject, some authors concluded 

that the intense absorption centred at 450 nm could be explained by a 1T2 ← 1A1 

transition of the [CrO4]
2- anion, red-shifted in the silver salt1,2. Regarding its crystal 

structure, Ag2CrO4 crystallizes in the orthorhombic space group Pnma (Nr. 62), with 

lattice constants: a = 10.063(11) Å, b = 7.029(4) Å, and c = 5.540(2) Å and four 

formula units per cell (Z = 4) at ambient conditions3. The topology of this olivine-like 

structure is typically described as consisting of isolated chromate [CrO4] groups, whose 

oxygen atoms are coordinated to the silver atoms to generate the tridimensional network 

(see Fig. 1). Two different types of silver-centred oxygen polyhedra exist: elongated 

octahedra and distorted off-centered tetrahedra. This crystal structure is also adopted by 

other ternary oxides such as forsterite Mg2SiO4
4, Al2BeO4

5 or Ag2MnO4
6. The structures 

of some alkaline-metal chromates like those of potassium7, rubidium8 and cesium9, 

differ significantly from that of silver chromate even if described in the same space 

group. Compared to these compounds, the shorter metal-oxygen distances of silver 

chromate point to a greater degree of covalent bonding between cations and anions10.  

Few experimental studies on Ag2CrO4 at high temperature (HT) or high pressure 

(HP) have been reported11-14. A reversible first-order structural transformation was 

observed at 490ºC by differential thermal analysis, electrical conductivity measurements, 

and temperature-variable x-ray diffraction11,12,14. The HT phase appears to be hexagonal 

with Z=16 and lattice parameters a = 9.92(4) Å and c = 19.76(8) Å at 506ºC11. The 

phase diagram of silver chromate was studied by Pistorious up to 4 GPa and 900ºC and, 
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besides the aforementioned HT phase, no additional polymorphs were found13,14. With 

regard to polymorphism at extreme conditions, a complementary description of the 

silver chromate structure based on the topology of it cation Ag2Cr subarray could be 

relevant15. This cationic framework adopts the Ni2In structural type, formed by trigonal 

prisms of Ag atoms connected by common edges forming straight chains which run 

parallel to the ab plane (see Fig. 1). Adjacent chains of prisms are shifted 1/2a along 

this axis. The Cr atoms ([CrO4] groups) are located in the center of such prisms. 

Alkaline-metal chromates of K, Rb, and Cs adopt, however, a Co2Si-type structure 

which also consists of trigonal prisms of metal atoms but in a zig-zag configuration. 

This alternative view of crystal structures of oxides, together with the well-established 

fact that cations in oxides tend to reproduce the structure of the corresponding or 

intimately-related alloy, could provide a tool to qualitatively predict new pressure-

induced phases15. Thus, high-pressure studies on several oxides have shown that high-

pressure transformations involve an increase of the number of neighbour atoms in their 

second coordination sphere16-18. Moreover, the behaviour of M2X compounds (where M 

= group IA or IB elements) under compression19-25 could give some hints of the 

potential transition mechanisms in Ag2CrO4. 

Taking this background into account, this work aims at giving a detailed picture of 

the structure and physical properties of silver chromate up to 20 GPa. Angle-dispersive 

x-ray diffraction (ADXRD), Raman spectroscopy, and optical absorption measurements 

suggest that the initial orthorhombic phase undertakes an isostructural transition with a 

drastic volume collapse above 4 GPa and a subsequent transition above 13 GPa. 

Preliminary first-principles calculations are unable to reproduce the isostructural phase 

transition likely due to electronic considerations in chromium atoms.   
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2.- Experimental details 

Commercial silver chromate powder with 99.9% purity (Alfa Aesar, Prod. Nr. 7784-

01-2) was crushed in a mortar to obtain micron-sized samples. These samples were used 

to carry out HP-ADXRD, HP-Raman, and HP-optical absorption measurements at room 

temperature.  

 

2.1.- ADXRD experiments. Three independent HP-ADXRD experiments were 

conducted in diamond-anvil cells up to 20 GPa. Experiment 1 was carried out using an 

in-house Xcalibur diffractometer with Kα molybdenum radiation (0.7107 Å). The same 

set-up was previously used to successfully characterize the high-pressure phases of 

other compounds in the same pressure range22-24. Experiments 2 and 3 were performed 

at the I15 beamline of Diamond and the MSPD beamline26 of ALBA synchrotron light 

sources, respectively, with a 40 × 40 µm-focused incident monochromatic beam of 

0.4246 Å. The Ag2CrO4 metallic-lustered powder samples were loaded in a 150 µm-

diameter hole of a stainless-steel gasket preindented to a thickness of about 40 µm. A 

16:3:1 methanol:ethanol:water mixture was used as pressure-transmitting medium. 

Preliminary data reduction was done using the Fit2D software27. Pressure was measured 

by three different methods: (i) the ruby fluorescence scale28; (ii) the equation of state 

(EOS) of silver29, which was added as external pressure calibrant in experiments 1 and 2; 

and (iii) the EOS of copper30 in experiment 3. These methods give a maximum pressure 

uncertainty of 0.2 GPa at the highest pressure of this study. The observed intensities 

were integrated as a function of 2θ in order to give one-dimensional diffraction profiles. 

The indexing and refinement of the powder diffraction patterns were performed using 

the FULLPROF31 and POWDERCELL32 program packages. 
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2.2.- Raman experiments. Unpolarized HP-Raman scattering measurements at room 

temperature were performed on powder samples in backscattering geometry with a 

LabRAM HR UV microspectrometer coupled to a Peltier-cooled CCD camera. A 

632.81 nm (1.96 eV) HeNe laser excitation line with a power around 1 mW and a 

spectral resolution better than 2 cm-1 were used. During Raman experiments, samples 

were checked by monitoring the time dependence of the Raman signal at different 

accumulations and by visual inspection before and after each measurement in order to 

be sure that no heating effects occur during the measurements by the incoming laser 

excitation since the laser energy was above the band gap energy (1.80 eV). In order to 

analyze the Raman spectra, Raman peaks have been fitted to a Voigt profile (Lorentzian 

profile convoluted by a Gaussian profile) where the spectrometer resolution is taken as a 

fixed Gaussian width (1.5 cm-1). For HP studies the samples were loaded in a 

membrane-type DAC. A 16:3:1 methanol:ethanol:water mixture was used as pressure-

transmitting medium and pressure was measured by the ruby fluorescence scale.28 

 

2.3.- Optical absorption measurements. For optical absorption studies, we used 20-

µm-thin platelets cleaved from small single crystals. The single crystals were obtained 

compressing the Ag2CrO4 powder to 1 GPa using a large volume press equipped with 

Brigmann anvils and using hexagonal boron nitride disc as pressure medium and to 

isolate the sample from the tungsten carbide anvils33. Measurements in the visible-near-

infrared range were done in an optical setup, which consisted of a deuterium lamp, 

fused silica lenses, reflecting optics objectives, and a visible-near-infrared 

spectrometer34. For HP-optical absorption studies the samples were loaded in a 

membrane-type DAC with similar configuration as in HP-ADXRD and HP-Raman 

experiments. The optical-absorption spectra were obtained from the transmittance 
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spectra of the sample, which were measured using the sample-in, sample-out 

method35,36. 

 

2.4.- First-principles calculations. Total-energy ab initio simulations have been 

performed within the density-functional theory (DFT) framework as implemented in the 

Vienna ab initio simulation package (VASP) (see Refs. 37 and 38 and references therein). 

The program performs ab initio structural calculations with the plane-wave pseudo-

potential method. The set of plane waves employed extended up to a kinetic energy 

cutoff of 520 eV. Such a large cutoff was required to achieve highly converged results 

within the projector-augmented-wave (PAW) scheme 38,39. The PAW method takes into 

account the full nodal character of the all-electron charge density distribution in the core 

region. The exchange-correlation energy was taken in the generalized gradient 

approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) prescription40. It is well 

known that the GGA approach typically underestimates the cohesion energy 41 (in turn 

producing an overestimation of the equilibrium volume). We used dense special point 

grids appropriate to each structure considered to sample the Brillouin zone (BZ), thus 

ensuring a high convergence of 1–2 meV per formula unit in the total energy of each 

structure as well as an accurate calculation of the forces over the atoms. At each 

selected volume, the structures were fully relaxed to their equilibrium configurations 

through the calculation of the forces on atoms and the stress tensor41. In the relaxed 

equilibrium configuration, the forces were smaller than 0.006 eV/Å, and the deviation 

of the stress tensor from a diagonal hydrostatic form was less than 0.1 GPa.   

 Lattice-dynamic calculations of phonon modes were performed at the zone center 

( point) of the BZ. We used a direct force-constant approach (or supercell method)42 

that it is conceptually simple. These calculations provide information about the 
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symmetry of the modes and their polarization vectors, and allowed us to identify the 

irreducible representations and the character of the phonon modes at the  point.   

 

3.- Crystal structure under compression 

Figures 2 and 3 show the ADXRD data for Ag2CrO4 at several selected pressures in 

experiment 3. The other data sets present similar features. At ambient conditions, the X-

ray diffraction pattern corresponds to the orthorhombic olivine-like structure previously 

reported (S.G. Pnma, No. 62) with similar lattice parameters: a = 10.065(4) Å, b = 

7.013(3) Å and c = 5.538(2) Å. ADXRD patterns can be indexed in the initial low-

pressure (LP) orthorhombic phase up to 3.5 GPa. Atomic coordinates do not change 

significantly in this pressure range. For instance, the ADXRD pattern at 2.7 GPa was 

refined by the Rietveld method (see Fig. 2) with an olivine-like model, obtaining the 

final atomic positions collected in Table I. The evolution of the unit-cell volume and 

lattice parameters of this phase are shown in Fig. 4a and 4b, respectively. It can be seen 

that the contraction of the lattice parameters is rather anisotropic. For instance, 

according to our experiments, the relative contractions for a, b, and c between room 

pressure and 3.5 GPa are 1.51, 1.17, and 3.15%, respectively. A third-order Birch-

Murnaghan EOS gives the following characteristic parameters: (i) a zero-pressure 

volume V0 = 391.3(3) Å3, (ii) a bulk modulus B0 = 52(2) GPa, and (iii) its first pressure 

derivative B’0 = 5.4(9). It is worth to mention that, even considered as an olivine-like 

structure, the different chemical content of Ag2CrO4 generates different b/a and c/a axes 

ratios which cause two distinct coordination spheres for the silver atoms (C.N. 6 and 4), 

instead of the quite regular [MgO6] octahedra in olivine. This distribution of polyhedra 

and the fact that the Ag – O bonds are significantly more compressible that the Cr – O 

bonds, make compression parallel to the b axis much more restricted than parallel to c. 
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Axial compressibility of different olivine-like polymorphs differ considerably due to 

different cation sizes and valences5,43. Resultant bulk moduli also have a huge 

variability, from 242(5) GPa in Al2BeO4 chrysoberyl (B’0 = 4, fixed)5 to the value 

obtained in this work for Ag2CrO4. Note also that the compressibility of K2CrO4, with a 

Co2Si-type cation subarray, is significantly larger (B0 = 26(2) GPa and B’0 = 6.0(5)) 

than that of Ag2CrO4, with a Ni2In-type cation network44.   

The LP phase starts to transform into a new HP phase (named HP1) at 3.5 GPa. The 

ADXRD patterns between this pressure and 5 GPa present five new low intense peaks 

below 2θ = 8.4º (synchrotron radiation) and some of the existing Bragg peaks seem to 

slightly broaden. Diffractograms in this pressure range could not be unequivocally 

indexed but the stability of the positions and intensities of most of the peaks suggests 

that only a small distortion of the lattice occurs. Between 5 and 12.5 GPa, the ADXRD 

patterns could be indexed in an orthorhombic cell, whose reflection conditions are 

consistent with a Pnma symmetry, similarly to the ambient structure. The formation of 

this new phase entails a volume decrease of 0.95%, mainly caused by the 1.3% collapse 

of the a axis (see Fig. 4b). The olivine-like structural model was used as a starting point 

for a Rietveld refinement. The HP1 phase (depicted in Fig. 5) turned out to have the 

same structure that the LP phase. As shown in Table I, the refinement suggests that the 

Ag2Cr cation subarray seems not to change significantly and only a strong distortion of 

the [CrO4] tetrahedra is observed, with Cr – O distances at 6.4 GPa ranging from 1.565 

to 1.84 Å (compare to 1.58 – 1.74 Å at 2.7 GPa) and angles ranging from 70 to 132º 

(compare to 104 – 115º at 2.7 GPa). Confirmation of such a strong polyhedral distortion 

by single-crystal HP-ADXRD measurements is advisable. It is worth to mention that the 

coexistence of the LP and HP1 phases would enable explaining two of the extra peaks 

observed between 3.5 and 5 GPa, as well as the apparent broadening of some reflections. 
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The zero-pressure volume and the compressibility of the HP1 phase have been 

estimated by fixing the pressure derivative B’0 to 4: V0 = 382(2) Å3, B0 = 69(3) GPa. 

This phase is a bit less compressible than the initial LP phase, the continuous decrease 

of the lattice parameters being shown in Fig. 4b.  

Above 10 GPa, the diffraction peaks broaden significantly as a consequence of the 

loss of the quasi-hydrostatic conditions and the appearance of deviatoric stresses in the 

compressed sample45 (see Fig. 3). These stresses could induce the second high-pressure 

phase (HP2) observed above 13 GPa. The limited quality of the x-ray patterns at these 

pressures avoids unequivocal indexation but the small amount of changes observed at 

the transition suggests either a slow process with coexistence of the HP1 and HP2 

phases during a large pressure range or a low-symmetry distortion of the HP1 

orthorhombic phase. Both high-pressure phase transitions are reversible and the LP 

phase is recovered after decompression with similar lattice constants.  

 

4.- Lattice dynamics under compression 

Group theoretical considerations46 indicate that the Pnma structure of Ag2CrO4 has 

36 Raman-active modes with the following mechanical representation Γ = 11Ag + 7B1g 

+ 11B2g + 7B3g, which can be also classified by factor group analysis as internal or 

external modes of the CrO4 units so that there are 18 internal modes [2ν1, 4ν2, 6ν3, 6ν4] 

and 18 external modes [6 rotational (R) and 12 translational (T)]10. Therefore, the 36 

Raman-active modes can be classified as 11Ag (ν1,ν2,2ν3,2ν4,R,4T) + 7B1g 

(ν2,ν3,ν4,2R,2T) + 11B2g (ν1,ν2,2ν3,2ν4,R,4T) + 7B3g (ν2,ν3,ν4,2R,2T). Up to now only 12 

Raman modes were measured for Ag2CrO4 at ambient conditions, likely due to 

considerable overlapping of modes10, while 28 out of 42 Raman modes were measured 
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for structurally-related alkaline-earth chromates47,48 and 30 out of 36 Raman modes 

have been recently measured in monazite-type PbCrO4 
49.  

Figure 6 shows the Raman spectra of Ag2CrO4 at room temperature at selected 

pressures till 18.8 GPa. The Raman spectrum of the LP phase is similar to that reported 

earlier10. The most intense Raman modes are the stretching modes of the CrO4 group in 

the high-frequency region between 750 and 900 cm-1 10,47,48. Of considerable smaller 

intensity are the bending modes of the CrO4 group in the medium-frequency region 

between 300 and 400 cm-1. Finally, translational and rotational lattice Raman modes in 

the low-frequency region below 150 cm-1 are the most difficult to identify. A change in 

the Raman spectrum can be clearly observed in both the medium- and high-frequency 

regions at 5 GPa. This change is in good agreement with the phase transition suggested 

by ADXRD measurements at similar pressures. A more important change in the Raman 

spectrum is observed above 14.8 GPa; thus confirming the phase transition reported 

around 14 GPa by ADXRD measurements. Raman measurements on downstroke at 

12.8 and 0.1 GPa confirm the reversibility of both phase transitions. 

Figure 7 shows the pressure dependence of the measured Raman mode frequencies 

in Ag2CrO4 at room temperature till 19 GPa. Experimental and calculated Raman modes 

for the LP phase are compared till 5 GPa and show a good agreement (see Table II). On 

the other hand, Table III summarizes the frequencies and pressure coefficients of the 

observed Raman modes for the HP1 and HP2 phases at 5 and 14 GPa, respectively. It 

can be observed that the frequencies of the stretching modes above 5 and 14 GPa are 

similar to those of the low-pressure phase, thus suggesting that there is no drastic 

change in coordination during the two phase transitions at least for the Cr atom. In this 

respect, the different pressure dependence of the Raman modes above 14 GPa do not 

suggest the coexistence of HP1 and HP2 phases in a region larger than 1 GPa. 

Page 11 of 34

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Furthermore, the larger number of Raman modes observed in the HP2 phase with 

respect to HP1 suggests that HP2 could be a low-symmetry distortion of the HP1 phase. 

  

5.- Optical absorption under compression 

Figure 8 shows the optical absorption spectra of Ag2CrO4 at room temperature and 

at selected pressures up to 5.2 GPa. Absorption spectra of the LP phase show a steep 

absorption, characteristic of a direct bandgap, plus a low-energy absorption band, which 

overlaps partially with the fundamental absorption. This absorption band has been 

previously observed in related oxides and seems to be caused by the presence of defects 

or impurities. Its nature has been the subject of considerable debate and is beyond the 

scope of this work. Regarding the steep absorption edge, we found it exhibits an 

exponential dependence on the photon energy following the Urbach’s law. Therefore, in 

order to determine the bandgap energy, Eg, we have analyzed the measured absorption 

spectrum assuming α =A0 exp[-(Eg−hv)/Eu]. In this equation Eu is Urbach’s energy, 

which is related to the steepness of the absorption tail, and A0 =k√Eu for a direct band 

gap, with k being a characteristic parameter. From the analysis of the spectra collected 

at ambient pressure we determined the bandgap to be 1.8 eV in good agreement with 

previous studies50. 

In Fig. 8 it can be seen that upon compression the absorption edge gradually red-

shifts up to 4.7 GPa. At 5.2 GPa, an abrupt shift is detected, which produce the color 

change from brown-red to dark-brown, indicating the occurrence of a bandgap collapse. 

We associated this change to the first transition detected at similar pressure in 

diffraction and Raman experiments. At 5.2 GPa, the absorption spectrum also resembles 

that of a direct bandgap semiconductor. Unfortunately, at higher pressures we could not 
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perform experiments because the sample deteriorates likely due to increasing intergrain 

strains, which prevented the performance of accurate optical measurements. 

In order to qualitatively analyze the pressure effects on the bandgap of the LP phase, 

we assumed that the LP and HP1 phases have a fundamental direct bandgap. Using the 

same method employed to determine Eg at ambient conditions, we obtained the pressure 

dependence of Eg. The inset of Figure 8 shows the variation of the Eg versus pressure up 

to 5.2 GPa. The LP phase shows a linear negative pressure coefficient of the bandgap 

energy (−30 meV/GPa) up to the phase transition pressure. From 4.7 to 5.2 GPa, Eg 

abruptly changes from 1.65 to 1.47 eV. Based upon present knowledge of the electronic 

structure of Ag2CrO4 at atmospheric pressure and the behavior of other chromates upon 

compression, a qualitative approach toward the understanding of the present results is 

suggested in the following. According to Ouyang et al.50, the main contribution to the 

bottom of the conduction band in Ag2CrO4 results from the antibonding interaction 

between the Cr 3d orbitals and the Ag 5s5p orbitals, while the upper portion of the 

valence band results primarily from the interaction between Ag 4d and O 2p orbitals. 

Under compression, O 2p states shift toward high energies faster than the Cr 3d states 

because of the increase of the crystal field. This causes a reduction of the energy 

difference between the bottom of the conduction band and the top of the valence band, 

inducing the Eg reduction we observed up to 4.7 GPa. On the other hand, the collapse of 

Eg observed at 5.2 GPa could be caused by the structural change we found at similar 

pressures. Although the structural changes do not affect the global symmetry of the 

crystal, the crystal structure is highly distorted, affecting Cr-O and Ag-O bond angles 

and distances. These changes of the crystalline structure should be directly reflected in 

the electronic structure of Ag2CrO4, producing the collapse of Eg that we observed.  
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6.- First-principles calculations under compression 

Total-energy (E) calculations as a function of volume were performed for five 

different high-pressure structural candidates of Ag2CrO4. The choice of these potential 

phases is justified by: (i) the expected analogy with the pressure-induced sequence in 

M2X compounds (thenardite (Na2SO4-type, Fddd) and spinel (Na2MoO4-type, Fd-3m)), 

(ii) the expected analogy with pressure-induced transformations in olivine (wadsleyite 

(Imma), spinel) or (iii) possible structural similarities with chemically-related 

compounds (Pnma K2CrO4-type or Pbnn Na2CrO4-type).  

After performing a full optimization of the lattice parameters and atomic positions, 

we found that, as expected, the initial Pnma phase is the structure of Ag2CrO4 with the 

lowest enthalpy at ambient pressure. A fit with a Birch-Murnaghan third-order equation 

of state (EOS) gives the following characteristic parameters in good agreement with 

experimental results: V0 = 408.2 Å3, B0 = 50.2 GPa and B’0 = 5.7 (see also Fig. 4). The 

equilibrium volume V0 is overestimated by ~ 4 %, as usual with the GGA 

approximation. Our first-principles calculations using the GGA approximation do not 

predict any volume collapse in the initial Pnma structure at high pressures. The addition 

of the on-site repulsion Hubbard term U to Ag and Cr atoms did not help either to 

reproduce the structural behavior of the orthorhombic Ag2CrO4 phase. Therefore, these 

experimental and theoretical evidences seem to indicate that a new structural and 

electronic description is required to model the properties of silver chromate. Low-

symmetry subgroups of the initial Ag2CrO4 phase (space group Nrs. 31, 26, 19, 14 and 

11) were also considered as HP candidates but, after relaxation of the lattice parameters 

and the atomic coordinates, all of them could be described within a Pnma space group. 

Only the spinel-type structure has been found to be energetically competitive at high 

pressures for silver chromate (see Figure 9). The spinel-type structure, with cubic 
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symmetry, becomes more stable than the Pnma phase at a pressure of 11 GPa, after a 

first order phase transition with 2.7% decrease in the volume. The spinel phase, 

however, has not been found experimentally in the pressure range covered in our 

experiments. This may be caused by the presence of kinetic-energy barriers or 

temperature effects that avoid the transformation. 

 

7.- Concluding remarks 

Three different characterization techniques, i.e. X-ray diffraction, optical absorption 

and Raman spectroscopy, evidence the existence of two pressure-induced phase 

transitions in silver chromate, at 4 and 13 GPa. The first HP phase could be indexed into 

an orthorhombic cell similar to that adopted at ambient pressure, and the atomic 

coordinates of Ag and Cr atoms did not change significantly. Only a considerable 

distortion of the [CrO4] seems to take place but the structure can still be described 

within the initial Pnma space group. Consequently, the transition can be considered as 

an isostructural transition. This collapse is mainly due to the drastic contraction of the a 

axis (∼1.3%). We note that a similar rare transition was also recently observed in other 

chromate, the cubic perovskite PbCrO3, which suffers a large volume collapse in an 

isostructural transition51.  

A second phase transition occurs at ∼13 GPa, to an unknown structure which, 

Raman and x-ray diffraction data suggests could be a low-symmetry intimately-related 

polymorph. First-principles calculations have been unable to reproduce both phase 

transitions likely due to electronic considerations in Ag and Cr atoms and, in the case of 

the second transition, to the existence of non-hydrostatic conditions in the experiment. 

Instead, they predict a high pressure transformation to the spinel structure at 11 GPa, 
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which experimentally was not observed in the studied pressure range likely due to the 

existence of kinetic effects 
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Table I.- Lattice parameters and Rietveld-refined fractional coordinates for the LP 

phase at ambient pressure and 2.7 GPa, and for the HP1 phase at 6.4 GPa. 

 

 

 RP experiment RP theory 2.7 GPa 6.4 GPa 

a axis (Å) 10.065(4) 10.224 9.953(2) 9.682(3) 

b axis (Å) 7.013(3) 7.025 6.9570(14) 6.862(2) 

c axis (Å) 5.538(2) 5.653 5.4078(8) 5.3349(9) 

Unit cell volume (Å3) 390.9(4) 406.02 374.5(2) 354.4(3) 

xAg2 0.1357(8) 0.1412 0.1364(9) 0.146(3) 

zAg2 0.4916(14) 0.4827 0.5115(19) 0.522(3) 

xCr 0.312(2) 0.3182 0.3130(19) 0.316(5) 

zCr 1.003(3) 0.9633 0.983(5) 1.012(7) 

xO1 0.148(5) 0.1553 0.137(6) 0.149(19) 

zO1 0.919(8) 0.9051 0.974(13) 1.026(24) 

xO2 0.356(6) 0.3466 0.351(7) 0.389(11) 

zO2 0.265(9) 0.2558 0.270(12) 0.275(3) 

xO3 0.386(3) 0.3865 0.382(5) 0.441(7) 

yO3 0.442(4) 0.4429 0.454(5) 0.402(7) 

zO3 0.876(5) 0.8439 0.873(6) 0.940(9) 
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Table II.- Symmetries, zero-pressure frequencies, and pressure coefficients of the 

theoretical and experimental Raman-active modes of the LP phase of Ag2CrO4.  

 

 
ωωωω0 (th.)  

(cm-1) 

a (th.) 

(cm-1/GPa) 

ωωωω0 (exp.) 

(cm-1) 

a (exp.) 

(cm-1/GPa)    

    ωωωω0 (th.)  

(cm-1)    

a (th.) 

(cm-1/GPa)    

ωωωω0 (exp.) 

(cm-1) 

a (exp.) 

(cm-1/GPa)    

B3g 13.1(1)  0.7(1)   B1g 320.8(3) 2.7(1)   

Ag 36.3(1) 1.0(1)   B3g 321.0(2) 1.8(1)   

B1g 40.4(3) -1.3(2)   Ag 328.3(6) 0.6(2)   

B2g 45.6(3) 1.1(1)   B2g 330.0(3) -0.9(1)   

Ag 51.2(1) 1.8(1)   B2g 335.6(1) 1.9(1) 338(2) 1.4(2) 

B2g 61.0(1) 1.3(1)   B1g 342.0(6) 1.2(2)   

B3g 92.2(2) 4.7(1)   Ag 351.9(1) 0.13(4)   

Ag 104.6(7) 4.5(1)   B3g 354.9(5) 1.5(1) 353(2) 2.9(3) 

Ag 112.0(3) 4.8(1) 116(1) 2.6(1) Ag 361.1(2) 2.4(1) 373(1) 2.7(2) 

B2g 117.6(5) 4.4(2)   B2g 384.4(1) 2.1(1)   

B1g 129.5(1) 2.9(1)   Ag 769.4(6) 3.3(2) 776(1) 5.5(2) 

B2g 139.4(5) 3.7(2)   B2g 778.5(5) 1.4(2)   

B3g 143.5(6) 3.7(2)   Ag 810.4(3) 1.7(1) 812(1) 0.9(1) 

B2g 148.8(2) 4.2(1)   Ag 830.0(3) 1.5(1) 826(2) 1.5(1) 

B1g 161.0(6) 6.4(2)   B3g 839.6(5) 4.4(2)   

Ag 161.8(2) 3.7(1)   Ag 847.1(5) 4.3(2) 849(3) 3.8(2) 

B1g 216.6(3) 4.7(1)   B2g 849.2(8) -0.1(1)   

B3g 225.5(4) 5.5(1)   B2g 858.3(2) 2.4(2) 859(3) 2.6(1) 
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Table III.- Frequencies and pressure coefficients of the experimental Raman-active 

modes of the HP1 and HP2 phases of Ag2CrO4 at 5 and 14 GPa, respectively, after fit to 

equation ω=ω0+a*P. 

 

Phase II (5 GPa) Phase III (14 GPa) 

Mode ωωωω0 (exp.) 

(cm-1) 

a (exp.) 

(cm-1/GPa)    

Mode ωωωω0 (exp.) 

(cm-1) 

a (exp.) 

(cm-1/GPa)    

1 73(2) 0.8(1) 1 131(1) 0.8(1) 

2 92(2) 0.8(1) 2 170(1) -0.03(1) 

3 119(2) 1.5(1) 3 214(1) -0.9(1) 

4 239(3) 4.4(2) 4 216(1) 1.6(1) 

5 316(2) -0.5(1) 5 243(1) 2.1(1) 

6 345(2) 0.3(1) 6 351(2) -3.9(1) 

7 379(2) 2.1(2) 7 368(2) -0.08(1) 

8 808(1) 0.9(1) 8 385(2) 2.5(1) 

9 823(1) 2.9(1) 9 415(9) 3.6(5) 

10 853(1) 1.6(2) 10 816(1) -1.0(1) 

   11 819(1) 1.1(1) 

   12 831(2) 1.6(1) 

   13 852(2) 1.1(2) 

   14 859(3) 4.7(2) 
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Table IV.- Lattice parameters and fractional coordinates for the spinel-type phase at 

14.4 GPa,  predicted from  first-principles calculations above 11 GPa: S.G. Fd-3m (Nr. 

227), origin choice 2. 

 

Lattice parameter:     a = 8.759 Å 

Unit cell volume:     V = 672 Å3 
 

Atom 
Wyckoff  

position 
x y z 

Ag 16c 0 0 0 

Cr 8b 0.375 0.375 0.375 

O 32e 0.26508 0.26508 0.26508 
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Figure captions 

 

Figure 1.- (Color online) Projection along the c axis of the low-pressure olivine-like 

Pnma phase of silver chromate. Coordination polyhedra around the Ag and Cr atoms 

are depicted in gray and yellow, respectively. 

 

Figure 2.- (Color online) X-ray powder diffraction patterns of Ag2CrO4 at three 

selected pressures below 10 GPa. The calculated profiles and the residuals of the 

Rietveld refinements at 2.7 and 6.4 GPa are represented as red and blue lines, 

respectively. Vertical marks indicate the Bragg reflections of the orthorhombic Pnma 

Ag2CrO4 structure and metallic copper, which was used as a second internal pressure 

calibrant. The asterisk marks the appearance of the most intense diffraction peak of the 

gasket.  

 

Figure 3.-  X-ray powder diffraction patterns of Ag2CrO4 at three selected pressures 

above 10 GPa. Vertical marks indicate the Bragg reflections of the orthorhombic Pnma 

Ag2CrO4 structure and metallic copper at 11.4 GPa. 

 

Figure 4.- (Color online) Evolution of the volume (a) and the lattice parameters (b) of 

the low-pressure and the HP1 phases of Ag2CrO4 with pressure. Red, black and green 

symbols correspond to XRD data according to Xcalibur, Diamond and ALBA 

experiments. In (b), the a/2, b, and c axes are represented by squares, circles, and 

triangles, respectively. Dashed and solid lines correspond to fittings to our experimental 

data and results from theoretical calculations. 

 

Figure 5.- (Color online) Projection along the c axis of the HP1 Pnma phase of silver 

chromate, to be compared to Fig. 1. As can be seen the cation Ag2Cr subarray still 

adopts a Ni2In-type structure, but the Ag and Cr coordination polyhedra are rather 

distorted. 

 

Figure 6.- Raman scattering spectra of Ag2CrO4 at selected pressures till 18.8 GPa on 

upstroke and down to ambient pressure on downstroke (d). Two reversible phase 

transitions around 5 and 14 GPa have been observed. 
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Figure 7.- (Color online) Pressure dependence of the Raman-active modes in Ag2CrO4. 

Red, blue, black, and pink black circles (experimental) and lines (theoretical) refer to Ag, 

B1g, B2g, and B3g modes of the low-pressure phase, respectively. Raman-active modes of 

the HP1 and HP2 high-pressure phases above 5 and 14 GPa are noted with triangles and 

squares, respectively. 

 

Figure 8.- Optical absorption spectrum of Ag2CrO4 at selected pressures till 5.2 GPa. 

Inset shows the pressure dependence of the bandgap energy.  

 

Figure 9.- Energy as a function of volume curves for the initial Pnma phase and the 

spinel-type phase. Both curves cross each other at a volume corresponding to a pressure 

of 11 GPa. Energy and volume are written per formula unit.   
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