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Abstract

Plant regulatory circuits coordinating nuclear and plastid gene expression have evolved in response to external stimuli. RNA
editing is one of such control mechanisms. We determined the Arabidopsis nuclear-encoded homeodomain-containing
protein OCP3 is incorporated into the chloroplast, and contributes to control over the extent of ndhB transcript editing.
ndhB encodes the B subunit of the chloroplast NADH dehydrogenase-like complex (NDH) involved in cyclic electron flow
(CEF) around photosystem I. In ocp3 mutant strains, ndhB editing efficiency decays, CEF is impaired and disease resistance to
fungal pathogens substantially enhanced, a process recapitulated in plants defective in editing plastid RNAs encoding NDH
complex subunits due to mutations in previously described nuclear-encoded pentatricopeptide-related proteins (i.e. CRR21,
CRR2). Furthermore, we observed that following a pathogenic challenge, wild type plants respond with editing inhibition of
ndhB transcript. In parallel, rapid destabilization of the plastidial NDH complex is also observed in the plant following
perception of a pathogenic cue. Therefore, NDH complex activity and plant immunity appear as interlinked processes.
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Introduction

Plastid function relies on nuclear gene expression, and the

import of nuclear gene products into plastids [1]. In fact, the

plastid genome of current land plants encodes 75–80 proteins [2],

whereas nuclear-encoded chloroplast proteins are estimated

between 3500 and 4000 [3]. Current data approximates several

hundred nuclear-encoded proteins are involved in post-transcrip-

tional regulation of plastid gene expression [4,5]. One such

regulation is mediated through RNA editing, a post-transcriptional

process that alters specific cytidine residues to uridine (C-to-U) in

different plastid RNAs [6]. Thirty-four sites are edited in 18

transcripts of Arabidopsis plastids [7]. Among the nuclear-encoded

proteins regulating RNA editing, the pentatricopeptide repeat

(PPR) protein family has attracted notable interest [8]. This family

comprises 450 members defined by a tandem array of PPR motifs.

PPRs are also involved in almost all stages of plastid gene

expression, including splicing, RNA cleavage, translation, and

RNA stabilization [9]. The pioneer work of Kotera et al. [10,11]

revealed the Arabidopsis PPR protein CHLORORESPIRA-

TORY REDUCTION4 (CRR4) acts as a site-specific recognition

factor for RNA editing of the site 1 (ndhD-1) in the plastid ndhD

transcript. ndhD encodes the D subunit of the chloroplast NADH

dehydrogenase-like complex (NDH), involved in cyclic electron

flow (CEF) around photosystem I (PSI) [11,12]. Consequently, crr4

mutants are defective in ndhD transcript editing at the ndhD-1 site,

and CEF is compromised [10,11]. Subsequently, the number of

PPR-encoding genes participating in editing control in the

chloroplast has enlarged [9]. Although empirical evidence has

been demonstrated for only a few PPR proteins, it is currently

accepted that PPR proteins act as sequence-specific RNA binding

adaptors, and hypothetical inferences suggest PPRs recruit effector

enzymes or proteins to the target RNAs [13,14]. While the

mechanism by which specific PPR proteins recognize specific

editing sites is becoming understood, questions still remain to be

completely solved including the characterization of the molecular

components that conform the RNA editing apparatus (editosome)

or the still unsolved identification of editing enzyme itself.

Therefore, identification of additional components modulating

editing activities in plastids, and ascertaining how control of the

post-transcriptional mechanism of chloroplast function influences

other biological processes, in particular immune responses, is of

great importance.

Despite the critical role of chloroplasts as a site for production of

integral mediators of plant immunity such as salicylic acid,

jasmonic acid, and ABA [15], the molecular link between

chloroplasts and the nuclear-encoded immune system remains

largely unexplored. MEcPP, a plastidial metabolite previously

shown to be involved in activating plant immunity in Arabidopsis

[16] has been shown to mediate a retrograde signaling regulating

expression of nuclear stress-response genes [17]. Nomura et al. [18]

recently reported the chloroplast calcium-sensing receptor (CAS),

involved in transducing changes in cytosol Ca2+ concentrations

into chloroplast responses, regulates plant immunity in Arabidop-

sis, possibly through chloroplast-derived ROS signals (i.e. 1O2 and

H2O2; [19]). These ROS signals may function through a

retrograde signaling pathway to activate the expression of nuclear

genes. Terashima et al. [20] demonstrated CAS is a crucial

component of the machinery driving CEF around photosystem I

in Chlamydomonas reinhardtii, and suggested CAS mediates changes

in CEF activity, however the mechanism remains unresolved. In

contrast to linear photosynthetic electron flow, where light drives

ATP and NADPH synthesis; during CEF, light only drives ATP

production by cycling electrons around PSI and Cyt b6f
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complexes, providing the molecular basis for this major energetic

switch. Concurrently, CEF leads to the reduction of the

plastoquinone pool, thereby increasing the frequency of charge

recombination events in PSII; and as a result, altering the

chloroplast redox status [21]. Consequently, CAS and Ca2+ via

CEF alter ROS homeostasis, and may activate ROS-mediated

retrograde signaling, which in a plant-pathogen interaction may

have an impact on the outcome of plant disease resistance. CEF is

also interrelated with nonphotochemical quenching (NPQ) which

protects plants against damage resulting from ROS formation

[22]. Göhre et al. [23] recently reported defense activation during

PAMP-triggered immunity (PTI) in Arabidopsis resulted in rapid

NPQ decrease, and NPQ also influenced immune responses,

suggesting that NPQ and CEF are integral components regulating

plant defense response. Similarly, chloroplast-generated ROS

following the recognition of pathogen-derived effectors by plant R

proteins, resulted in HR-type programmed cell death (PCD),

demonstrating chloroplast contribution to effector-triggered im-

munity (ETI) [24]. These evidences emphasize the importance of

chloroplasts in plant immunity, and indicate the potential for

future discoveries in this area of research.

We show the disease resistance regulator OVEREXPRESSOR

OF CATIONIC PEROXIDASE3 (OCP3) is targeted to the

chloroplast, and controls editing efficiency of plastid ndhB

transcripts. We also show that NDH activity, and therefore CEF

around PSI, is an important control point in plant immunity.

Furthermore, a previously undescribed signaling pathway linking

editing control with plant immunity via CEF activity modulation

in the chloroplast was elucidated in this study.

Results

OCP3 is targeted to plastids
OCP3 was classified as a transcription factor as it contained a

60-amino acid domain resembling a homeodomain and carried

also two canonical bipartite nuclear localization signals [25]

(Figure 1A). These features were interpreted as indicative of

targeting OCP3 to nuclei, where it would be functioning as a

negative regulator of plant immunity and was congruent with ocp3

plants exhibiting a remarkable enhanced resistant to fungal

pathogens due to a primed immune state [25–27]. However,

when Arabidopsis were transformed with a gene construct carrying

the fluorescent YFP protein fused to the OCP3 N-terminus

or, alternatively, to the C-terminus (i.e. 35S::YFP-OCP3 and

35S::OCP3-YPF constructs, respectively), confocal microscopy

revealed different subcellular localizations for each protein

(Figure 1B). YFP-OCP3 expression led to YFP-specific fluores-

cence at dispersed positions within the cell, while that derived from

OCP3-YFP was unequivocally localized to the chloroplast

(Figure 1B). These different protein localizations were reproduced

upon transfecting tobacco protoplasts using the same constructs

(Supplemental Figure S1). Western blot using an anti-GFP

antibody, revealed YFP-OCP3 accumulated as a YFP immuno-

reactive band similar to that observed for free YFP (Figure 1C).

This was interpreted as partial trimming or processing of YFP-

OCP3. Conversely, the OCP3-YFP protein was stable, and

accumulated as two low migrating immunoreactive bands; the

molecular weight of these polypeptides congruent with that

expected for a fusion OCP3 with YFP (Figure 1C). Furthermore,

the 35S::OCP3-YFP gene construct, but not 35S::YFP-OCP3,

complemented the ocp3 phenotype following stable transformation

(Figure 1D). The ocp3 mutant line carried a copy of the pathogen-

and H2O2-responsive Ep5C::GUS transgene that became constitu-

tively active in the mutant (revealed after staining with X-gluc)

[25,28], therefore, complementation was recorded as Ep5C::GUS

expression repression (Figure 1D). Eight independent ocp3/

35S::OCP3-YFP lines were assayed, and all showed repressed

GUS expression (Figure 1D), indicative of effective complemen-

tation; in all cases the OCP3-YFP protein was targeted to the

chloroplast (Figure 1E). However, all 12 independent ocp3/

35S::YFP-OCP3 transformed lines we generated retained GUS

expression driven by the Ep5C gene promoter, demonstrating the

inability of YFP-OCP3 to complement ocp3.

Inspection of OCP3 with TargetP (http://www.cbs.dtu.dk/

services/ChloroP/) revealed a predicted 69 amino acid chloroplast

signal peptide (SP) (Figure 1A). Correspondingly, N-terminal

amino acid sequencing using Edman degradation of OCP3-YFP

protein revealed processing at the predicted site (Polyp2;

Supplemental Figure S2A). Furthermore, fusion of the first 81

amino acids of OCP3 to YFP (i.e. OCP31–81-YFP) was sufficient to

target and internalize YFP to the chloroplast (Supplemental Figure

S2B–C). Interestingly, chloroplast targeting, but not internaliza-

tion, occurred when a short deletion (from aa 68-to-74) was

introduced in the constructs (OCP3D68–74-YFP; Supplemental

Figure S2B–C), indicating amino acids at position 68-to-74 were

critical for proteolytic maturation of OCP3 in the chloroplast.

These results were congruent with the absence of ocp3 comple-

mentation with deleted OCP3D68–74-YFP, and lack of mature

OCP3-YFP protein accumulation in transformed plants (Supple-

mental Figure S2D-E). Immunoblot analysis of chloroplast

suborganellar fractionations derived from plants expressing

OCP3-YFP revealed incorporation of the protein into the

chloroplast, and enrichment in the stroma and thylakoid fractions

(Supplemental Figure S2F). Collectively, these results indicated a

functional OCP3 protein resides in the chloroplast.

OCP3 localization overlaps with pTAC2, a
pentatricopeptide repeat (PPR) protein

OCP3-YFP distribution within the chloroplast showed protein

accumulated in the form of speckles or punctate patterns. We

Author Summary

Plastids originated from cyanobacteria that were incorpo-
rated into the eukaryotic cell through an endosymbiotic
relationship. During the gradual evolution from endosym-
biont to organelle, most genes of the cyanobacterial
genome were transferred to the nuclear genome. There-
fore, plastid biogenesis and function relies on nuclear gene
expression and the import of these gene products into
plastids, with the molecular dialogue between these two
plant cell compartments therefore needing a precise
coordination. Nuclei-to-chloroplast communication, and
vice versa, are thus regulated through anterograde and
retrograde signaling pathways, respectively. Post-tran-
scriptional RNA editing of plastid RNAs by nuclear encoded
regulatory proteins, such as pentatricopetide repeat (PPRs)
proteins, represents one of such mechanisms of control.
Through the characterization of the nuclear-encoded OCP3
protein, previously found to function as a disease
resistance regulator in Arabidopsis, we have discovered a
pathogen-sensitive editing-mediated control of the plas-
tidial NDH complex involved in cyclic electron flow (CEF)
around photosystem I. This led us to find that different
PPRs controlling editing extent of transcripts for plastidial
NDH complex are modulated by pathogenic cues. Our
results thus represent the first series of evidence indicating
engagement of chloroplast RNA editing and chloroplast
NDH activity in plant immunity.

RNA Editing and Plant Immunity
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noted similarities among proteins targeting different plastid

structures or molecules, including plastoglobules (i.e. PGL34,

[29]), plastid nucleoids (PEND, [30]), targeting associated with

introns containing RNAs (i.e. WHIRLY, [31]) and with RNAs

undergoing editing (i.e. pTAC2) (Figure 2A). We co-expressed

the OCP3-mCherry protein with PGL34-YFP, PEND-RFP,

WHIRLY-GFP, or pTAC2-YFP in protoplasts to demonstrate

possible co-localizations. OCP3-mCherry fluorescence overlapped

consistently with the fluorescence derived from the pentatricopep-

tide repeat (PPR) protein pTAC2-YFP (Figure 2B).

OCP3 is co-expressed with a cluster of nuclear genes
encoding plastid PPR proteins

Transcriptionally coordinated genes tend to be functionally

related [32]. We hypothesized that identification of genes that are

co-expressed with OCP3 (at5g11270) in Arabidopsis would provide

clues into the biological processes of OCP3 in the chloroplast.

Therefore, we initially identified a co-expressed gene vicinity

network for OCP3 using the AraGenNet platform (http://aranet.

mpimp-golm.mpg.de/) [33] where OCP3 matched cluster 49

(Supplemental Figure S3). Based on functional annotation using

MapMan ontology terms (http://aranet.mpimp-golm.mpg.de/),

the co-expression network contained 207 genes significantly

enriched for biochemical and regulatory aspects related to

chloroplast development and function (see Table S1). A closer

vicinity network including only genes two steps away from OCP3,

Figure 1. Functional OCP3 resides in the chloroplast. (A) OCP3
amino acid sequence. The 60 amino acid residues conforming the
homeodomain are indicated in red letters. The N-terminal signal
peptide sequence to chloroplast targeting, as predicted by TargetP, is
indicated in green letters. Two canonical bipartite nuclear localization
signals (RK-(X)10-KKNKKK and KK-(X)10-RRSKR) are underlined in blue.
(B) Fluorescent confocal microscopy evaluation of protein localization
in transgenic Arabidopsis plants transformed with a 35S::YFP-OCP3
construct (upper panel) and a 35S::OCP3-YPF constructs (lower panel).
YFP-specific fluorescence is shown in green and chlorophyll-derived
fluorescence is shown in red. (C) Western blot analysis using anti-GFP
antibodies of crude protein extracts derived from Arabidopsis plants
transformed with 35S::YFP, 35S::YFP-OCP3 and 35S::OCP3-YPF genes
constructs, respectively. Molecular mass markers are shown on the left.
(D) Characteristic GUS expression pattern, as driven by the Ep5C gene
promoter, in leaves of the ocp3 mutant. Complementation of this
molecular phenotype in ocp3 plants upon transformation with
35S::OCP3-YFP but not upon transformation with 35S::YFP-OCP3. (E)
Fluorescent confocal microscopy evaluation of protein localization in
transgenic ocp3 plants transformed with a 35S::OCP3-YPF construct.
doi:10.1371/journal.ppat.1003713.g001

Figure 2. OCP3 co-localizes with pTAC2. (A) Chloroplast localiza-
tion pattern of PGL34-YFP, PEND-RFP, WHIRLY-GFP, pTAC2-YFP and
OCP3-mCHERRY in protoplasts from N. benthamiana evaluated by
confocal microscopy. (B) Co-localization patterns of OCP3 with each of
the proteins shown in (A). YFP- and GFP-specific fluorescence is shown
in green, RFP- and mCHERRY-specific fluorescence is shown in red and
chlorophyll-derived fluorescence is shown in blue.
doi:10.1371/journal.ppat.1003713.g002

RNA Editing and Plant Immunity
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identified 31 genes that were all related to plastid processes

(Figure 3A and Table S2). Nine of these genes encoded PPR

proteins, and the biological role in only one of these PPR genes,

CRR21 (at5g55740), has been elucidated. CRR21 acts as a site-

specific factor recognizing RNA editing site 2 (ndhD-2 site) in

plastid ndhD transcript, suggesting that the Ser128Leu change has

important consequences for the function of the NDH complex

[13]. The remaining eight PPR genes, were tentatively named as

follows: PPRa (at4g21190), PPRb (at4g30825), PPRc (at3g29230),

PPRd (at3g46610), PPRe (at5g14350), PPRf (at1g15510), PPRg

(at3g14330), and PPRh (at3g49140) (Figure 3A).

As for pTAC2, plastidial overlapping localization pattern was

observed for OCP3-mCHERRY and PPRa-YFP (Figure 3B–C).

Similarly, OCP3-mCHERRY overlaps with CRR21-YFP both

following the same punctate distribution pattern (Figure 3B–C).

The common co-localization pattern of OCP3 with different PPR

proteins was not followed by all other proteins whose genes where

co-expressed with OCP3, as deduced from the non-overlapping

localization pattern in OCP3-mCHERRY and AT1G63680-YFP

(Figure 3B). The observed common localization of OCP3 and

different PPR proteins suggested involvement of OCP3 in some

aspects of plastidial RNA editing processes

OCP3 is required for RNA editing of ndhB transcript in
plastids

To test the involvement of OCP3 in RNA editing, we

systematically examined the editing status of chloroplast tran-

scripts derived from wild type and ocp3 plants using high-resolution

melting (HRM) screen of the 34 sites undergoing editing in

Arabidopsis [7]. We identified major defects in the RNA editing of

ndhB-6, nhdB-4, ndhB-3, and ndhB-2 sites in ocp3 plants (Figure S4).

The comparison of the sequencing electrophoregrams of the RT-

PCR products surrounding the editing sites confirmed that editing

was compromised at the four indicated sites, if not totally at least

partially, in ocp3 plants (Figure 4A and Figure S6). All other known

sites appeared similarly edited in ocp3 plants as in Col-0 plants.

Editing defects were further confirmed by poisoned primer

extension (PPE) assays (Figure 4B–E). ndhB-6, ndhB-4, and

ndhB-3 sites were edited in Col-0 at estimated efficiencies of

approximately 72%, 95%, and 88%, respectively, while in ocp3

plants efficiencies were reduced approximately to 55%, 89%, and

72%, respectively (Figure 4B and 4D). The ndhB-2 editing site

possessed a contiguous cytosine residue adjacent to the cytosine to

be edited, which impeded a reliable PPE assay. Therefore, ndhB-2

was not further studied by this method. The ndhB-5 site exhibited

no editing variation between Col-0 and ocp3, with efficiencies in

the range of 82.5% and 81%, respectively; therefore, it served as

an internal editing control site for the ndhB transcript not affected

in ocp3 plants.

Sequencing of individual cDNA clones, in sufficient quantities,

is considered the most accurate method to measure editing extent,

but is not cost effective for large-scale studies. We sequenced

individual cDNA clones derived from RNAs obtained from

equivalent leaves from Col-0 and ocp3 plants. cDNA cloning

strategy was designed to include the ndhB-4, ndhB-3, and ndhB-2

sites in one amplicon (amplicon I) and the ndhB-6 site, along with

non-altered ndhB-5, and ndhB-7 sites, in another amplicon

(amplicon II). One hundred cDNA clones for each amplicon,

and for each genotype were analyzed by direct sequencing. Editing

Figure 3. OCP3 is co-regulated with a subset of nuclear-
encoded chloroplast PPR proteins. (A) Co-expression gene vicinity
network around the OCP3 node. This gene cluster was partitioned from
the complex network illustrated in Supplementary Figure S3 and shows
co-expressed genes that are only two steps away from OCP3. Nine out
of the 31 genes of the cluster (see Table S2) encode PPR proteins and
are indicated by circles, while OCP3 is indicated by a square. In addition
to CRR21 (at5g55740), the other 8 PPRs surrounding OCP3 node have
been tentatively name as PPRa (at4g21190), PPRb (at4g30825), PPRc
(at3g29230), PPRd (at3g46610), PPRe (at5g14350), PPRf (at1g15510),
PPRg (at3g14330) and PPRh (at3g49140). Nodes indicate individual
genes, and edges indicate whether two genes are co-expressed above a
certain mutual rank. Color codes for nodes and edges as in
Supplementary Figure S3. Green, orange and red edges indicate a
mutual rank relationship 10 (green), 10 but 20 (orange) and 20 but 30
(red), respectively, for each connected gene pair. GO characterization of
the 31 genes is shown in Table 2. The network was generated, and
modified from AraGenNet (http://aranet.mpimp-golm.mpg.de/aranet).
(B) Chloroplast localization pattern of OCP3-CHERRY, PPRa (at4g21190)-
YFP, CRR21-GFP, and At1g63680-YFP in protoplasts from N. benthami-
ana transfected with each respective construct as evaluated by confocal
microscopy. (C) Chloroplast co-localization patterns of OCP3-CHERRY
with OCP3-YFP and of OCP3-CHERRY with each of the other proteins
shown in (B) in protoplast co-transfected with each of the indicated

construct pairs. YFP-specific fluorescence is shown in green, CHERRY-
specific fluorescence is shown in red and chlorophyll-derived fluores-
cence is shown in blue.
doi:10.1371/journal.ppat.1003713.g003
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efficiency comparison is shown in Figure 4F. For the ndhB-4 site,

Col-0 showed a 92% (92 of 100 sequenced clones) editing extent,

which was reduced to 71% in ocp3 plants. Col-0 showed a 94%

editing extent for ndhB-3, reduced to 77% in ocp3. The ndhB-2

site exhibited an editing extent of 86% in Col-0, which was

reduced to 64% in ocp3. These values were comparable to those

observed for the PPE assays. Interestingly, ocp3 plants exhibited

concurrent editing inhibition at two sites within the same cDNA

clone (of the three potential ones in amplicon I) in 21% of the

sequenced clones while in Col-0 it was only 3%. Furthermore, lack

of concurrent editing at the three sites remained notable in ocp3,

and was observed in 8% of the sequence clones while in Col-0 it

was 0%. These results suggested the concomitant editing

inhibition at more than one site on the same ndhB transcript was

a common feature in editing defects in ocp3 plants. The ndhB-6 site

showed an editing extent of 81% in Col-0 plants, which was

reduced to a 61% in ocp3 plants (Figure 4F). ndhB-5 and ndhB-7

served as controls for non-variation sites within the same

transcript, and the editing extent was similar between Col-0 and

ocp3 plants (83% reduced to 81% for ndhB-5; and 76% increased

to 78% for ndhB-7) (Figure 4F). Collectively these data indicated

that OCP3 is required for efficient ndhB transcript edition.

In vivo association of OCP3 with ndhB RNA
To directly assess the association of OCP3 with ndhB transcripts,

leaves from Col-0 and from a transgenic line expressing a

35S::OCP3:GFP:HA gene construct were treated with folmaldehyde

to generate protein-RNA cross-links and subsequently subjected to

RNA immunoprecipitation (RIP), an analysis that serves to detect

the presence of the corresponding RNA in the protein immuno-

precipitate by reverse transcription PCR (RT-PCR). Immunopre-

cipitation of crude protein extracts with an anti-HA antibody

selectively enriched the chimeric OCP3 protein in samples derived

from the 35S::OCP3:YFP:HA overexpressing line (Figure 4G,

upper panel). Interestingly, the immunoprecipitated OCP3

complexes were shown to specifically co-precipitate ndhB tran-

scripts as revealed by comparative RT-PCR analysis of the

corresponding samples derived from the transgenic line and Col-0

plants (Figure 4G, lower panel). ndhD transcripts, which served as a

negative control, did not show association with the OCP3 complex

(Figure 4G, lower panel). The results thus indicate that OCP3

associates in vivo with ndhB transcript. Whether this association is

the result of a direct interaction of OCP3 with the RNA molecule,

or rather a consequence of the interaction of OCP3 with an RNA

binding protein recognizing specifically RNA sequences of the

Figure 4. Editing defects in ocp3 plants and in vivo association of OCP3 with ndhB RNA. (A) Nucleotide sequences surrounding the RNA
editing sites of ndhB-6 (95644), ndhB-5 (95650), ndhB-4 (96419), ndhB-3 (96579), ndhB-2 (96698) and ndhD-2 (116494) are shown as sequence
chromatograms. The editing sites are specified relative to the nucleotide sequence of the complete Arabidopsis chloroplast genome (Genebank
accession number AP000423). Editing sites are indicated by a red C residue in the genomic (gDNA) sequence and its conversion or not to a U(T)
residue in Col-0 and ocp3 derived RNA samples. Editing defects in ocp3 are indicated by a blue mark above the corresponding peaks. (B–E) Poisoned
primer extension (PPE) assays were conducted on the editing sites ndhB-6 (B), ndhB-5 (C), ndhB-4 (D) and ndhB-3 (E). RT-PCR products were obtained
with labeled 6-carboxyfluorescein primers that anneals next to the target editing site (forward PPE primers were used for all sites). Acrylamide gels
(below panels) were visualized under UV light, and intensity of bands quantified calculated and plotted. Bars represent mean 6 SD, n = 3
independent replicates. Experiments were repeated at least three times with similar results. E, edited; U, unedited, P; primer. (F) Comparative RNA
editing efficiency in Col-0 and ocp3 plants as quantified from direct DNA sequencing of 100 independent cDNAs per genotype encompassing each of
the indicated editing sites. (G) RNA immunoprecipitation (RIP) of anti-HA precipitated protein complexes from leaves derived from Col-0 and a
35S::OCP3:YFP:HA transgenic line. The upper panel shows a Western blot of protein present in crude leaf extracts and proteins immunoprecipitated
(IP) with anti-HA antibody. The blot was developed with anti-GFP antibody and shows enrichment of the OCP3:YFP:HA protein in samples derived
from the transgenic line. In the lower panel RT-PCR was used to detect association of ndhB transcripts with OCP3-enriched complexes in comparison
to the corresponding input sample. Lack of association of ndhD transcripts with OCP3-enriched complexes is shown as a negative control.
doi:10.1371/journal.ppat.1003713.g004
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ndhB transcript remains unknown. Future characterization of such

protein complex and the elucidation of its associated biochemical

function will shed light on how editing of the ndhB RNA at their

multiple editing sites is regulated.

ocp3 plants are impaired in NDH activity
Normal RNA editing at ndhB-6, ndhB-4, ndhB-3 and ndhB-2 sites

converts a Ser codon to a Leu codon at aa279, a Ser to Phe at

aa249, a His to Tyr at aa196, and a Pro to a Leu at aa156 in the

NdhB protein. NdhB is one of the eleven chloroplast-encoded

subunits of the chloroplast NDH complex. We hypothesized ndhB

editing defects observed in ocp3 plants would affect encoded

protein function, which in turn would alter photosynthetic

parameters in the mutant. NDH complex activity can be

monitored as a transient increase in chlorophyll fluorescence

reflecting plastoquinone pool reduction after turning off actinic

light, as originally demonstrated by Shikanai et al. [11]. Figure 5A

shows a typical chlorophyll fluorescence trace from Arabidopsis

Col-0 and its comparison with crr21, a mutant lacking NDH

activity. In ocp3, the post-illumination increase in chlorophyll

fluorescence was modified in a manner similar to what occurred in

crr21 plants, indicating that NDH activity was compromised. This

result strongly indicated OCP3 is a chloroplast factor pivotal in

normal NDH complex function. This important phenotype was

confirmed by employing additional mutant alleles. Due to the

absence of T-DNA insertions mutants for the OCP3 locus, and

being the ocp3 mutant currently used a loss-of-function EMS

mutant, we generated additional mutant alleles of this gene by

artificial microRNA (amiRNA) interference. Two independent

homozygous amiRNA lines (i.e. amiRNA-2 and amiRNA-3)

phenocopying the original ocp3 mutant (Figure S5A–D), were

selected. These lines were designated ocp3-2 and ocp3-3, respec-

tively, and the original ocp3 now designated ocp3-1. Defective

NDH activity was recorded in these mutants (Figure 5A).

Complementation of ocp3-1 plants with an OCP3 wild-type

sequence fully restored the post-illumination increase of chloro-

phyll fluorescence (Figure 5A). These results confirmed the

importance of OCP3 for appropriate NDH complex function.

RNA editing results in amino acid changes that directly alter

protein translation, function, or even may act to destabilize

multiprotein complexes. The NDH complex is unstable when

NdhD subunit is absent due to editing-mediated translation defects

[34,35]. The NdhB subunit defects observed in ocp3 plants were

evaluated to determine the effects on NDH stability in vivo. Protein

blots were analyzed using antibodies against the NdhI and NdhJ

subunits, which served to monitor NDH complex stability

(Figure 5B). NdhI and NdhJ accumulation levels did not

experience noticeable changes in ocp3 mutants compared to Col-

0 plants. Similarly, NDH complex stability remained intact in

crr21 plants (Figure 5B). Although the exact function and

organization of the whole set of subunits of the NDH complex

in plants remains to be fully elucidated [36], our results indicate

that the four amino acid residues in the NdhB subunit which were

derived from editing-mediated codon conversion appear impor-

tant for activity, but not for assembly of the NDH complex.

Chloroplast NDH activity-defective mutants show
enhanced disease resistance

We hypothesized that via NDH complex inhibition, plants

could develop an alerted immune status. This might explain why

ocp3 plants exhibited enhanced disease resistance to fungal

pathogens resulting from earlier and more intense callose synthesis

and deposition following pathogen exposure [25,26]. If so, then

mutants showing similar chloroplast NDH complex defects would

activate the same immune status, and become resistant to fungal

attack. Consequently, we challenged crr21 and crr2 mutants with P.

cucumerina, and studied disease susceptibility in comparison to the

resistant ocp3 plants, and the susceptible Col-0 plants. CRR2 is a

distinct PPR protein that functions in the intergenic RNA cleavage

between rps7 and ndhB, which is essential for subunit B translation,

and crr2 mutants are compromised in NDH activity [35]. ppra, a

previously uncharacterized T-DNA mutant, defective in the

expression of PPRa (Figure S8) encoding a PPR protein of

unknown function that is highly co-expressed with CRR21 and

OCP3 (Figure 3A), was also evaluated. Similarly, pprb, a T-DNA

mutant defective in another co-expressed PPR of unknown

function (Figure S7) was included in these experiments for

comparison. Following inoculation with P. cucumerina, disease was

scored 12 d after inoculation by following necrosis and chlorosis

extent present in inoculated leaves. As expected, Col-0 plants were

highly susceptible to P. cucumerina, and all inoculated plants showed

Figure 5. Monitoring of NDH activity by using chlorophyll
fluorescence analysis. (A) Analysis of the transient increase in
chlorophyll fluorescence (apparent Fo) after termination of actinic light
(AL) illumination. The bottom curve indicates a typical trace of
chlorophyll fluorescence in the wild type (WT). Leaves were exposed
to AL (50 mmol photons m22 s21) for 5 min. AL was turned off and the
subsequent transient rise in fluorescence caused by plastoquinone
reduction based on NDH activity monitored. Insets are magnified traces
from the boxed area. The fluorescence levels were normalized by the
maximum fluorescence at close PSII centers in the dark (Fm) levels; ML,
measuring light; SF, a saturating flash of white light. The fluorescence
was monitored using a pulse-amplitude-modulation chlrophyll fluo-
rometer. ocp3-1+OCP3, ocp3-1 allele transformed with a wild type OCP3
cDNA. (B) Immunoblot analysis of NDH NdhI and NdhJ subunits, the
subunit IV of cytochrome b6f (Pet-D) and ascorbate peroxidase (APX).
Proteins were extracted from chloroplast preparations from each
genotype and lanes loaded with 20 mg protein.
doi:10.1371/journal.ppat.1003713.g005
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extended necrosis accompanied by extensive proliferation of fungal

mycelia (Figure 6A–B). The same disease susceptibility was observed

in the pprb mutant, indicating this PPR gene is not essential in plant’s

defense activation (Figure 6A–B). In marked contrast, the inoculated

crr21, crr2, and ppra plants responded with a substantial increase in

disease resistance to P. cucumerina infection that was of a magnitude

similar to that attained in ocp3 plants (Figure 6A–B). Comparative

cytological observations were performed at the sites of attempted

fungal infection and the degree of induced callose deposition

induction in inoculated leaves was monitored after staining with

aniline blue, and examination by fluorescence microscopy. Results

indicated none of the mutants exhibited aniline blue staining in

control leaves (Figure 6C). Col-0 and pprb plants deposited callose

locally at sites demarcating the zones of extended fungal growth. In

marked contrast, crr21, crr2, ppra, and ocp3 plants all exhibited

intensified and highly localized callose deposition in response to

fungal infection, which occurred at zones where fungal growth and

colonization was impeded (Figure 6C–D). Consequently, height-

ened disease resistance, and increased callose deposition were

concurring traits in mutants defective in the correct editing of RNAs

encoding subunits of the chloroplast NDH complex.

Fungal infection interferes with editing in plastids
The above results indicated that editing efficiency, chloroplast

NDH activity, and disease resistance to fungal pathogens are linked

traits mediated by OCP3. Fungal infection provokes local down

regulation of OCP3 in wild type plants [25], therefore we

hypothesized that following Col-0 inoculation with a fungal

pathogen, editing inhibition of ndhB would very likely arise and,

the NDH complex would consequently be affected. Therefore, we

inoculated Col-0 plants with the fungal pathogen P. cucumerina and

examined the editing status of RNAs corresponding to chloroplast-

encoded subunits of the NDH complex (i.e, NdhB, NdhF, NdhG

and NdhD) by bulk sequencing of RT-PCR products. We identified

major alterations in the RNA edition of ndhB. Eight sites normally

edited in the ndhB transcripts (i.e. ndhB-1 to ndhB-8) showed

inhibition at 48 h.p.i. with P. cucumerina (Figure S6). Results for the

other NDH subunit RNAs indicated only the editing status of ndhD

transcript was notably affected, and only at position 117166 (ndhD-

1 site) which controls NdhD translation (Supplemental Figure S6).

These results surpass the four distinct defective editing sites

identified in the ocp3 mutant (Figure S6 and Figure 4). Therefore,

in addition to OCP3, other factors appeared to be targeted for the

realization of the fungal-promoted editing inhibition.

Temporal recording in a time course experiment following P.

cucumerina inoculation revealed that editing inhibition is an early

plant response to fungal attack. Most inhibition changes at the

identified pathogen-sensitive ndhB editing sites were induced early

following P. cucumerina inoculation (at 12 h.p.i.), and were sustained

up to 48 h.p.i (Figure 7A), indicating the special vulnerability of

ndhB editing to pathogenic cues. Results showed the specific

editing defects at the ndhD-1 site lagged behind ndhB editing

inhibition, reaching maximal inhibition at 48 h.p.i (Figure 7A).

Some of these early effects were further corroborated by specific

PPE assays, which provided estimates that editing at ndhB-6,

ndhB-5, and ndhB-3 sites were inhibited following pathogen

inoculation at different efficiencies and declining rates. ndhB-6

editing inhibition was the most prominent, with an efficiency that

abruptly dropped at 12 h.p.i. and progressively decayed thereafter

(Figure 7B).

Figure 6. Comparative immune responses of plastid PPR-
related mutants to inoculation with P. cucumerina. (A) crr2, crr21,
ppra, and pprb disease resistance responses to P. cucumerina compared
with ocp3 and wild-type (Col-0) plants. Lesion diameter of 20 plants per
genotype and four leaves per plant were determined 12 d following
inoculation with P. cucumerina. Values are means and 6 SE (n = 80).
ANOVA detected significant differences at the P,0.05 level. Experi-
ments were repeated three times with similar results. (B) Representative
leaves from each genotype at 12 days following inoculation with
P. cucumerina. Bar represents 5 mm. (C) Aniline blue staining and
epifluorescence microscopy was applied to visualize callose accumula-
tion. Micrographs indicate P. cucumerina inoculation and infection site
in the different Arabidopsis genotypes at 0 h.p.i (right panel) and at
48 h.p.i. (left panel). Bar represents 500 mm. (D) The number of yellows
pixels (corresponding to pathogen-induced callose) per million on
digital photographs of infected leaves were used as a means to express
arbitrary units (i.e. to quantify the image) at 48 h.p.i. Data are visible
microscopy averages from Col-0 and mutant plants (6SE). Different
letters above bars indicate statistically significant differences between
genotypes, according to one-way ANOVA (P,0.05, n = 15).
doi:10.1371/journal.ppat.1003713.g006
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Figure 7. Pathogen-triggered editing inhibition in plastid ndhB and ndhD transcripts. (A) Portion of the electrophoretograms from RT-PCR
bulk sequencing corresponding to the editable cytosine residue at sites ndhB-7, ndhB-6, ndhB-5, ndhB-4, ndhB-3, ndhB-2, ndhD-1, and ndhD-4 are
shown for Col-0 plants at 0,12, 24 and 48 h post-inoculation with P. cucumerina. (B) PPE assays following fungal infection for ndhB-6, ndhB-5 and
ndhB-3 sites confirms the reduction of editing extent as detected by bulk sequencing. The PPE products run on acrylamide gels are shown on the
right. E, edited; U, unedited; P, primer. (C) Immunoblot analysis of NDH subunit I (NdhI), subunit IV of cytochrome b6f (Pet-D), PSI subunit D-2 (PSAD-
2) and ascorbate peroxidase (APX) from Co-0 plants at 0, 6, 12, 24 and 48 h following inoculation with P. cucumerina. Intensity of NdhI
immunoreactive bands was quantified and plotted on the right graph. Bars represent mean 6 SD, n = 3 independent replicates. The experiment was
repeated three times with similar results (D) Extent of P. cucumerina growth on inoculated leaves. At the times indicated DNA was extracted from
leaves and the amount of the P. cucumerina b-tubulin gene quantified by qPCR. Data are standardized for the presence of the P. cucumerina b-tubulin
gene in Col-0 at time 0. Data represent the mean 6 SD; n = 3 biological replicates. (E) Determination of P. cucumerina-induced callose deposition in
inoculated leaves of Col-0 plants. (F) P. cucumerina-induced expression of the defense-related PDF1.2 gene as determined by RT-qPCR. Data represent
the mean 6 SD; n = 3 biological replicates. (G) Reduction of NdhI subunit content following inoculation of Col-0 with B. cinerea. NdhI content was
quantified as in (C). On the right a Western blot detail revealing early (at 6 h.p.i) fungal-induced down regulation of NdhI subunit accumulation is
shown. (H) Early induced down-regulation of NdhI protein accumulation in Arabidopsis seedlings by chitosan. Chitosan was applied for the times
indicated to Arabidopsis seedlings and proteins analyzed by Western blot with anti-NhHI, anti-Pet-D and anti-APX antibodies. The experiment was
repeated three times with similar results. (I) Chitosan-induced gene activation of MYB51 and concomitant gene repression of OCP3, CRR21 and PPRa
as determined by RT-qPCR. Data represent the mean 6 SD; n = 3 biological replicates.
doi:10.1371/journal.ppat.1003713.g007
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Early chloroplast NDH complex destabilization is part of
the immune response

Following these previous observations we asked if stability of the

NDH complex could become also altered following fungal

infection. To assess this, NDH complex stability was monitored

by Western blots using antibodies against one of the NDH

subunits (i.e. NdhI). We observed NdhI accumulation level

decayed very early following pathogen inoculation, with apparent

reduction occurring at 6 h.p.i. (Figure 7C). The decay was

progressive and showed an approximate 50% reduction in NdhI

protein at 24 h.p.i. (Figure 7C). The results suggested decay

specificity for NDH complex protein, since chloroplast integrity,

measured using other marker proteins (i.e., Pet-D, PSAD-2 and

APX), did not change or even increase in response to the fungus

(Figure 7C). The decay process was set in motion at early stages of

infection, and was inversely correlated with fungal growth

(Figure 7D). Furthermore, the observed pathogen-triggered

dismantling of the NDH complex subunit preceded the activation

of other plant responses, which are diagnostic of an activated plant

immune response. Deposition of the cell wall b-1,3-glucan

polymer callose, identified and quantified following aniline blue

staining of inoculated leaves, clearly lagged behind observed

editing defects and dismantling of NDH complex (Figure 7E).

Similarly, transcriptional activation of the defense related gene

PDF1.2 followed editing defect accumulation (Figure 7F). Fur-

thermore, the inhibitory effect on NdhI accumulation was

mirrored by Botrytis cinerea inoculation, another fungal pathogen

(Figure 7G). The decay in NDH subunit content promoted by B.

cinerea (Figure 7G, right graph) was notable, but not as progressive

as observed in P. cucumerina, presumably reflecting different

infection styles for the two distinct fungal pathogens.

The rapid editing inhibition and the parallel dismantling of the

NDH complex constitutes two early chloroplast responses to

pathogens, evoking integration of these processes as part of the

mechanism governing immune response activation. Therefore, we

verified if editing inhibition and NDH complex destabilization

could be similarly triggered by application of chitosan (2-amino-2-

deoxy-(1-4)-b-D glucopiranan), a naturally-occurring pathogen-

associated molecular pattern (PAMP) compound able to elicit

plant innate immune responses similar to those activated by

complex fungal pathogens [37]. Results showed strong and rapid

(within 2 h) down-regulation of NDH subunit accumulation was

promoted by the sole application of chitosan to wild type

Arabidopsis seedlings (Figure 7H). Interestingly, we observed also

an early and abrupt down-regulation of OCP3, CRR21 and PPRa

gene expression following chitosan treatment, which contrasted

with the concurring high transcriptional activation of MYB51

(Figure 7I), the latter a transcription factor required for PAMP-

triggered callose deposition in Arabidopsis [38]. Since CRR21,

OCP3 and PPRa are nuclear-encoded chloroplast factors required

for an effective plant immune response (Figure 6), the results

indicate the existence of a nuclear PAMP-mediated transcriptional

regulation of NDH complex-related editing regulatory genes as an

integral component of innate immunity. This thus represents an

additional layer of control of chloroplast NDH complex activity

interconnecting nuclei and chloroplasts. Moreover, electrophore-

grams comparison of bulk sequencing of RT-PCR products,

generated at different times after chitosan treatment, revealed that

chitosan-induced NDH complex dismantling was also accompa-

nied by an early editing inhibition at seven ndhB editing sites, and

at three ndhD editing sites (Figure S7). Therefore, these results

provided additional support for the engagement of plastid RNA

editing inhibition in plant immunity. Moreover, the observed

rapid and transient dismantling of the NDH complex that follows

perception of pathogenic cues suggests the engagement of a highly

regulated proteolytic system in the chloroplast. The identification

and characterization of such proteolytic system remains a

challenge for the future.

Discussion

This study provides new insights into the control of disease

resistance in plants, and reinforces the importance of the

chloroplasts in plant immunity. Our data identified OCP3 targeted

to chloroplast, a finding that conceptually changed the previous

assumption that OCP3 could function as a nuclear transcription

factor. Furthermore, confocal microscopy revealed that OCP3

accumulated in plastids matching several PPR proteins. Moreover,

OCP3 was found to be closely co-expressed with a cluster of 9 genes

encoding PPR proteins including CRR21. CRR21 is responsible for

site 2 editing at ndhD transcript, and ndhD encodes the D subunit of

the chloroplast NDH complex [13], a crucial component of the

CEF machinery around PSI [11]. In crr21 plants, NDH complex

activity is impaired and CEF activity compromised [13], supporting

a predominant post-transcriptional level of control. All these

observations prompted us to hypothesize that OCP3 was involved

in RNA editing in plastids. Therefore, we performed a comparative

systematic study of the editing status of chloroplast transcripts

between Col-0 and different ocp3 mutants. This study revealed that

OCP3-defective plants carry specific editing defects at ndhB-6,

ndhB-4, ndhB-3, and ndhB-2 sites. The observation that OCP3

associates in vivo with the ndhB transcript, as revealed by RIP assays,

reinforce the consideration that OCP3 contributes to control over

the extent of ndhB transcript editing. However, OCP3 appears not

to carry any structural motif resembling the conserved RNA

recognition motif (RRM), not even the motifs characteristic of other

proteins functioning as trans-factors essential for editing, such as

those present in the large subclasses of the pentatricopeptide repeat

(PPR)-containing family proteins [13,14]. This may suggest that the

association of OCP3 with the ndhB RNA molecule may be likely

indirect, presumably though the interaction with canonical RNA

binding proteins recognizing appropriate cis-elements present in the

ndhB RNA molecule such as those RNA-binding proteins

mentioned above. Therefore, OCP3 may serve a regulatory role

on the editing apparatus by regulating and/or adjusting the editing

extent of the ndhB transcript according to external environmental

cues. This appears to be the case also for other described editing

accessory proteins such as the recently identified multiple organellar

RNA editing factor (MORF) and members of the RNA-editing

interacting protein (RIP) family [39,40].

ndhB encodes the NDH complex B subunit, therefore we next

hypothesized that the absence of a functional OCP3 protein

should result in a defective NDH complex. Results indicated that

the observed alterations in ndhB editing in ocp3 plants affected

NDH activity but not NDH complex stability. This is a feature

also found in other editing-related mutants (i.e. crr21). However, in

other cases, the defective gene results in lack of NDH complex

accumulation, as seen when editing defects impedes translation

initiation of NdhD subunit (i.e. crr4, [10]) or when appropriate

maturation of ndhB transcript is blocked (i.e. crr2, [35]). The editing

defects in ocp3 plants resulted in an inactive NDH complex that

compromised normal CEF around PSI. We therefore concluded

that OCP3 is an integral plastidial factor required for fine-tuning

CEF around PSI, and this control is exerted post-transcriptionally

through the regulation of ndhB transcript editing. This finding has

important consequences as it represents the first evidence interfac-

ing plant immunity, RNA editing and CEF. Therefore, one can

propose that when OCP3 fails, as occurs in ocp3 plants, then accurate
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ndhB transcript editing is impeded, and in turn NDH complex is

altered and eventually CEF inhibited. Since in chloroplast the NDH

complex is considered to alleviate various oxidative stresses [41,42], it

can be speculated that a defective CEF pathway could generate ROS

locally that eventually may resulted in disease resistance activation.

Since ocp3 plants carry constitutive enhanced production of ROS

species, particularly H2O2, and also show constitutive expression of

ROS-inducible genes [25,28], and OCP3 gene expression was rapidly

down regulated following fungal attack [25], we reasoned that editing

will fail, and consequently NDH impaired, when a plant encounters a

pathogen. This led us to find that Arabidopsis respond to attempted

P.cucumerina infections by activating a rapid mechanism of editing

inhibition which affected the 8 major editing sites in ndhB, therefore

including those requiring OCP3, plus an additional editing site at

ndhD. This suggests involvement of other factors functioning as

pathogen-sensitive regulators of the editing process. In fact, a similar

cause-effect relationship was observed in crr2, crr21 and ppra plants,

which exhibited the same response as ocp3 plants when inoculated

with P. cucumerina. Their characteristic heightened disease resistance

was accompanied by increased callose deposition in response to

fungal infection, evoking activation of a mechanism for priming of

callose deposition in these mutants similar to that previously

discovered in ocp3 plants [26].

In wild type plants, in addition to the pathogen-induced editing

inhibition of ndhB transcripts, we observed the NDH complex

becoming rapidly destabilized and therefore dismantled, presum-

ably by the action of chloroplast proteases. Therefore, either NDH

complex activity and/or stability constitute distinct hallmarks of

the plant’s defense response to fungal pathogens. Whether or not

editing inhibition and NDH complex stability are linked processes

or rather represent independent processes remains unknown and is

a challenging issue for future research. Furthermore, strong

repression of OCP3 and CRR21 gene expression, severe editing

inhibition of ndhB and ndhD transcripts, and NDH destabilization

were also rapidly triggered by the sole application of chitosan,

which functions as a PAMP mimicking fungal structures.

Consequently, editing inhibition and dismantling of the NDH

complex appeared definitively engaged during activation of innate

immunity. Therefore, when appropriately and timely activated

following pathogen perception, the mechanisms leading to

alteration of the NDH complex in the chloroplast should serve

to set in motion a signaling process leading to an effective defense

response to halt the advance of the pathogen.

Cumulatively, these observations reinforced the idea that

maintaining NDH complex integrity is pivotal to normal CEF

functioning during photosynthesis, however its timely inhibition

following pathogen attack is fundamental for plant immunity.

Therefore, modulation of the NDH complex activity must be

under a delicate balance, requiring precise but flexible control.

The breadth of our data indicate control occurs at the RNA

editing level, a process where the described proteins ultimately

serve as sensors regulating the rate of NDH complex activity.

Therefore, OCP3, and presumably those PPRs and accessory

proteins mediating editing extent of NDH complex subunits,

exhibit a Janus-faced function, serving reciprocally as negative

regulator of plant immunity and as positive regulator of CEF

during oxygenic photosynthesis.

Materials and Methods

Plants growth conditions
Arabidopsis thaliana plants were grown in a growth chamber (19–

23uC, 85% relative humidity, 100 mEm22 sec21 fluorescent

illumination) on a 10-hr-light and 14-hr-dark cycle. All mutants

are in Col-0 background.

Gene constructs and transgenic lines
For the OCP3-GFP, -YFP and -mCHERRY constructs, the OCP3

full length cDNA was amplified by PCR using Pfu DNA

polymerase (Stratagene, San Diego, CA) and specific primers

including Gateway adapters, and recombined into pDONR221/

207 using BP ClonaseMixII kit (Invitrogen). After sequencing, all

constructs were recombined into pEarleyGate101 destination

vector using LR ClonaseMixII kit (Invitrogen) and introduced

into ocp3 plants for complementation analysis or when indicated in

Col-0 via Agrobacterium transformation. Cloning of the different

ORFs employed in the present work and their fusion with the

indicated fluorescent tag was done is a similar way. List of

primers used for cloning purposes is provided in Supplementary

information.

Chlorophyll fluorescence analysis
Chlorophyll fluorescence was measured using a MINI-pulse-

amplitude modulation portable chlorophyll fluorometer (Dual-

PAM-100, Walz, Effeltrich, Germany). The transient increase in

chlorophyll fluorescence after turning off actinic light (AL) was

monitored as described [12].

Confocal laser-scanning microscopy
Plant tissue was observed with a Leica TCS LS spectral confocal

microscope using and HCX PL APO 640/1.25-0.75 oil CS

objective. GFP- or YFP-derived fluorescence was monitored by

excitation with 488- and 514-nm argon laser lines, respectively,

and emission was visualized with a 30-nm-width band-pass

window centered at 515 nm. When RFP and CHERRY were

used, excitation was performed by means of a 543-nm green-neon

laser line, and fluorescence emission was collected at 695 to

630 nm.

OCP3 amiRNAs
The artificial microRNA designer web WMD3 (http://wmd3.

weigelworld.org/cgi-bin/webapp.cgi) was employed for designing

the 21 mer amiRNA sequence specific for OCP3 (At5g11270)

and for subsequent cloning and amplifications protocols. The

target region selected in OCP3 was 5-9GCGTCGTAAAACTAG-

TATTAA-3 (positions 625 to 645) and the 4 oligonucleotide

sequences used to engineer the artificial miRNA into the

endogenous miR319a precursor by site-directed mutagenesis

were:

I. miR-s TTAATACTAGTTTTACGGCGCtctctcttttg-

tattccaa,

II. miR-a GCGCCGTAAAACTAGTATTAAtcaaagagaat-

caatgatc,

III. miR*s GCACCGTAAAACTTGTATTATtcacaggtcgtga-

tatgat,

IV. miR*a ATAATACAAGTTTTACGGTGCtctacatata-

tattcctaa,

As a template for the PCRs the pRS300 was used. The

amiRNA sequence was cloned behind a 35S gene promoter and

the binary vector used to transform Arabidopsis Col-0 plants.

Eight independent transformants were initially selected and two

homozygous lines showing remarkable reduced expression

(amiRNA-2 and amiRNA-3) of OCP3 were selected for further

studies.
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RNA extraction, RT, qPCR, HRM and PPE
Total RNA was extracted using TRIzol reagent (Invitrogen)

following the manufacturer’s recommendations and further

purified by lithium chloride precipitation. For reverse transcrip-

tion, the RevertAid H Minus First Strand cDNA Synthesis Kit

(Fermentas Life Sciences) was used. Quantitative PCR (qPCR)

amplifications and measurements were performed using an ABI

PRISM 7000 sequence detection system, and SYBR-Green

(Perkin-Elmer Applied Biosystems). ACTIN2/8 was chosen as the

reference gene. All 34 known Arabidopsis chloroplast RNA editing

C targets were assayed by high resolution melt (HRM) as

described [7]. Chloroplast RNA editing sites were assayed by

RT-PCR bulk sequencing using similar set of primers. Primers for

amplicons covering each of the 34 editing sites present in plastids

are listed below in Supplemental information. Poison primer

extension (PPE) analysis on chloroplast sites were conducted as

described [43] and sequence of the corresponding fluorescent

primers used are listed below in Supplemental information.

Transient expression in protoplasts
Protoplasts isolation and transfection protocol with the different

gene constructs was as described [44].

Western blots
Protein crude extracts were prepared by homogenizing ground

frozen leaf material with Tris-buffered saline (TBS) supplemented

with 5 mM DTT, protease inhibitor cocktail (Sigma-Aldrich).

Protein concentration was measured using Bradford reagent;

unless otherwise indicated 20 mg of total protein was separated by

SDS-PAGE (12% acrylamide w/v) and transferred to nitrocellu-

lose filters. The filter was stained with Ponceau-S after transfer,

and used as a loading control. Unless otherwise indicated,

immunoblots were incubated with the indicated primary antibod-

ies at the appropriate dilution and developed by chemilumines-

cence using an anti-IgG peroxidase antibody (Roche) at a 1:1000

dilution and Western Lighting plus-ECL substrate (Perkin-Elmer).

N-terminal sequencing
Protein samples resolved by SDS-PAGE were blotted to PVDF

membranes and the band of interest identified by Ponceau

staining. The band sector corresponding to OCP3 was recovered

and subjected to five/six cycles of automated microsequencing by

sequential Edman degradation in an Applied Biosystems, Procise

494.

Botrytis cinerea and Plectosphaerella cucumerina
bioassays

In both B. cinerea and P. cucumerina infections, five-week-old

plants were inoculated as described [25,26], with a suspension of

fungal spores of 2.56104 and 56106 spores/mL respectively. The

challenged plants were maintained at 100% relative humidity.

Disease symptoms were evaluated by determining the lesion

diameter of at least 50 lesions 3 or 12 days after inoculation. For

pathogen-induced callose deposition analyses, infected leaves were

stained with aniline blue and callose deposition quantifications

were performed as described by Garcia-Andrade et al. [26].

Chitosan treatments
Approximately 15 sterilized Col-0 seeds were sown per well in

sterile 12-wells plates, containing filter-sterilized MS mediums

without Gamborg’s vitamins and with 0,5% of sucrose. Seedlings

were cultivated under standard growth conditions (15 h day cycle;

20uC/17uC) with a light intensity of 150 mM/m2/s. After 7 days,

the growth medium was replaced by fresh MS medium. One day

later, plants were mocked or challenged with chitosan at the final

concentration of 10 mg/mL in the growth medium, and at the

indicated times the samples were collected and immediately frozen

in liquid nitrogen.

Chloroplast fractionation
Fractionation of total chloroplasts preparations from full

expanded Arabidopsis leaves into stromal, thylakoids and mem-

brane envelope was performed as described [45]. Each sub-

organellar fraction was identified and validated by developing

Western blots with anti-BCCP (stroma), anti-NIP (thylakoids) and

anti-OEP21 (membrane envelope) antibodies. Antibodies were

obtained from Uniplastomic (Gieres, France).

RNA Immunoprecipitation (RIP) followed by RT-PCR
RIP assays were performed as described [46] with minor

modifications. Essentially, 2 g of leaf tissue from Arabidopsis

plants (4 weeks old plants) were ground to a fine powder with a

mortar and pestle in liquid nitrogen and homogenized in

12.5 mL/g lysis buffer (50 mM Tris-HCl, pH 7.4, 2.5 mM

MgCl2, 100 mM KCl, 0.1% Nonidet P-40, 1 mg/mL leupeptin,

1 mg/mL aprotonin, 0.5 mM phenylmethylsulfonyl fluoride, one

tablet of Complete proteinase inhibitor tablet (Roche), and 50

units/mL RNase OUT (Invitrogen). Cell debris was pelleted by

centrifugation for 5 min at 12,000 rcf at 4uC. Clarified lysates

were incubated with 4 mg/mL of anti-HA antibody (Roche) for

15 min at 4uC and then with 100 mL of Protein-A agarose (Roche)

per milliliter for 30 min at 4uC. Beads were washed six times for

10 min with lysis buffer at 4uC and then divided for protein and

RNA analysis. RNAs were recovered by incubating the beads in

0.5 volumes of proteinase K buffer (0.1 M Tris-HCl, pH 7.4,

10 mM EDTA, 300 mM NaCl, 2% SDS, and 1 mg/mL proteinase

K (Roche)) for 15 min at 65uC, extraction with saturated phenol,

phenol:chloroform:isoamyl alcohol and chloroform, and ethanol

precipitation. For RT-PCR assays, 1 mg of total RNA was used for

the input fraction, and 20% of the RNA immunoprecipitate was

used for the immunoprecipitation. PCR to amplify fragments

corresponding to ndhB and ndhD cDNAs was done using specific

oligos, CHLORO 187 FW/RV and CHLORO 212 FW/RV,

respectively, as listed in Supplemental material. For protein blot

assays, 10 mL of clarified eluate was loaded for the input fraction,

and 3% of the immunoprecipitated beads was used for the

immunoprecipitation. OCP3:GFP:HA was detected by immuno-

blotting and chemiluminescence using and anti-GFP peroxidase

antibody (Roche) at a 1:1000 dilution and Western Lighting plus-

ECL substrate (Perkin-Elmer).

T-DNA Arabidopsis mutants
Homozygous lines of ppra and pprb T-DNA insertion mutants

were identified by PCR using primers listed in Supplemental

information.

Supporting Information

Figure S1 Protein localization in N. benthamiana pro-
toplast. Fluorescent confocal microscopy evaluation of protein

localization in transfected protoplast of N. benthamiana with a

35S::YFP construct (upper panel), a 35S::YFP-OCP3 construct

(middle panel) and a 35S::OCP3-YPF constructs (lower panel).

YFP-specific fluorescence is shown in green and chlorophyll-

derived fluorescence is shown in red.

(TIF)
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Figure S2 Functional characterization of the signal
peptide sequence of OCP3. (A) SDS-PAGE and protein

immunoblot with anti-GFP antibody indicating protein band

position of OCP3-GFP precursors (Polyp1 and Polypep2) that

were used for N-terminal amino acid sequence determination by

Edman sequential degradation. Five rounds of degradation were

conducted for each polypeptide which rendered the indicated 5

amino acid long N-terminal sequence. (B) Scheme depicting the

different gene construct used for testing functionality of the OCP3

signal peptide. Green: YFP protein; white: OCP3 protein; red

symbol: relative position where the D68–74 internal deletion in the

signal peptide sequence was created. (C) Confocal microscopy

localization of the relevant constructs shown in (B). (D)

Comparative complementation test of the ocp3 mutant (which

show constitutive GUS expression as driven by the Ep5C gene

promoter) with construct 35S::OCP3-YFP and construct

35S::OCP368–74-YFP. The latter carries a deletion of 7 amino

acids in the Signal peptide of OCP3 and was unable to be

processed in the chloroplast. (E) Western blot with anti-GFP

antibodies of proteins extracts derived from ocp3 plants trans-

formed with 35S::OCP3-YFP and 35S::OCP368–74-YFP gene

constructs. (F) Western blots of the indicated chloroplast

compartments obtained from chloroplasts preparations derived

from ocp3 plants transformed with the 35S::OCP3-YFP gene

construct. Westerns were developed using anti-GFP; anti-BCCP1

(as marker for the stroma (lane 1; loaded with 4 mg total protein));

anti-OEP21 (as marker for membrane envelop (lane 2; loaded

1 mg total protein)); and anti-NIP (as marker for thylakoids (lane 3;

loaded with 1 mg total protein).

(TIF)

Figure S3 Co-expression gene vicinity network for
OCP3. Nodes indicate individual genes, and edges indicate

whether two genes are co-expressed above a certain mutual rank.

Red, yellow, green, and grey nodes indicate whether mutations in

the gene cause embryo lethality (red), gametophytic lethality

(yellow), any other biological phenotype (green), or if no mutant

phenotype currently is available (grey) according to TAIR. The

color edges indicate strength of the coexpression based on mutual

rank relationships between the individual gene pairs. Green,

orange, and red edges indicate a mutual rank relationship #10

(green), between 11 and 20 (orange) and 21 and 30 (red),

respectively, for each connected gene. The network was generated,

and modified from AraGenNet (http://aranet.mpimp-golm.mpg.

de/aranet; Mutwil et al., 2010).

(TIF)

Figure S4 Analysis of the editotype of the ocp3 mutant
as revealed by high resolution melting (HRM). (A) Editing

of the current 34 sites in A. thaliana chloroplast transcripts. Editing

regulated genes are shown in the first column. The exact positions in

the chloroplast genome sequence of each edited nucleotide is shown

in the next column. Observed changes by HRM between Col-0 and

ocp3 plants are marked with (+) symbols, and absence of differences

are marked with (2) symbol. The four editing sites found to be

affected in ocp3 plants are dashed in grey. (B) Example of HRM

analysis, monitored by decrease in fluorescence as the temperature

increase, for the amplicon encompassing ndhB transcript at position

95608 (ndhB-7 site) which suffers no variation between Col-0 and

ocp3. (C) Examples of HRM analysis where the presence of less

thermostable heteroduplexes in a sample alters the shape of the

melting curves such as occurs with amplicons for transcript ndhB at

positions 95644 (dnhB-6 site), 96579 (ndhB-3 site) or 96698 (ndhB-2

site) which suffer variation between Col-0 and ocp3.

(TIF)

Figure S5 Characterization of Arabidospis strains si-
lenced in OCP3 and generated artifitial microRNAs
(amiRNAs). The new ocp3 mutant strains (ocp3-2/amiRNA-2

and ocp3-2/amiRNA-3) were generated by artifitial microRNAs

(amiRNAs) designed to specifically target and down-regulate

OCP3. The resulting mutant phenotypes were compared to the

EMS-induced ocp3-1 mutant and Col-0. (A) Comparison of

vegetative growth and anatomical appearance between Col-0,

ocp3-1, ocp3-2 and ocp3-3. (B) RT-qPCR of OCP3 transcript levels

in the four indicated genetic backgrounds. OCP3 expression was

normalized to ACTIN2.8 expression. Bars represent mean 6 SD,

n = 3 independent replicates. (C) Lesion size resulting from P.

cucumerina infection in Col-0, ocp3-1, ocp3-2, and ocp3-3 plants at 12

days post-inoculation. Values are means and 6 SE (n = 50).

Asterisks indicate significant differences (LSD test; P,0.05). (D)

Sequence electrophoregrams corresponding to the RNA editing

sites of ndhB-6 (95644), ndhB-5 (95650), ndhB-4 (96419), ndhB-3

(96579), ndhB-2 (96698) as derived from bulk RT-PCR sequenc-

ing of amplicons from Col-0, ocp3-1, ocp3-2, and ocp3-3 plants

mRNA preparations. Editing sites are indicated by a red T residue

and unedited sites by a red C residue. Partial editing inhibition is

indicated by red T/C.

(TIF)

Figure S6 P. cucumerina-mediated editing inhibition.
Nucleotide sequences of RT-PCR products obtained from Col-0

plants at 0 hours and at 48 hours post-inoculation with P.

cucumerina, and its comparison with non-inoculated ocp3-1 plants,

are shown as sequencing electrophoregrams. Editing sites for the

four transcript encoding the chloroplast-encoded NDH complex

subunits (i.e., NdhB, NdhD, NdhF, and NdhG) are indicated by

arrows pointing to the corresponding peaks. Observed editing

inhibition following P. cucumerina infection are marked with a blue

cross above the corresponding editing site.

(TIF)

Figure S7 Sequencing electrophoregrams of nucleotide
sequence of RT-PCR products obtained from Col-0
seedlings at the times indicated following mock or
chitosan (10 mg/mL) treatment. The electrophoregrams

show the C nucleotide either edited or not edited at the

corresponding editing site of the corresponding transcript. Shown

are editing sites for which chitosan exerts editing inhibition effect.

(TIF)

Figure S8 PPRa (At4g2119) and PPRb (At4g3082) T-DNA
insertion mutants. (A) The ppra mutant (strain Salk-007827)

carries a T-DNA insertion at 340 nt upstream of the ATG

initiation codon and therefore could affect expression of the gene.

(B) The pprb mutant (strain Salk-204171) carries a T-DNA

insertion internal to the unique exon, close to the ATG initiation

codon, and therefore disrupts the ORF. Exons are indicated with

solid rectangles. T-DNA insertions are indicated with white

rectangles. (C) None of the mutations affect the normal growth of

the plants and both mutants resemble Col-0 plants in morpho-

logical phenotype. (D) RT-qPCR of PPRa transcript levels in Col-0

and in ppra mutant reveal that expression of PPRa was down-

regulated in the mutant. PPRa expression was normalized to

ACTIN2.8 expression. Bars represent mean 6 SD, n = 3

independent replicates.

(TIF)

Table S1 Genes ID co-expressed with OCP3 in cluster
59, their functional annotation and MapMan classifica-
tion term derived from cluster 59, as appearing in
the gene network generated using the AraGenNet
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platform (http://aranet.mpimp-golm.mpg.de/aranet; Mutwil
et al., 2010).

(XLSX)

Table S2 Genes showing highest co-expression index in
relation to OCP3 (see Table S1), with their correspond-
ing ID, functional annotation, and MapMan term. The

PPRs encoding genes are highlighted in blue.

(XLSX)

Text S1 Primer sequences.

(DOCX)
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