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Abstract

Resistance to biotrophic pathogens is largely dependent on the hormone salicylic acid (SA) while jasmonic acid (JA)
regulates resistance against necrotrophs. JA negatively regulates SA and is, in itself, negatively regulated by SA. A key
component of the JA signal transduction pathway is its receptor, the COI1 gene. Mutations in this gene can affect all the JA
phenotypes, whereas mutations in other genes, either in JA signal transduction or in JA biosynthesis, lack this general effect.
To identify components of the part of the resistance against biotrophs independent of SA, a mutagenised population of
NahG plants (severely depleted of SA) was screened for suppression of susceptibility. The screen resulted in the
identification of intragenic and extragenic suppressors, and the results presented here correspond to the characterization of
one extragenic suppressor, coi1-40. coi1-40 is quite different from previously described coi1 alleles, and it represents a
strategy for enhancing resistance to biotrophs with low levels of SA, likely suppressing NahG by increasing the perception
to the remaining SA. The phenotypes of coi1-40 lead us to speculate about a modular function for COI1, since we have
recovered a mutation in COI1 which has a number of JA-related phenotypes reduced while others are equal to or above wild
type levels.
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Introduction

The ability of plants to prevent pathogen colonization relies on

a complex network of genes and phytohormones. Salicylic acid

(SA) is a well known hormone essential for activating plant basal

defence responses, particularly against biotrophic pathogens

(reviewed by [1]). An imbalance in basal levels of SA can

dramatically alter plant resistance. For instance, Arabidopsis thaliana

(Arabidopsis) plants with high levels of SA are more resistant to

pathogens such as the bacteria Pseudomonas syringae pv. tomato isolate

DC3000 (Pto) [2], while plants with lower SA levels are less

resistant to Pto and other pathogens [3]. Furthermore, it has been

shown that transgenic plants expressing the salicylate hydroxylase

gene from Pseudomonas putida (NahG) can rapidly degrade SA [3]

and are therefore more susceptible to biotrophic pathogens [4]

such as Pto [5]. Once activated, SA resistance triggers a number of

defence or pathogenesis-related genes including PR1. This gene is

widely used as a marker for biotic stress and is required for various

types of resistance, including Systemic Acquired Resistance (SAR).

SAR acts to protect systemic leaves following earlier localized

pathogen inoculation [6]. Considering the array of resistance

responses to biotrophs, there is evidence for part of the resistance

response being independent of SA [7].

A phytohormone with an intricate relationship with SA is

jasmonic acid (JA). JA is required for a wide range of plant

functions, from pollen maturation to activating defence responses

against necrotrophic pathogens (reviewed by [8]). It also plays a

minor role in activating defence responses against biotrophs, since

exogenous application of jasmonates, i.e. methyl esther jasmonate

(MeJA), can trigger defence against Pto, a response that appears

dependent on activation of NPR1 [9]. JA is also important for

inducing systemic induced susceptibility (SIS, [10]), which, in

contrast to SAR, induces susceptibility in systemic leaves. As with

SA, there are several genes that play a significant role in JA signal

transduction, but only its receptor, COI1, is absolutely required for

inducing all related phenotypes. SA and JA have been shown to

negatively regulate each other, although there are examples of

synergistic effects (reviewed in [11]).

This study aims to investigate resistance responses that are

independent of SA. Although there are no viable biosynthetic

mutants that are completely deficient of SA [12], NahG plants are

severely depleted in SA [3]. Using a mutagenised NahG population

and screening for suppressors of NahG susceptibility, we aimed to
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identify and characterize parts of the resistance response that

would normally be masked by the abundance of SA. The results

presented here show that part of the SA-independent defence

response is dependent on JA perception. In addition, we show that

an allele of COI1 displays a number of JA-related phenotypes

reduced while others are equal to or above wild type levels.

Results

Design and implementation of a NahG suppressor screen
In a previous screen for loss of resistance to Pto, one of us (P.T.)

recovered a promising Arabidopsis mutant, lra5 [13]. Further

characterization showed that lra5 was in fact a stray NahG plant

that contaminated the screen (data not shown). The NahGCW line

was found to have some islands in the genome from the accession

Ws-0 (data not shown), hence the name. Then, it was backcrossed

five times with the accession Col-0. The transgene was inserted

between the genes At2g46970 and At2g46980, and there were no

differences in susceptibility to Pto with other Col-0 or Ws-0 NahG

lines (data not shown).

We took advantage of the detailed characterization of this line

to elucidate how the SA-dependent and independent branches of

the resistance response interact, by using NahGCW to screen for

mutations that suppress the susceptibility to Pto. Before embarking

on the NahGCW suppressor screen, the conditions were optimized

using several Arabidopsis mutants with an enhanced resistance

against Pto [1]. We generated double mutants between NahGCW

and cpr1 [14], cpr5 [15], dnd1 [16], and lsd1 [17]. With these plants,

we fine-tuned a medium throughput screening protocol that would

detect suppressors of NahG susceptibility. Figure S1 shows the

proof of concept after optimizing the inoculations. With two

inoculations of Pto, wild-type plants of the ecotypes Col-0, Ws-0

and Laer-0 can overcome the pathogen and grow almost

unaffected, while NahGCW plants died or were severely affected.

The enhanced disease resistance mutants in combination with

NahGCW produced a small but detectable suppression of NahG, but

in the case of cpr5 NahGCW, there is a strong suppression of the

susceptibility (Figure S1, also described by [15]).

From 60 independent M2 families, 89 candidates were

recovered and 40 selected for further characterization. These 40

putative mutants were crossed with Col-0, and their F2 progeny

were inoculated with Pto. We identified 12 intragenic and 28

extragenic suppressors. Three of the intragenic suppressors were

selected and characterized further to confirm that they were allelic

and less susceptible to Pto than the parental line NahG (Figure S2A

and S2B, respectively).

An extragenic suppressor, coi1-40, was selected for further

characterization. In our conditions coi1-40 was not different to

wild type in all the gross morphological phenotype (data not

shown). This mutant was shown to contain a single nuclear

mutation, which was recessive and effectively suppressed the

susceptibility of NahG. coi1-40 was mapped to Chromosome II,

between the markers C2-12916335 and BIO2-18012804 (an

interval of 5.1 Mb).

Response to pathogens of coi1-40
Since NahG plants accumulate a very low but discernable level

of SA [18], it was important to ascertain if the suppression of

susceptibility in coi1-40 plants was related to alterations in SA

levels or other mechanisms. The steady state levels of SA in coi1-40

were similar to Col-0, and coi1-40 NahGCW accumulated similar

levels compared to NahGCW (Figure S3).

Identification of the suppressor mutants was based on visual

inspection of disease symptoms. It is possible, however, that the

reduced macroscopic disease symptoms did not reflect reduced

pathogen growth. Therefore, more accurate measurements of Pto

growth were performed. These measurements confirmed that coi1-

40 is able to suppress the growth of Pto in a NahG background

(Figure 1A). In fact, the single mutant was more resistant than Col-

0, even in the NahG background, demonstrating that coi1-40 has a

heightened basal resistance. The status of resistance can also be

evaluated by the levels of the protein PR1 [19]. Upon Pto

inoculation PR1 was strongly induced in coi1-40 compared to the

Col-0 control, however, in coi1-40 NahGCW no induction was

evident (Figure 1B). The same membranes were probed with anti-

RuBisCO as an internal control (Figure 1B).

NahG is not only susceptible to compatible pathogens like Pto,

but also to some incompatible and non-host pathogens [20].

Figure 1C–D displays the behaviour of coi1-40 when inoculated

with Pto(avrRpm1) [21] or Pto(avrRpt2) [22]. The presence of the

avrRpm1 or avrRpt2 effectors converts Pto into an incompatible

pathogen in the presence of the resistance genes RPM1 [23] and

RPS2 [24], respectively, and coi1-40 did not suppress the

susceptibility to either effector (Figure 1C and D). Analogous

results were obtained when the genotypes were inoculated with the

non-host pathogens Pseudomonas phaseolicola (Pph) and Pseudomonas

tabaci (Ptab) (Figure 1E–F).

As mentioned previously, pathogen resistance can be activated

independently of SA signalling. To assess the resistance of coi1-40

against necrotrophic pathogens, which is dependent on JA

signalling [25], the mutants were inoculated with Plectosphaerella

cucumerina (Figure 2). coi1-40 showed a marked increase in

susceptibility to P. cucumerina one week after inoculation.

Figure 2B shows the leaves of an experiment when the sampling

is done two weeks after inoculation; note that coi1-40 NahGCW was

slightly less susceptible than coi1-40 alone. ocp3, a mutant more

resistant to P. cucumerina, is included as a control [26]. OCP3 is a

homeodomain transcription factor, and a mutation in this gene

renders plants more resistant to necrotrophic pathogens without

affecting the resistance to biotrophs [26].

JA defence-related phenotypes of coi1-40
Given the enhanced susceptibility of coi1-40 to P. cucumerina and

that resistance against necrotrophs is dependent on JA, we

reasoned that it would be interesting to test a series of JA related

phenotypes in coi1-40. Figure 3A shows the resistance induced by

MeJA when Pto is inoculated one day later [27]. Both Col-0 and

NahGCW respond to MeJA with a small but reproducible reduction

in the levels of Pto, compared to the negative control jin1 (Jasmonate

Insensitive 1, [28]). In these conditions, no resistance response was

evident for coi1-40 and coi1-40 NahGCW in response to MeJA. SAR

has been shown to be dependent on JA, [29] and in accordance

wild-type Col-0 plants displayed SAR. However, NahGCW and jin1

(Figure 3B), coi1-40 and coi1-40 NahGCW had no SAR and Pto grew

better in SAR conditions, especially for coi1-40 plants. This

phenotype has been called SIS [10], and it is a systemic effect of

coronatine. Some isolates like Pto are able to produce this

chemical, a molecular mimic of the iso-leucine conjugate of

jasmonic acid (JA-Ile, [30]), that functions as a virulence factor

[31]. We inoculated coi1-40 and coi1-40 NahGCW and their controls

with a Pto strain that lacks coronatine (Pto(cfa2), [31]), and a wild-

type Pto strain (Figure 3C). Pto(cfa2) had a reduced growth in wild-

type plants, compared to Pto, while in coi1-40 and coi1-40 NahGCW

there were no detectable differences, or the differences were

opposite to those on wild-type plants (Figure 3C).

One of the hallmarks of JA signalling in defence is the negative

crosstalk with SA signal transduction [32]. Therefore, we

measured the perception of benzothiadiazole (BTH, an analogue

A Modular Function for COI1
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of SA, [33]) to check the status of crosstalk in coi1-40 plants. Wild-

type, jin1 and coi1-40 plants had a considerable reduction in fresh

weight, when compared to npr1 and wild type plants (Figure 3D).

The increase in sensitivity to BTH for these mutants is consistent

with less negative crosstalk from JA to SA signalling pathways.

JA growth-related phenotypes of coi1-40
To determine whether perception of JA in coi1-40 was affected

during development, we studied the phenotypes of coi1-40

alongside coi1-1. The receptor of JA, COI1 (Coronatine Insensitive

1, [34]), is an F-box protein and it is a key regulator of JA

signalling, therefore null alleles are insensitive to JA. The plants

were grown in vitro in the presence and absence of MeJA. In the

absence of MeJA, all plants were comparable, while in the

Figure 1. Characterization of resistance to biotrophs in coi1-40. (A) Growth of Pto in the suppressor. Plants of the indicated genotypes were
spray-inoculated with Pseudomonas syringae pv. tomato isolate DC3000 (Pto) at an OD600 of 0.1 when they were 18 days old. (B) PR1 Western blot of
the indicated genotypes at day zero and three days post inoculation with Pto, inoculated as described in (A). The arrow indicates the position of PR1
(14 kDa). The same membrane was probed with anti-RuBisCO, as a loading and transferring control. The signal produced by anti-PR1 was quantified
and normalized against the control of anti-RuBisCO. The data is shown in arbitrary units, where the amount in Col-0 inoculated with Pto is equal to
one. (C) Growth of Pto(avrRpm1) in the suppressor. rpm1 is included as a control. (D) Growth of Pto(avrRpt2) in the suppressor. rps2 is added as a
control. (E) Growth of Pseudomonas syringae pv. phaseolicola isolate NPS3121 in the suppressor. (F) Growth of Pseudomonas syringae pv. tabaci in the
suppressor. In both (E) and (F) nho1 is used as a control. In the panels (C) to (F), 28 day-old plants were inoculated by hand infiltration with bacterial
suspension at an OD600 of 2610E-4, since it is the best way to characterize these resistances. The data represent the average and the standard
deviation of three measurements, and in all the figures, the experiments were repeated three times with similar results. The letters above the bars
indicate different homogeneous groups with statistically significant differences (Fisher’s LSD Test, P,0.05).
doi:10.1371/journal.pone.0055115.g001
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presence of MeJA, several phenotypes were evident (Figure 4A).

Firstly, the aerial region of coi1-40 was larger than the wild-type

control, although not as large as coi1-1. Secondly, the relative

length of the primary root, in coi1-40 was intermediate between

Col-0 and coi1-1 (Figure 4B). Thirdly, there was a profusion of

secondary root growth (branching) in coi1-40.

JA has been reported to induce root branching [35], therefore,

to quantify this phenotype, we counted the number of lateral roots

in 14 day-old seedlings grown in medium in the presence or

absence of 50 mM MeJA. We found that coi1-40 had more lateral

roots than coi1-1 when grown in the presence of MeJA, or Col-0 in

mock conditions (Figure 4C). We could not sample coi1-1 in mock

treatment at 10–14 days old, due to its lack of phenotype at this

stage in a segregating population. Since JA-induced secondary

branching increases the length of the root system we used total

root dry weight as a measure of the size of the entire root system.

This analysis revealed that the relative weight of coi1-40 roots was

similar to coi1-1 (Figure S4).

Senescence in leaves is accelerated by JA when incubated in the

dark [36]. Figure 5A shows that, in wild-type plants, MeJA

promoted a loss of chlorophyll. jin1 and coi1-1 did not show this

effect, while coi1-40 was intermediate between coi1-1 and Col-0.

The synthesis and accumulation of carotenoids is activated by

many abiotic and biotic signals, including JA. In addition, this

biosynthesis is modulated by COI1 [37]. By growing plants in

MeJA-containing media and measuring the levels of carotenoids

(Figure 5B), we found that coi1-40 was intermediate between coi1-1

and Col-0. One of the main characteristics of coi1-1 is its lack of

fertility. For this phenotype, coi1-40 was also found to be

intermediate between wild-type and coi1-1 (Figure 5C).

The number of trichomes is another developmental phenotype

partially dependent on JA, [38]. We found that the number of

trichomes for coi1-40 was enhanced in the presence of MeJA

(Figure 5D), and that the morphology was strikingly different to

wild-type plants (Figure 5E, S6).

coi1-40 is an allele of coi1
coi1-40 and coi1-1 displayed quite different JA-dependent

phenotypes, such as coi1-40 being fertile. However, both mutants

shared certain phenotypes such as dry weight of the root system in

MeJA, and coi1-40 mapped to an interval that contains COI1

(At2g39940). In order to check for complementation, the F1 plants

from a cross between coi1-1 and coi1-40 or Col-0 and coi1-40 were

obtained and grown in MeJA-containing media (Figure 4D). The

F1 from the coi1-1 by coi1-40 cross showed identical phenotypes to

coi1-40, when root length, number of lateral roots, and number of

trichomes were assessed. This suggests that coi1-40 is an allele of

COI1 (Figure S7) or that both mutations are in different genes that

interact genetically and could give rise to non-allelic, non-

complementation. However, in the F2 all plants were resistant to

MeJA, and 3 in every 4 were similar to coi1-40, while 1 in every 4

was similar to coi1-1 (data not shown). Therefore, both mutations

are allelic, and coi1-40 has allele-specific phenotypes. The F1

plants from the cross between Col-0 and coi1-40 displayed a wild

type phenotype when grown in the presence of MeJA (Figure 4D)

and the F2 segregated 3:1 (Col-0 to coi1-40), indicating that coi1-40

is a recessive mutation. Sequencing of COI1 in coi1-40 revealed a

single canonical EMS mutation in the gene, changing residue 22

from glutamic acid to lysine, indicating again that coi1-40 is allelic

to coi1-1 (Figure S5).

The lateral root, length of the main root, and trichome

phenotypes were dominant in coi1-40 with respect to coi1-1, but

recessive with respect to wild type COI1 (Figure 4D and Figure S7).

Once the mutation was identified, 60 F2 from coi1-16coi1-40 and

60 F2 from Col-0 6 coi1-40 crosses were analyzed with a

molecular marker and the lateral root phenotype was found to

cosegregate with the coi1-40 marker in both populations (data not

shown). The trichome phenotype was also visually observed as

cosegregating with the molecular marker in 70 F2s from the cross

coi1-16coi1-40, due to the low level of trichomes in coi1-1

(Figure 5D and E).

JA-induced expression of COI1-dependent genes in coi1-
40

The differences in some of the JA-dependent phenotypes shown

by Col-0 and the coi1-1 and coi1-40 mutants should mirror a

molecular footprint. Therefore, we analyzed the effect of MeJA on

the expression of six important genes involved in JA-related

phenotypes (Figure 6). The ASA1 gene (Anthranilate Synthase a1,

[35]) may modulate auxin biosynthesis in response to JA thus

regulating lateral root formation. We analyzed the expression of

this gene to address whether the lateral root phenotype of coi1-40

was dependent of this node (Figure 6A). No significant differences

were observed; hence the phenotype of coi1-40 might be

independent of this auxin pathway. The expression of COI1 was

also examined and found to be identical in the two coi1 alleles

(Figure 6B). PAP1 and PAP2 (Production of Anthocyanin Pigment 1 and

2, [39]) are two MYB genes that mediate the JA-dependent

anthocyanin biosynthesis. It has been reported that the induction

of both genes by JA is also dependent of COI1 [37]. In response to

MeJA, coi1-40 maintained PAP1 (Figure 6C) and displayed

reduced levels of PAP2 (Figure 6D). However, both displayed

higher expression levels than in coi1-1. The expression of two

further genes was also assessed, MYC2 and VSP1. MYC2 is a

Figure 2. Resistance against necrotrophs in coi1-40. coi1-40 and
its controls were inoculated with Plectosphaerella cucumerina by
depositing a 6 mL drop of 5610E6 spores/mL on a leaf, in 28-day-old
plants. (A) Diameter of the lesion one week after inoculation. ocp3 is
included as a control. The data represent the average and the standard
error of 40 leaves. (B) Images of representative leaves two weeks after
inoculation. The genotypes are shown in the same order as in (A).
doi:10.1371/journal.pone.0055115.g002
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central transcription factor for most JA-induced responses and

VSP1 (Vegetative Storage Protein 1, [40]) is a specific marker induced

by JA. In both we found a stronger difference between these

alleles. There is a certain amount of JA signalling that goes

through coi1-40 inducing the expression of MYC2 (Figure 6E) and

VSP1 (Figure 6F) to considerable levels, which could explain some

of the phenotype differences between coi1-1 and coi1-40.

We complemented the coi1-40 mutation by crossing it with a

transgenic line that express COI1-Flag under the control of the

promoter 35S [41]. The coi1-40 35S:COI1-Flag behaved as the

control coi1-1 35S:COI1-Flag homozygous line for relative length of

the root (Figure 7A and B) and number of trichomes (Figure 7C

and 7D) demonstrating that these phenotypes are caused by the

mutation in coi1-40.

Discussion

A NahG extragenic suppressor
Resistance against biotrophs in plants depends largely on SA

accumulation [42]. As NahG plants have reduced levels of SA, this

provides a background where mutations that enhance the

resistance in an SA independent manner are easily recognizable.

Here we report the screening of a NahG mutagenised line, which

resulted in the identification of intragenic (mutations in the NahG

transgene itself), and extragenic mutations. An extragenic mutant,

coi1-40, was fully characterized, and shown to be more resistant

against biotrophic pathogens than the parental lines both in the

presence or absence of NahG (Figure 1A).

coi1-40 is an interesting and informative allele by itself, as

described below. However, our initial objective was to analyze the

interaction between SA-dependent and independent branches of

the resistance response. coi1-40 was found in our screen because it

suppresses the susceptibility of NahG (Figure 1A). This suppression

is produced by two mechanisms. First, the insensibility of the

mutant to coronatine depletes the advantage that this chemical

gives to the pathogen [31]. Second, since the steady-state level of

PR1 protein in coi1-40 is almost undetectable but is strongly

induced upon Pto inoculation, (Figure 1B), we speculate that coi1-

40 increases the sensitivity to pathogen signals that trigger

resistance. As coi1-40 was identified as an allele of COI1, mutating

coi1 would potentially increase sensitivity to SA, since in wild type

plants there is negative crosstalk between JA and SA [43]. The

same increased sensitivity is shown with respect to BTH

(Figure 3D).

Therefore, one of the mechanisms of coi1-40 suppressing NahG

susceptibility is SA-independent (coronatine is no longer a

virulence factor), but the other mechanism is SA-dependent

(enhanced perception of SA). The two incompatible (Figure 1C

Figure 3. Pathogen resistance phenotypes of coi1-40 related to JA. coi1-40 and its controls were tested for: (A) Methyl jasmonate (MeJA)
induced resistance. 17-day-old-plants were treated with either 100 mM MeJA (with 0.1% DMSO and 0.02% Silwet L-77) or a mock solution. One day
later, Pto was inoculated and its growth measured as in Figure 1A. (B) Systemic Acquired Resistance. Three leaves of 28-day-old plants were hand
infiltrated with either Pto(avrRpm1) or a mock solution. Two days later, Pto was inoculated and its growth in systemic leaves measured as described
(see Methods). (C) Coronatine as a virulence factor. Bacteria with coronatine (Pto, COR+) or without coronatine (Pto(cfa2), COR2) were inoculated and
their growth measured as in Figure 1A. (D) Negative crosstalk with SA. Plants of the indicated genotypes were treated four times with either 350 mM
benzothiadiazole (BTH) or a mock solution, and their weight was recorded when 21 days old. The ratio between BTH treated and mock treated is
shown as a percentage, with npr1 included as control. jin1 is included in all the panels as a control of no response to JA. Asterisks indicate statistically
significant differences from the mock treatment (P,0.05 one asterisks, P,0.01 two) using the Student’s t-test (two-tails).
doi:10.1371/journal.pone.0055115.g003
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and 1D) and the two non-host interactions (Figure 1E and 1F)

were not affected by coi1-40. Therefore, increased sensitivity to SA

and lack of coronatine recognition conferred by coi1-40 mutants

has no effect on these interactions although it showed enhanced

basal resistance. On the other hand, the response to P. cucumerina in

coi1-40 was severely compromised (Figure 2) pointing to an

impairment in the JA-disease resistance against necrotrophic

pathogens. Interestingly, the response to P. cucumerina also shows

the negative regulation from SA to JA. Thus, when the leaves were

sampled two weeks after inoculation (Figure 2B), coi1-40 NahG

were slightly less susceptible than coi1-40, likely due to the reduced

perception of SA in NahG, that leads to the increased perception of

JA by a weak allele of COI1.

coi1-40 differentiates phenotypes related to JA in roots
coi1-40 shares several phenotypes with other JA mutants such as

jin1 or coi1-1. Thus, like coi1-1 [34], coi1-40 is fully susceptible to P.

cucumerina (Figure 2). When exogenously applied, MeJA is able to

induce a small resistance against subsequent Pto infections [27].

coi1-40 does not trigger this resistance (Figure 3A), nor SAR

(Figure 3B, [44]), although it has an enhanced perception of SA

and its analogues (Figure 3D, [45]).

There are certain differences between the phenotypes induced

by the coi1-40 and coi1-1 alleles (Table 1). Four of these phenotypes

indicate that coi1-40 is a hypomorph, i.e. intermediate between

Col-0 and the coi1-1 null mutant. These unrelated phenotypes

include the relative length of roots growing in MeJA plates, the

senescence induced by JA, the production of carotenoids induced

by JA, and the fertility. While two are produced by exogenous

application of MeJA, two are responding to endogenous levels.

Figure 4. Response of coi1-40 to JA in vitro. coi1-40 and its controls were tested for: (A) Phenotype in plates. The indicated genotypes were
grown in plates with Johnson’s Media [67] supplemented with 50 mM MeJA. The pictures were taken 20 days after germination with the same
settings and in the same experiment. In plates without MeJA the plants were the same size (data not shown). (B) Length of primary root. The plants
were grown as described in (A), with and without 50 mM MeJA. At 10 days old, the lengths of the roots were measured in both conditions, and their
ratio (MeJA treated divided by mock treated) expressed as a percentage. (C) Lateral roots. The plants were grown as described in (A), with and
without 50 mM MeJA. At 14 days old, the number of lateral roots longer than 0.2 mm was counted in both conditions with the help of a magnifying
glass. Note that in some genotypes like Col-0, the root does not grow in MeJA and therefore it is not possible to count lateral roots (marked as ‘‘0’’ in
the figure). Since coi1-1 is not fertile, the number of lateral roots without MeJA was not counted (marked as not determined -n.d.- in the figure). (D)
Phenotype of F1s between coi1-40 and Col-0 and between coi1-40 and coi1-1. The plants were grown as described in A, with 50 mM MeJA. The
pictures were taken when the plants were 20 days old.
doi:10.1371/journal.pone.0055115.g004
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While two are on sterile plates, two are in soil. From the

mentioned phenotypes, it is tempting to merely assign a weak or

leaky character to coi1-40, however, there are three phenotypes in

which coi1-40 behaves as a hypermorph; lateral root growth,

trichome development and SIS.

The development of lateral roots is orchestrated by the

distribution of auxins (basipetal in the root and acropetal in the

leaf [46]). Auxin application stimulates the formation of lateral

roots [47], while inhibitors of auxins prevent the formation of

them [46]. Therefore, the increased number of lateral roots in coi1-

40 may be brought about by an increase in production or

perception of auxins. The gene ASA1 (ANTHRANILATE SYN-

THASE a1) is an auxin biosynthesis gene responsible for lateral

root formation in the presence of JA [35]. Expression analysis has

shown that the expression of ASA1 is COI1 dependent (Figure 6A,

[35]). Therefore, ASA1 could act to integrate JA and auxin

signalling. While the line of argument for auxins being involved in

the formation of lateral roots in coi1-40 is appealing, this could not

be verified experimentally. Thus, ASA1 was not induced by MeJA

in coi1-40 (Figure 6A), nor was there any apparent phenotype of

the coi1-40 mutant in 2,4-D plates (data not shown).

coi1-40 produces more trichomes in response to JA than
the wild type

Arabidopsis responds to wounding or MeJA applications by

increasing the number of trichomes in the newly formed leaves

[48]. Surprisingly, not all mutants in JA signalling are defective in

trichome response to JA [38]. In coi1-40 this response to JA is

hypermorphic (Figure 5D and E). The production of trichomes in

Arabidopsis involves a complex genetic model, including Glabra3

(GL3, [49]), among other genes. JA induces the expression of GL3,

setting in motion the formation of trichomes [38]. In coi1-40, the

levels of GL3 are not altered upon MeJA treatment (data not

shown).

SIS
Pto grows better in coi1-40 plants where SAR has been triggered,

which could indicate that, like other mutants in JA signalling, coi1-

Figure 5. Allele specific phenotypes of coi1-40. coi1-40 and its controls were tested for: (A) Senescence induced by JA. The indicated genotypes
were grown in soil, and mature leaves from six-week-old plants were cut and floated on water with or without 100 mM MeJA. The amount of
chlorophyll (in mg/g fresh weight) was measured after four days of darkness, with three groups of leaves of c. 1 g each. Previous to the sampling, coi1-
1 plants were selected by PCR markers from a segregating population. (B) Carotenoids. 14-day-old seedlings, grown in 50 mM MeJA plates, were
incubated in acetic methanol during 18 hours and the absorption of the extracts was measured. (C) Fertility. The total average seed set of eight
plants grown in long day conditions. (D) Trichomes. Plants were grown in media with or without 10 mM MeJA, and when the fifth true leaf emerged,
the number of trichomes was counted with the help of a magnifying glass. Since coi1-1 is not fertile, the number of trichomes without MeJA cannot
be counted at this stage. (E) Detail of the distribution of trichomes in both coi1 alleles. Plants growing in MeJA plates, as indicated in (D) were
visualized with a scanning electron microscope. The length of the bar (left of the picture) is 1 mm.
doi:10.1371/journal.pone.0055115.g005
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40 is negatively affected in SAR and displays a hypermorphic SIS

[10]. Although the initial observation of SIS was obtained from

incubation with a virulent strain, there is evidence that an

avirulent strain can also trigger SIS [10]. While in a wild type

plant this effect would be overcome by SAR, coi1-40 allows

separating these two opposing tendencies, favouring SIS

(Figure 3B).

Behaviour of F1s
The lateral root and trichome phenotypes are dominant with

respect to coi1-1; one copy of coi1-40 increases both the number of

lateral roots and trichomes if the other allele is coi1-1 (Figure 4D

and Figure S7). This fact implies that any explanation of the

mentioned phenotypes by secondary EMS mutations in NahGCW is

highly unlikely, since all the phenotypes are dependent on the

locus COI1. In addition, these phenotypes cosegregate perfectly in

Figure 6. Allele specific molecular phenotypes of coi1-40. Col-0, coi1-1, and coi1-40 plants were grown both in mock and 50 mM MeJA plates.
RNA was extracted 10 days after germination, and transcript levels for the following genes were measured by RT-qPCR: (A) ASA1; (B) COI1; (C) PAP1;
(D) PAP2; (E) MYC2; (F) VSP1. The levels of expression are normalized to three reference genes and to the level of Col-0 in mock.
doi:10.1371/journal.pone.0055115.g006
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a dominant fashion with a molecular marker for coi1-40 in an F2

segregating family of coi1-16coi1-40. Similarly, in the cross coi1-

406Col-0, the lateral root phenotype cosegregates perfectly in a

recessive fashion with the same marker. In contrast, the lateral root

phenotype was not seen in F2 populations from NahGCW6Col-0,

or NahGCW6Laer-0, (data not shown).

coi1-40 and other coi1 alleles
coi1-40 shares certain phenotypes with coi1-20 [50]. This allele is

also resistant to Pto, and induces PR1 strongly upon inoculation.

However, coi1-20 is male sterile, and the double coi1-20 NahG does

not suppress NahG susceptibility [50]. Other alleles like coi1-15 and

18 are also male sterile. The mutations in coi1-15 and 18 are

frameshifts that introduce stop codons [51] while the mutation in

coi1-20 is unknown. coi1-16 is fertile at temperatures below 20uC;

however, root growth inhibition and JA-responsive promoter

activity are not restored at lower temperatures [52]. Recently, coi1-

16 was used to recover loci that suppress the ABA signalling

pathway, since coi1-16 is also hypersensitive to ABA in seed

germination [53]. The molecular lesion in coi1-16 results in a

change of leucine to phenylalanine in the leucine-rich repeat.

Lately, two more alleles, coi1-21 and coi1-22 were described as

Figure 7. Complementation of coi1-40. Plants of coi1-40, coi1-1 35S:COI1 and 35S:COI1 in coi1-40 background were grown in plates
supplemented with and without MeJA as is described in Figure 4. (A) Length of primary root. The plants were grown with and without 50 mM MeJA.
At 10 days old, the lengths of the roots were measured in both conditions, and their ratio (MeJA treated divided by mock treated) expressed as a
percentage. (B) Lateral root phenotype. Picture showing the phenotype of the three lines, coi1-40, coi1-1 35S:COI1, coi1-40 35S:COI 20 days post
germination. Both lines, coi1-1 35S:COI1 and coi1-40 35S:COI show similar phenotype and opposite to that shown in the control coi1-40. (C) and (D)
Trichome phenotype. Plants were grown in media with 10 mM MeJA. No difference in the number of trichomes was found between coi1-1 35S:COI1
(C) and coi1-40 35S:COI (D). The picture shows the plants when the fifth true leaf emerged.
doi:10.1371/journal.pone.0055115.g007
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fertile and impaired in JA signalling [54]. Both alleles have a

mutation in the leucine-rich repeat and suppressed the rar1

phenotype in the resistance triggered by RPM1 [54]. The mutation

in coi1-40 induces an amino acid substitution in the F-box domain

of the protein [51], a domain in which no previous mutations have

been found. In a transgenic line the very same amino acid was

changed from glutamic acid to alanine [55]. These COI1E22A

plants did not perceive JA and were male-sterile. The phenotype of

lateral roots and trichomes of COI1E22A was not reported, and

seeds for that line are no longer available (Dr. Xie, personal

communication), so the only phenotype that we can compare is the

fertility of the pollen. Since coi1-40 is fertile (Figure 5C), the change

to lysine does not inactivate completely the F-Box, as the change to

alanine does [55]. We believe that this partial function of the F-

Box is responsible of the modular behaviour of coi1-40, a theory

that is discussed below.

A modular model for COI1 function
We propose two models to explain the disparity of phenotypes

for coi1-40. The first one implies that it is a weak allele that retains

some function. The difference in phenotypes would be a question

of thresholds; some phenotypes are fully functional with the level

of signal transduced by coi1-40, while others are no longer

functional. For example, JA inhibits root growth (Figures 4A and

B), and at the same time induces lateral root initiation [35]. If one

of the phenotypes (inhibition of root growth) requires a high level

of signal to occur, and the other (lateral root initiation) requires a

low level threshold, a hypermorphic phenotype in an intermediate

coi1 allele would be observed. Since there are a number of coi1

weak alleles, and none are reported to have hypermorphic

phenotypes, this hypothesis is unlikely.

A second and simpler explanation would be a modular or

selective function for COI1. In this model, coi1-40 would be

impaired in some interactions, but others would function near or

above wild type levels. Mechanistically, it implies that the mutated

F-box is still functional in some interactions, while all other alleles

described encode premature stop codons, or changes in the LRRs.

However, the expression of JA-induced genes in coi1-40 does not

provide a strong argument in favour of this hypothesis, although it

is worth mentioning that in three out of six genes in mock

conditions, the expression levels of the genes in coi1-40 are higher

than in Col-0 (Figure 6). This fact could be interpreted as an

enhanced response to the endogenous levels of JA (explaining the

phenotype of lateral roots), but this response is not observed with

exogenous MeJA.

Trichome induction is dependent on COI1 and independent of

MYC2; therefore there are other components in the JA signal

transduction (e.g. MYBs, [8]). The same coi1-40 protein that leads

to MYC2 related phenotypes could interact in a stronger fashion

with the other components. However, COI1 does not interact

directly with MYC2, but the JAZ proteins (Jasmonate-Zim

domain, [56]) are the required link. COI1 interacts with ASK1

to form the SCFCOI1 complex [8] that leads to the degradation of

the JAZ proteins [56]. COI1 binds ASK1 through its F-box

domain, while it binds to JAZ proteins through its leucine-rich

repeat domain. Since the JAZs are repressors, their degradation

allows MYC2 and others to promote the response to JA. In this

model coi1-40 would interact with ASK1, and this complex would

not promote the degradation of the JAZ proteins that are

repressing MYC2, but it would degrade other JAZs. Interestingly,

a knock out line of JAZ1 also showed an inhibition of the main

root in media supplemented with MeJA and a significant increase

in the number of lateral roots [57]. We propose that in the

presence of JA, coi1-40 degrades some JAZs while stabilizing

others, and each one of the JAZs has its own specific interactions.

Materials and Methods

Plant Growth and Inoculation
Arabidopsis thaliana was sown and grown as described [45]. Plants

were grown in controlled environment rooms (CER) with days of

8 h at 21uC, 150 mmol m22 s21 and nights of 16 h at 19uC. For

long day experiments, plants were also grown in a CER with the

same conditions, except with 16 h of light and 8 h of darkness.

The following genotypes were used: npr1 [58], ndr1 [59], sid2 [60],

cpr1 [14], cpr5 [15], dnd1 [16], lsd1 [17], rpm1 [23], rps2 [24], nho1

[61], ocp3 [26], coi1-1 [34], and jin1 [28]. The treatments,

inoculations, and sampling started 30 minutes after the initiation

of the artificial day to ensure reproducibility. Pseudomonas syringae

pv. tomato DC3000 (Pto) was maintained as described [62]. Pto was

used with the pVSP61 plasmid containing avrRpm1 [62], avrRpt2

[22], or an empty vector. Pto(cfa 2) [31], Pseudomonas syringae pv.

phaseolicola isolate NPS3121, and Pseudomonas syringae pv. tabaci were

obtained from Dr. Jeff Dangl (UNC, Chapel Hill, NC, USA). The

bacteria were grown, inoculated and measured as described [63].

Systemic Acquired Resistance was performed as reported by [64],

inoculating leaves with both incompatible and compatible

pathogens using a blunt syringe. Plectosphaerella cucumerina was

provided by Brigitte Mauch-Mani (University of Neuchatel,

Switzerland), and used as described [65]. For all the experiments,

at least three independent treatments were performed (three

independent sets of plants sown and treated on different dates).

Chemical Treatments
Benzothiadiazole (BTH, CGA 245704), in the form of a

commercial product (BionH 50 WG, a gift from Syngenta Agro

S.A., Spain) was prepared in water for each treatment and applied

with a household sprayer. The BTH treatments were done as

described in [45] and [66]. Briefly, plants were treated with either

mock or 350 mM BTH four times during two weeks, starting when

the plants were one week old. Then, the fresh weight of each

genotype was recorded in both treatments and expressed as

percentage of fresh weight of mock-treated plants.

JA-related phenotypes
For in vitro culture, plants were grown in Johnson’s media [67]

with 1 mM KH2PO4. When indicated, the plates were supple-

Table 1. Summary of the phenotypes that differentiate the
coi1-40 and coi1-1 alleles.

Genotypes

Phenotypes Col-0 coi1-40 coi1-406coi1-1 F1 coi1-1

Root lenght1 + ++ ++ +++

Senescence2 +++ ++ n.d. +

Carotenoids1 +++ ++ n.d. +

Fertility +++ ++ ++3 0

Lateral roots1 + +++ ++++ ++

Trichomes1 ++ +++ +++ +

SIS + ++ n.d. 0 [10]

1Measured in plants grown on MeJA supplemented plates;
2Senescence induced by MeJA.
3Amount of seeds estimated. n.d.: not determined.
doi:10.1371/journal.pone.0055115.t001
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mented with either 10 or 50 mM MeJA (Duchefa, Haarlem, The

Netherlands), depending on the experiment. The length of the

roots was measured with ImageJ software (MIH, Bethesda, MD,

USA), and the number of lateral roots, with the help of a

magnifying glass. Only lateral roots longer than 0.2 mm were

counted. When measuring the effect of MeJA on Pto growth, MeJA

was applied by spray at 100 mM in 0.1% DMSO (SIGMA, St.

Louis, MO, USA) and 0.02% Silwet L-77 (Crompton Europe Ltd,

Evesham, UK) one day before Pto inoculation [68]. Senescence

induced by MeJA was measured as described by [36]. For

carotenoid measurements, the protocol described by [69] was

followed. In order to quantify the amount of seeds produced per

plant, eight coi1-40 and eight wild type plants were selected by

molecular marker analysis from an F2 backcross with Col-0. Eight

coi1-1 plants were also selected from an F2 population segregating

for this mutation. Plants were grown in long day conditions, and

when the first fruit had matured, the aerial part was covered with a

paper bag to avoid loss of seeds. Once the plant had senesced, the

seeds were cleaned and weighed. The number of trichomes on the

fifth true leaf of 14-day-old plants grown on plates with 10 mM

MeJA was determined with the aid of a magnifying glass as

described by [38]. The pictures of trichomes were taken with a

JSM-5410 scanning electron microscope (JEOL, Tokyo, Japan) in

the Electron Microscopy Service (Universidad Politécnica de

Valencia, Spain).

Western Blot
Immunodetection of PR1 protein was carried out as described

[19], using an Amersham ECL Plus Western Blotting Detection

Reagent (GE HealthCare, Little Chalfont, UK). The second

antibody was a 1:25,000 dilution of Anti-Rabbit IgG HRP

Conjugate (Promega, Madison, WI, USA). Chemiluminescent

signals were detected using a LA-3000 Luminescent Image

Analyzer (Fujifilm Life Science, Stamford, USA). Immunodetec-

tion of the large subunit of RuBisCO was accomplished with a

1:200,000 dilution of a RuBisCO antibody (a gift of Dr. Luis

Cañas, IBMCP) and then as mentioned before for the rest of the

detection. The amount of signal was quantified with Photoshop

(Adobe Photoshop CS4, San Jose, CA, USA).

Mutagenesis, screening, and mapping
Once the screening conditions were established, seeds of

NahGCW were mutagenized with 0.15% ethyl methanesulfonate

(M0880, SIGMA) for 8 hr, and M2 seed collected from ,100 M1

plants. For the screening, 15-day-old M2 plants were spray

inoculated with Pto at an OD600 of 0.1. One week later, the

inoculation was repeated, and the evaluation took place one week

after the second inoculation. To confirm the mutants, the M3 of

isolated M2 were similarly inoculated, starting at 28 days after

germination. Under these conditions, NahG plants either die or are

severely affected, while wild type plants look unaffected. For

mapping, coi1-40 was crossed with the ecotype Laer-0, and, in the

segregating F2, plants were selected by the phenotype of the

mutant. CAPS [70] and SSLP [71] markers were used from TAIR

[72].

COI1 was sequenced by specific primers (Table S1). coi1-40 can

be detected by the primers coi1-40F and coi1-40R, (Table S1)

followed by digestion with TaqI (Fermentas, Madrid, Spain). For

the determination of intragenic vs. extragenic mutations, an F1

was obtained between the suppressor and Col-0. If no susceptible

plants segregated in 50–100 F2 plants, the molecular lesion was

interpreted as being in the NahG gene itself, and therefore the

suppressor was considered to be intragenic. Conversely, if in the

F2 plants appeared that were as susceptible as NahGCW and as

resistant as Col-0, the suppressor was labelled as extragenic.

RT-qPCR
Total RNA from 10-day-old plants grown on media with or

without 50 mM MeJA was extracted with Trizol (Invitrogen,

Barcelona, Spain), following the manufacturer’s instructions. The

details of the RT-qPCR (MIQE data) are provided as Methods S1.

Supporting Information

Table S1 Sequencing primers of coi1-40 and molecular
markers.

(PDF)

Figure S1 Proof of concept of the NahG suppressor
screen. Three accessions (Col-0, Ws-1, and Laer-0), five single

mutants (NahGCW (this work), cpr1 [14], cpr5 [15], lsd1 [17], and

dnd1 [16]) and double mutant combinations with NahGCW were

spray-inoculated with Pseudomonas syringae pv. tomato isolate

DC3000 (Pto) at an OD600 of 0.1 at 28 days after germination

and again one week later. The pictures were taken one week after

the second inoculation.

(TIF)

Figure S2 Characterization of NahG intragenic sup-
pressors. (A) Resistance and allelelism test of intragenic

suppressors. The resistance (R) of M3 intragenic suppressor plants,

the non-complementation of the intragenic suppressors with Col-

0, the resistance (R) evaluation of the F1 and F2, and the allelism

test between these suppressors was checked. For this purpose, four-

weeks-old plants (the number indicated as ‘‘n’’) were challenged as

in Figure S1. (B) Quantification of growth of Pto. Plants were

inoculated as in Figure S1, and the growth of Pto quantified as

described in Methods. Note that with the first 40 mutants, the

screen is by no means saturated. The intragenic suppressors form

an internal control, since the screen has been sensitive enough to

detect 12 reversions to wild type of a single locus. Assuming a

Poisson distribution and the extreme scenario that all the

extragenic suppressors belong to different complementation

groups, the average ratio of alleles per complementation group

of 1.38 implies that in the first 40 mutants there would be a

maximum of 25% complementation groups not present [73].

(TIF)

Figure S3 Salicylic acid content of coi1-40. Both free and

total (free plus conjugated) Salicylic Acid is reported for 28 day-old

unchallenged plants. Three samples of 100 mg leaves were frozen

in liquid nitrogen. Salicylic acid measurements were performed

with the biosensor Acinetobacter sp. ADPWH_lux as described ([74],

[75]). The SA levels of Ws-0 are similar to those in Col-0 (data not

shown).

(TIF)

Figure S4 Dry weight of roots growing with and without
JA. The plants were grown as described in Figure 4A, with and

without 50 mM MeJA. At 17 days-old, the dry weight of the roots

was measured in both conditions, and their ratio (MeJA treated

divided by mock treated) expressed as a percentage. The dry

weight was determined after drying the roots for 48 h at 65uC. jin1

and coi1-1 mutants were used as controls.

(TIF)

Figure S5 Mutation in coi1-40 and comparison of COI1
and TIR1 related F-box proteins from Arabidopsis.
Amino acid sequences of COI1, TIR1 and five other TIR1-

related F-box proteins from Arabidopsis (AFB) were aligned using
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CLUSTALW ([76]). Identical residues in all five AFBs and TIR1

are denoted in yellow and the substitution in the amino acid 22

responsible of the coi1-40 phenotype is denoted in red (glutamic

acid (E) for lysine (K)).

(TIF)

Figure S6 Details of the trichomes in two coi1 alleles.
SEM pictures of leaf epidermal trichomes of the Arabidopsis

mutants coi1-1 (A and B) and coi1-40 (C and D). coi1-40 trichomes

show bigger base cells, wider stem and more papillae along the

trichome surface than the coi1-1 mutant (scale bar for A and C is

300 mm, scale bar for B and D is 40 mm).

(TIF)

Figure S7 Analysis of the F1 between coi1-1 and coi1-40.
coi1-40, coi1-1 and its F1 were tested as described in Figure 4 and

5, for: (A) Lateral roots in plates with 50 mM MeJA. At 14 days old,

the number of lateral roots longer than 0.2 mm was counted with

the help of a magnifying glass. Note that there is a synergistic effect

in the F1, with more lateral roots than its parents. (B) Trichomes

in plates with 10 mM MeJA. When the fifth true leaf emerged, the

number of trichomes was counted with the help of a magnifying

glass.

(TIF)

Methods S1 MIQE data of the RT-qPCRs presented.

(PDF)
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