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Chapter 1

Introduction

Today wind turbines contribute to a larger and larger part of the world’s power production, at the same
time the size of the standard turbine is increasing. The US targets 20% wind-based electricity generation,
i.e. over 300 GW, by 2030 [2].

The TPWind envisions the coverage of European Union electricity generation up to 12-14% by 2020 and
25% of by 2030 [39]. China aims for 15% renewable power generation by 2020 [1].

Wind turbines in the megawatt size as most often installed at present, are expensive. A major issue
with wind turbines systems specially those located offshore, is the relatively high cost of operation and
maintenance (OM). Wind turbines are hard-to-access structures, and they are often located in remote areas.
These factors alone increase the OM cost for wind power systems. Also, poor reliability directly reduces
availability of wind power due to the turbine downtime [45].

According to General Electric (GE) Energy, a $5,000 bearing replacement can easily turn into a $250,000
project involving cranes, service crew, gearbox replacements, and generator rewinds, not to mention the
downtime loss of power generation [15]. For a turbine with over 20 years of operating life, the OM and
part costs are estimated to be 10-15% of the total income for a wind farm [45]. Although larger turbines
may reduce the OM cost per unit power, the cost per failure is increased. The OM cost for offshore wind
turbine is estimated to be 20-25% of the total income [26], [29]. There are research interests in developing
automatic maintenance systems for offshore wind turbines which aim to reduce the costs detailed before, see
for example [27].

Condition monitoring and fault diagnosis of wind turbines has thus greater benefit for such situations. In
addition, wind turbine repair and maintenance that require extensive usage of cranes and lifting equipment
create a highly capital-intensive operation as well as delayed services due to lack of crane availability and
needs for optimal weather conditions. Also, the trend that has currently emerged to dampen prospects is
lack of personnel available to perform the consistent OM required to keep turbines functioning and efficient.

There have been a few literature reviews on wind turbine condition monitoring in literatures [50] [49] [38]
[25] . However, as the renewable energies have gained dramatically increasing attention from industries and
academia since 2006, many new research works have been reported in the condition monitoring and fault
diagnosis areas.

Therefore the reliability of these turbines is important. Their off time should be as little as possible.
An important part of ensuring this is to introduce advanced fault detection, isolation and accommodation
systems on the wind turbines. In the state-of-the-art industrial wind turbines, fault detection and accom-
modation schemes are simple and are often conservative. Consequently, the use of advanced fault detection,
isolation and accommodation methods could improve the reliability of the turbine, even though; it might
result in production with limited power for some faults.

Alternatively autonomous online condition monitoring systems with integrated fault detection algorithms
allow early warnings of mechanical and electrical faults to prevent major component failures.

Side effects on other components such as gear box, bearings, blades pitch, rotor, generator, the braking
system and several system sensors can be reduced significantly with online condition monitoring and diag-
nosis. Many faults can be detected while the defective component is still operational. Therefore, necessary
repair actions can be planned in time and need not to be taken immediately. This is important especially
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8 CHAPTER 1. INTRODUCTION

for offshore plants, where bad weather conditions (storms, high tides, etc) can prevent any repair actions for
several weeks. Also, condition monitoring and fault diagnosis can detect extreme external conditions, such
as icing or water induced tower oscillations of offshore plants, and can trigger appropriate control actions to
prevent damage of wind turbine components.

Early fault detection and diagnosis allow the operators in an industrial process to take the best actions
during the real state of the process, avoiding incipient faults to scale to critical situations where there is risk
of human lives and economical lost [4], this is specially true in offshore wind turbines. As a consequence,
recently has been emerged the interest in prognosis and predictive maintenance, to be able to predict the
remaining useful life of a machine and to schedule maintenance prior to the failure of a component will
reduce the time of a wind turbine shutdown and even the operation of the wind turbine itself.

The work done in this master thesis goes in the line of the CICYT project ”System Health Management
and Reliable Control of Complex Systems” DPI2011-26243. The main goal of this project is to develop
a set of advanced tools for the reliable control and health management of complex systems. These tools
will provide better availability, dependability and safety conditions of industrial processes and/or systems,
therefore improving their overall performance. To obtain these new tools, new methodologies must be
developed, through the integration of fault diagnosis, fault tolerant techniques and predictive maintenance.
Reliable control techniques will increase the system safety and availability, once fault detection and diagnosis
are performed. Moreover, predictive maintenance will increase the availability and dependability of the
system, preventing fault appearance through a precise estimation of the remaining usable life-time in system
components/processes.

This master thesis is aimed in part to achieve one of the workpackages of the project explained before:
Development of fault diagnosis algorithms for health monitoring that take into account information from
multiple sources (signal analysis, or model-based estimations; time or frequency domains) and well cover the
full cycle of system monitoring and supervision.

In this chapter is given a brief overview of the state of the art in fault diagnosis of wind turbines, it is
explained the motivation and objectives of this thesis and the structure of this document is resumed.

1.1 State of the Art

In the state-of-the-art industrial wind turbines fault detection and accommodation schemes are simple and
are most often conservative. Consequently the use of advanced fault detection, isolation and accommoda-
tion methods could improve the reliability of the turbine, even though, for some faults, it might result in
production with limited power. Alternatively condition monitoring is used to monitoring some mechanical
components such as gear boxes, etc, see [50].

Some work has been performed on model based fault detection, isolation and accommodation on wind
turbines. In [47], an observer based scheme to detect sensor faults in the pitch system was presented. A
parity equations based scheme for fault detection on wind turbines was presented in [8], an unknown input
observer was proposed for detection of sensor faults around the wind turbine drive train in [35]. Fault
detection of electrical conversion systems can be found as .f.e in [36].

Modern wind turbine control systems are equipped with condition monitoring and fault detection systems.
These systems detect and isolate faults and determine the current operating conditions of the wind turbine.
The available information can then be utilized for predictive maintenance, which basically predicts when
maintenance should be performed to avoid failures.

Most condition monitoring and fault detection systems in wind turbines are signal-based and utilize e.g.
vibration analysis to detect and isolate faults. This has enabled successful condition monitoring of bearings
in the gearbox and the generator among others. Only a few model-based fault diagnosis approaches exist for
wind turbines; among these are fault diagnosis systems for pitch sensors and actuators [46] and [9]. These
diagnosis systems estimate some parameters in the pitch system, and determine if a fault has occurred based
on these estimates.

In [11], an structural analysis of a wind turbine system was done and some analytical redundant relations
were found to perform fault detection. Their fault diagnosis system consists of fault detection and isolation
algorithms that determine the current state of the system and reconfigure an extended Kalman filter, which
is able to provide a fault-corrected state estimate at all times. This last work was taken as an important
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reference in the development of this master thesis.
In [5], a fault diagnosis system for a wind turbine was designed using model-based fault diagnosis methods,

real field data from a 3MW wind turbine was used in this thesis to identify a nominal model and Linear
Parameter Varying (LPV) models were used to do fault diagnosis in a wide range of operating points.

In [37], a benchmark model of a wind turbine at system level, containing: sensors, actuators and systems
faults was presented. This benchmark model was based on a realistic generic three blade horizontal variable
speed wind turbine with a full converter coupling. In the spring of 2010 kk-electronic together with other
partners (MathWorks and Aalborg University) launched an international competition on Fault Detection
and Isolation in Wind Turbines based on this benchmark model of the wind turbine. The competition
consisted to find the best schemes to detect and handle the different faults proposed, and the results of the
competition were presented in [33]. The competition drew enough high-quality papers to fill two sessions at
the IFAC World Congress 2011 and also several proposals were published at the IFAC Safeprocess in 2012.

Some of the solutions commented in: [33] were the following:

• This solution uses a diagnostic observer based residual generator for the residual generation [44].

• The solution proposed in [31] used a Support Vector Machine based on a Gaussian kernel.

• In [3] a counters solution was used for decision of fault detection and isolation based on residuals
generated using physical and analytical redundancy.

• In [40] it was used a general and automatic fault detection solution.

• A fault detection estimator was used in [48] to estimate the presence of a fault.

• In [22] a model based fault diagnosis approach called set-membership approach was used.

After the announcement of results of the first benchmark, a second challenge was presented in [32], this
new benchmark differed from the previous challenge in several ways. The second benchmark wind turbine
model is modeled in FAST simulator [20]. In this case there are no sensor models available and the whole
wind turbine dynamics are implemented in the simulator differing from the first benchmark in which all the
subsystem models were provided.

1.2 Motivation and Thesis Objectives

The new proposed benchmark requires sophisticated fault detection and fault-tolerant control tools and
likely making the results of greater applicability to the wind industry. This higher-fidelity model also allows
the use of more realistic wind inputs that vary spatially across the rotor plane in addition to temporally.
Also, the fault scenarios have been updated and additional information detailing their relevance has been
provided.

The new challenge proposed on [32] differs from the initial benchmark [37] in the fact that many of the
wind turbines subsystems models are not available, making necessary to find new models in the literature
and calibrate these models in order apply model based fault diagnosis.

The characteristics of the new benchmark providing a higher fidelity and more realistic model, puts a
motivation to find and adjust suitable models that represent in the best way possible the dynamics of the
wind turbine system modeled in this second benchmark. This is pursued in order to perform a more reliable
model based fault diagnosis.

The fault scenarios outlined in the second challenge, comes from the research and experience of very
recognized researchers in academia and the industry. To develop a fault diagnosis system that can detect
and isolate the faults proposed in the benchmark and studied in this thesis, which are a list of common faults
found in wind turbines today, becomes more feasible the possibility to extrapolate the results to a real wind
turbine.

After the introduction and motivation explained before, the main objective intended with this Master
Thesis is to implement a fault diagnosis algorithm on this realistic benchmark that can improve the reliability
of a wind turbine.

To reach the main objective stated in the previous paragraph, the following tasks should be carried out:
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• Review the State of the Art of Fault Diagnosis applied to Wind Turbines.

• Describe the most common faults in Wind Turbines.

• Study the benchmark model and the specifications related to fault diagnosis.

• Explore the techniques that can be used in the benchmark case of study.

• Select a Fault Diagnosis Technique and apply it to the case of study.

• Analysis of Results and extrapolation to a real case.

1.3 Thesis Outline

The structure of the document is divided in chapters and resumed in this section to provide an overview of
the thesis.

Chapter 2: Wind Turbine Modeling. This chapter provides a description of the wind turbine system
and a model for each one of the subsystems that form the wind turbine are proposed. Different subsystem
models from the literature are examined and compared between them to proceed with the selection of the
model to be used in the next stage which is the model based fault diagnosis.

Chapter 3: Structural Analysis. The purpose of this chapter is to perform an structural analysis of
the wind turbine system model proposed in chapter 3 in order to determine the analytical redundant relations
which are used to detect and isolate the faults in the fault diagnosis system implemented and explained in
chapter 6.

Chapter 4: Calibration, Parameters Adjustment and System Identification. The motivation of
this chapter is to adjust and parameterize the theoretical models and analytical redundant relations obtained
in chapter 4 based on the behavior observed in FAST measured wind turbine variables. This is done in order
to have models that approximate in the best way possible the dynamics observed in FAST simulator to
pursue a good and reliable performance of the fault diagnosis system implemented in chapter 6.

Chapter 5: Fault Diagnosis System Implementation. This chapter illustrates the fault diagnosis
system implementation in which all the obtained residuals are implemented and tested with the different
fault scenarios proposed in the benchmark [32].

Chapter 6: Conclusions. The conclusions of this thesis, as well the limitations and future work is
commented in this chapter.



Chapter 2

Wind Turbine Description and
Modeling

The purpose of this chapter is to give the general description of the wind turbine and set up a mathematical
model of the considered wind turbine. The model should be detailed enough in order to understand the
system behavior.

2.1 System Description

This section briefly describes the components of the wind turbine considered in this work, and it was taken
as a reference the work of [41]. The wind turbine components are showed in Figure 2.1.

The figure is taken as reference [16]. The components and their purposes are described below in alphabetic
order [34].

• Anemometer is used to measure the wind speed. The wind turbine is started when the wind speed
reaches a lower limit, while operation is cut-out when wind speeds become too high.

• Brakes can be applied mechanically, electrically, or hydraulically and function as parking brakes.

• Gearbox connects the low-speed shaft to the high-speed shaft, thus increasing the rotational speed
to a level required by the generator to produce electric energy.

• Generator converts rotational energy into electric energy. On a modern wind turbine the maximum
power output is typically from a few and up to 7.6 megawatts [18].

• High-speed shaft drives the generator.

• Hub and rotor blades together make up the rotor of the wind turbine. The hub connects the rotor
blades to the low-speed shaft. Pitching the blades is used to maximize the efficiency in low winds and
reduce efficiency in high winds to protect the wind turbine from structural damage.

• Low-speed shaft connects the rotor to the gearbox.

• Nacelle is located atop the tower and contains the gearbox, low- and high-speed shafts, generator,
and brakes.

• Tower carries the nacelle and the rotor. Since the wind speed increases with the height, a taller tower
generally enables a wind turbine to generate more electric energy.

• Wind vane is used to measure the direction of the wind. The wind direction is used by the yaw
mechanism to orient the wind turbine perpendicular to the wind.

• Yaw mechanism uses electrical motors to orient the wind turbine rotor perpendicular to the direction
of the wind.

11
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Figure 2.1: Main components of a horizontal-axis wind turbine.

2.2 Wind Turbine Model

In the following section the structure of the wind turbine model is presented in a block diagram. Afterwards,
each sub-model of the wind turbine is presented and combined to obtain a complete model of the wind
turbine. The overall wind turbine system model is divided into appropriate sub-models suitable of being
modeled separately. Linear models for each subsystem were considered and the interaction between these
subsystems results in the operation of the complete wind turbine system as illustrated in Figure Figure 2.2.

The wind speed vw(t) is the driving force of the system. As the wind blows over the turbine’s blades
they create ”lift”, much like an airplane wing, and begin to turn. Most turbines have three large blades that
are aerodynamically designed to turn as easily as possible when the wind blows on them. These turning
blades spin a shaft normally to some 30 to 60 times every minute (low-speed shaft). The gearbox connects
the low-speed shaft with a high speed shaft that drives the generator. The gears also boost the rotation
speed of the high-speed shaft to 1000 to 1800 rotations per minute. This rapidly spinning shaft drives the
generator to produce electric power. The generator’s electrical output is connected to a electrical grid. This
general explanation of the wind turbine operation is referenced from by [17].

The aerodynamic properties of the wind turbine are affected by the pitch angles of the blades, the speed
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Figure 2.2: Subsystems models interaction of the wind turbine system model.

of the rotor, and the wind speed. On this basis, an aerodynamic torque is transferred from the rotor to
the generator through the drive train, and an aerodynamic thrust affects the rotor and thereby the tower.
The output of the wind turbine is electric power which comes from the converter. To operate the wind
turbine according to the set of operating requirements, the pitch angles of the blades and the generator
torque are adjusted. A pitch system controls the pitch angles of the blades, while a converter controls the
generator torque. In this section, the wind turbine model has been divided into six sub-models, in order to
be individually modeled and combined afterwards.

2.3 Drive Train Subsystem

The function of the drive train is to step up the speed of the low-speed shaft (rotor) to a suitable value for
the generator in order to produce electrical power.

As mentioned in [42], in general, a drive train model consists of the following elements connected in series:
- A body with rotational inertia and damping (representing the turbine rotor).
- A torsional spring (representing the gearbox).
- A body with rotational inertia (representing the generator rotor).
- A torsional damper (modeling the resistance produced by slip on the induction generator). Based on

the physical laws, the authors from the consulted literature proposed different drive train models and three
of them are analyzed in this section. These three models come from the main references encountered. The
first one of them is developed in [13], and consists in a single shaft drive train. The second one is proposed
by [11] and consists in two shafts linked together by a gearbox with its respective gear ratio. The third one
is the drive train model proposed in the benchmark [37].

The drive train models can be obtained using Lagrange’s energy equations or Newton’s equations as will
be showed in the next subsections.

At the end of the section after reviewing the three models a drive train model is proposed to carry on
further fault diagnosis analysis.

2.3.1 Single Shaft Model

In [13], the drive train subsystem is modeled as two rigid bodies linked by a flexible shaft, as is showed in
Figure 2.3.
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The drive train is modeled as two rigid bodies linked by a flexible shaft. The rigid bodies encompass all
the mechanical devices and parts of them located at each side of the effective shaft. Accordingly, the terms
moment of inertia of the rotor (Jr), moment of inertia of the generator (Jg), torsion stiffness of the drive
train (Kdt) and torsion damping coefficient of the drive train (Bdt) denote model parameters, rather than
physical ones.

Figure 2.3: Drive-train

A mechanical system of arbitrary complexity can be described by the equation of motion

Mq̈ + Cq̇ +Kq = Q(q̇, q, t, u) (2.1)

where M , C and K are the mass, damping and stiffness matrices and Q is the vector of forces acting on the
system. For mechanical structures having few degrees of freedom, the Lagrange’s equation

d

dt

(
∂Ek
∂q̇i

)
− ∂Ek

∂qi
+
∂Ed
∂q̇i

+
∂Ep
∂qi

= Qi (2.2)

offers a systematic procedure to derive mathematical models. Ek, Ed and Ep denote the kinetic, dissipated
and potential energy, respectively. Besides, qi is the generalized coordinate and Qi stands for the generalized
force.

For the model of equation (2.2), has been adopted the following generalized coordinates:

q = [θr θg]
T
, (2.3)

where: θr = q1 and θg = q2 are the angles of the rotor and generator, respectively. After these definitions,
the energy terms Ek, Ed and Ep can be written as:

Ek =
Jr
2
ω2
r +

Jg
2
ω2
g , (2.4)

Ed =
Bdt
2

(ωr − ωg)2
, (2.5)

Ep =
Kdt

2
(θr − θg)2

, (2.6)

where ωr and ωg are the rotational speeds of the rotor and generator, respectively, both of them referred
to the low-speed side of the wind turbine. The remaining parameters are defined in Table 2.1.

The vector of generalized loads is:
Q = [Ta − Tg]T . (2.7)

where Ta(t) is the aerodynamic torque applied to the rotor and Tg(t) is the generator torque.
Then, replacing the equations in the Lagrange’s equation yields the motion equation(2.1).
Applying the Lagrange’s equation (2.2) to each of the the corresponding energy terms (2.4)-(2.7), the

following equations are obtained:
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Table 2.1: Parameters of the drive-train subsystem

Parameter Units Description
Jr kg m2 Moment of inertia of the rotor
Jg kg m2 Moment of inertia of the generator
Kdt N m/rad Torsion stiffness of the drive train
Bdt N m/(rad/s) Torsion damping coefficient of the drive train

For the first generalized coordinate θr = q1 the derivative is denoted as q̇1 = ωr. The Lagrange terms for
q1 are developed below.

∂Ek
∂q̇1

=
∂Ek
∂ωr

= Jrωr (2.8)

∂Ek
∂q1

= 0, (2.9)

∂Ed
∂q̇1

=
∂Ed
∂ωr

=
Bdt
2

(2ωr − 2ωg) = Bdt (ωr − ωg) , (2.10)

∂Ep
∂q1

=
∂Ep
∂θr

=
1

2
Kdt (2θr − 2θg) = Kdt (θr − θg) , (2.11)

d

dt

(
∂Ek
∂ωr

)
= Jrω̇r, (2.12)

Q1 = Ta. (2.13)

Substituting the equations (2.8)-(2.13) in the Lagrange equation (2.2), the dynamic of the rotor is:

Jrω̇r +Bdt (ωr − ωg) +Kdt (θr − θg) = Ta(t) (2.14)

For the second generalized coordinate θg = qg, the derivative is denoted as q̇2 = ωg. The Lagrange terms
for q2 are as follows.

∂Ek
∂q̇2

=
∂Ek
∂ωg

= Jgωg (2.15)

d

dt

(
∂Ek
∂ωg

)
= Jgω̇g, (2.16)

∂Ek
∂θg

= 0, (2.17)

∂Ed
∂ωg

=
Bdt
2

(2ωg − 2ωr) = Bdt (ωg − ωr) , (2.18)

∂Ep
∂q2

=
∂Ep
∂θg

=
1

2
Kdt (−2θr + 2θg) = Kdt (θg − θr) , (2.19)

Q2 = −Tg. (2.20)

Substituting the equations (2.15)-(2.20) in the Lagrange’s equation (2.2), the dynamic of the generator
is:

Jgω̇g +Bdt (ωr − ωg)−Kdt (θr − θg) = −Tg(t) (2.21)
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In order to reduce the formulas complexity, the absolute angular positions of the shafts θr and θg were
replaced with a single state variable θ∆ = θr − θg denoting the torsion angle of the drive train.

After this substitution, the state model of the drive can be written as:{
ẋ = Ax+Bu,
y = Cx,

(2.22)

where the state, input and output vectors are

x = [ωr ωg θ∆]
T
, (2.23)

u = [Ta Tg]
T
, (2.24)

y = [ωr ωg]
T
, (2.25)

and the matrices A,B and C are:

A =

 −BdtJr Bdt
Jr

−KdtJr
Bdt
Jg

−BdtJg
Kdt
Jg

1 −1 0

 ,
B =

 1
Jr

0

0 − 1
Jg

0 0

 ,
C =

[
1 0 0
0 1 0

]
.

(2.26)

The same model can be obtained using the Newton’s equations as expressed below.
For the rotor the dynamics are:

Jr θ̈r(t) = Ta(t)− T1(t) (2.27)

where the torsion of the drive train is modeled using a torsion spring and a friction coefficient model according
to:

T1(t) = Kdtθ∆(t) +Bdtθ̇∆(t) (2.28)

Substituting (2.28) in (2.27) the following expressions are obtained.

Jr θ̈r(t) = Ta(t)−Kdtθ∆(t)−Bdtθ̇∆(t) (2.29)

θ̈r(t) =
1

Jr
Ta(t)− 1

Jr
Kdtθ∆(t)− 1

Jr
Bdtθ̇∆(t) (2.30)

The torsion angle is defined as:
θ∆(t) = θr(t)− θg(t) (2.31)

The following change to denote the angular speed of the rotor and generator is made

θ̇r = ωr
θ̇g = ωg

(2.32)

The dynamic of the rotor is defined as:

ω̇r(t) =
1

Jr
Ta(t)− 1

Jr
Kdtθ∆(t)− 1

Jr
Bdt (ωr − ωg) (2.33)

The same method is used to obtain the dynamics of the generator

Jg θ̈g(t) = Tl(t)− Tg(t) (2.34)
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The torsion of the drive train is the same for the rotor and the generator, therefore:

Tl(t) = Kdtθ∆(t) +Bdtθ̇∆(t) (2.35)

Substituting (2.35) in (2.34) the following equation is obtained

Jgω̇g(t) = Kdtθ∆(t) +Bdtθ̇∆(t) − Tg(t) (2.36)

The dynamics for the generator is the following:

ω̇g(t) =
Kdt

Jg
θ∆(t) +

Bdt
Jg

(ωr − ωg)−
Tg(t)

Jg
(2.37)

The state space of the drive-train reads:

ẋ =

 −BdtJr Bdt
Jr

−KdtJr
Bdt
Jg

−BdtJg
Kdt
Jg

1 −1 0

x+

 1
Jr

0

0 − 1
Jg

0 0

u (2.38)

y =

[
1 0 0
0 1 0

]
x (2.39)

where:
x = [ωr ωg θ∆]

T

u = [Ta Tg]
T

y = [ωr ωg]
T

(2.40)

As seen in this section both methodologies, Lagrange and Newton allow to obtain the same state space
models.

2.3.2 Two Shafts Model

A two shafts model consisting of a high speed shaft and a low speed shaft linked by a gearbox is proposed
by [11]. The aerodynamic torque is transferred to the generator through the drive train in order to upscale
the rotational speed of the rotor, to a higher speed required by the generator.

The drive train model includes a low-speed shaft and a high-speed shaft, each composed of a moment of
inertia and a frictional coefficient as illustrated in Figure 2.4. The shafts are linked together by a gearbox
modeled as a gear ratio without any loss. To describe the flexibility of the drive train, a torsion spring is
included in the model.

Figure 2.4: Drive-train model divided into four components

The inertia of the low-speed shaft also includes the inertia of the rotor, while the friction component
includes bearing frictions. The dynamics of the low-speed shaft is:

Jr θ̈r(t) = Ta(t)− Tl(t)−Br θ̇r(t) [Nm] (2.41)
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where:
Br is the viscous friction of the low-speed shaft [Nm/(rad/s)]
Jr is the moment of inertia of the low-speed shaft [kg m2]
Tl(t) is the torque acting on the low-speed shaft [Nm].
θr(t) is the angle of the low-speed shaft [rad].
Ta(t) is the aerodynamic torque applied to the rotor [Nm].

The inertia of the high-speed shaft also includes the inertia of the gearbox and the generator rotor. The
friction coefficient covers bearing and gear frictions. The dynamics of the high-speed shaft is:

Jg θ̈g(t) = Th(t)− Tg(t)−Bg θ̇g(t) [Nm] (2.42)

where:
Bg is the viscous friction of the high-speed shaft [Nm/(rad/s)]
Jg is the moment of inertia of the high-speed shaft [kg m2]
Tg(t) is the generator torque [Nm]
Th(t) is the torque acting on the high-speed shaft [Nm]
θg(t) is the angle of the high-speed shaft [rad]

The remaining part of the gearbox modeling is to apply a gear ratio, as defined below:

Th(t) =
Tl(t)

Ng
[Nm] (2.43)

where:
Ng is the drive train gear ratio [.]

The torsion of the drive train is modeled using a torsion spring and a friction coefficient model, described
according to:

Tl(t) = Kdtθ∆(t) +Bdtθ̇∆(t) [Nm] (2.44)

θ∆(t) = θr(t)−
θg(t)

Ng
[rad] (2.45)

where:
Bdt is the torsion damping coefficient of the drive train [Nm/(rad/s)]
Kdt is the torsion stiffness of the drive train [Nm/rad]
θ∆(t) is the torsion angle of the drive train [rad]

With the exception of the torsion angle, θ∆(t), absolute angles of the shafts are not of interest for modeling
the drive train dynamics. Therefore, the replacement ω(t) = θ̇(t) is utilized in the following rewriting, where
a state space model of the drive train is pursued. The states of the model are ωr(t), ωg(t), and θ∆(t). First,
Eq. (2.45) is substituted into Eq. (2.44) to obtain:

Tl(t) = Kdtθ∆(t) +Bdt

(
ωr(t)−

ωg(t)

Ng

)
[Nm] (2.46)

where:
ωg(t) is the generator speed [rad/s]

Substituting Eq. (2.46) into Eq. (2.41) results in Eq. (2.47). A similar approach is used to derive Eq.
(2.48); however, in this case Eq. (2.46) first has to be substituted into Eq. (2.43) before inserting it in Eq.
(2.42). Lastly, Eq. (2.45) is differentiated to obtain Eq. (2.49).

Three first order differential equations have been derived in this section in order to describe the behavior
of the drive train

Jrω̇r(t) = Ta(t)−Kdtθ∆(t)− (Bdt +Br)ωr(t) +
Bdt
Ng

ωg(t) (2.47)
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Jgω̇g(t) =
Kdt

Ng
θ∆(t) +

Bdt
Ng

ωr(t)−
(
Bdt
N2
g

+Bg

)
ωg(t)− Tg(t) (2.48)

θ̇∆(t) = ωr(t)−
1

Ng
ωg(t) (2.49)

2.3.3 Benchmark Drive Train Model

The next Drive Train model proposed in the benchmark [37] follows the same line of the previous one.
It is basically the same model proposed in [11] with the addition of the efficiency of the drive train ηdl

which gives a more realistic approach to the model.
The drive train state-space model is the following.

ẋ = Ax+ Bu (2.50)

y = Cx (2.51)

where:

x = [ωr ωg θ∆]
T
, (2.52)

u = [Ta Tg]
T
, (2.53)

y = [ωr ωg]
T

(2.54)

A =


−Bdt+Br

Jr
Bdt
NgJr

−Kdt
Jr

ηdlBdt
NgJg

− ηdlBdt
N2
g
−Bg

Jg

ηdlKdt
NgJg

1 −1
Ng

0

 ,
B =

 1
Jr

0

0 − 1
Jg

0 0


C =

[
1 0 0
0 1 0

]
(2.55)

Table 2.2: Parameters of the state-space drive-train model

Parameter Units Description
Jr kg m2 Moment of inertia of the low speed shaft (rotor)
Jg kg m2 Moment of inertia of the high speed shaft (generator)
Kdt N m/rad Torsion stiffness of the drive train
Bdt N m/(rad/s) Torsion damping coefficient of the drive train
Bg N m/(rad/s) Viscous friction of the high speed shaft (generator),
Br N m/(rad/s) Viscous friction of the low speed shaft (rotor),
Ng - Gear ratio
ηdl - Efficiency of the drive train,
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Table 2.3: Variables of the state-space drive-train model

Variable Units Description
wr(t) rad/s Rotor speed
wg(t) rad/s Generator speed
θ∆ rad Torsion angle of the drive train

2.3.4 Proposed Drive Train Model

After reviewing the previous three models, the proposed model is the two shafts model described in equations
( 2.47- 2.49). The proposed model includes the biggest amount of relations between variables and parameters
of all the models analyzed. It has the most complete description of the wind turbine dynamics which will be
very useful for further fault diagnosis analysis.

2.4 Pitch Subsystem

Following [32], the hydraulic pitch system is modeled as a second order transfer function between the pitch
angle β and the pitch reference angle βr

β(s)

βr(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

(2.56)

There is a transfer function associated to each of the three pitch systems. In normal operation, the
system has the following parameters ζ = 0.6 and ωn = 11.11 leading to an under-damped system.

Also, constraints on the values of pitch angles and rate are implemented. The pitch angle values are
restricted to the interval [-2, 90] deg and pitch rate is restricted to the interval [-8, 8] deg/s.

Similarly to this approach, the pitch system is modeled by [11] with a same transfer function to each
of the three pitch systems in the wind turbine. However, in this model a time delay corresponding to the
communication delay to the pitch actuator is added to the second order transfer function described as:

β(s)

βr(s)
=

e(−tds)ω2
n

s2 + 2ζωns+ ω2
n

(2.57)

A different pitch actuator model is suggested in [13], here the model is a first-order dynamic system with
saturation in the amplitude and derivative of the output signal.

β̇ = −1

τ
β +

1

τ
βd (2.58)

where: β is the pitch angle and βd is the desired pitch angle.

Applying the Laplace transform we obtain the corresponding first order transfer function.

β(s)

βd(s)
=

1/τ(
s+ 1/τ

) (2.59)

In this model, the pitch angle varies in the interval [-2,30] deg and the rate in the interval [-10,10] deg/s.
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2.4.1 Neglected Dynamics and Pitch Models Comparison

Three different model designs were presented. Two of them modeled the pitch actuator of the wind turbine
by second order transfer functions, [11] and [32].

The difference between them is that in [11], the second order transfer function includes an exponential
function to model the effect of a communication delay.

The first two models presented [11] and [32], considered an under-damped behavior of the pitch actuator.

In the third model presented [11], an over-damped dynamic was modeled using a first order differential
equation.

Between the model [32] and [13], there are differences in the values of the intervals of pitch angles and
rates.

2.4.2 Chosen Model

After the model comparison and the dynamics considered and neglected by each one of them, the model
selected to represent the pitch actuator is the following:

β(s)

βr(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

(2.60)

We consider that the time delay of the system is not very high in this case and can be neglected still
obtaining a realistic representation of the system.

The first order system presented in [13] is very simple and we consider that an over-damped dynamic
does not represent in a realistic way the behavior of a pitch actuator.

2.5 Tower Subsystem

The tower of a wind turbine, as any flexible structure, exhibits many vibration modes. Some oscillatory
movements inherent to these modes are illustrated in Figure 2.5. Particularly, simple models are very
helpful for a comparative analysis of different control strategies and for the controller design, whereas the
un-modeled dynamics can be treated as uncertainties. For this reason, the model presented here will include
the first mode of tower bending and the first mode of flapping.

In this thesis, it is assumed that the thrust on the rotor acts in the direction of the wind speed. In reality
this is not completely the situation, there is also the side-to-side mode of tower bending which is produced
by forces from the blades and a counter torque from the drive train and generator, which make the tower to
swing sideways as well [11].

The model presented on Figure 2.6 has two degrees of freedom, which are the axial tower bending and
the flapping. For this model the following generalized coordinates are adopted:

q = [yt ζ ]
T
, (2.61)

where yt is the axial displacement of the nacelle and ζ is the angular displacement out of the plane of rotation
of the blades.

To obtain the model of the tower, the Lagrange energy method is used. For mechanical structures having
few degrees of freedom, the Lagrange equation

d

dt

(
∂Ek
∂q̇i

)
− ∂Ek

∂qi
+
∂Ed
∂q̇i

+
∂Ep
∂qi

= Qi (2.62)

offers a systematic procedure to derive mathematical models.
The energy terms Ek, Ed and Ep can be written as:
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Figure 2.5: Mode shapes for horizontal-axis wind turbines.

Figure 2.6: Schematic diagram of the tower.

Ek =
mt

2
ẏ2
t +

N

2
mb

(
ẏt + rbζ̇

)2

(2.63)

Ed =
Bt
2
ẏ2
t +

N

2
Bb

(
rbζ̇
)2

(2.64)



2.5. TOWER SUBSYSTEM 23

Ep =
Kt

2
yt

2 +
N

2
Kb(rbζ)

2
(2.65)

The vector of generalized loads is:
Q = [NFT NFT rb ]

T
. (2.66)

For the first generalized coordinate q1 = yt, the Lagrange terms are:

∂Ek
∂q̇1

=
∂Ek
∂ẏt

= mtẏt +Nmbẏt +Nmbrbζ̇, (2.67)

d

dt

(
∂Ek
∂ẏt

)
= (mt +Nmb) ÿt +Nmbrbζ̈, (2.68)

∂Ek
∂yt

= 0 (2.69)

∂Ed
∂q̇1

=
∂Ed
∂ẏt

= Btẏt (2.70)

∂Ep
∂q1

=
∂Ep
∂yt

= Ktyt (2.71)

Q1 = NFT (2.72)

Substituting the equations (2.67)-(2.72) in the Lagrange equation (2.62), the dynamic of the tower bending
is:

(mt +Nmb) ÿt +Nmbrbζ̈ +Btẏt +Ktyt = NFT (2.73)

For the second generalized coordinate q2 = ζ, the Lagrange terms are the following:

∂Ek

∂ζ̇
=
N

2
mb

(
2rbẏt + 2r2

b ζ̇
)

(2.74)

d

dt

(
∂Ek

∂ζ̇

)
= Nmbrbÿt +Nmbr

2
b ζ̈ (2.75)

∂Ek
∂ζ

= 0 (2.76)

∂Ed

∂ζ̇
= NBbr

2
b ζ̇ (2.77)

∂Ep
∂ζ

= NKbr
2
bζ (2.78)

Nmbrbÿt +Nmbr
2
b ζ̈ +NBbr

2
b ζ̇ +NKbr

2
bζ = NFT rb (2.79)

After simplifying equation (2.79), the dynamic of the blades flap-wise is:

mbrbÿt +mbr
2
b ζ̈ +Bbr

2
b ζ̇ +Kbr

2
bζ = FT rb (2.80)

Writing equations (2.73) and (2.80) in matrix form the following equation is obtained:

[
mt +Nmb Nmbrb
mbrb mbr

2
b

] [
ÿt
ζ̈

]
+

[
Bt 0
0 Bbr

2
b

] [
ẏt
ζ̇

]
+

[
Kt 0
0 Kbr

2
b

] [
yt
ζ

]
=

[
NFT
FT rb

]
(2.81)

A mechanical system of arbitrary complexity can be described by the equation of motion
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Mq̈ +Dq̇ +Kq = Q(q̇, q, t, u) (2.82)

where M , D and K are the mass, damping and stiffness matrices and Q is the vector of forces acting on the
system. The system obtained in equation (2.81) has the same structure of equation (2.82).

From the equation (2.82), an state-space model can be obtained making the following operations

q̈ = −M−1Kq −M−1D q̇ + M−1Q (2.83)

q̈ =
[
−M−1K −M−1D

] [ q
q̇

]
+ M−1Q (2.84)

The state vector is:

x =
[
qT q̇T

]T
=
[
yt ζ ẏt ζ̇

]T
(2.85)

and therefore,

ẋ =
[
ẏt ζ̇ ÿt ζ̈

]T
(2.86)

The system input is u = FT , while vector Q is:

Q =

[
N
rb

]
. (2.87)

The output is:

y =
[
ẏt ζ̇

]T
. (2.88)

The state space model of the tower is: {
ẋ = Ax+ Bu,
y = Cx,

(2.89)

and the matrices A, B and C are:

A =

[
02 I2

−M−1K −M−1D

]
=


0 0 1 0
0 0 0 1

− K
mt

KN
rbmt

−Bt
mt

NrbBb
mt

K
rbmt

−K(mt+Nmb)
mbr2bmt

Bt
rbmt

−(mt+Nmb)Bb
mbmt

 ,

B =

[
02×1

M−1Q

]
=


0
0
0

−N
rbmt

+ mt+Nmb
mb rbmt

 ,
C =

[
0 0 1 0
0 0 0 1

]
.

(2.90)

2.5.1 Tower Model Simplification

In order to obtain a simplified model of the tower for further fault diagnosis analysis, the blades are assumed
to be stiff but in fact the blades are flexible as explained before. This simplification eliminates all the bending
modes of the blades and transfers all forces acting on blades directly to the tower.

As explained later in this chapter, the tower top acceleration is typically the only measured variable in
the tower model. Therefore, the movement of the tower is now described by a linear displacement of the
tower top [11]. An illustration of this model is given in Figure 2.7.

Using a spring-damper terminology, the tower model is rewritten as:

Mtÿt(t) = Fth(t)−Btẏt(t)−Ktyt(t) (2.91)
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Table 2.4: Parameters for the tower subsystem model

Parameter Units Description
mt kg Mass of the tower and nacelle
mb kg Mass of each blade
Kt N m/rad Stiffness of the tower
Kb N m/rad Stiffness of each blade
Bt N m/(rad/s) Damping coefficient of the tower
Bb N m/(rad/s) Damping coefficient of the blade
N - Number of blades

Figure 2.7: The movement of the flexible tower is modeled using a spring-damper system.

where:
Bt is the tower damping coefficient [N/(m/s)].
Kt is the tower torsion coefficient [N/m].
Mt is the top mass of the tower [kg].
yt(t) is the displacement of the nacelle from its equilibrium position [m].

2.5.2 Blade Root Moment Dynamics

This section is based on the work of [28] from which the Blade Root Moment Dynamics can be obtained.
It is assumed that the wind speed signal, when it acts on the whole rotor blade, causes blade root loads

that are similar to those that arise when a rotating rotor blade samples a turbulent wind field, affected by
wind shear and tower shadow. This concept allows for describing the wind influence on the blade (root)
loads via a single input signal while yet taking into account the properties of the rotationally sampled wind
field.

The aerodynamic conversion in the simplified model is based on linearized BEMtheory [42]; dynamic wake
effects and unsteady aerodynamics are not taken into account. The BEM-based aerodynamic conversion
characteristics are translated into multipliers that map a variation in the flapwise relative wind speed vflapi
to variations in the flap and leadwise blade root moments and forces (aerodynamic gains). Aerodynamic
gains are also derived for the linearized influence of a variation in the pitch angle. The pitch angle variation
βi and relative wind speed variation vflapi for the ith blade thus cause variations in the aerodynamic loads
on the blade root described by:

MB,i(t) = k1

(
υr(t)−

dy(t)

dt
+

9Rb
8H

dy(t)

dt
sin(ψi(t))

)
+ k2βi(t) (2.92)

where:
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MB,i(t) is the blade root moment on blade i [Nm].
ψi(t) is the azimuth angle of blade i [rad].
vr(t) is the wind speed [m/s].
dy(t)
dt is the translation speed of the nacelle from its equilibrium position [m/s].
Rb is the distance from the hub to where the thrust acts on the blade [m].
H is the hub height [m].

The gains k1 and k2 are derived from the power and thrust coefficient data under the assumption of equal
aerodynamic efficiency over the rotor radius in a chosen working point.

For azimuth angle ψi equal to 0, the ith blade is in the horizontal position while it is rotating downward.
The azimuth angle of the blade equals the rotor azimuth angle θr, which means

θr = ψ1(t) [rad] (2.93)

The rest of the azimuth blade angles can be calculated as shown below:

ψ2(t) = θr +
2

3
π [rad] (2.94)

ψ3(t) = θr +
4

3
π [rad] (2.95)

2.6 Aerodynamic Model

In this section, basic aerodynamic principles exploited by wind turbines are described, and a model describing
the transfer from wind energy to rotational motion of the rotor is presented.

The power available from the wind passing through the entire rotor swept area can be expressed as [13]:

Pw(t) =
1

2
ρAv3

r(t) [W] (2.96)

where:
Pw(t) is the power available from the wind.
A is the rotor swept area[m2]
vr(t) is the rotor effective wind speed [m/s].
ρ is the air density, which is assumed to be constant [kg/m3].

From the available power in the wind, the power on the rotor is given based on the power coefficient,
Cp(λ(t), β(t)), which depends on the tip-speed ratio and the pitch angle. The Cp coefficient is not expressed
as a mathematical function, but has to be looked up in a table. The Cp-surface for the wind turbine used
in the FDI benchmark [32], is provided by kk-electronic a/s and is shown in the left subplot of Figure 2.8.
Notice that the Cp-description implies that the aerodynamic model is static, which is a simplification.

The power captured by the rotor is:

Pa(t) = Pw(t)Cp (λ(t), β(t)) [W] (2.97)

where:
Pa(t) is the power captured by the rotor [W].
Cp (λ(t), β(t)) is the power coefficient [-].
β(t) is the pitch angle [deg].
λ(t) is the tip-speed ratio [-].

The tip-speed ratio is defined as the ratio between the tip speed of the blades and the rotor effective
wind speed:

λ(t) =
ωr(t)R

vr(t)
(2.98)

where:
ωr(t) is the rotor speed [rad/s].
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Figure 2.8: The Cp and Ct-coefficients as function of the pitch angle and the tip-speed ratio. Notice that
negative values have been set to zero.

The aerodynamic torque applied to the rotor defined in [11], can be expressed as:

Ta(t) =
Pa(t)

ωr(t)
[Nm] (2.99)

Substituting the equations (2.96) and (2.97), in (2.99) the torque applied to the rotor is expressed as:

Ta(t) =
1

2ωr(t)
ρAv3

r(t)Cp (λ(t), β(t)) [Nm] (2.100)

where: Ta(t) is the aerodynamic torque applied to the rotor [Nm].
The wind acting on the rotor of the wind turbine also results in a thrust on the rotor. This thrust is

calculated as shown below [13].

Ft(t) =
1

2
ρAυ2

r(t)Ct(λ(t), β(t)) [N] (2.101)

where:
Ct(λ(t), β(t)) is the thrust coefficient [-].
Ft(t) is the thrust exerted by the wind on the rotor [N].

To use the aerodynamic model when the wind speed is assumed to be non-identical on the three blades,
the equations have to take into account different blade effective wind speeds. This is accomplished by
averaging the thrust and torque introduced at each of the three blades, as illustrated below

Ft,1(t) =
1

2
ρAυ2

r(t)Ct(λ(t), β1(t)) [N] (2.102)

Ft,2(t) =
1

2
ρAυ2

r(t)Ct(λ(t), β2(t)) [N] (2.103)

Ft,3(t) =
1

2
ρAυ2

r(t)Ct(λ(t), β3(t)) [N] (2.104)

Ta,1(t) =
1

2ωr(t)
ρAv3

r(t)Cp (λ(t), β1(t)) [Nm] (2.105)

Ta,2(t) =
1

2ωr(t)
ρAv3

r(t)Cp (λ(t), β2(t)) [Nm] (2.106)
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Ta,3(t) =
1

2ωr(t)
ρAv3

r(t)Cp (λ(t), β3(t)) [Nm] (2.107)

Ta(t) =
1

3

3∑
i=1

Ta,i(t) [Nm] (2.108)

Substituting equations (2.105), (2.106) and (2.107) in (2.108), the following equation for the aerodynamic
torque is obtained:

Ft(t) =
1

3

3∑
i=1

Ft,i(t) [N] (2.109)

where:
Ft,i(t) is the thrust exerted by the wind on Blade i [N].
Ta,i(t) is the aerodynamic torque applied to the rotor by Blade i [Nm].

It is assumed that the thrust Ft,i(t) exerted on Blade i attacks where the thrust components towards the
hub and towards the blade tip are equal. Since the thrust is dependent on R2 the following equation can be
set up to calculate the point where the thrust attacks:

rb∫
0

r2dr =
R∫
rb

r2dr

rb = 2−1/3R [m]

(2.110)

where:
rb is the distance from the hub to where the thrust acts on the blade [m].
R is the radius of the rotor [m].

Figure 2.9: Sketch of a rotor and a wind turbine, showing parameters utilized in the wind model.

ψi(t) is the azimuth angle of Blade i [rad].
Having determined where the thrust acts on the blades, it is possible to derive the torque which makes

the tower move. This is a function of the azimuth angle of each blade and can be realized as a force acting
on the tower at hub height, as shown below.

Fth(t) = Ft,1(t)
(
1 + rt

h cos (ψ1(t))
)

+ Ft,2(t)
(
1 + rt

h cos (ψ2(t))
)

+Ft,3(t)
(
1 + rt

h cos (ψ3(t))
)

[N]
(2.111)

where:
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Ft,i(t) is the thrust acting on Blade i [N].
Fth(t) is the force acting on the tower at hub height [N].
Fth,i(t) is the force transferred to the tower from Blade i at hub height [N].

The basic aerodynamic principles of a wind turbine have been described, and models for the aerodynamic
torque and the aerodynamic thrust acting on the rotor have been set up.

2.7 Power Subsystem Model

The power system as modeled in [32] and [11] is considered a standard first order system which is very similar
in both cases.

Electric power is generated by the generator, and to enable variable-speed operation, currents in the
generator are controlled using power electronics. Therefore, power electronic converters interface the wind
turbine generator output with the utility grid. It is assumed that the converter consists of four similar units
sketched in Figure 2.10, each having an internal controller. These units together load the generator with a
certain torque, which depends on the currents drawn from the generator. Since torque and electric power are
the only variables of interest in the simplified model of the energy conversion system, currents and voltages
are not considered at all.

Since the converter consists of several converters having equal characteristics, this section describes only
one of these.

Figure 2.10: The converter consists of Nc units capable of loading the generator by a certain torque, specified
by a torque reference.

On a system level of the wind turbine, the generator and converter dynamics can be modeled by a first
order transfer function:

Tg(s)

Tg,ref(s)
=

1

τg s+ 1
(2.112)

where:
Tg,ref(t) is the reference for the generator torque [Nm].
τg is the time constant of the first order system [s].

The power produced by the generator depends on the rotational speed of the rotor and of the applied
load, as described in the equation below. The following equation explains the mechanical power since the
electronic system is not modeled:

Pg(t) = ηgωg(t)Tg(t) [W] (2.113)
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where:
Pg(t) is the power produced by the generator [W].
ηg is the efficiency of the generator [-].

In the wind turbine FDI benchmark [32], the parameter values for the efficiency and the time constant
are ηg = 0.98 and τg = 1

50 respectively.
In this section, the generator and converter models have been presented. The generator converts me-

chanical energy into electric energy, while it is loaded by a torque originating from a converter, which has
been described as a number of delayed first order systems.



Chapter 3

Structural Analysis

In this chapter the purpose is to perform a structural analysis of the wind turbine system in order to determine
the analytical redundancy relations (ARRs), which can be used to detect and isolate faults in the system.
Furthermore, the possible detectable and isolable faults and sensor fusion possibilities are determined by
exploiting the ARRs.

Structural analysis is the analysis of the structural properties of models, i.e., properties which are inde-
pendent of the actual values of the parameters [12]. It only represents the links between the variables and
the parameters which result from the model and are thus independent of the form under which this model
is expressed (quantitative or qualitative). The links are presented by a graph upon which the analysis of the
structure will be performed.

Structural analysis will provide tools for several steps of the design of the fault diagnosis system: analysis
of local redundancies, determination of extra sensors in order to improve diagnosis results, determination of
computational sequences whose result is a residual (a conflict), evaluation of fault detectability and isolability,
possibilities to implement fault tolerance actions.

From the point of view of structural analysis, the model of the system is considered as a set of constraints
which apply to a set of variables some that are known and other that are unknown: -the sensors which are
present in the process together with the control variables, give the subset of those variable whose values are
known, the set of constraints is given by models of the components which constitute the system.

The term constraints refer to the fact that components impose some relations between the values of
variables according their corresponding physical laws.

Let R = {r1, r2, ... , rm} be the set of the constraints which represent the system model and let Z =
{z1, z2, ... , zn} be the set of the variables which contains three subsets:

Let K = Y ∪ U be the set of known variables: U is the subset of input variables, Y is the subset of the
output variables and X is the subset of the unknown (non-measured) variables.

The structure of the model is described by the binary relation:

S : R× Z → {0, 1}
where

(ri, zj)→
{
S (ri, zj) = 1 iff rj applies to zj
S (ri, zj) = 0 otherwise

(3.1)

To summarize, The structural analysis is set up according to the procedure shown in the bullet list below
[19].
Structural Relations: Determine the structural relations of the wind turbine model and organize the
structural relations in an incidence matrix. An incidence matrix shows structural relations in the model and
separates known from unknown variables.
Matching: Perform a matching of the unknown variables. A matching shows how the unknown variables
can be estimated from the known variables using the constraints in the model. The matching procedure can
be done using a graph or a matrix.
Analytical Redundancy Relations: Determine the analytical redundancy relations and sensor fusion
possibilities.

31
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3.1 System Sensors

To perform a structural analysis and determine the analytical redundant relations of the wind turbine system
it is necessary to know all the measured variables of the system. In table 3.1 is listed the measured variables
of the system model and characterized the measurements by the amount of noise on each of them.

Table 3.1: Available sensors
Sensor Type Symbol Unit Noise Power
Anemometer - Wind speed at hub height υw,m m/s 0.0071
Rotor Speed ωr,m rad/s 10−4

Generator Speed ωg,m rad/s 2 · 10−4

Generator Torque τg,m Nm 0.9
Generated Electrical Power Pg,m W 10
Pitch angle of ith Blade βi,m deg 1.5 · 10−3

Azimuth angle low speed side θr,m rad 10−3

Blade root moment ith blade MB,i,m Nm 103

Tower top acceleration (x and y directions) measurement

[
ẍx,m

ẍy,m

]
m/s2 5 · 10−4

Yaw error Ξe,m deg 5 · 10−2

From the structural relations of the wind turbine model an incidence matrix is builded. This incidence
matrix shows structural relations in the model and separates known from unknown variables.

The next step is a matching procedure which shows how the unknown variables can be estimated from
the known variables using the constraints in the model.

3.2 Structural Relations

In this section the mutual dependence of the variables must be described; hence, the basis for the structural
relations is the functional equations set up in Chapter 3.

The structural relations only show the variables which are linked together while the system equations
described in the modeling chapter explain how variables are linked together. To form the structural relations
it is necessary to use the system equations of chapter 3. In addition to the system equations, the measurement
equations, which can be deducted from section 4.1 which gives the information of all the measured variables
of the system, also form some structural relations.

Besides the system and measurement equations there are some differential relations between the variables
and their derivatives. These relations, called differential constraints, are special, since the following holds: a
signal x(t) cannot be computed from its derivative ẋ(t), but ẋ(t) can be computed from x(t). This is called
integral causality, and is due to the lack of knowledge about the initial condition, x(0), as indicated in [30].

x(t) =

t∫
0

ẋ(τ)dτ + x(0) (3.2)

In this thesis the structural relations are obtained from the physics modeling of the wind turbine. Table
3.2, summarizes the set of constraints related with the physical equations 2 and the measurement equations
which can be deducted from Section 3.1, together with equations formed with the control inputs, also form
some structural relations.

An incidence matrix is a way to represent the structural relations by separating the known variables K
from the unknown variables X. When using the structural relations in an incidence matrix it is necessary to
distinguish between known variables and unknown variables, since the incidence matrix is used in the match-
ing. The known variables are control signals, measured variables, and known parameters, while structural
relations show the variables which are linked together. The unknown variables are unmeasured variables and
unknown parameters of the system.
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Table 3.2: Structural Relations Summary

Structural Relation Unknown Variables Known Variables
e1 2.41 f (ω̇r(t), ωr(t), Tl(t), Ta(t)) = 0
e2 2.42 f (ω̇g(t), ωg(t), Th(t), Tg(t)) = 0
e3 2.43 f (Th(t), Tl(t)) = 0

e4 2.44 f
(
Tl(t), θ∆(t), θ̇∆(t)

)
= 0

e5 2.45 f (θ∆(t), θr(t), θg(t)) = 0

e6 2.49 f
(
θ̇∆(t), ωr(t), ωg(t)

)
= 0

e7 2.60** f
(
β̈1(t), β̇1(t), β1(t), βref (t)

)
= 0

e8 2.60** f
(
β̈2(t), β̇2(t), β2(t), βref (t)

)
= 0

e9 2.60** f
(
β̈3(t), β̇3(t), β3(t), βref (t)

)
= 0

e10 2.91 f (ÿt(t), ẏt(t), yt(t), Fth(t)) = 0
e11 2.92** f (MB,1(t), υr(t), ẏt, ψ1(t), β1(t)) = 0
e12 2.92** f (MB,2(t), υr(t), ẏt, ψ2(t), β2(t)) = 0
e13 2.92** f (MB,3(t), υr(t), ẏt, ψ3(t), β3(t)) = 0
e14 2.93 f (θr(t), ψ1(t)) = 0
e15 2.94 f (θr(t), ψ2(t)) = 0
e16 2.95 f (θr(t), ψ3(t)) = 0
e17 2.96 f (Pw(t), υr(t)) = 0
e18 2.97 f (Pa(t), Pw(t)) = 0
e19 2.98 f (λ(t), υr(t), ωr(t)) = 0
e20 2.99 f (Ta(t), Pa(t), ωr(t)) = 0
e21 2.101 f (Ft(t), υr(t)) = 0
e22 2.111 f (Fth(t), Ft(t), ψ1(t), ψ2(t), ψ3(t)) = 0

e23 2.112 f
(
Ṫg(t), Tg(t), Tg,ref (t)

)
= 0

e24 2.113 f (Pg(t), Tg(t), ωg(t)) = 0
Measurement Equations

m1 υr,m(t) = υr(t) f (υr,m(t), υr(t)) = 0
m2 ωr,m(t) = ωr(t) f (ωr,m(t), ωr(t)) = 0
m3 ωg,m(t) = ωg(t) f (ωg,m(t), ωg(t)) = 0
m4 Tg,m(t) = Tg(t) f (Tg,m(t), Tg(t)) = 0
m5 Pg,m(t) = Pg(t) f (Pg,m(t), Pg(t)) = 0
m6 β1,m(t) = β1(t) f (β1,m(t), β1(t)) = 0
m7 β2,m(t) = β2(t) f (β2,m(t), β2(t)) = 0
m8 β3,m(t) = β3(t) f (β3,m(t), β3(t)) = 0
m9 MB,1,m(t) = MB,1(t) f (MB,1,m(t),MB,1(t)) = 0
m10 MB,2,m(t) = MB,2(t) f (MB,2,m(t),MB,2(t)) = 0
m11 MB,3,m(t) = MB,3(t) f (MB,3,m(t),MB,3(t)) = 0
m12 ẍm(t) = ẍ(t) f (ẍm(t), ẍ(t)) = 0
m13 ÿm(t) = ÿ(t) f (ÿm(t), ÿ(t)) = 0
m14 θr,m(t) = θr(t) f (θr,m(t), θr(t)) = 0

Control Inputs
c1 βref,m(t) = βref (t) f (βref,m(t), βref (t)) = 0
c2 Tg,ref,m(t) = Tg,ref (t) f (Tg,ref,m(t), Tg,ref (t)) = 0

The incidence matrix of the wind turbine system considered in this thesis is showed on Figures 3.1, 3.2
and 3.3.
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Figure 3.1: Incidence Matrix
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Figure 3.2: Incidence Matrix
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Figure 3.3: Incidence Matrix
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3.3 Matching

A matching of the unknown variables is required to identify the monitorable part of the system, i.e. the
subsystem in which faults can be detected and isolated. This part of the system must be observable to be in
the over-constraint part of the system (C,Z). This means that there should be more constraints describing
this part of the system than unknown variables [30].

The matching of the unknown variables is performed as shown in Figure , where the unknown variables are
matched from the known variables using the structural relations. These relations are Analytical Redundant
Relations (ARRs) and can be used for fault detection and fault identification purposes and will be detailed
later in this chapter.

The process of obtaining ARRs from the matching procedure it is explained in Figure 3.4 where it is
illustrated with the generator and converter subsystem, characterized in equation (2.112). In this example
it is showed how the links are found between known variables (measured variables, controlled inputs), its
derivatives and the unknown variables. The matching procedure can be done using an incidence matrix. This
process is repeated for the rest of the subsystems of the wind turbine to generate other analytical redundant
relations.

Figure 3.4: Matching example with the Generator/Converter subsystem model

From the structural relation (2.112) and using the incidence matrix to do the matching, the unknown vari-
ables are replaced by known variables obtaining in this case one analytical redundant relation corresponding
to the generator and converter subsystem of the wind turbine.

τg
dTg,m(t)

dt
+ Tg,m(t) = Tg,ref(t) (3.3)

With the same procedure illustrated before and using the incidence matrix of the wind turbine system
showed in Figure 3.1, 3.2 and 3.3, are obtained another analytical redundant relations detailed in the next
section.
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3.4 Analytical Redundancy Relations

Analytical redundancy relations (ARRs) are defined as relations between known variables. ARRs can be
derived combining the measurement model (known variables) with the process model (unknown variables).
From the analytical redundancy relations it is possible to create residuals for detecting faults. These relations
will be used in the fault diagnosis procedure to check the consistency between the observed and the predicted
process behavior [12].

From the structural relation (2.113) it is obtained directly another ARR from the matching procedure
explained before.

Pg,m(t) = ηgωg,m(t)Tg,m(t) (3.4)

From the structural relation (2.92) and doing the matching in the incidence matrix for the blade root
moment dynamics for each blade, the next three ARRs are obtained:

MB,1,m(t) = k1

(
υr,m(t)− dy(t)

dt
+

9Rb
8H

dy(t)

dt
sin(θr,m(t))

)
+ k2β1,m(t) (3.5)

MB,2,m(t) = k1

(
υr,m(t)− dy(t)

dt
+

9Rb
8H

dy(t)

dt
sin

(
θr,m(t) +

2π

3

))
+ k2β2,m(t) (3.6)

MB,3,m(t) = k1

(
υr,m(t)− dy(t)

dt
+

9Rb
8H

dy(t)

dt
sin

(
θr,m(t) +

4π

3

))
+ k2β3,m(t) (3.7)

Doing the matching procedure it is also possible to find ARRs for the pitch subsystem, each ARR
corresponds to each one of the blades.

d2β1m(t)

dt2
+ 2ζωn

dβ1m(t)

dt
+ ω2

nβ1m(t) = ω2
nβref (t) (3.8)

d2β2m(t)

dt2
+ 2ζωn

dβ2m(t)

dt
+ ω2

nβ2m(t) = ω2
nβref (t) (3.9)

d2β3m(t)

dt2
+ 2ζωn

dβ3m(t)

dt
+ ω2

nβ3m(t) = ω2
nβref (t) (3.10)

Studying the steady state behavior of the equations (2.47), (2.48) and (2.49) which describe the drive
train dynamics, another equations can be obtained which contain only known variables and therefore form
extra ARRS.

In steady state the rotor and generator accelerations are zero. Therefore equation (2.48) is the following:

0 =
Kdt

Ng
θ∆(t) +

Bdt
Ng

ωr(t)−
Bdt
N2
g

ωg(t)−Bgωg(t)− Tg(t) (3.11)

Multiplying (4.21) by −Ng we obtain equation (4.22).

0 = −Kdtθ∆(t)−Bdtωr(t) +
Bdt
Ng

ωg(t) +NgBgωg(t) +NgTg(t) (3.12)

In steady state it is observed that relation (4.23), between the rotor speed and generator speed is satisfied.

ωr(t)−
1

Ng
ωg(t) = 0 (3.13)

Therefore equation (4.24) is also satisfied.

θr(t)−
1

Ng
θg(t) = K = θδ(t) (3.14)

Substituting equations (4.23) and (4.24) in eq. (4.21) the following equation is obtained:
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Tg(t) = K −Bgωg(t) (3.15)

Because the rotor and generator speed are both measured variables, equation (4.23) can form an ARR
and is written as

ωr,m(t) =
1

Ng
ωg,m(t) (3.16)

And from equation (4.25) can be obtained another ARR because the generator’s torque and the rotor
speed are measured variables. This ARR is written as

Tg,m(t) = K −Bg,mωg(t) (3.17)

Once all the ARRs are deduced from the structural relations, a table listing all the ARRs with it’s
respective measured variables is builded. This is illustrated in Table (3.3).

The aerodynamic torque can be estimated from the rotor speed and wind speed, also the rotor power
coefficient Cp is calculated and obtained from FAST.

Ta∗(t) = f (υr,m(t), ωr,m(t)) (3.18)

Table 3.3: ARRs Table

ωg,m ωr,m Tgm Pg,m β1,m β2,m β3,m MB,1,m MB,2,m MB,3,m βref Tg−ref Ta∗
r1 x x x
r2 x x
r3 x x
r4 x x
r5 x x
r6 x x
r7 x x
r8 x x
r9 x x
r10 x x x x
r11 x x x x
r12 x x

3.5 Fault Scenarios

In the benchmark [32] both sensor and actuator faults are considered. Most faults selected were motivated
by research, both in the public domain and from proprietary sources. In this section, the faults are described
and, when possible, provide sources to data motivating their selection.

3.5.1 Sensor Faults

Sensor faults include measurements that are stuck, scaled from the true values, or offset from the true values,
as indicated in Table 4.1. When Fault 1 occurs, the blade root bending moment sensor at Blade 2 is scaled
by a factor of 0.95. Fault 1 is present between 295s and 320s. Fault 2 results in an offset of -0.5m/s2 on
the tower top accelerometer in both the fore-aft and side-to-side directions. Fault 2 is present in the time
period 75s to 100s. Accelerometers are notoriously difficult to keep calibrated; see, for example, [23] and
[10]. Fault 3 causes the generator speed sensor to be scaled by a factor of 0.95. Fault 3 is present between
130s and 155s. Fault 4 results Blade 1 having a stuck pitch angle sensor, which holds a constant value of
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1 deg. Fault 4 is active from 185s to 210s. While Fault 5 is occurring the generator power sensor is scaled
with a factor of 1.1. Fault 5 is present in the time interval from 240s to 265s. Precedent for scaled generator
power sensor errors can be found in [23]. Fault 6 models a bit error in the low speed shaft encoder, which
is another sensor fault documented in [23]. This bit error is modeled by randomly adding an offset to the
measurement that corresponds to the bit on which the error is present. Fault 6 occurs from 295s to 320s.

3.5.2 Actuator faults

The primary actuators used by the turbine are the blade pitch drives, the generator torque, and the yaw
drive. The two faults in the pitch actuators are Faults 7 and 8. These two faults are modeled by changing the
parameters in the relevant pitch actuator model, and the same parameters are used as in [37]. Motivation for
faults in pitch actuators is largely proprietary, but an example of a pitch actuator fault containing unexpected
dynamics is given in [23]. In order to model the hydraulic power drop and increase of air content, the
parameters in the transfer function are changed during these faults. Notice here that the hydraulic pressure
drop is assumed to be abrupt, while the air content increases slowly. The two transfer function parameters
for the pressure drop case are denoted ωn2 = 5.73; ζ2 = 0.45 and the two parameters for the increased air
content model are denoted ωn3 = 3.42; ζ3 = 0.9. Fault 7 is introduced linearly from 350s to 370s, and full
active from 370s to 390s and linearly outfaced from 390s to 410s. Fault 8 is active from 440s to 465s, and
linearly introduced and outfaced within 1s both.

Fault 9 is an offset on the generated generator torque, which can be caused by an error in the initialization
of the converter controller. This fault is modeled as in [37]; however, it was found based on the evaluation
of the contribution to the FDI benchmark problem that the original offset value 100 Nm was to small to be
detected (see [33]). Consequently the offset is increased to 1000 Nm. Fault 9 occurs from 495s-520s.

The last fault, which is the stuck yaw actuator, Fault 10, is modeled by setting the yaw angular velocity
to zero rad/s independent of the value of the yaw error. Fault 10 is active in the time interval from 550s to
575s.

The faults are listed in the Table (4.1).

Table 3.4: Fault Scenarios

No. Faults Type
f1 Blade root bending moment sensor Scaling
f2 Acceloremeter Offset
f3 Generator speed sensor Scaling
f4 Pitch angle sensor Stuck
f5 Generator power sensor Scaling
f6 Low speed shaft position encoder Bit error
f7 Pitch actuator Abrupt change in dynamics
f8 Pitch actuator Slow change in dynamics
f9 Torque offset Offset
f10 Yaw drive Stuck drive

Analyzing the effects of the faults showed on Table (4.1) in the residuals listed on Table (3.3), the following
fault signature matrix presented on Table (3.5) is obtained.

It has not been possible to find a suitable model of the yaw dynamics in the literature review. The
structural analysis showed that the tower displacement and velocity were not observable therefore it was not
possible to find an ARR to detect faults in this subsystem. After several simulation tests, the measurement
equation which relates the azimuth angle with the rotor speed did not have a reasonable or expected behavior.
For the reasons explained before, the benchmark fault scenarios 2, 6 and 10 were not considered in the fault
diagnosis system implemented in this thesis.



3.5. FAULT SCENARIOS 41

T
a
b

le
3
.5

:
T

h
eo

re
ti

ca
l

si
g
n

a
tu

re
m

a
tr

ix

f 1
f 3

f 4
f 5

f (
7
−

8
)

f 9
f M

B
,1
,m

f M
B
,2
,m

f M
B
,3
,m

f 4
−
β

1
f 4
−
β

2
f 4
−
β

3
f (

7
−

8
)−
P
A

1
f (

7
−

8
)−
P
A

2
f (

7
−

8
)−
P
A

3

r 1
x

x
x

r 2
x

x
x

r 3
x

x
x

r 4
x

x
x

r 5
x

r 6
x

x
r 7

x
x

r 8
x

x
r 9

x
x

r 1
0

x
r 1

1
x

x
r 1

2
x



42 CHAPTER 3. STRUCTURAL ANALYSIS

3.6 Fault Isolation Techniques

The aim of fault isolation is to distinguish the fault that is present in the system between a set of possible
faults. While a residual is enough to detect a fault, a set of residuals is required to isolate a fault [12]. A fault
is isolable if it can be isolated from the rest of faults using a set of residuals. One of the main challenges in
fault isolation is if the method used will be able to isolate some type of faults from other types. The answer
to this challenge is related to: mainly, the structure of the model used to generate residuals and, in a certain
way, to the detection test used.

Two distinct and parallel communities work on model-based diagnosis approaches: FDI in the control
field and DX in the artificial intelligence field.

The FDI community focus in analytical redundancy approach while the DX focus in consistency-based
logic approach.

There are some common principles between these two communities:
- The diagnostic process relies on an explicit model of the (normal) system behavior.
- The process detects faults from inconsistencies between the observations and the behavior predicted by the
model.
- Fault isolation stands on interlinking the sets of components which underly every detected inconsistency.
Even though the core principles are the same between these two communities, several concepts, assumptions
and techniques differentiate them.

The DX approach relies upon a well founded and logically based theory for diagnosis of static systems.
From a logical point of view, fault detection is performed through a consistency check, organized around the
conflict concept. In this approach, fault localization or isolation is automatically derived from the conflict
detection stage, which usually relies upon some kind of dependency-recording.

On the other hand, the FDI approach consider fault diagnosis as two separate tasks: fault detection and
fault isolation based on generating and evaluating a set of analytical redundancy relations obtained off-line
from elementary component models of the physical systems [43].

3.6.1 FDI fault isolation

Given a set of symptoms s(k) = [s1(k), ..., sn(k)], and a set of considered faults f1, f2, ...fm, the theoretical
signature matrix can be defined binary codifying the effect or not of a fault in every symptom. This matrix
has as many rows as symptoms and as many columns as faults are considered. The element

∑
ij of this

matrix is equal to 1 meaning that the jth fault appears in the expression of the ith symptom generator,
otherwise is equal to 0. Then, fault isolation will consist in looking for the theoretical fault signature in the
fault signature matrix that matches with the observed signature.
In the case of table (3.5), the following logical tests will allow to isolate the faults indicated below in table
(3.6) without considering that noise or perturbations may cause detection errors, where ∆Nri indicates an
abnormal behavior of residual ith:

Table 3.6: Fault Isolation FDI approach

Logical Test Diagnostic
∆Nr2 f1−M,B,1,m

∆Nr3 f1−M,B,2,m

∆Nr4 f1−M,B,3,m

∆Nr1 ∧∆Nr9 ∧∆Nr11 ∧∆Nr12 f3

∆Nr2 ∧∆Nr6 f4−β1 ∨ f(7−8)−PA1

∆Nr3 ∧∆Nr7 f4−β2 ∨ f(7−8)−PA2

∆Nr4 ∧∆Nr8 f4−β3 ∨ f(7−8)−PA3

∆Nr1 f3 ∨ f5 ∨ f9

∆Nr1 ∧∆Nr5 ∧∆Nr9 ∧∆Nr10 ∧∆Nr11 f3 ∨ f9

Therefore, FDI approach to fault isolation follows a column view approach. From Table ( 3.6) it can be
seen that the faults in each one of the blade root moment sensors is isolable (f1−M,B,1,m, f1−M,B,2,mandf1−M,B,3,m).
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Fault 3 in the generator speed sensor and Fault 9 a torque offset are also isolable.
To isolate a fault between the pitch sensor f4 or actuator f7 and f8, of a pitch subsystem is not possible

with the signature matrix (3.5), however it is remarkable to mention that a fault in an specific pitch subsystem
can be isolated. For example if r2 and r6 activates, with the information provided by ( 3.6), it is possible
to declare that a fault has occurred in the pitch subsystem of blade 1. What is not possible to determine is
if the fault comes from the actuator or the sensor of the mentioned pitch subsystem. It happens the same
with the pitch subsystems of blade 2 and 3. This means that it is possible to locate the pitch subsystem in
which the fault occurs (pitch subsystem of blade 1, 2 or 3) even though that is not possible to determine if
the fault is located in the actuator or the sensor.

As seen in this section the FDI approach to fault isolation follows a column view approach.

3.6.2 DX fault isolation

Fault detection can be considered as equivalent using ARRs in FDI and potential conflicts in DX [7], however
fault isolation can be tackled in two different ways within the DX community: consistency-based, CBD, or
abduction-based [14]. While consistency-based diagnosis tries to reject those behavioral modes which are not
consistent with current observations, abduction-based diagnosis tries to explain current observation with a
consistent behavioral mode assignment. In such sense, abduction-based diagnosis is closer to FDI approach
than consistency-based. Moreover, for real complex dynamic systems there is no direct translation from the
static consistency test to the dynamic one [6].

Based on the proposed framework by Cordier [7], the fault signature matrix is interpreted in DX CBD
approach to fault isolation considering separately each line corresponding to a violated ARR, isolating R-
conflicts (i.e., a set of components that are to be considered abnormal in order to be consistent with the
observed fault signature) before searching for a common explanation, i.e., follows a row view of the table
[43].

Row reasoning only looks for the activated fault signals and the corresponding rows in the fault signature
matrix, applying this approach to (3.5), Table ( 3.7) is obtained:

Table 3.7: Fault Isolation DX approach

Logical Test Diagnostic
∆Nr1 f3 ∨ f5 ∨ f9

∆Nr2 f1−M,B,1,m ∨ f4−β1 ∨ f7−PA1 ∨ f8−PA1

∆Nr3 f1−M,B,2,m ∨ f4−β2 ∨ f7−PA2 ∨ f8−PA2

∆Nr4 f1−M,B,3,m ∨ f4−β3 ∨ f7−PA3 ∨ f8−PA3

∆Nr5 f9

∆Nr6 f4−β1 ∨ f7−PA1 ∨ f8−PA1

∆Nr7 f4−β2 ∨ f7−PA2 ∨ f8−PA2

∆Nr8 f4−β3 ∨ f7−PA3 ∨ f8−PA3

∆Nr9 f3 ∨ f9

∆Nr10 f9

∆Nr11 f3 ∨ f9

∆Nr12 f3

3.6.3 FDI and DX common limitations

When applying DX and FDI approaches to dynamic systems, since they may exhibit symptoms with different
dynamics (fast, slow, ...), the use of binary codification of the result of the fault detection test associated to
a given ARR (or potential conflict), some information has been lost. In particular, among others:

• The sign of the symptom is lost.

• The sensitivity of the symptom respect to each fault is lost.



44 CHAPTER 3. STRUCTURAL ANALYSIS

• The order of system appearance of a given ARR with respect to the others is not recorded, since it is
a static test.

• The persistency of the symptom indicator of each ARR after fault is independent of the others.

• The time to wait the appearance of a set of symptoms times to isolate the faults when it exists different
appearance times is not considered.

• Instability of the fault detection test indicator (chattering) since the presence of noise and the binary
test used.

In [43] opinion, the diagnosis provided by each approach could be improved if that information was
considered.



Chapter 4

Calibration, Parameters Adjustment
and System Identification

The motivation of this chapter is to tune analytical redundant relations (ARRs) obtained in Chapter 3, using
the data and behavior of the systems variables observed in FAST simulations. To perform fault detection
it is necessary to parameterize the analytical redundant relations and this can be done using real data or a
simulator which in the case of this thesis is FAST simulator, which will be explained later in this chapter.

To parameterize the ARRs, system identification techniques are applied based on the data obtained by
simulations performed in FAST and having as reference the physical and theoretical models introduced in
Chapter 2 for the structures of the identified models. A parameters comparison between those obtained by
the estimated models and the nominal ones used by FAST wind turbine reference is also done.

4.1 FAST Simulator

FAST [20], is an aeroelastic wind turbine simulator designed by the U.S. National Renewable Energy Labora-
tory (NREL) National Wind Technology Center and widely used for studying wind turbine control systems.
Several FAST models of real and composite wind turbines of varying sizes are available in the public do-
main. In the case studied in this thesis, the NREL 5 MW baseline turbine made up of composite pieces
representative of a real utility-scale turbine was used.

This three-bladed, variable speed turbine with full span blade pitch control is available in both onshore
and offshore versions, including four variations of off-shore structures. The wind speed is considered as
an external input generated by Fast Simulator. FAST can utilize either uniform or full-field turbulent wind
input files, with the turbulent files generated by the NREL software TurbSim. TurbSim generates turbulence
using one of several atmospheric turbulence models and implements the wind field by creating the requested
number of grids of 3-dimensional wind turbine velocity components, where the grids march forward toward
the turbine in time based on the average wind speed. In the wind input files different wind speeds can be
generated. The constant wind inputs files are generated by NREL software IECWind, which is the type of
wind used in the simulations performed in this master thesis.

4.1.1 Control Strategy

The controller designed and implemented in benchmark [32], operates as indicated in [37]. It operates in
principle in four zones, Zone 1 is start up of the turbine, Zone 2 is power optimization, Zone 3 is constant
power production, Zone 4 is high wind speed see e.g. [24]. It should be noticed that these control zones
often are divided into more zones for implemental reasons, in order to handle the transitions between the
control modes as smoothly as possible.

In Figure 4.1 the power curve for the wind turbine is plotted. From this figure it can be seen that, for
wind speeds between 4 and 12 m/s, the turbine is controlled to obtain optimal power production. From
winds greater than 12 m/s the control strategy changes to Zone 3 in which the objective is to track a constant

45
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power reference. In this thesis all the analysis and tests are performed with the controller operating in Zone
3.

Figure 4.1: Power and Rotor speed curve depending on the wind speed

4.1.2 Parameters of NREL 5MW Wind Turbine Reference

The specifications of a representative utility-scale multimegawatt turbine now known as the NREL offshore
5-MW baseline wind turbine was developed by [21]. This wind turbine is a conventional three-bladed upwind
variable-speed variable blade-pitch-to-feather-controlled turbine. To create the model, it was obtained some
broad design information from the published documents of turbine manufacturers, with a heavy emphasis
on the REpower 5M machine. Because detailed data was unavailable, however, they also used the publicly
available properties from the conceptual models in the WindPACT, RECOFF, and DOWEC projects. A
composite from these data was created, extracting the best available and most representative specifications.
The report [21] documents the specifications of the NREL offshore 5-MW baseline wind turbineincluding
the aerodynamic, structural, and control-system propertiesand the rationale behind its development. The
model has been, and will likely continue to be, used as a reference by research teams throughout the world
to standardize baseline offshore wind turbine specifications and to quantify the benefits of advanced land-
and sea-based wind energy technologies.

The parameters of the report [21], used for characterizing the wind turbine subsystems in this thesis are
shown below

4.1.3 Simulink Interface

As explained in [20], Simulink has the ability to incorporate custom Fortran routines in a block called an
S-Function. The FAST subroutines have been linked with a MATLAB standard gateway subroutine in order
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Table 4.1: Fault Scenarios

Parameter Description Value Units
Jg Generator inertia about the high speed shaft kg m2 534.116
Bdt Drive train torsion damping coefficient Nm/(rad/s) 6.125*106

Ng Gear box ratio 97.0 -
Jr Hub inertia about rotor axis 115.926*103 kg m2

R The distance from the rotor apex to the blade tip 63 m

to use the FAST equations of motion in an S-Function that can be incorporated in a Simulink model. This
introduces tremendous flexibility in wind turbine controls implementation during simulation. Generator
torque control, nacelle yaw control, and pitch control modules can be designed in the Simulink environment
and simulated while making use of the complete nonlinear aeroelastic wind turbine equations of motion
available in FAST. The wind turbine block, as shown in Figure ??, contains the S-Function block with
the FAST equations of motion. It also contains blocks that integrate the accelerations to get velocities and
displacements. Thus the equations of motion are formulated in the FAST S-function but solved using one
of the Simulink solvers.

Figure 4.2: FAST Non Linear Wind Turbine

4.2 Selection of identification signals

The ARRs adjustment will be done using the tools of parameters identification. The first difficulty that
appears is that the wind turbine operates in closed loop and cannot be operated in open loop. Because of
that it is necessary to apply perturbation signals. When perturbation signals are applied to the system, all
its relevant modes are excited and it is aimed to achieve a good signal-to-noise ratio between the output
signal content due to the excitations and due to the disturbances and noise. From the identification point
of view, it can be considered that applying the larger perturbation signals possible would be good to the
identification process. However this is not the case in practice:

- If a large perturbation signal is applied, the system will operate in a wide range and this would result
in a violation of the linear condition to be violated.
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- Large perturbations can lead the system to suffer fatigue and cause damages. Torque perturbations
are reflected in the output generator power, excites the drivetrain and it influences the generator speed. In
the case of pitch perturbations, these cause variations in the rotor speed and therefore in the aerodynamic
torque.

- The perturbation signals must be designed in order to satisfy the actuator limits constraints.

Considering the system showed in picture 4.3, the controlled inputs entering the wind turbine are the
pitch angle β(t) and the generator torque Tg(t). The wind speed υr(t) may be considered a disturbance
in the context of system identification and it is modeled as a PRBS signal using the FAST preprocessor
IECWind with that purpose. Using these three input signals we excite the drive train dynamics which are
the ones of interest in this case. It is important to ensure not only that the turbine operates in a fairly
narrow operating range (in this case the wind turbine operates at a constant wind speed), but also that the
controllers act as an LTI system (the controllers of the turbines are linear controllers as it can be seen in
FAST-Simulink interface).

Figure 4.3: Wind Turbine System with perturbations introduced.

The following pictures shows the pitch, torque and wind perturbation signals designed for the drive train
subsystem identification of the NREL offshore 5-MW baseline wind turbine implemented in FAST simulator.
The behavior of the turbine was simulated at a constant wind speed of 24 m/s and the perturbation signals
were applied. The signals were a pseudo-random binary signal of ±3500 (Nm) for the torque perturbation
and a pseudo-random binary signal of ±3 (deg).
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Figure 4.4: Pitch perturbation signal
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Figure 4.5: Torque perturbation signal

Figure 4.6: PRBS signal designed for the wind speed using FAST-IECWind preprocessor.
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4.3 Generator and Converter Subsystem

The model for the generator and converter subsystem proposed in equation (2.112) suggest that we can use
a first order discrete ARX structure for the identified model. This is detailed below.

Equation (2.112) can be rewritten as:

τg sTg(s) + Tg(s) = Tgref (s) (4.1)

Using the transformation s = z−1
Ts

to obtain the model in discrete time with Ts is the sampling time we
obtain the following:

τg

(
z − 1

Ts

)
Tg(z) + Tg(z) = Tgref (z) (4.2)

Multiplying by the factor z−1 and grouping the terms, the following discrete-time model can be obtained
which suggests the structure to be used in the identification using data.

τg
Ts
Tg(z) +

(
1− τg

Ts

)
z−1Tg(z) = z−1Tgref (z) (4.3)

Using FAST simulator with a constant wind input of 24 m/s applied to the wind turbine system, the data
to be used for the identification process is obtained. The 60 percent of the samples are used for estimating
the model and the other 40 percent is used for validation purposes.

The identified model has as an input the torque reference signal Tgref (t) with the perturbation showed
in Figure 4.5. The output of the identified system is the measured generator torque Tg(t).

The estimated discrete-time ARX model A(z)y(t) = B(z)u(t) + e(t) is presented below.

A(z) = 1− 0.536(±9.335× 10−9)z−1

B(z) = 0.000464(±9.327× 10−12)z−1 (4.4)

In Figure 4.7 it is observed a fit of 99.98”%” of fit between the measured and simulated output of the
ARX model.

Rewriting equation (4.3) in order to compare the parameters with the ARX estimated model (4.4), the
following equation is obtained.

Tg(z) +

(
Ts
τg
− 1

)
z−1Tg(z) =

Ts
τg
z−1Tgref (z) (4.5)

4.3.1 Comparison with FAST implemented Generator Model

The generator and converter model presented in equation (2.112) is the one implemented in FAST simulator
within the benchmark model [32]. In this section a comparison between the values of the generator model
parameters used in FAST with the ones estimated during the identification process showed on (4.6) is done.

From the data obtained during FAST simulations, it is observed that there exists a gain of K = 10−3 in
the generator torque output of FAST nonlinear plant respect to the generator torque output of the model
of the actuator.

Therefore to compare both models, the ARX discrete time identified model (4.4) and the generator
model implemented in FAST simulator showed in equation (2.112), the value of this gain has to be taken
into account.

Tg(z) +

(
Ts
τg
− 1

)
z−1Tg(z) = K

Ts
τg
z−1Tgref (z) (4.6)

After comparing (4.6) and (4.4), we obtain the following parameters values.

Ts
τg
− 1 = 0.536⇒ τg = 0.027 (4.7)
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The value of the estimated parameter of the ARX discrete system (4.7) is almost the same as the nominal
value of the parameter used in FAST and proposed in the benchmark model [32]: τg = 1/50 = 0.02, which is
the same model taken by reference in this work ((2.112).

Figure 4.7: Measured and Simulated Output of the Generator/Converter ARX model

4.4 Pitch Subsystem

In this section the objective is to obtain the discrete model of the pitch subsystem presented in (2.60) in
order to propose the structure of the model to be used in the identification process. Once this discrete model
is obtained, the parameters values can be estimated and compared to the nominal ones obtained in FAST.

Using the transformation s = z−1
Ts

, the following second order discrete function is deduced.

β(z)

βref (z)
=

ω2
n(

z−1
Ts

)2

+ 2ζωn

(
z−1
Ts

)
+ ω2

n

(4.8)

System (4.8) can be written as:

β(z)

(
z − 1

Ts

)2

+ 2ζωn

(
z − 1

Ts

)
+ ω2

n = βref (z)ω2
n (4.9)

Multiplying equation (4.9) by z−2 and grouping terms equation (4.10) is obtained.

z−2β(z)
(
1− 2ζωnTs + T 2

s ω
2
n

)
+ z−1β(z) (−2 + 2ζωnTs)

+β(z) = T 2
s ω

2
nz
−2βref (z)

(4.10)

Based on the discrete model (4.10), a second order discrete-time ARX function is proposed to identify
the pitch subsystem. Using the data obtained during a FAST simulation with the constant wind speed of
24 m/s the discrete time ARX model showed on (4.11) is obtained.

A(z) = 1− 1.829(±2.852× 10−13)z−1 + 0.8465(±2.515× 10−13)z−2

B(z) = 0.009114(±1.505× 10−13)z−1 + 0.008622(±1.768× 10−13)z−2 (4.11)

In figure 4.8 it is plotted the measured (FAST Data) and simulated (ARX model) output with a fit of
100 ”%”.



4.5. POWER SUBSYSTEM 53

Comparing the polynomial A(z) of (4.11) and the left side of the equation (4.10), the following system
of equations to determine the parameters of the pitch subsystem is deduced.{

1− 2ζωnTs + T 2
s ω

2
n = 0.8465

−2 + 2ζωnTs = −1.829
(4.12)

From the system of equations (4.12), we have the following values for the parameters ζ and ωn

ζ = 0.6157
ωn = 10.5830

(4.13)

The parameters showed in (4.13) are very similar to the nominal ones for ζ and ωn presented in equation
(5.1) used in benchmark [32] and also in FAST simulator.

Figure 4.8: Measured and Simulated compared output of the pitch ARX model

4.5 Power Subsystem

In this section we adjust the parameter ηg that relates the generated power in the wind turbine with the
generator torque and speed. During FAST simulation using a constant wind speed of 24 m/s, it is observed
that the model of the generated power (2.113) corresponds to the generator power data obtained from the
simulations, therefore this static model it is validated.

In the Figures 4.9, ?? and ?? the values for the generator power and the generator speed and torque in
steady state are visualized. It is observed that the values obtained, validate the model proposed in (2.113)).

Calculating the generator efficiency from the observed data it can be seen that it corresponds to the
nominal generator efficiency used in FAST.
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Pg(t)

ωg(t)τg(t)
= ηg → ηg =

49570

1174× 43.09
= 0.98 (4.14)

Figure 4.9: Generator speed, generator torque and power in steady state
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4.6 Blade Root Moment Dynamics

The Blade Root Moment dynamics obtained using the Fast Simulator shows an oscillating behavior in steady
state regime. This is illustrated in the following figures.

In Figure 4.10 it is observed the Blade Root Moments different phase shifts in steady state regime.

Figure 4.10: Blade Root Moment phase shifts in steady state regime

Several tests with different wind speed inputs were made. It was observed that there is a different phase
shift in each of the three blade root moments in steady state behavior when applying different wind inputs.
This is illustrated in Table 4.7.

Along the differences in the phase shifts, it was also observed a variable signal amplitude when applying
a zoom on the upper peaks of the signal. The steady state behavior of the blade root moments can be seen
in Figure 4.11.

Because of the variable phase shifts and amplitudes present among the blade root moments for different
wind inputs, the estimated models were not so accurate approximating the behavior of the blade root
moments dynamics. After observing these results another approach was proposed as explained in the next
section.

4.6.1 Mean Blade Root Moment Model

Zone 2. Wind speeds < 12 m/s
In this zone there is no pitch control, therefore the obtained model only depends of the wind speed. In

Table 4.2 are listed the blade root moment values obtained for each wind input.
Zone 3. Wind Speeds > 12 m/s. In this second zone there is pitch control. Therefore we only estimate

the parameter of the pitch angle which depends on the wind speed.
After obtaining the measurements of the mean pitch angles and mean blade root moments for each of

the blades the following models were proposed to approximate the blade root moments dynamics.
For wind speeds < 12 m/s.

M̄B,i(t) = a1 v̄(t) + a0 (4.15)
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Figure 4.11: Blade Root Moments different amplitudes in steady state regime

M̄B,i(t) = a2 v̄(t)2 + a1 v̄(t) + a0 (4.16)

M̄B,i(t) = a3v̄(t)3 + a2 v̄(t)2 + a1 v̄(t) + a0 (4.17)

For wind speeds ≥ 12 m/s.

M̄B,i(t) = a1 β̄i(t) + a0 (4.18)

M̄B,i(t) = a2 β̄i(t)
2 + a1 β̄i(t) + a0 (4.19)

M̄B,i(t) = a3β̄i(t)
3 + a2 β̄i(t)

2 + a1 β̄i(t) + a0 (4.20)

The absolute, mean and quadratic errors were calculated for each one of the estimated models and their
values are detailed in Table 4.5 for the models of Zone 1 and Table 4.6 for the models of Zone 2.

For the models of zone 1 which are functions of the wind speed, the error of the third order model is
minor than the one of second order. This last one will be chosen as the blade root moment estimated mean
model because there is not too much of a difference in the magnitude of the error compared to the third
order one and it’s complexity is smaller.

The results of the estimated models were very similar for the blade root moments of each blade and are
shown in Figures 4.12 and 4.13.
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Figure 4.12: Blade Root Moments estimated models for control zone 1. Wind speeds < 12 m/s

Figure 4.13: Blade Root Moments estimated models for control zone 2. Wind speeds ≥ 12 m/s
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Table 4.2: Blade Root Moments obtained for each wind
Wind Speed (m/s) BRM Mean

4
BRM1 2.2865e+03
BRM2 2.2875e+03
BRM3 2.2866e+03

5
BRM1 2.9798e+03
BRM2 2.9796e+03
BRM3 2.9866e+03

6
BRM1 3.8016e+03
BRM2 3.8040e+03
BRM3 3.7962e+03

7
BRM1 4.7350e+03
BRM2 4.7319e+03
BRM3 4.7285e+03

8
BRM1 5.8085e+03
BRM2 5.8102e+03
BRM3 5.8067e+03

9
BRM1 7.1670e+03
BRM2 7.1690e+03
BRM3 7.1743e+03

10
BRM1 8.5128e+03
BRM2 8.5153e+03
BRM3 8.5084e+03

11
BRM1 9.8358e+03
BRM2 9.8365e+03
BRM3 9.8401e+03
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Table 4.3: Mean values of the pitch angles and the wind speed
Wind Speed (m/s) BRM Mean Mean Beta

12
BRM1 8.3884e+03
BRM2 8.3877e+03 3.9064
BRM3 8.3926e+03

13
BRM1 7.2871e+03
BRM2 7.2885e+03 6.6071
BRM3 7.2930e+03

14
BRM1 6.5493e+03
BRM2 6.5526e+03 8.6733
BRM3 6.5563e+03

15
BRM1 5.9815e+03
BRM2 5.9864e+03 10.4503
BRM3 5.9889e+03

16
BRM1 5.5167e+03
BRM2 5.5231e+03 12.0524
BRM3 5.5240e+03

17
BRM1 5.1233e+03
BRM2 5.1308e+03 13.5320
BRM3 5.1301e+03

18
BRM1 4.4839e+03
BRM2 4.7911e+03 14.9157
BRM3 4.7888e+03

19
BRM1 4.4839e+03
BRM2 4.4923e+03 16.2203
BRM3 4.4885e+03

20
BRM1 4.2183e+03
BRM2 4.2266e+03 17.4687
BRM3 4.2213e+03

21
BRM1 3.9806e+03
BRM2 3.9884e+03 18.6767
BRM3 3.9818e+03

22
BRM1 3.7646e+03
BRM2 3.7714e+03 19.8444
BRM3 3.7639e+03
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Table 4.4: Mean values of the pitch angles and the wind speed
Wind Speed (m/s) BRM Mean Mean Beta

23
BRM1 3.5652e+03
BRM2 3.5707e+03 20.9696
BRM3 3.5628e+03

24
BRM1 3.3805e+03
BRM2 3.3842e+03 22.0561
BRM3 3.3764e+03

25
BRM1 3.2079e+03
BRM2 3.2110e+03 23.1117
BRM3 3.2037e+03

26
BRM1 3.0497e+03
BRM2 3.0500e+03 24.1405
BRM3 3.0436e+03

27
BRM1 2.9012e+03
BRM2 2.9000e+03 25.1451
BRM3 2.8947e+03

28
BRM1 2.7623e+03
BRM2 2.7597e+03 26.1265
BRM3 2.7560e+03

29
BRM1 2.6321e+03
BRM2 2.6285e+03 27.0848
BRM3 2.6264e+03

30
BRM1 2.5096e+03
BRM2 2.5055e+03 28.0216
BRM3 2.5052e+03

Table 4.5: Zone 1. Error values obtained for each one of the estimated BRMs model
First Order Second Order Third Order

Absolute Error
BRM1 2102.8 364.8048 306.1333
BRM2 2103.8 368.5476 306.5143
BRM3 2116 379.8476 309.4190

Mean Error
BRM1 262.8500 45.6006 38.2667
BRM2 262.9750 46.0685 39.1143
BRM3 264.5000 47.4810 39.7024

Mean Quadratic Error
BRM1 5.7320 2.3875 2.1871
BRM2 5.7334 2.3997 2.2112
BRM3 5.7500 2.4362 2.2277
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Table 4.6: Zone 2. Error values obtained for each one of the estimated BRMs model
First Order Second Order Third Order

Absolute Error
BRM1 4540.1 714.8686 46.4837
BRM2 4475.5 719.7803 57.9281
BRM3 4514.7 687.3887 58.2076

Mean Error
BRM1 238.9503 37.6247 2.4465
BRM2 235.5528 37.8726 3.0488
BRM3 237.6163 36.1784 3.0636

Mean Quadratic Error
BRM1 3.5463 1.4072 0.3588
BRM2 3.5210 1.4118 0.4006
BRM3 3.5364 1.3799 0.4015

Table 4.7: Phase Shifts between Blade Root Moments
Wind Speed (m/s) BRM3-BRM1 (rad) BRM2-BRM1 (rad) Period BRM1 (s)

7 2.0358 4.1469 7.1
8 2.0145 4.0289 6.55
9 2.1166 4.1166 5.8
10 2.1749 4.2290 5.2
11 2.0944 4.0656 5.1
12 2.1363 4.1469 5
13 2.1363 4.2776 5
14 2.0517 4.2315 4.9
15 2.1363 4.1469 5
16 2.1363 4.2776 5
17 2.1363 4.1469 5
18 2.1363 4.1469 5
19 2.0106 4.1469 4.9
20 2.1363 4.1469 5
21 2.0517 4.2315 4.9
22 2.0517 4.2315 4.9
23 2.0106 4.1469 5
24 2.1363 4.1469 5
25 2.0106 4.1469 5
26 2.0106 4.1469 5
27 2.0106 4.1469 5
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4.7 Drive Train Subsystem

The equations (2.47), (2.48) and (2.49) describe the drive train dynamics and the behavior of all this
subsystems variables are analyzed in FAST simulator. In steady state the rotor and generator accelerations
are zero.

Therefore equation (2.48) is the following:

0 =
Kdt

Ng
θ∆(t) +

Bdt
Ng

ωr(t)−
Bdt
N2
g

ωg(t)−Bgωg(t)− Tg(t) (4.21)

Multiplying (4.21) by −Ng we obtain equation (4.22).

0 = −Kdtθ∆(t)−Bdtωr(t) +
Bdt
Ng

ωg(t) +NgBgωg(t) +NgTg(t) (4.22)

In steady state it is observed that relation (4.23), between the rotor speed and generator speed is satisfied

ωr(t)−
1

Ng
ωg(t) = 0 (4.23)

Therefore equation (4.24) is also satisfied

θr(t)−
1

Ng
θg(t) = K = θδ(t) (4.24)

Substituting equations (4.23) and (4.24) in eq. (4.21) the following equation is obtained:

Tg(t) = K −Bgωg(t) (4.25)

Analytical redundant relation (3.17) can be written in the following way:

ωg,m(t) = − 1

Bg
Tg,m(t) +K (4.26)

From the simulations in FAST it was observed that the measured variables generator speed and generator
torque were related in the way suggested in equation (4.26). These two variables are showed in Figure 4.14.

In Figure 4.14 can be seen that exists an inverse-proportional relation with a displacement between
the variables generator torque and generator speed. This behavior is described by the analytical redundant
relation (3.17), therefore the theoretical ARR corresponds to the generator speed and generator torque
observed in FAST. From Figure 4.14, the parameters of ARR (4.26) can be estimated.

− 1
Bg

= −27.2534⇒ Bg = 0.0367

K = 2348.1
(4.27)

The comparison between the generator speed estimated with ARR (4.26) and the generator speed mea-
sured in FAST is showed in Figure 4.15. It can be observed that there is a very good fit between these two
signals.

Analytical redundant relation (4.23) can be written in the following way:

ωg(s) = Ngωr(s) (4.28)

In Figure 4.16 can be seen that exists a proportional relation between the generator and rotor speed. This
behavior is described by the analytical redundant relation (4.28), therefore the theoretical ARR corresponds
to the generator and rotor speed observed in FAST.

This proportionality between generator and rotor speed is the gearbox ratio parameter specificated in
the modeling chapter. From Figure 4.16, the gearbox ratio parameter of ARR (4.28) can be estimated. The
mean value of the gearbox ratio estimated from the rotor and generator speed data from FAST is Ng = 97,
this estimated value of the gearbox ratio corresponds to the nominal value considered in the models.

The comparison between the generator speed estimated with ARR (4.28) and the generator speed mea-
sured in FAST is showed in Figure 4.17. It can be observed that fit between the estimated and the measured
variable is excellent.
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Figure 4.14: Generator Torque and Generator Speed variables comparison
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Figure 4.15: Comparison between estimated and measured generator speed
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Figure 4.16: Rotor Speed and Generator Speed variables comparison
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Figure 4.17: Comparison between estimated and measured generator speed
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4.7.1 Modified Drive Train State Space System

In the model system equations used for describing the drive train dynamics in the past section the variables
involved are the generator and rotor speed, the generator and aerodynamic torque and the torsion angle.
From all of these variables the only sensors available are for the rotor speed, the generator speed. In the
case of the aerodynamic torque, equation (2.100), is function of the wind speed, the rotor speed and the Cp
coefficient which is calculated by FAST during the simulation. The rest of the parameters of the aerodynamic
torque such as the air density and the rotor swept area are also known. To obtain a model that can be used
for the purpose of fault diagnosis, we neglect the dynamics of the torsion angle in the identification process
because we do not have it available as a sensor.

To obtain a drive train subsystem model with variables that can be known and estimated, it is proposed
a new state of space model which probed to have very good fit in the subsequent tests.

The new set of states is the following:

x =
[
ωr ωg

]T
(4.29)

y =
[
ωr ωg

]T
(4.30)

u =
[
Ta Tg

]T
(4.31)

ẋ =

[ −1
Jr

(Bdt +Br)
Bdt
JrNg

Bdt
JgNg

− 1
Jg

(
Bdt
N2
g

+
Bg
Jg

) ]x+

[
1
Jr
− 1
Jg

]
u

y =

[
1 0
0 1

]
x

(4.32)

Applying Laplace transform to the state space equations of system 4.32 the following equations are
obtained:

sωr(s) =
−1

Jr
(Bdt +Br)ωr(s) +

Bdt
JrNg

ωg(s) +
1

Jr
Ta(s) (4.33)

sωg(s) =
Bdt
JgNg

ωr(s)−
1

Jg

(
Bdt
N2
g

+
Bg
Jg

)
ωg(s)−

1

Jg
Tg(s) (4.34)

From equations (4.33) and (4.34) we obtain the reference of the structure models to be used in the
identification process.

Equation (4.34) can be rewritten as:

ωg(s) =
1

s

(
Bdt
JgNg

ωr(s)−
1

Jg

(
Bdt
N2
g

+
Bg
Jg

)
ωg(s)−

1

Jg
Tg(s)

)
(4.35)

After substituting (4.35) in (4.33) and grouping the terms the equation (4.36) is obtained

s2ωr(s) +
1

Jr
(Bdt +Br) sωr(s)−

Bdt
2

JrJgNg
2ωr(s) = − Bdt

JgJrNg

(
Bdt
N2
g

+
Bg
Jg

)
ωg(s)−

Bdt
JrJgNg

Tg(s) +
1

Jr
sTa(s)

(4.36)
Using the transformation s = z−1

Ts
and after multiplying by z−2, Ts

2 and grouping terms we obtain
equation (4.37)

aωr(z) + bz−1ωr(z) + cz−2ωr(z) = dz−2ωg(z) + ez−2Tg(z) + f
(
z−1 − z−2

)
Ta(z) (4.37)

where:
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a = 1

b = −2 + Ts
2

Jr
(Bdt +Br)

c = 1− Ts
2

Jr
(Bdt +Br)− Ts

2Bdt
2

JrJgNg2

d = − Ts
2Bdt

JgJrNg

(
Bdt
N2
g

+
Bg
Jg

)
e = − Ts

2Bdt
JrJgNg

f = Ts
Jr

(4.38)

To obtain an identified model of drive train subsystem we apply the perturbation on the generator torque
and we consider the following system with two inputs, the generator torque and the aerodynamic torque
with the output the generator speed.

During the identification process several tests were made, taking one or two inputs and one output of the
studied structural relation. The model structure that gave a better fit and model output is detailed below.

Inputs: (Ta(t), Tg(t)). Output ωr(t)
In this test, the best fit was obtained using a discrete time ARX model which is showed below.

A(z)y(t) = B(z)u(t) + e(t)
A(z) = 1− 1.997z−1 + 0.9973z−2

B1(z) = 2.241e− 07z−1 − 2.235e− 07z−2

B2(z) = −0.002272z−1 + 0.002266z−2

(4.39)

The other one of the considered equations which describes the drive train is equation (4.34). In this
equation the variables involved are the generator speed, the rotor speed, the aerodynamic torque and the
generator torque.

Equation (4.33) can be rewritten as:

ωr(s) =
1

s

(
−1

Jr
(Bdt +Br)ωr(s) +

Bdt
JrNg

ωg(s) +
1

Jr
Ta(s)

)
(4.40)

After substituting (4.40) in (4.34) and grouping the terms the equation (4.41) is obtained.

s2ωg(s)+
1

Jg

(
Bdt
N2
g

+
Bg
Jg

)
sωg(s)−

Bdt
2

JgJrNg
2ωg(s) = − Bdt

JgJrNg
(Bdt +Br)ωr(s)+

Bdt
JgJrNg

Ta(s)− 1

Jg
sTg(s)

(4.41)
Using the transformation s = z−1

Ts
to discrete time where Ts is the sampling time and after multiply by

z−2, Ts
2 and grouping terms we obtain equation (4.42).

aωg(z) + bz−1ωg(z) + cz−2ωg(z) = dz−2ωr(z) + ez−2Ta(z) + f
(
z−1 − z−2

)
Tg(z) (4.42)

where:

a = 1

b = −2 + Ts
Jg

(
Bdt
N2
g

+
Bg
Jg

)
c = 1− Ts

Jg

(
Bdt
N2
g

+
Bg
Jg

)
− Ts

2Bdt
2

JgJrNg2

d = − BdtTs
2

JgJrNg
(Bdt +Br)

e = BdtTs
2

JgJrNg

f = −TsJg

(4.43)

To obtain an identified model of this equation we apply the perturbation on the pitch angle which
influences the rotor speed and therefore the aerodynamic torque.

During the identification process several tests are made, taking one or two inputs and one output of
those implied in the equation (4.34). The model structure that gave a better fit and model output for this
equation is detailed below.
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Inputs: (Tg(t), Ta(t)). Output ωg(t)
In this test, the best fit was obtained using a discrete time ARX model which polynomials are showed

below.

A(z) = 1− 1.999z−1 + 0.9986z−2

B1(z) = 2.216e− 05z−1 − 2.214e− 05z−2

B2(z) = −0.2341z−1 + 0.2338z−2
(4.44)

Fit to estimation data: 99.04% (simulation focus). FPE: 2.707e-05, MSE: 0.007675
In figures 4.18 and 4.19 are shown the comparison between the estimated models 4.37 and 4.42 measured

variables rotor speed and generator speed. It is observed a very good fit and approximation between the
measured variables and the estimated models.

Figure 4.18: Residual 10. Measured and simulated model output of generator speed

Figure 4.19: Residual 11. Measured and simulated model output of generator speed
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4.8 Summary of Estimated Residuals Models

The summary of the residuals obtained from the structural analysis and those calibrated and adjusted in
this chapter are shown below. These residuals are the ones that will be used for fault detection and isolation
purposes as illustrated in the fault signature matrix (3.5).

Residual 1
This first analytical redundant relation is obtained directly because the power generated Pg(t), the rotor
speed ωr(t) and the generator torque are all measured variables.

Pgm(t) = ηgωgm(t)Tgm(t) (4.45)

Residual 2
The ARRSs for the blade root moments are those which represented with more accuracy the dynamics

obtained in FAST simulator.

M̄B,1(t) = a2 v̄(t)2 + a1 v̄(t) + a0 (4.46)

As explained before for winds bigger than 12 m/s the following ARR is used.

M̄B,1(t) = a2 β̄1(t)2 + a1 β̄1(t) + a0 (4.47)

Residual 3

M̄B,2(t) = a2 v̄(t)2 + a1 v̄(t) + a0 (4.48)

M̄B,2(t) = a2 β̄2(t)2 + a1 β̄2(t) + a0 (4.49)

Residual 4

M̄B,3(t) = a2 v̄(t)2 + a1 v̄(t) + a0 (4.50)

M̄B,3(t) = a2 β̄3(t)2 + a1 β̄3(t) + a0 (4.51)

Residual 5
Tg(t) = Tgm(t)
dTg(t)
dt =

dTgm(t)
dt

(4.52)

τg
dTgm(t)

dt
+ Tgm(t) = Tg,ref(t) (4.53)

Residual 6
β1m(t) = β1(t)
dβ1m(t)
dt = dβ1(t)

dt
d2β1m(t)
dt2 = d2β1(t)

dt2

(4.54)

d2β1m(t)

dt2
+ 2ζωn

dβ1m(t)

dt
+ ω2

nβ1m(t) = ω2
nβref (t) (4.55)

Residual 7
β2m(t) = β2(t)
dβ2m(t)
dt = dβ2(t)

dt
d2β2m(t)
dt2 = d2β2(t)

dt2

(4.56)

d2β2m(t)

dt2
+ 2ζωn

dβ2m(t)

dt
+ ω2

nβ2m(t) = ω2
nβref (t) (4.57)
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Residual 8
β3m(t) = β3(t)
dβ3m(t)
dt = dβ3(t)

dt
d2β3m(t)
dt2 = d2β3(t)

dt2

(4.58)

d2β3m(t)

dt2
+ 2ζωn

dβ3m(t)

dt
+ ω2

nβ3m(t) = ω2
nβref (t) (4.59)

From the new state-space model described in equation (4.32) the following ARRs are obtained.

Residual 9
Bgωg(t) = −Tg(t) +K (4.60)

f (ωgm(t), Tgm(t)) = 0 (4.61)

Residual 10
f1 (ω̇rm(t), ωrm(t), ωgm(t), Ta∗(t), Tgm(t)) = 0 (4.62)

Ta∗(t) = f (ωrm(t), vm(t), βm(t)) (4.63)

Residual 11
f2 (ω̇gm(t), ωrm(t), ωgm(t), Ta∗(t), Tgm(t)) = 0 (4.64)

Residual 12

ωrm(t)− 1

Ng
ωgm(t) = 0 (4.65)



Chapter 5

Fault Diagnosis System
Implementation

In this chapter the implementation of the fault detection is described, and the results of it’s application
for each fault scenario are evaluated. The fault isolation based on the theoretical signature matrix is also
commented later in this chapter.

5.1 Model Based Detection Methods

The model based detection methods are based in assessing the consistency between observations of a system
and the outputs of a model. The behavior of the real process and the behavior of a model are compared, if
the output of the system and the models output are different then a fault is detected. This explanation is
showed in Figure 5.1.

Figure 5.1: Model Based Fault Detection Scheme

A residual is a variable used for evaluating consistency. A residual is defined as:

r(t) = y(t)− ŷ(t) (5.1)

where: - y(t) is the real process output.
- ŷ(t) is the predictor output.

Behaviors between real and predicted outputs are always different due to the uncertainty. Uncertainty
in industrial processes makes difficult the fault detection task.
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Ideally residuals are 0 when there are no faults and not 0 when there are faults. But in many cases there
are modeling errors, non-modeled dynamics, disturbances and noise which cause that residuals are not 0
even when there are no faults.

Model-based fault detection tests are based on the evaluation of a set of fault indication signals (residuals),
obtained through analytical redundancy relations ARRs see chapter 2.

A fault detection task decides if an ARR is violated at a given instant or not generating an si according
to:

si(k) =

{
0, if τlower < ri(k) < τupper (no fault)
1, if ri(k) ≤ τlower or ri(k) ≥ τupper (fault)

(5.2)

where τlower and τupper are the limits of the threshold associated to the ARR ri.

5.2 Detection Thresholds

In this section, it is explained how the detection thresholds were determined and the criteria used. During
the first tests made, it was observed that with the activation of many of the considered faults in this thesis,
changes in the complete set of residuals were observed. From the physical point of view this is logical because
in the case of a wind turbine system where all the components are interconnected a change in the behavior
of one component affects the rest.

This phenomena was observed in the residuals of several fault scenarios. In practice, this translates
into all the residuals flags activation if the thresholds are set very restrictive and therefore obtaining a high
number of false detections. Even though the existence of this phenomena it was observed that residuals
sensitivity behaved according to the theoretical signature matrix. This means that the value of a residual
in the presence of its theoretical respective fault was considerable, and in the case of the rest of the fault
scenarios the changes in the residuals were small.

To address the problem of all the residuals activation, data from all the residuals simulating each one of
the fault scenarios was taken, and for each one of the residuals were stored the maximum and the minimum
values for the case of a fault that should not cause the residual flag triggering according to the theoretical
signature matrix. This translates in practice that the residual activation works as the expected in theory
and makes possible the fault detection and isolation.

In 5.2 are showed the maximum and minimum values for each fault scenario. The numbers in red which
are the values of the residuals in the case of its theoretical fault occurrence are very high in comparison to
the values in the presence of the rest faults.

The values of the thresholds for each one of the residuals, (see table 5.1), were determined based on
the maximum and the minimum values in case of the rest of the fault scenarios that should not activate
the theoretical residual, see ( 5.2). Only the faults which affect the subsystems modeled in this thesis were
considered in the implementation of the fault detection system, faults f2, f6 and f10 were not considered
because of the explained in 3.5.2. Once the thresholds are defined, it can be deducted that the signature
matrix obtained from the fault scenarios simulation will be different from the theoretical one as showed
in table (5.2). This table summarizes the residuals activation and forms the signature matrix obtained
from the fault detection system tested with the considered fault scenarios. It shows that fault scenario 1
is not detected due to the thresholds values chosen in section 5.2. Fault scenarios 3, 4, 5, 7 and 8 are
detected according to the obtained in the theoretical signature matrix 3.5 and in fault scenario 9 all the
theoretical residuals are activated except residual 11 which values were not bigger enough to violate its
assigned threshold. The fault detection system can detect most of the fault scenarios proposed according to
the theoretical signature matrix, there is only one fault that is not detected. It was needed to do a tradeoff
in the thresholds assignment between missing some faults and having false alarms, the chosen criteria was
to avoid all the false alarms.
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Table 5.1: Detection thresholds determined for the set of residuals

Thresholds
Upper Lower

r1 42 -58
r2 52 -98
r3 55 -87
r4 54 -98
r5 1.65*10−6 -1.7*10−6
r6 -0.003 -0.006
r7 -0.003 -0.006
r8 -0.003 -0.006
r9 19 -26
r10 0.0056 0.0015
r11 -0.43 -0.49
r12 5 -6
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5.3 Fault Detection System

The Simulink interface of FAST simulator where wind turbine system is implemented is showed on Figure
5.3. In this Simulink model, in the block called ”Fault Detection Block” is where all the residuals are
implemented. The residuals receive all the sensor signals and they activate its respective alarms if their
thresholds are violated.

In Figure 5.4 is showed the fault detection system with each one of the twelve residuals that were
proposed in this work. These residuals are those enumerated in the residuals summary in Section 4.8.
When the residuals fall out of the threshold, the signal value is 0, otherwise is 1. This means that if a fault
occurs and this causes a residual threshold violation the signal value will be zero.

The fault detection algorithm is running and checking in every sample if the residuals thresholds are
violated. A flag variable is designated for each residual, in the case a residual threshold is violated its
respective flag will be updated to value 1.

It is necessary to mention that because the residuals are tested in FAST simulator and every simulator
has a initialization stage, the measured variables and therefore the residuals take some time to enter in steady
state regime in which it is simulated the wind turbine to be operating with a constant rotor speed and in
control zone 2 where the control strategy is to track a generated power reference. This is the reason why
there are some time conditions for each residual in order to activate its respective residual flag as it is showed
in the fault detection algorithm in Appendix A. The residuals implementation in simulink is illustrated in
Appendix C.
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Figure 5.3: Wind Turbine System in Simulink
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Figure 5.4: Fault Detection System. Set of residuals implementation



80 CHAPTER 5. FAULT DIAGNOSIS SYSTEM IMPLEMENTATION

5.4 Fault Scenarios Tests

In this section it is shown the residuals behavior in each fault scenario. The fault detection system perfor-
mance with the presence of each fault scenario is analyzed and the results are assessed. One fault scenario
at a time is presented and the behavior of the set of proposed residuals in this thesis is analyzed. The bit
value for the residuals when there is no fault is 1, when the residual violates its designated threshold the
value is 0 as can be seen in the figures presented for each fault scenario.

5.4.1 Fault Scenario 1

As indicated in section 3.5, the fault scenario 1 occurs when the blade root moment sensor is scaled by a
factor of 0.95, this fault is present in the interval 295-320 s. Fault scenario 1 is reproduced and simulated
for each one of the blades as detailed below.

Residual 2 for fault 1 on blade root moment 1 is shown in Figure 5.5. In this figure it can be seen that
when fault occurs the residual is sensitive and scales the value in which the residual is converging. Residual
3 for fault 1 on blade root moment 2 and residual 4 for fault 1 on blade root moment 3 both showed the same
sensitivity to their respective residuals but were not detected because of the threshold selection explained in
Section 5.2.

As observed in the cases of blade root moment 1, 2 and 3, the residuals are sensitive to the fault scenario 1,
even though they are not zero as expected due to modeling errors and uncertainties. However, fault scenario
1 is not detected as shown in the results of the detection in table 5.2 because the detection thresholds
are bigger than the deviation caused by this fault in the blade root moment residuals. The thresholds as
explained in Section 5.2, were selected according to the worst case scenario observed in presence of the other
faults to avoid false detections and to prevent the phenomena of all the residuals activation explained in that
section.

Figure 5.5: Fault 1 Blade Root Moment on Blade 1 residual
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5.4.2 Fault Scenario 3

Fault scenario 3 causes the generator speed sensor to be scaled by a factor of 0.95 and it is present between
130s and 155s as explained in Section 3.5. Residuals 1, 9, 11 and 12 for fault 3 are showed in Figure 5.6. As
can be seen in the figure all the theoretical residuals corresponding to this fault scenario are sensitive to this
fault. The threshold set shown in Section 5.2 for this fault scenario, cause the activation of all the theoretical
residuals indicated in the theoretical signature matrix (3.5), and shown in Table 5.2 of activated residuals
during the fault tests. It is observed that when fault 3 occurs, all the residuals thresholds are violated and
only two of them maintain themselves out of the thresholds limits during the whole fault activation.

There are two ways to maintain active the detection, one is using simulation models with the inconvenient
that it has or the other one is to activate the alarm when the residual is detected as abnormal and maintaining
it, this second case was the one implemented as can be seen in the fault detection algorithm shown in
Appendix A.

Figure 5.6: Fault 3 on Generator Speed Sensor residuals
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5.4.3 Fault Scenario 4

The fault scenario 4 occurs when the blade pitch sensor is stuck during the interval of 130 s and 155s, holding
a constant value of 1 deg. Fault scenario 4 is reproduced and simulated for each one of the pitch subsystems
as detailed below.

Residuals 2 and 6 for fault 4 on pitch sensor 1 are shown in Figure 5.7. The figure shows that the
theoretical residuals are sensitive to the fault scenario 4. Residuals 3 and 7 for fault 4 on pitch sensor 2,
and residuals 4 and 8 for fault 4 on pitch sensor 3 were also sensitive to the fault scenario 4 activating its
respective alarms in the same way.

Figure 5.7: Fault 4 on Pitch Sensor 1 residuals

As observed in this section, fault scenario 4 was reproduced for the pitch subsystems 1, 2 and 3, showing
in each case that their respective theoretical residuals are sensitive to this fault. The thresholds set shown
in Section 5.2 for fault scenario 4, in each one of the pitch subsystems results in the activation of all the
theoretical residuals indicated in Table (3.5), and shown in Table 5.2.
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5.4.4 Fault Scenario 5

Fault scenario 5 as indicated in Section 3.5, corresponds to the scaling of the generator power sensor by a
factor of 1.1. Fault 5 is present in the time interval from 240s to 265s.

Residual 1 for fault 5 on power sensor is shown in Figure 5.8. This figure shows that the residual is
sensitive to this fault. In this case there is only one residual sensitive to this fault scenario according to the
fault signature matrix (3.5) and in Table 5.2, it is shown that this residual is activated during the fault test.

Figure 5.8: Fault 5 Power Sensor residual
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5.4.5 Fault Scenario 7

The fault scenario 7 as detailed in Section 3.5 corresponds to a pitch actuator fault modeled by a change of
the parameters in the pitch subsystem model. This fault is introduced linearly from 350s to 370s, and full
active from 370s to 390s and linearly outfaced from 390s to 410s. Fault 7 is reproduced and simulated for
each one of the pitch subsystems as detailed below.

Residuals 2 and 6 for fault 7 on pitch actuator 1 are showed in Figure 5.9, where it can be seen that the
residuals are sensitive to this fault. Residuals 3 and 7 for fault scenario 7 on pitch actuator 2 and residuals
4 and 8 for fault 7 on pitch actuator 3 were also sensitive to fault scenario 7 activating the residuals in the
same way.

Figure 5.9: Fault 7 Pitch Actuator 1 residuals

As observed in this section, fault scenario 7 was reproduced for the pitch subsystems 1, 2 and 3, showing
in each case that their respective theoretical residuals are sensitive to this fault. The thresholds set showed
in Section 5.2 for fault scenario 7, in each one of the pitch subsystems results in the activation of all the
theoretical residuals indicated in Table (3.5), and shown in Table 5.2.
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5.4.6 Fault Scenario 8

The fault scenario 8 as detailed in Section 3.5 corresponds to a pitch actuator fault modeled by a change of
the parameters in the pitch subsystem model. Fault 8 is active from 440s to 465s, and linearly introduced
and outfaced within 1s both. Residuals 2 and 6 for fault scenario 8 on pitch actuator 1 are showed in Figure
5.10. Residuals 3 and 7 for fault scenario 8 on pitch actuator 2 and residuals 4 and 8 for fault scenario 8
on pitch actuator 3 were also sensitive to this fault scenario activating its respective residuals alarms in the
same way.

Figure 5.10: Fault 8 Pitch Actuator 1 residuals

As observed in this section, fault scenario 8 was reproduced for the pitch subsystems 1, 2 and 3, showing
in each case that their respective theoretical residuals are sensitive to this fault. The thresholds set shown
in Section 5.2 for fault scenario 8, in each one of the pitch subsystems results in the activation of all the
theoretical residuals indicated in Table (3.5), and shown in Table 5.2.
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5.4.7 Fault Scenario 9

Fault scenario 9 as indicated in Section 3.5 corresponds to an offset on the generator torque, and occurs
from 495s-520s.

Residuals 1, 5, 9, 10 and 11 for fault 9 on pitch actuator 3 are presented in Figure 5.11, which shows
that all the residuals are sensitive to this fault scenario. In this case not all the residuals flags are activated
because of the thresholds limits introduced in 5.2, the activated residuals in this fault scenario were residuals
1, 5, 9 and 10 and presented in Table 5.2 of activated residuals during the fault tests. Residual flag 11
was not activated because the determined thresholds, were bigger than the change caused by fault 9 in this
residual.

Figure 5.11: Fault 9 Generator Torque Offset residuals
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5.5 Fault Isolation

After a fault isolation analysis is done, it is observed that the theoretical signature matrix 3.5 does not match
with the programmed alarms indicators of the fault detection system designed, this traduces into difficulties
at the time of performing a diagnosis. In practice, it is not possible to do isolations tests with a wind turbine,
therefore the fault isolation is done based on the theoretical signature matrix. In this section fault isolation
analysis based on column reasoning (FDI) and row reasoning (DX), introduced before in section 3.6 is done
to the results obtained by the fault detection system and summarized in table 5.2. The results obtained by
both techniques is analyzed and compared.

FDI
Performing column reasoning to the signature matrix obtained in fault scenarios test and shown in Section

5.2, the conclusions will be the following.

• Fault scenario 1 was not detected at all, as a consequence this scenario could not be isolated.

• Fault scenario 3 can be completely isolated applying column reasoning, because its fault indicators
remain active. The result of the diagnosis is f3.

• Fault scenario 5, can also be correctly isolated applying column reasoning because all the activated
residuals correspond to those obtained in the theoretical signature matrix. The result of the diagnosis
is f5.

• Fault scenarios 4, 7 and 8 correspond to faults that occur in the sensors and actuators of the pitch
subsystems, they have the same fault signature, as a consequence they cannot be isolated as explained
in Section 3.6. It is necessary to mention that it is possible to locate in which pitch subsystem the
fault is located, i.e., is the pitch subsystem of blade 1, 2 or 3, but unfortunately it is not possible to
determine if the fault occurred in the sensor or in the actuator. The result of the diagnosis in this case
will be f4 ∨ f7 ∨ f8.

• Fault scenario 9 signature does not match exactly with its respective theoretical residual because this
fault is not detected by residual 11. Therefore in a strict reasoning, this fault scenario is not isolable
because do not match with none of the signatures in the theoretical signature matrix. However in the
case this fault scenario occurs it is possible to guess that this is the fault that is occurring because the
respective fault signature obtained in simulations does not match and is not similar to the rest of the
other fault signatures.

DX
Performing row reasoning to the signature matrix obtained in fault scenarios test and shown in Section

5.2, the conclusions will be the following.

• Residual 1 activation. In the case of activation of r1, the possible faults would be f3, f5 or f9.

• Residual 2 or 6 activation. In the case of r2 or r6 activation, the fault would be f4−β1 ∨ f7−PA1 ∨
f8−PA1, detecting a fault in pitch subsystem 1 but not being able to isolate if it is the sensor or the
actuator the faulty component.

• Residual 3 or 7 activation. If r3 or r7 activates the fault would be f4−β2 ∨ f7−PA2 ∨ f8−PA2,
detecting a fault in pitch subsystem 2 but not being able to isolate if it is the sensor or the actuator
the faulty component.

• Residual 4 or 8 activation. In the case of r4 or r8 activation, the fault would be f4−β3 ∨ f7−PA3 ∨
f8−PA3, detecting a fault in pitch subsystem 3 but not being able to isolate if it is the sensor or the
actuator the faulty component.

• Residual 5 activation. If r5 activates, fault 9 would be isolated.

• Residual 9 activation. In the case of r9 activation the possible faults would be f3 or f9.

• Residual 10 activation. The case of r10 activation would result in f9 isolation.
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• Residual 11 or 12 activation. If r11 or r12 activates the isolated fault would be f3.

FDI and DX comparison
The analysis derived of FDI column reasoning leaves two fault scenarios f3 and f5 completely isolated.

Regarding fault scenarios 4, 7 and 8, since the signatures correspond to their theoretical ones, it is possible
to determine the faulty pitch subsystem but it is not possible to isolate if the faulty component is the sensor
or the actuator. Fault scenario f9 is not strictly isolated because the matching with its respective theoretical
signature is not the same.

On the other hand DX row reasoning allows that two fault scenarios f3 and f9 are completely isolable.
Similarly to FDI reasoning fault scenarios 4, 7 and 8 signatures correspond to their theoretical ones and allows
to isolate the faulty pitch subsystem but does not makes possible to isolate if the sensor or the actuator is
the faulty component. Fault scenario f5 could be detected but not isolated. Finally, fault scenario 1 is not
detected and therefore the activation of the residuals which theoretically consider it which are r2, r3 and r4

are attributed to faults f4, f7 or f8 according to the theoretical signature matrix.
FDI and DX reasoning obtain the same number of completely isolated faults, f3 is correctly isolated in

both cases with f5 and f9 only isolated by one of the techniques. A faulty pitch subsystem is isolated with
both techniques but they present the limitation of not being able to detect if the faulty component is the
sensor or the actuator.



Chapter 6

Conclusions

In this master thesis, a model-based fault detection system was designed and implemented to detect the
proposed fault scenarios of the benchmark model considered in this thesis that corresponds to a wind turbine
reference was a 5-MW NREL modeled and parameterized in FAST simulator. The study was based in models
found in the literature for each one of wind turbine subsystems. In the fault diagnosis, a model-based
approach was selected. First a structural analysis allows to derive the ARRs and then they are calibrated
using data as well as the detection thresholds. Finally the implementation and testing of the fault detection
system is carried out. The last stage of this work was to perform a fault isolation analysis applying the
FDI and DX communities techniques to the results summarized in the signature matrix obtained from the
simulation of the implemented fault diagnosis system in presence of the considered set of fault scenarios.

Modeling

A big effort was made to model the different wind turbine subsystems considering previous models
suggested in the literature, because this is a key issue in the performance of the model-based fault detection
system.

Several models for the pitch subsystem, the drive train, the tower and the blade root moment dynamics,
the aerodynamics and the electrical subsystem were reviewed in this thesis. After the analysis and comparison
of the models there were proposed one for each subsystem, in order to perform the further structural analysis
and model calibration.

There is a variety of models for the drive train dynamics but the chosen one was the two shaft model
which is the most common structure of the drive train present in wind turbine systems.

For the pitch subsystem different approaches were considered, some modeled this subsystem as a first
order model and others a second order model. The second order models consider an hydraulic pitch system,
which was the one used in the wind turbine reference in FAST and therefore it was the chosen model.

All the tower models found in the literature considered the movement of the structure in only one of
the coordinates of the system, the fore-aft movement. Even though that in benchmark model and in the
FAST simulator the movement of the tower in both directions (fore-aft and sideways), were considered. The
simplification proposed for this subsystem is to consider it as a mass-spring system.

The aerodynamic models are quite complex, since they involve complex non-linear dynamics that are
necessary to represent the behavior of the wind turbine and they describe how the power from the wind is
extracted. Aerodynamics are present in the drive train dynamics and affect the tower structure of the wind
turbine.

Blade root moment analytical models were not easy to find because in practice when it is wanted to study
this dynamic, finite-element and other approaches are used to simulate and study this dynamic behavior.
Even though the difficulties and scarce references it was possible to find an adequate analytical model that
can be used for the intended purposes of this thesis.

The electrical subsystem models were quite standard in the literature, and are based on a first model for
the generator/converter, being the ones proposed in this thesis.

Structural Analysis

Once the wind turbine subsystem models were proposed, the structural analysis based on the structural
relations found in the analytical models was done. With the sensors available in the benchmark it was done
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a matching procedure to estimate the unknown variables of the system from the known ones (sensors or
measured variables). Once this is done, a set of analytical redundant relations was found to perform fault
detection and isolation.

Calibrated Models
In order to implement the analytical redundant relations derived from structural analysis it is necessary

to parameterize and adjust the models to the behavior observed from the sensor variables in FAST simulator.
From the simulations, it was observed that some the drive train and blade root moment analytical redundant
relations, needed to be redefined in order to approximate the behavior observed in the simulations. For the
pitch subsystem, the generator/converter, and some of the drive train ARRs it was only necessary to do
parameters estimations, which in several cases corresponded to the values of the nominal parameters taken
from FAST 5-MW Wind turbine reference and the literature.

Fault Detection and Isolation
The model-based fault detection system was tested for the different fault scenarios proposed, demon-

strating a good performance in the detection of the faults, leaving only one undetected fault due to to the
threshold selection.

The fault isolation techniques FDI and DX applied to the signature matrix obtained from the tests,
showed that only some of the faults were completely isolable. If a fault occurs in the pitch subsystem, it can
be located the faulty subsystem but to isolate the fault between the actuator and the sensor is not possible
with the current fault signature matrix.

6.1 Limitations and Future Work

The intention in the future and the objectives of the research project in which this master thesis was developed
is to apply the fault detection system on a real wind turbine. To do that further research is need to be done
towards the unmodeled phenomena present in some of the dynamics, for example the blade root moment
dynamics.

The performance of the fault detection system was tested only assuming a constant wind speed. In
real wind turbine systems the wind speed is constantly changing and presents turbulence. A more realistic
approach needs to take into account this phenomena.

As explained in the introduction of this master thesis in future work the objective is not only to detect
the fault, is also to do prognosis. This implies the ability to predict when the system is going to fail and
estimate the remaining useful life of the wind turbine.
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function y = fcn(res_1, res_2, res_3, res_4, res_5, res_6, res_7, res_8,
res_9, res_10, res_11, res_12,Time)

%This block implements the fault detection for each residual in every time
%instant and saves the alarm vector generated

%%%%%%%%%%%%%%%%%%%%%%%%%%
%No noise in the measures%
%%%%%%%%%%%%%%%%%%%%%%%%%%

   res_1_alarm=0;
   res_2_alarm=0;
   res_3_alarm=0;
   res_4_alarm=0;
   res_5_alarm=0;
   res_6_alarm=0;
   res_7_alarm=0;
   res_8_alarm=0;
   res_9_alarm=0;
   res_10_alarm=0;
   res_11_alarm=0;

if ((res_1 == 0) && (Time > 30))
    res_1_alarm = 1;
end

if ((res_2 == 0) && (Time > 200))
    res_2_alarm = 1;
end

if ((res_3 == 0) && (Time > 200))
    res_3_alarm = 1;
end

if ((res_4 == 0) && (Time > 200))
    res_4_alarm = 1;
end

if ((res_5 == 0) && (Time > 30))
    res_5_alarm = 1;
end

if ((res_6 == 0) && (Time > 20))
    res_6_alarm = 1;
end



if ((res_7 == 0) && (Time > 20))
    res_7_alarm = 1;
end

if ((res_8 == 0) && (Time > 20))
    res_8_alarm = 1;
end

if ((res_9 == 0) && (Time > 30))
    res_9_alarm = 1;
end

if ((res_10 == 0) && (Time > 20))
    res_10_alarm = 1;
end

if ((res_11 == 0) && (Time > 15))
    res_11_alarm = 1;
end

if ((res_12 == 0) && (Time > 25))
    res_12_alarm = 1;
end

alarms=[res_1_alarm res_2_alarm res_3_alarm res_4_alarm res_5_alarm res_6_alarm
    res_7_alarm res_8_alarm res_9_alarm res_10_alarm res_11_alarm res_12_alarm];
y = alarms;

Published with MATLAB® 7.14
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%BRM estimation Test Mobile Means %
%Zone 1. Wind Speeds >= 12 m/s    %
%Mean(BRM)= a*mean(beta) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
close all
clear all
load HH_24_arr.mat

%Pitch Angles Input Vector
X=[3.9064 6.6071 8.6733 10.4503 12.0524 13.5320 14.9157 16.2203 17.4687 18.6767

    19.8444 20.9696 22.0561 23.1117 24.1405 25.1451 26.1265 27.0848 28.0216]';

%BRM 1
Y1=[8392.2 7288.9 6553.8 5986.9 5521.1 5397.6 5024.5 4486.2 4219.3 3980.6 3762.5

    3560.9 3373.3 3201.7 3040.3 2891.2 2754.7 2622.8 2499.9]';

P1_1=polyfit(X,Y1,1);
P2_1=polyfit(X,Y1,2);
P3_1=polyfit(X,Y1,3);

Ys1_1=P1_1(1)*X+P1_1(2);
Ys2_1=P2_1(1)*X.^2+P2_1(2)*X+P2_1(3);
Ys3_1=P3_1(1)*X.^3+P3_1(2)*X.^2+P3_1(3)*X+P3_1(4);

%Absolute Error
err1_1=sum(abs(Y1-Ys1_1))
err2_1=sum(abs(Y1-Ys2_1))
err3_1=sum(abs(Y1-Ys3_1))

%Mean Error
errm1_1=sum(abs(Y1-Ys1_1))/length(X)
errm2_1=sum(abs(Y1-Ys2_1))/length(X)
errm3_1=sum(abs(Y1-Ys3_1))/length(X)

%Quadratic Mean
ecm1_1=sqrt(sum((abs(Y1-Ys1_1))))/length(X)
ecm2_1=sqrt(sum((abs(Y1-Ys2_1))))/length(X)
ecm3_1=sqrt(sum((abs(Y1-Ys3_1))))/length(X)

 order')

%BRM 2
Y2=[8391 7290.1 6550.9 5986 5520.8 5398.9 5024.9 4486 4219.5 3977.8 3763.6

    3559.7 3373.9 3202.3 3042.3 2891.7 2753.9 2622.1 2501.5]';

P1_2=polyfit(X,Y2,1); 
P2_2=polyfit(X,Y2,2); 
P3_2=polyfit(X,Y2,3);



Ys1_2=P1_2(1)*X+P1_2(2);
Ys2_2=P2_2(1)*X.^2+P2_2(2)*X+P2_2(3);
Ys3_2=P3_2(1)*X.^3+P3_2(2)*X.^2+P3_2(3)*X+P3_2(4);

%Absolute Error
err1_2=sum(abs(Y2-Ys1_2))
err2_2=sum(abs(Y2-Ys2_2))
err3_2=sum(abs(Y2-Ys3_2))

%Mean Error
errm1_1=err1_2/length(X)
errm2_2=err2_2/length(X)
errm3_2=err3_2/length(X)

%Quadratic Mean
ecm1_2=sqrt(sum((abs(Y2-Ys1_2))))/length(X)
ecm2_2=sqrt(sum((abs(Y2-Ys2_2))))/length(X)
ecm3_2=sqrt(sum((abs(Y2-Ys3_2))))/length(X)

 order')

%BRM 3
Y3=[8392 7289.5 6553 5986.8 5521.2 5396.9 5021.1 4484.6 4218.1 3979.1 3759.5

    3559 3373.5 3201.7 3040.3 2891.9 2751.9 2621.2 2500]';

P1_3=polyfit(X,Y3,1);
P2_3=polyfit(X,Y3,2);
P3_3=polyfit(X,Y3,3);

Ys1_3=P1_3(1)*X+P1_3(2);
Ys2_3=P2_3(1)*X.^2+P2_3(2)*X+P2_3(3);
Ys3_3=P3_3(1)*X.^3+P3_3(2)*X.^2+P3_3(3)*X+P3_3(4);

%Absolute Error
err1_3=sum(abs(Y3-Ys1_3))
err2_3=sum(abs(Y3-Ys2_3))
err3_3=sum(abs(Y3-Ys3_3))

%Mean Error
errm1_3=err1_3/length(X)
errm2_3=err2_3/length(X)
errm3_3=err3_3/length(X)

%Quadratic Mean
ecm1_3=sqrt(sum((abs(Y3-Ys1_3))))/length(X)
ecm2_3=sqrt(sum((abs(Y3-Ys2_3))))/length(X)
ecm3_3=sqrt(sum((abs(Y3-Ys3_3))))/length(X)



 order')

%BRM Average
Yavg=[8.3896e+03 7.2895e+03 6.5527e+03 5.9856e+03 5.5212e+03 5.1281e+03 4.7876e+03

    4.4882e+03 4.2221e+03 3.9836e+03 3.7666e+03 3.5662e+03 3.3804e+03 3.2079e+03
    3.0478e+03 2.8986e+03 2.7593e+03 2.6290e+03 2.5068e+03]';
P1_avg=polyfit(X,Yavg,1);
P2_avg=polyfit(X,Yavg,2);

Ys1_avg=P1_avg(1)*X+P1_avg(2);
Ys2_avg=P2_avg(1)*X.^2+P2_avg(2)*X+P2_avg(3);

BRM1_err1_avg=sum(abs(Y1-Ys1_avg)); 
BRM1_err2_avg=sum(abs(Y1-Ys2_avg));

BRM2_err1_avg=sum(abs(Y2-Ys1_avg));
BRM2_err2_avg=sum(abs(Y2-Ys2_avg));

BRM3_err1_avg=sum(abs(Y3-Ys1_avg));
BRM3_err2_avg=sum(abs(Y3-Ys2_avg));

%BRM Mean Model Comparison. Estimated and Simulated

BRM1_est=P2_1(1)*Beta_1(:,2).^2+P2_1(2)*Beta_1(:,2)+P2_1(3);
BRM2_est=P2_2(1)*Beta_2(:,2).^2+P2_2(2)*Beta_2(:,2)+P2_2(3);
BRM3_est=P2_3(1)*Beta_3(:,2).^2+P2_3(2)*Beta_3(:,2)+P2_2(3);

BRM1_3rd=P3_1(1)*Beta_1(:,2).^3+P3_1(2)*Beta_1(:,2).^2+P3_1(3)*Beta_1(:,2)+P3_1(4);
BRM2_3rd=P3_2(1)*Beta_2(:,2).^3+P3_2(2)*Beta_2(:,2).^2+P3_2(3)*Beta_2(:,2)+P3_2(4);
BRM3_3rd=P3_3(1)*Beta_3(:,2).^3+P3_3(2)*Beta_3(:,2).^2+P3_3(3)*Beta_3(:,2)+P3_3(4);

Published with MATLAB® 7.14



Appendix C

Residuals Simulink Implementation

In this appendix is showed and explained how the residuals of the fault detection system illustrated in Figure
5.4 were implemented. The residuals implemented use all the calibrated models explained in Chapter 4. The
residuals have as inputs the signals from the sensors and as outputs an alarm vector indicating that the
threshold limits were violated.

Residual 1. Power Subsystem The residual implementation of the power subsystem is showed on
figure C.1. This figures corresponds to the implementation of the analytical redundant relation (3.4)
calibrated in section (4.5).

Figure C.1: Power subsystem residual implementation

Residual 9. Drive Train Subsystem The residual 9 implementation for the drive train subsystem
with the variables generator speed and torque is showed on Figure C.2. This implementation is based on
the subsystem model calibrated in Section 4.7.
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Figure C.2: Residual 9 Drive Train Subsystem

Residual 12. Drive Train Subsystem. The residual 12 implementation for the drive train subsystem
derived from the state space modified model with rotor speed as output variable is shown on Figure C.3.

Figure C.3: Residual 12 Drive Train Subsystem

Residuals 2,3,4. Blade Root Moments of the three wind turbine blades. These residuals
implementation corresponds to the blade root moments mean models calibrated in section 4.6.1. The blade
root moment residual for blade 1 is showed on Figure C.4. It is the same structure for blade root moments
of blades 2 and 3.

ssdt8
In the implementation of the mean blade root moment proposed model it was necessary to include a

saturation for the values of the initial time period in order to obtain the closest value of the estimated mean
blade root moment signal in steady state regime. The mean model was estimated in the steady state regime
when the signal started to oscillate inside a limited band, as shown in Figure ??.
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Figure C.4: Blade Root Moment 1 residual implementation



104 APPENDIX C. RESIDUALS SIMULINK IMPLEMENTATION

Residual 5. Generator and Converter Subsystem. The residual implementation for the generator
and converter subsystem is shown in Figure C.5. This implementation is based on the subsystem model
calibrated in Section 4.3.

Figure C.5: Residual 5 Generator and Converter Subsystem
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Residual 6. Pitch Subsystem
The residual implementation for the pitch subsystem 1 is shown in Figure C.6. It is the same structure

for pitch subsystems 2 and 3. This implementation corresponds to the calibrated pitch subsystem detailed
in Section (4.4.

Figure C.6: Residual 6 Pitch Subsystem
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Residual 10. Drive Train Subsystem. The residual 10 implementation for the drive train subsystem
with the variables generator speed and torque is based on the calibrated model showed in Section 4.7. The
implementation scheme is shown in Figure C.7.

Figure C.7: Residual 10 Drive Train Subsystem
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Residual 11. Drive Train Subsystem. The residual 11 implementation for the drive train subsystem
derived from the state space modified model with generator speed as output variable showed in Section 4.7.
The implementation scheme is shown in Figure C.8.

Figure C.8: Residual 11 Drive Train Subsystem
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