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The Eagle soars in the summit of Heaven, 

The Hunter with his dogs pursues his circuit. 

О perpetual revolution of configured stars, 

О perpetual recurrence of determined seasons, 

О world of spring and autumn, birth and dying! 

The endless cycle of idea and action, 

Endless invention, endless experiment, 

Brings knowledge of motion, but not of stillness; 

Knowledge of speech, but not of silence; 

Knowledge of words, and ignorance of the Word. 

All our knowledge brings us nearer to our ignorance, 

All our ignorance brings us nearer to death, 

But nearness to death no nearer to God. 

Where is the Life we have lost in living? 

Where is the wisdom we have lost in knowledge? 

Where is the knowledge we have lost in information? ... 

 

 

 

Thomas Stearns Eliot, “Choruses from the Rock” (1940) 
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Abstract 

The current investigation is aimed at the reconstruction and analysis of genome-scale 

metabolic models. Specifically, it is focused on the use of mathematical-computational 

simulations to predict the cellular metabolism behavior towards bio-products 

production. The photosynthetic cyanobacterium Synechococcus elongatus PCC7942 

was studied as biological system.  

This prokaryotic has been used in several studies as a biological platform for the 

synthesis of several substances for industrial interest. These studies are based on the 

advantage of autotrophic systems, which basically requires light and CO2 for growth. 

The main objective of this thesis is the integration of different types of biological 

information, whose interaction can be extract applicable knowledge for economic 

interests. To this end, our study was addressed to the use of methods for modeling, 

analyzing and predicting the behavior of metabolic phenotypes of cyanobacterium. 

The work has been divided into chapters organized sequentially, where the 

starting point was the in silico metabolic network reconstruction.  

This process intent to join in a metabolic model of all chemical reactions codified 

in genome. The stoichiometric coefficients of each reactions, can be arranged into a 

sparse matrix (stoichiometric matrix), where the columns corresponds to reactions and 

rows to metabolites. As a result of this process the first model was obtained (iSyf646) 

than later was updated to another (iSyf715). Both were generated from data -omics 

published in databases, scientific reviews as well as textbooks. To validate them, each 

one of the stoichiometric matrix together with relevant constraints were used by 

simulation techniques based on linear programming. These reconstructions have to be 

flexible enough to allow autotrophic growth under which the organism grows in 

nature. 

Once the reconstructions were validated, environmental variations can be 

simulated and we were able to study its effects through changes in outline system 

parameters. Subsequently, synthetic capabilities were evaluated from the in silico 

models in order to design metabolic engineering strategies. To do this a genetic 

variation was simulated in reactions network, where the disturbed stoichiometric 

matrix was the object of the quadratic optimization methods. As a result sets of 
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optimal solutions were generated to enhanced production of various metabolites of 

energetic and industrial interest such as: ethanol, higher chain alcohols, lipids and 

hydrogen. 

Qualitatively distinct patterns of metabolic pathway utilization were identified by 

generation of phenotypic phase planes for biomass growth and synthesis of the bio-

products as objective functions. We analyzed the variations of CO2 and light uptakes 

rates over the genome-scale metabolic network.  

Finally, genome-scale metabolic models allow us to establish criteria to integrate 

different types of data to help of find important points of regulation that may be 

subject to genetic modification. These regulatory centers have been investigated 

under drastic changes of CO2 concentration on ambient and have been inferred 

operational principles of cyanobacterium metabolism. 

In general, this thesis presents the metabolic capabilities of photosynthetic 

cyanobacterium Synechococcus elongatus PCC7942 to produce substances of interest, 

being a potential biological platform for clean and sustainable production. 
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Resumen 

La presente investigación se orienta a la reconstrucción y análisis de los modelos 

metabólicos a escala genómica. Específicamente, se centra en el uso de las 

simulaciones matemático-computacionales para predecir el comportamiento del 

metabolismo celular hacia la producción de bio-productos. Como sistema biológico fue 

estudiado la cianobacteria fotosintética Synechococcus elongatus PCC7942. 

Este procariota ha sido utilizado en diversos estudios como plataforma biológica 

para la síntesis de varias sustancias de interés industrial. Estos trabajos parten de la 

ventaja de este sistema autótrofo, el cual solo requiere de luz y CO2 para su 

crecimiento. El principal objetivo de esta tesis es la integración de diferentes tipos de 

información biológica, de cuya interacción se pueda extraer conocimiento aplicable a 

intereses económicos. Para ello, nuestro estudio se dirigió al uso de métodos para 

modelar, analizar y predecir el comportamiento de los fenotipos metabólicos de la 

cianobacteria. 

El trabajo ha sido estructurado en capítulos organizados secuencialmente, donde 

el punto de partida fue la reconstrucción in silico de la red metabólica de este 

microorganismo. Este proceso intenta agrupar en un modelo todas las reacciones 

químicas propias del metabolismo celular codificadas en el genoma. Los coeficientes 

estequiométricos de cada una de las reacciones del conjunto, pueden ser ordenados 

en una matriz dispersa (matriz estequiométricas), donde las columnas corresponden a 

las reacciones y las filas a los metabolitos. Como resultado de este proceso se obtuvo 

un primer modelo (iSyf646) que posteriormente fue actualizado a otro (iSyf715). 

Ambos fueron generados a partir de datos -ómicos publicados en bases de datos, 

revistas científicas así como en libros de texto. Para validarlos, las matrices 

estequiométricas de cada uno, junto a restricciones pertinentes, fueron utilizadas por 

técnicas de simulación basadas en programación lineal. Los modelos tenían que ser lo 

suficientemente flexible como para simular el crecimiento autotrófico bajo el cual este 

organismo crece en la naturaleza.  

Una vez validadas las reconstrucciones, se pudieron simular variaciones 

ambientales y estudiar sus efectos mediante cambios en los parámetros de contorno 

del sistema. Seguidamente fueron evaluadas las capacidades de síntesis de los 
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modelos in silico con la finalidad de diseñar estrategias de ingeniería metabólica. Para 

ello fueron simuladas variaciones genéticas en la red de reacciones, donde las matrices 

estequiométricas perturbadas fueron objeto de métodos de optimización cuadrática. 

Como resultados se generaron conjuntos de soluciones óptimos hacia la producción 

mejorada de varios metabolitos de interés energético e industrial como son: etanol, 

alcoholes de cadena larga, lípidos e hidrógeno. 

Fueron identificados cualitativamente distintos patrones de utilización de las vías 

metabólicas, mediante la generación de planos de fases fenotípicas para el 

crecimiento de la biomasa y la síntesis de bio-productos como funciones objetivos. 

Analizamos las variaciones de las velocidades de entrada de CO2 y luz sobre el 

modelo metabólico a escala genómica. 

Finalmente, los modelos metabólicos a escala genómica fueron utilizados para 

encontrar puntos importantes de regulación que pueden ser objeto de modificación 

genética. Estos centros reguladores han sido investigados bajo cambios drásticos de la 

concentración de CO2 en el ambiente y se han inferido principios operacionales del 

metabolismo de esta cianobacteria.  

En general, el estudio realizado en esta tesis presenta las capacidades metabólicas 

de la cianobacteria fotosintética Synechococcus elongatus PCC7942 para producir 

sustancias de interés, siendo una plataforma biológica potencial de producción limpia 

y sostenible. 
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Resum 

La present investigació s’orienta a la reconstrucció i l’anàlisi dels models metabòlics a 

escala genòmica. Específicament, se centra en l’ús de les simulacions matemàtiques-

computacionals per a predir el comportament del metabolisme cel·lular en la 

producció de bio-productes. Com a sistema biològic s’ha estudiat el cianobacteri 

fotosintètic Synechococcus elongatus PCC7942. 

Aquest procariota ha sigut utilitzt en diversos estudis com a plataforma biològica 

per a la síntesi de diverses substàncies d’interès industrial. Aquests treballs parteixen 

de l’avantatge d’aquest sistema autòtrof, el qual sols requereix llum i CO2 per al seu 

creixement. El principal objectiu d’aquesta tesi és la integració de diferents tipus 

d’informació biològica, de la interacció de la qual es pot extreure coneixement 

aplicable a interessos econòmics. Per a això, el nostre estudi s’ha dirigit a l’ús de 

mètodes per a modelar, analitzar i predir el comportament dels fenotips metabòlics 

del cianobacteri. 

El treball ha estat estructurat en capítols organitzats seqüencialment, on el punt 

de partida fou la reconstrucció in silico de la xarxa metabòlica d’aquest 

microorganisme. Aquest procés intenta agrupar en un model totes les reaccions 

químiques pròpies del metabolisme cel·lular codificades al genoma. Els coeficients 

estequiomètrics de cadascuna de les reaccions del conjunt poden ser ordenats en una 

matriu dispersa (matriu estequiomètrica), on les columnes corresponen a les reaccions 

i les files als metabòlits. Com a resultat d’aquest procés s’obtingué un primer model 

(iSyf646) que posteriorment fou actualitzat a un altre (iSyf715). Ambdós foren 

generats a partir de dades òmiques publicades en bases de dades, revistes científiques 

i llibres de text. Per a validar-los, les matrius estequiomètriques de cadascun, així com 

les reaccions pertinents, foren utilitzades per tècniques de simulació basades en 

programació lineal. Els models havien de ser suficientment flexibles com per a simular 

el creixement autotròfic sota el qual aquest organisme creix a la natura. 

Una vegada validades les reconstruccions, es pogueren simular variacions 

ambientals i estudiar els seus efectes mitjançant canvis en els paràmetres de contorn 

del sistema. Seguidament s´avaluaren les capacitats de síntesi dels models in silico amb 

la finalitat de dissenyar estratègies d’enginyeria metabòlica. Amb aquesta finalitat es 
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simularen variacions genètiques en la xarxa de reaccions, on les matrius 

estequiomètriques pertorbades foren objecte de mètodes d’optimització quadràtica. 

Com a resultats es generaren conjunts de solucions òptims cap a la producció 

millorada de diversos metabòlits d’interés energètic i industrial com ara: etanol, 

alcohols de cadena llarga, lípids i hidrogen. 

S’identificaren qualitativament diferents patrons d’utilització de les vies 

metabòliques, mitjançant la generació de mapes de fases fenotípiques per al 

creixement de la biomassa i la síntesi de bio-productes com a funcions objectiu. 

Analitzàrem les variacions de les velocitats d’entrada de CO2 i llum sobre el model 

metabòlic a escala genòmica. 

Finalment, els models metabòlics a escala genòmica foren utilitzats per a trobar 

punts importants de regulació que poden ser objecte de modificació genètica. Aquests 

centres reguladors han sigut investigats sota canvis dràstics de la concentració de CO2 

en l’ambient i s’han inferit principis operacionals del metabolisme d’aquest 

cianobacteri. 

En general, l’estudi realitzat en aquesta tesi presenta les capacitats metabòliques 

del cioanobacteri fotosintètic Synechococcus elongatus PCC7942 per a produir 

substàncies d’interès, com a plataforma biològica potencial de producció neta i 

sostenible. 
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Aims, Objectives and Thesis approach 

Systems Biology represents a new approach to decoding life. The ability to generate 

detailed lists of biological components, determine their interactions and generate 

genome-wide datasets has led to the emergence of this discipline. These actions form 

the basis for computer modeling and simulation which are the main study objects in 

Systems Biology.  

Complex biological processes can be simplified to mathematical models and 

analyze their functions by computer simulations. The process of building mathematical 

models and running computer simulations is iterative. The mathematical, “in silico”, 

models will have some analytical, interpretative, and predictive capabilities because 

the functional states of reconstructed networks are directly related to cellular 

phenotypes. The main difference between in silico and in vivo organism is that the in 

silico version is incomplete and missing some features. This means, that some features 

of the organisms have been preferred as research goals over others. Therefore, we 

must formulate experimentally testable hypotheses based on the in silico analysis, 

perform the experiments, and update the models.  

On the other hand, organisms have to abide by a series of constraints, including 

those arising from basic natural laws, spatial constraints, and also from the 

environment in which they live. Many possible biological functions are achievable 

under these constraints, and organisms modify their behavior by imposing constraints 

through various regulatory mechanisms to select useful functional states from the 

allowable states. A constraints-based approach emerges from these considerations 

that enable the simultaneous analysis of physiochemical factors and biological 

properties. 

Metabolism of an organism can be modeled into a network of metabolites and 

enzymes. This reconstructed network is called constraint-based stoichiometric models. 

This should integrate all genomic, genetic and biochemical information known for a 

given organism. Metabolic models, as we will see in present dissertation, can be used 

to assess, explore and design production strategies for industrially relevant 

metabolites, such as biofuels. 
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Constraint-based stoichiometric models can be used to study optimal behaviors, 

to assess possible genetic and environmental perturbations on the system, to integrate 

transcriptomic data into the metabolic network, and so on. The following work will 

study topics at this crossroad: the use of a biological system, in this case a 

cyanobacteria, in order to obtain bio-products, and understand their metabolism as a 

whole using mathematical models. 

This thesis is devoted to the reconstruction and use of such model aimed at 

improving bio-products producing strategies in cyanobacterium Synechococcus 

elongatus PCC7942.  

Objectives  

The principal objectives of this dissertation are the following:  

a)  Reconstruct a genome-scale metabolic model for Synechococcus elongatus 

PCC7942. 

Cyanobacterium Synechococcus elongatus PCC7942 has been targeted as a 

potential photon-fuelled production platform. Genome-scale metabolic models are a 

pre-requisite to study metabolism potentials as well as perturbations.  

b) Validate reconstructed metabolic models for Synechococcus elongatus 

PCC7942.  

Model validation usually focuses on testing whether the growth capabilities, or 

any particular objective flux, correspond to a given set of experimental data. The 

validation of metabolic models is the starting point for the assessment of metabolic 

capabilities. 

c) Analyze environmental and genetic variations imposed on the metabolic 

network under a systemic perspective. 

Cyanobacterium Synechococcus elongatus PCC7942 will not be a desirable 

production platform if researchers do not know its behavior under perturbations. 

Genome-scale metabolic model allows the integrative study of the entire metabolism 

under such variations or mutations performed on its genome. This may allow detecting 

which variations are critical to the well-being of this organism.  

d) Define strategies for the production of substances of socioeconomic 

importance through metabolic engineering designs.  
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Various metabolites have been identified as desirable products that can be 

produced from this organism: ethanol, higher chain alcohols, lipids and hydrogen. 

Their theoretical production limits need to be assessed and these enhanced-

production mutants need to be studied and discussed under a system-wide 

perspective.  

e) Analyze the discrete metabolic phenotypes 

A finite number of qualitatively distinct patterns of metabolic pathway utilization 

can be identified in the optimal solution space (metabolic phenotypes) by a sensitivity 

analysis over the genome-scale metabolic network.  

f) Integrate transcriptomics data into metabolic model  

Finally, strategies need to be performed in order to efficiently integrate different 

levels of biological information. In our case, we have started this by focusing on 

integrating transcriptomics data into our model. Genome-scale metabolic models 

allow establishing integrative approaches to such include different data and infer novel 

conclusions for the preceding step. This hypothesis-driven method could be important 

when knowledge useful for metabolic engineering design can be retrieved from it. 

Thesis approach 

This thesis tries to bridge the Sciences of biology and computational sciences arriving 

to System Biology. In the beginning of the manuscript (Chapter 1) we have briefly 

outlined some of the basic concepts of System Biology and its importance. In addition, 

we have looked at cyanobacteria biotechnological applications as bio-products 

production platform. The following chapters encompass different consecutive aspects 

of this project.  

In Chapter 2 we have described the reconstruction process of a genome-scale 

metabolic model of Synechococcus elongatus PCC7942. The modeling process is 

explained in detail, two versions of our model with well-described biomass 

composition are presented and connectivity analyses are done.  

Chapter 3 is devoted to the studies of the fluxomic data of Synechococcus 

elongatus PCC7942 and their variance upon environmental conditions changes. Flux 

balance analysis is used in order to have these flux simulations. Functional constraints 

are explained, simulations are described and variances among different environmental 
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situations are clarified. Alternative optima solutions are calculated from flux variability 

analysis. Finally, metabolic network stability under certain perturbations is evaluated 

with robustness analysis. 

Genetic perturbations are studied in Chapter 4, where essential genes are 

evaluated as well as mutations that lead Synechococcus elongatus PCC7942 to be a 

good production platform of value-added metabolites, such as ethanol, higher chain 

alcohols, lipids and hydrogen. Single, double and triple knockout strategies are studied 

and theoretical production limits are assessed in the light of these overproducing 

strains.  

With the goal of studying the resulting optimal metabolic phenotypes, in  Chapter 

5 we have analyzed the phenotypic phase planes generated for the growth and 

productions of the industrially-relevant bio-products mentioned above, varying 

carbon and energy sources such as CO2 and light.  

Integration of transcriptomics data on the metabolic network is the scope of 

Chapter 6. Metabolic-reactions connectivity is analyzed under CO2 acclimation. 

Regulatory hubs upon CO2 acclimation regime are identified and explained in a system-

wide integrative manner.  

Finally, Chapter 7 gathers conclusions among all chapters and comments the 

planned workflow to analyze the potentialities of Synechococcus elongatus PCC7942 as 

production platform for bio-products. 
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Chapter 1. Introduction 

Systems Biology is the research area that studies life processes from a systemic 

approach. This field requires of the collaboration of researchers from diverse 

backgrounds, including biology, biochemistry, computer science, mathematics, 

statistics, physics and chemistry. These collaborations are indispensable because the 

large-scale knowledge integration required for understand a certain biological 

phenomenon. Here, the boundaries between the different disciplines disappear, 

creating a new science, a new universe of knowledge. This introduction and overview 

of system modeling in biology aims to build the ground that supports the core of this 

thesis. 
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Chapter 1. Introduction 

1.1 Systems Biology approach 

During the middle of the past century the reductionist approaches have influenced the 

biological sciences. These approaches focused on the generation of information about 

individual cellular components, their chemical composition, and often their biological 

functions (Palsson, 2006). With the spreading out of novel technologies, increasing 

biological complex datasets have been generated. Sequencing and genetic synthesis 

technologies in biological research have been exponentially enhanced (1.5-fold/year 

since 1960s, 6-fold per year since 2005) and have reached breakthroughs starting from 

the first sequenced genomes to the first genome-scale synthesis of several organisms 

(Carr and Church, 2009; Church, 2013). Thus, assorted -omics data are now available 

that enable us to leave the reductionist approaches and use integrative paradigms (see 

figure 1.1) (Palsson, 2006; Church, 2013). One of the new research fields that emerge 

from this panorama is Systems Biology (SB). 

Figure 1.1. Biology approach evolution. From reductionist to integrative approach. 

Several questions arise from the paradigm shift in cell and molecular biology due 

to the change of cell parts analysis to system analysis. Many questions protrude from 

the list, such as: What is SB?, What is attempted to achieve with the integrative 

approaches? or What are the basis of these types of analyzes? 

SB is the bottom-up approach to quantitatively explain the properties of biological 

systems from the modeling and simulation of the interactions and characteristics of its 

macromolecular components (Snoep et al., 2006). It is the interdisciplinary research of 
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biological processes in which the interactions of internal and external elements that 

influence the cell functionality, is represented by a mathematical system. Systems 

biology has two general aims: “a narrow one, which is to discover how complex 

networks of proteins work, and a broader one, which is to integrate the molecular and 

network data with the generation and function of organism phenotypes” (Bard, 2013). 

The typical workflow implies a plurality of tasks and levels of information. This 

thorough process integrates the biological components that participate in the process, 

the study of its interactions and its reconstruction in a model, the analysis and 

mathematical depiction of the network model and its use as a basis for analyze, 

interpret and predict experimental outcomes (see figure 1.2). Prediction here means 

generating specific hypotheses that can then be experimentally tested in order to gain 

higher insight into the biological entities. These in silico models of reconstructed 

networks are then improved in an iterative fashion (Palsson, 2006).  

  

 

 

 
 

 

Figure 1.2. The plurality of information (high-throughput data) needed for model 
reconstruction and in silico modeling methods implemented in Systems Biology.  

1.2  The genome-scale metabolic network model 

As we mentioned above, reductionist viewpoints cannot, by definition, provide a 

coherent understanding of whole cell functions. That´s why the modeling of whole 

biological systems, as a top-down approach, has received increasing attention. 

Genome-scale metabolic models are examples of modeling approaches that have been 

developed to predict systems-level phenotypes, and which have had success in recent 

years (O’Brien et al., 2013). Many of them have been extended to include different 
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kinds of information, for example gene product expression levels (Montagud et al., 

2010; O’Brien et al., 2013), as well as to integrate many more cellular processes and 

can be used to simulate dynamic cellular states, such as the whole-cell model of the 

human pathogen Mycoplasma genitalium (Karr et al., 2012). Thus, metabolic models 

have been useful for generating new hypotheses and targeting promising areas for 

biotechnology (Esvelt and Wang, 2013). 

Mathematical metabolic models accounting for genome-scale information have 

been reconstructed for nearly twenty organisms (and numbers and rising each month), 

mostly through thorough curation efforts. Reconstructed in silico organisms are 

computer representations of their in vivo counterparts (Palsson, 2006). However, 

because biological systems are inherently nonlinear and seldom show emergent 

properties, “the whole is more than the sum of the components” (Szallasi et al., 2006), 

the construction of the metabolic networks is not only a compilation of chemical 

reactions but also gathering of constraints, evidences and such that will make up the 

basis for in silico analyses of the organism´s behavior. The reconstruction of these 

models is based on genetic information available in the genomes of organisms. 

Furthermore, in order to build a meaningful model, researcher needs experimental 

data together with established knowledge, such as physiological and biochemical 

information that is accessible from literature, journal articles, experiments and 

databases. At present, the majority of the organisms lack enough data to support this 

process. Therefore, the in silico analyses of these reconstructions could lead to failed 

predictions and model updates will take place successively. Thus, the process of 

building mathematical models and running computer simulations of complex biological 

processes is iterative (see figure 1.3). On the other hand, the quality of the metabolic 

models depends on the accuracy of the information. In certain instances, lack of 

clearness and quality turns out to be a problem that undermines the faithfulness of the 

reconstructed models, especially for erroneous entries and false negatives and false 

positives (Weise et al., 2006). The relationships between complex metabolic processes 

usually falls to properly determine the processing of substrates into products and their 

stoichiometry, if this transformation is spontaneous or catalyzed by enzymes or if 

cofactors are involved. Additionally, the sub-cellular localization of the reaction and 
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some thermodynamic aspects such as irreversibility must be known (Förster et al. 

2003). 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. The iterative workflows for in silico metabolic model reconstruction. Adapted from 
(Palsson, 2000). 

Several protocols have been published to define in detail each one of the steps 

that should lead to a proper reconstruction, as well as the software packages and 

databases that can assist in this labor (Förster et al. 2003; Notebaart et al., 2006; Feist 

et al., 2009; Thiele and Palsson, 2010). Presently, the process of reconstruction is long 

and arduous mainly due to its manual construction and for quality control checks 

(Thiele and Palsson, 2010). Some reports assert that a genome-scale metabolic 

network reconstruction can easily take from several months up to 2 years (Förster et 

al. 2003; Duarte et al., 2007). Furthermore, some works have attempted to automate 

the metabolic reconstruction, or at least some parts of it, in order to cut down the 

time needed for such a project, such as the COPABI project (Reyes et al., 2012). 

However, these efforts have been hampered with the current problems in databases 

information and genome annotations (Feist et al., 2009). Thereby, resulting algorithms 

still need the supervision of experts in order to be able to generate quality metabolic 

networks models as a basis for predictive analysis (Thiele and Palsson, 2010).  

Some authors declare that the genome-scale constraint-based metabolic models 

are a natural continuation of genome annotation. Others suggest that does not 

systematic metabolic model reconstruction pipeline exists yet.  
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1.3 Metabolic network analysis 

1.3.1 Metabolic regulation and control  

Work from Voet and Voet in 2004 is a very nice way of seeing metabolism from a 

system-wide perspective. They brought together thermodynamics, biology and system 

biology in order to understand metabolic behavior. They explained that living 

organisms are thermodynamically open systems that tend to maintain a steady-state 

rather that reaching equilibrium. Equilibrium that would only happens in the case of 

death for living things. Thus, the flux (rate of flow) of intermediates through a 

metabolic pathway is constant; that is, the rates of synthesis and breakdown of each 

pathway intermediate maintain a constant concentration. Such a state will most 

probably be one of maximum thermodynamic efficiency. Therefore, these authors 

state that, regulation of the steady-state (its homeostasis) must be maintained when 

the flux changes through the pathway in response to changes in demand (Voet and 

Voet, 2004).  

Thus, we have here a steady-state and the regulation of its elements in order to be 

able to adapt this steady state to whichever perturbation that may happen. In this 

sense, the concepts of metabolic control and metabolic regulation are usually 

confused. Usually, metabolic regulation is defined as a process by which the steady-

state flow of metabolites through a pathway is maintained, whereas metabolic control 

is the influence exerted on the enzymes of a pathway in response to an external signal 

in order to alter the flux of metabolites (Crabtree and Newsholme, 1987; Kacser and 

Burns, 1995). 

As Voet and Voet continue, there are two principal reasons why metabolic flux 

must be controlled: one is to provide products at the rate they are needed, that is, to 

balance supply with demand; and the second is to maintain the steady-state 

consentrations of the intermediates in a pathway within a narrow flux range 

(homeostasis) (Voet and Voet, 2004).  

According to these authors, organisms maintain homeostasis for several reasons: 

1. In an open system, such as metabolism, the steady-state is the state of 

maximum thermodynamic efficiency. 
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2. Many intermediates participate in more than one pathway, so that changing 

their concentrations may disturb a delicate balance. 

3. The rate at which a pathway can respond to a control signal slows if large 

changes in intermediate concentrations are involved. 

4. Large changes in intermediate concentrations may have deleterious effects on 

cellular osmotic properties. (Voet and Voet, 2004) 

The level of metabolic flux, and hence, the concentrations of intermediates at 

which a pathway is maintained, vary with the necessities of the organism through a 

highly responsive system of precise controls. Such pathway are analogous to rivers that 

have been dammed to provide a means of generating electricity, in the words of Voet 

and Voet. Although water is continually flowing in and out of the lake formed by the 

dam, a relatively constant water level is maintained. The rate of water outflow from 

the lake is precisely controlled at the dam and is varied in response to the need for 

electrical power (Voet and Voet, 2004). 

1.3.2 Metabolic flux 

A metabolic pathway is a sequence of enzyme-catalyzed reactions. To define the flux 

through the pathway researchers have to consider each one of its reaction steps. The 

flux of metabolites, J, through each reaction step is the rate of the forward reaction, vf, 

less that of the reverse reaction, vr (Voet and Voet, 2004):   

         

At equilibrium, by definition, there is no flux (J = 0), although vf and vr may be quite 

large. At the other extreme lie reactions that are far from equilibrium, vf  >> vr , so that 

the flux is essentially equal to the rate of the forward reaction, J ≈ vf. The flux through 

a steady-state pathway is constant and is set (generated) by the pathway's rate-

determining step (or steps). Consequently, control of flux through a metabolic 

pathway requires: (1) that the flux through this flux-generating step varies in response 

to the organism's metabolic requirements and (2) that this change in flux be 

communicated throughout the pathway to maintain a steady-state (Kacser and Burns, 

1995; Fell, 1997; Voet and Voet, 2004). 

According to the points made by the authors Voet and Voet, it has been seen that 

the fractional change in flux through a metabolic pathaway´s rate-determining step(s) 

rf v  -v=J
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to the fractional change in subtrate concentration necessary to communicate that 

change to the following reaction steps is governed by (Voet and Voet, 2004):  

                                   

 

where ΔJ/J is the fractional change in flux through the rate-determinig step(s), S is the 

product of the rate-determinig step(s) and Δ[S]/S is the fractional change in vf (Δvf/vf), 

assuming the simplest and most common situation of  [S] << KM in Michaelis-Menten 

equation. 

Following these authors’ reasoning, this quantity is a measure of the sensitivity of 

a reaction´s fractional change in flux to its fractional change in substrate 

concentration. This quantity is also a measure of reactions reversibility, that is, how 

close it is to equilibrium: 

a) In an irreversible reaction, vr approaches 0 (relative to vf) and therefore vf/(vf - 

vr) approaches 1. The reaction therefore requires a nearly equal fractional 

increase in its substrate concentration in order to respond to a fractional 

increase in fluxes. 

b) As a reaction approaches equilibrium, vr approaches vf and hence vf/(vf - vr) 

approaches infinity. The reaction´s response toa fractional increase in flux 

therefore requires a much smaller fractonal increase in its substrate 

concentration.  

Consequently, the ability of a reaction to communicate a change in flux increases 

as the reaction approaches equilibrium. A series of sequential reactions that are all 

near equilibirum therefore have the same flux and maintain concentrations of 

intermediates in a steady-state (homeostasis) (Voet and Voet, 2004). 

A typical feature of metabolic control exerted by the cell is the control of the rate 

of the enzyme that is responsible of the rate-limiting step of every metabolic 

pathway.These enzymes are the so-called regulatory enzymes and most of them are 

allosterics. Thus, they are subject to feedback inhibition and are often also controlled 

by covalent modification (Fell, 1997; Voet and Voet, 2004). 

Voet and Voet rise several questions regarding this control: Are these regulatory 

enzymes really rate limiting for the pathway? Is there really only one step in the 

pathway that is rate limiting, or migth there be a number of enzymes contributing to 

f

f

vJ [ ]
=  

J [ ] v -  r

S
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the regulation of the pathway? Does controlling these enzymes really control the flux 

of metabolites through the pathway or is the function of feedback inhibition really to 

maintain a steady-state? These are complicated questions with complicated answers, 

and these answers will not be the main scope of present thesis (Voet and Voet, 2004). 

1.3.3 Constraint-based computer simulation  

1.3.3.1 Constraints on cellular functions 

The evolution process is intrinsically associated to biological sciences. Biological 

systems have adapted to diverse environments over the evolutive history, and as they 

replicate, they produce descendants that are not genetically identical to the parent, 

consequently generating a population with slight differences between individuals. As 

Palsson wrote it in 2006, “To survive in a given environment, organisms must satisfy 

myriad constraints, which limit the range of available phenotypes. All expressed 

phenotypes resulting from the selection process must satisfy the governing 

constraints. Therefore, clear identification and statement of constraints to define 

ranges of allowable phenotypic states provides a fundamental approach to 

understanding biological systems that is consistent with our understanding of the way 

in which organism operate and evolve” (Palsson, 2006).  

Different types of constraints limit cellular functions and will have to have a 

presence in our models. There are both nonadjustable and adjustable constraints. The 

former can be used to restrict the range of possible behaviors, for example, the physic-

chemical factors, the connectivity or the capacity characterized by maximum and 

minimum flux range; and the later can be used to further limit allowable behaviors, 

such as: the reaction rates or adjustable capacity factor by transcriptional regulation. 

One has to bear in mind that these constraints can be adjusted through an 

evolutionary process or through changing environmental conditions. In addition, the 

adjustable constraints may vary in a bio-population from one individual to another. 

There are diverse forms to classify these restrictions, and many authors have discussed 

them from different points of view. One of these authors, Price et al. mentioned four 

constraints categories (Price et al., 2004b), which are: fundamental physico-chemical 
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constraints, spatial or topological constraints, condition-dependent environmental 

constraints and regulatory or self-imposed constraints.  

a) Physico-chemical constraints: Many of these constraints govern cellular 

processes, and these constraints are inviolable and provide “hard” constraints 

on cell functions. Conservation of mass, energy and momentum represent hard 

constraints. The interior of a cell are densely packed, forming an environment 

where the viscosity may be on the order of 100-1000 times that of water. 

Diffusion rates inside a cell may be slow, especially for macromolecules (Elowitz 

et al., 1999). The confinement of a large number of molecules within a semi-

permeable membrane causes high osmolarity. Therefore, cells require 

mechanisms for dealing with osmotic pressure generated, such as sodium-

potassium pumps or a cell wall (Werner and Heinrich, 1985; Lew and Bookchin, 

1986). Intracellular reaction rates are determined by local concentrations inside 

cells and might be limited by mass-transport. Reactions have maximal reaction 

rates (denoted with vmax) estimated to be about a million molecules per μm3 

per second. Furthermore, biochemical reactions must result in a negative free-

energy change to proceed in the forward direction.  

b) Topological constraints: The crowding of molecules inside cells leads to 

topological, or three-dimensional, constraints. The linear dimension of the 

bacterial genome is on the order of 1000 times that of the length of the cell. 

DNA must therefore be tightly packed in the nuclear region in an accessible and 

functional configuration since DNA is only functional if it is accessible. Thus, at 

least two competing needs (to be tightly packed but easily accessible) 

constraint the physical arrangement of genome. 

c) Environmental constraints: These constraints on cells, such as nutrient 

availability, pH, temperature, osmolarity, the availability of electron acceptors, 

etc., are typically time and condition-dependent. Environmental constraints are 

of fundamental importance for the quantitative analysis of microorganisms 

functions; however, natural environment may be hard to define precisely. 

Defined media and well-documented environmental conditions are needed to 

integrate data from various laboratories into quantitative models that are both 
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accurately descriptive and predictive. Laboratory experiments with undefined 

media composition are often of limited use for quantitative in silico modeling.  

d) Regulatory constraints: These constraints are fundamentally different than the 

three categories discussed above. They are self-imposed and are subject to 

evolutionary change, and can thus vary in time. For this reason, these 

constraints may be referred to as regulatory restraints, in contrast to physico-

chemical constraints, the topological constraints, and time-dependent 

environmental constraints. Based on environmental conditions, regulatory 

constraints provide a mechanism to eliminate suboptimal phenotypic states 

and confine cellular functions to behaviors of increased fitness. Regulatory 

constraints are implemented by the cell in a variety of ways, including the 

amount of gene products made (transcriptional and translational regulation) 

and their activity (enzyme regulation). 

Constraints can be applied to the analysis of reconstructed networks to narrow 

achievable behaviors, and can be applied in a successive manner. The imposition of a 

constraint leads to solutions spaces rather than the computation of a single solution, 

the hallmark of theory-based models. Cellular behaviors (i.e., functional states) can be 

attained within this solution space. Each allowable behavior basically represents a 

different phenotype based on the component list, the biochemical properties of the 

components, their interconnectivity, and the imposed constraints. The constraint-

based approach leads to in silico analysis procedures that are helpful in analyzing, 

interpreting, and occasionally predicting the genotype-phenotype relationship.  

1.3.3.2  Methods for analyzing metabolic network states 

There are three types of metabolic models (Baart and Martens, 2012): 

a) Steady-state models, which only take into account the flux of metabolites 

through the system in steady-state. 

b) Steady-state kinetic models, which take into account the flux of metabolites 

through the system in steady-state and contain at least one kinetic equation 

that relates the concentration of a metabolite to a reaction rate. 

c) Dynamic kinetic models, which take into account the kinetics of all different 

enzymes involved in the reaction network. 
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In an ideal situation, the model contains different levels of information, including 

reaction stoichiometry, reaction kinetics and regulatory information. However, the 

required kinetic and regulatory information is very scarce, despite there are several 

studies in this direction (Tomita, 2001; Covert et al., 2004; Bruggeman and Westerhoff, 

2006; Bruggeman et al., 2008; De Mey et al., 2010). For this reason researchers 

generally use a (pseudo) steady-state approximation, using the reaction stoichiometry 

in combination with mass balancing of the fluxes (Taymaz-Nikerel et al., 2010). The 

metabolic capabilities of the constructed network may be calculated using constraint-

based computer simulation methods. Towards this, a variety of tools/algorithms is 

available and can be applied on metabolic models.  Among them, we can find Flux 

Balance Analysis (FBA) (Varma and Palsson, 1993; Edwards et al., 1999), Metabolic Flux 

Analysis (MFA) (Schilling et al., 1999; Varma and Palsson, 1994c), Elementary Flux 

Modes (EFM) (Schuster et al., 1999), Extreme Pathways (ExPa) (Schilling et al., 1999), 

Robustness Analysis (RNA) (Edwards and Palsson, 2000), Phenotypic Phase Plane 

analysis (PhPP) (Edwards et al., 2002), Minimization of Metabolic Adjustment (MOMA) 

(Segrè et al., 2002), Flux Variability Analysis (FVA) (Mahadevan and Schilling, 2003) and 

Regulatory On-Off Minimization (ROOM) (Shlomi et al., 2005). 

These methods, among others, can be largely classified into categories according 

to its purposes (see figure 1.4), such as: finding best or optimal states in the allowable 

range; investigating flux dependencies; studying state all allowable states; altering 

possible phenotypes as a consequence of genetic variations; and defining and 

imposing further constraints (Price et al., 2004b). 
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Figure 1.4. A summary of system biology´s tools for constraint-based analysis. As indicated, 
several methods are being developed at various laboratories to analyze the solution space. 
Taken from (Price et al., 2004b). 

1.3.3.3 Finding optimal states  

Each one of the metabolic reactions that take place into the cell can be represented as 

chemical equations with the stoichiometry associated to each species. All the 

stoichiometric information can be represented in a matrix array: the stoichiometric 

matrix. Indirectly, additional information could be associated with this matrix such as: 

enzyme complex formation, transcriptomics data, open reading frames, etc. 

“Therefore, once reconstructed, the stoichiometric matrix represents a biochemically, 

genetically, and genomically structured database. This matrix is formed from the 

stoichiometric coefficients of the chemical equations derived from reaction network. It 
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is organized such that every column corresponds to a reaction and every row 

corresponds to a metabolite; and the entries in the matrix are stoichiometric 

coefficients. Each column that describes a reaction is constrained by the rules of 

chemistry, such as elemental balancing. Every row thus describes the reactions in 

which that compound participates and therefore how the reactions are 

interconnected” (Varma and Palsson, 1994a; Palsson, 2006).  

Mathematically, the stoichiometric matrix is a linear transformation of the 

metabolic flux vector to a vector of time derivates of the concentration vector. The 

vector produced by a linear transformation is in four fundamental subspaces. The 

resulting vector is in two orthogonal subspaces: the column and left null space; and the 

vector being mapped is also in two orthogonal subspaces: the row and null spaces 

(Palsson, 2006). 

For example, these vector subspaces are distinguished each other by (Palsson, 

2006): 

a) Null space. The null space of S contains all the steady-state flux distributions 

allowable in the network. The steady state is of much interest since most 

homeostatic states are close to being steady states. 

b) Row space. The row space of S contains all the dynamic flux distributions of a 

network and thus the thermodynamic driving forces that change the rate of 

reaction activity.  

c) Left null space. The left null space of S contains all the conservation 

relationships, or time invariants, that a network contains. The sums of 

conserved metabolites or conserved metabolic pools do not change with time 

and are combinations of concentration variables. 

d) Column space. The column space of S contains all the possible time derivatives 

of the concentration vector and thus shows how the thermodynamic driving 

forces move the concentration state of the network. 

Since there are typically only two, three, or four compounds that participate in a 

reaction out of hundreds of compounds participating in a network, the stoichiometric 

matrix is sparse, and thus, mostly comprises zero elements (Varma and Palsson, 1994a; 

Palsson, 2006). In biological networks the number of reactions is typically greater than 
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the number of metabolites. This results in a plurality of feasible steady-state flux 

distribution. Although infinite in number, the steady-state solutions lie in a restricted 

region, the so-called null space of the stoichiometric matrix. The null space can be used 

to define the range of all allowable phenotypes of a given network, since it specifies all 

the steady-state flux distributions that it can embed (Varma and Palsson, 1994a; 

Palsson, 2006). Conversely, due to the fact that only a particular set of phenotypes are 

expressed under particular conditions, the optimization techniques can be used to find 

particular solutions that maximize or minimize a particular biological objective. The 

desired objective is described mathematically, which takes the form of an objective 

function (that we will call Z). 

The mathematical representation of the objective functions enables the 

formulation of a range of functionalities and network states of interest. The definition 

of these objectives can be used to assess the metabolic potentialities of the genome-

scale metabolic network (Price et al., 2002; Papin et al., 2002), to represent 

exploration of physiologically meaningful objectives (Edwards et al., 2001; Ibarra et al., 

2002), or design metabolic engineering strategies towards an in silico strains creation 

to improve production of a desired bio-product (Varma and Palsson, 1994b; Liao et al., 

1996; Burgard et al., 2003). Some of them are displayed in figure 1.5. 

The objective function can be either a linear or nonlinear function. Generally, 

these functions together with the imposed constraints are linear and thus, linear 

optimization or linear programming (LP) can be used to solve the optimization problem 

(Bonarius et al., 1997; Kauffman et al., 2003). In 1992, Savinell and Palsson developed 

and published an approach that has been adapted to LP: the Flux Balance Analysis 

(FBA) (Savinell and Palsson, 1992a, 1992b). Since then, FBA is a widely used tool for 

studying biochemical networks, in particular genome-scale metabolic network 

reconstructions (Orth et al., 2010).  

In detail, FBA assumes that metabolic networks will reach a steady-state 

constrained by the stoichiometry. The stoichiometric constraints lead to an 

underdetermined system; however, a bounded solution space of all feasible fluxes can 

be identified (Schilling et al., 2000a). 
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Maximize Z 

Z = Metabolite synthesis (Varma et 
al., 1993a; Montagud et al., 2010)  

Z = Biomass formation (Edwards et 
al., 2001; Ibarra et al., 2002; 
Montagud et al., 2010; Triana et al., 
2014) 

Z = Biomass and metabolite synthesis 
(Burgard et al., 2003; Pharkya et al., 
2003; 2004) 

Minimize Z 

Z = ATP synthesis (Ramakrishna et al., 
2001; Vo et al., 2004) 

Z = Nutrient uptake (Famili et al., 
2004) 

Z = Euclidean distance (Segrè et al., 
2002) 

 
Figure 1.5. Some examples of biological objective functions that are widely used to perform in 
silico simulations.  

This solution space can be further restricted by specifying maximum and minimum 

fluxes through any particular reaction and by specifying other constraints (see figure 

1.6). Thus, obtaining these constraints gives us the performance capability of the 

metabolic network, and the constraints can be refined by adding experimental data 

(Förster et al., 2003). 

Figure 1.6. Graphical scheme of constraint-based modeling. With no constraints, the flux 
distribution of a biological network may lie at any point in a solution space. When mass 
balance constraints imposed by the stoichiometric matrix (S) and some of substrate conversion 
rates are known from measurements, a solution that optimizes a particular objective, like 
maximize biomass formation or maximize product formation can be calculated using linear 
programming. Adapted from (Orth et al., 2010) and (Baart and Martens, 2012). 
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Once the solution space describing the capability of the organism is defined, the 

network’s behavior can be studied by optimizing the steady-state behavior with 

respect to some objective function. The simulation results can then be experimentally 

verified and used to further strengthen the model. Ultimately, the iterative model 

refinement procedure can result in predictive models of cellular metabolism. 

Nowadays there are a set of software tools that ease the work with this algorithm. 

In present work we have extensively used OptGene software, that can be used offline 

(Patil et al., 2005; Rocha et al., 2010) and also online through BioMet Toolbox (Cvijovic 

et al., 2010) (http://www.sysbio.se/BioMet). Other software are COBRA Toolbox 

(Becker et al., 2007), the latest version of Pathway Tools (Latendresse et al., 2012) and 

some freely packages available for academic research such as PyNetMet (Gamermann 

et al., 2014), CellNetAnalyzer (Klamt et al., 2007) and FBA-SimVis (Grafahrend-Belau et 

al., 2009), that allows the solving of linear programming problems such as Flux Balance 

Analysis.  

Several reports show that FBA predictions, with maximum growth rate as the 

objective function, are consistent with experimental flux data, thus, the assumption of 

optimality for a wild-type bacterium is justifiable. However, the same argument may 

not be valid for genetically engineered knockouts or other bacterial strains that were 

not exposed to long-term evolutionary pressure.  Segrè et al. addressed this point by 

introducing the method of minimization of metabolic adjustment (MOMA) improving 

the prediction efficiency of FBA for studying biological system mutants (Segrè et al., 

2002). These authors tested the hypothesis that by knocking out metabolic fluxes cells 

undergo a minimal redistribution with respect to the flux configuration of the wild 

type. 

MOMA and FBA are constraint-based analysis methods based on the same 

stoichiometric constraints. But, in MOMA the optimal growth flux for mutants is 

relaxed. “Instead, for perturbations such as gene deletions, MOMA approximates 

metabolic phenotype by performing distance minimization in flux space” (Segrè et al., 

2002). Thus, we can go further into the study of the genetic variations that can perturb 

the metabolic network.  
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Unlike FBA, the mathematical formulation in MOMA yields a quadratic 

programming problem. In MOMA we search for a point in the feasible space of the 

mutant strain that has minimal distance from a given flux vector of the feasible space 

of the wild-type strain (see figure 1.7) (Segrè et al., 2002). The goal is to find the vector 

that belonging to the feasible space for the mutant strain such that the Euclidean 

distance:  

 

 

is minimized. 

Figure 1.7. Altered solution spaces. Solution spaces are altered by perturbations in the 
underlying biochemical network, such as occur with gene deletions. The alternative MOMA 
knockout solution, calculated through quadratic programming, can be thought of as a 
projection of the FBA optimum onto the feasible space of the mutant. The mutant FBA 
optimum and the corresponding MOMA solution are, in general, distinct. Taken from (Price et 
al., 2004b). 

1.4 In silico guided metabolic engineering for bio-products synthesis 

from CO2 and photons 

Molecular biology methods have allowed the rational perturbation of cells. 

“Historically, these methods have been limited to gene insertions or mutations at 

random or at a few pre-defined locations across the genome. The handful of methods 

capable of targeted gene editing suffered from low efficiencies, significant labor costs, 

or both. Recent advances have dramatically expanded our ability to engineer cells in a 

directed and combinatorial manner” (Esvelt and Wang, 2013). 
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Ducat et al. in a special issue of Applied Microbiology journal commented: 

“Laboratory-scale systems for bioconversion of CO2 and light to bio-products have 

been investigated since the biotechnology generation of valuable metabolites has 

been widely used. Most bioindustrial processes rely on microorganisms metabolizing 

carbon compounds to generate a diverse array of valuable chemicals, such as amino 

acids, vitamins and organic acids. In such production schemes, the cost of this 

compounds feedstock, such as carbohydrate, is a significant fraction of the total 

production cost. The use of photosynthetic organisms offers an alternative production 

approach, in which carbohydrate feedstock costs would be eliminated. Moreover, with 

the advent of global warming, there is growing interest in processes that couple CO2 

capture to chemical synthesis through the use of photosynthetic microorganisms” 

(Ducat et al., 2011). The need is bringing forth great creativity in uncovering new 

candidate bio-molecules that can be made via metabolic engineering (Wackett, 2011).  

Even though several microorganisms have been employed for the biotechnological 

synthesis of value-added compounds, the productive potential of cyanobacterial group 

has remained largely unexplored. Cyanobacteria are the only known prokaryotes with 

the capability to perform oxygenic photosynthesis and are attracting increasing 

attention as suitable host organisms for the production of bio-products. Cyanobacteria 

species have many advantages as hosts for biotechnological practices, such as: rapid 

genetics, simple input requirements, carbon sequestration, and tolerance of marginal 

agricultural environments, among others. Ducat et al., in 2011 reviewed the recent 

research involving the engineering of cyanobacterial species for the production of 

valuable bioindustrial compounds, including natural cyanobacterial products (e.g. 

sugars and isoprene), biofuels (e.g. alcohols, alkanes and hydrogen), and other 

commodity chemicals. These authors highlighted biological and economic obstacles to 

scale cyanobacterial production and discussed the methods for increasing 

cyanobacterial production efficiencies (Ducat et al., 2011). While some strategies for 

improving photochemical efficiencies within the carbon fixation machinery might be 

possible, many are impacted by insufficient knowledge of cyanobacterial biology. 

Cyanobacteria are under-represented in the scientific literature relative to other 

microbes, although information regarding these species has been steadily increasing in 



 Model-based analysis and metabolic design of a cyanobacterium for bio-products synthesis __                               ____   
 

_____________________________________________________________________________ 
41 

 

recent years (Burja et al., 2003). “It is particularly important to recognize that 

cyanobacteria are not simply single-celled plants; their metabolism also differs in 

fundamental ways. High-throughput analysis and systems biology approaches, such as 

metabolomics, might help close the gap in the understanding of cyanobacterial 

biochemistry” (Ducat et al., 2011). 

One of the attractive bio-products that have been targeted in cyanobacteria is 

biofuels. This is because the necessity to develop and improve sustainable energy 

resources due to the finite nature of fossil fuels (Quintana et al., 2011). Nowadays, 

there are many factors that suggest that the biofuels landscape is disorganized. It is 

controlled by the rules imposed by economic forces and driven by the necessity of 

finding new sources of energy, particularly for motor fuels. “These next generation 

fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. 

Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is 

derived directly by photosynthetic fuel-producing organisms or via intermediary 

biomass polymers that were previously derived from carbon dioxide” (Wackett, 2011). 

Computational modeling improvements and modular construction approaches could 

be the key that support the analysis and design of novel biofuels. As well as, when 

metabolic engineering is an alternative to take into account, the efficiency associated 

to this alternative is an important key for make it relatively inexpensive. “For example, 

novel metabolic networks have been constructed to make long-chain alcohols and 

hydrocarbons that have superior fuel properties and are cheaper over the current 

alcohols. A particularly exciting approach is to implement a direct utilization of solar 

energy to make a usable fuel. A number of approaches use the components of current 

biological systems, but re-engineer them for more direct, efficient production of fuels” 

(Wackett, 2011). 

1.4.1 Cyanobacterium model as a potential platform for metabolic 

engineering 

Cyanobacteria are a large group of photosynthetic oxygen-evolving prokaryotes of a 

great breadth of morphologies and ecologies. They originated during the Precambrian 

era (2.8×109 years ago) and since then play key roles in global carbon and nitrogen 

cycles (Shih et al., 2013). These microorganisms can be found in almost every 
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terrestrial and aquatic habitat: in oceans, freshwater and even in bare rock and soil. 

They can occur as planktonic cells or form phototrophic biofilms in fresh water and 

marine environments, they occur in damp soil, or even on temporarily moistened rocks 

in deserts. Cyanobacteria account for 20-30% of Earth's photosynthetic productivity 

and convert solar energy into biomass-stored chemical energy at the rate of ~450 TW 

(Pisciotta et al., 2010). Furthermore, some of these organisms are a significant factor in 

the oxygen cycle and then in global ecology.  

The genus Synechococcus encompasses cyanobacteria that have a broader 

distribution in freshwater, marine environments and are less abundant in oligotrophic 

(low nutrient) regions. This genus is among the most important photosynthetic 

bacteria in the marine environment, estimated to account for about 25% of the 

primary production that occurs in typical marine habitats, making them one of the 

most significant photosynthetic bacteria (Scanlan and Nyree, 2002). Synechococcus 

elongatus (previously known as Anacystis nidulans) is specie into this genus that has a 

rod-shaped appearance and is oligotrophic, having the ability to survive in freshwater 

environments with low nutrients. Living habitats include freshwater hot springs and 

other freshwater habitats preferably with a mesophilic or moderate temperature 

range (Waterbury et al., 1986). Two genomic strains of this cyanobacterium have been 

sequenced and are closely related to each other: Synechococcus elongatus PCC6301 

(Sugita et al., 2007) and Synechococcus elongatus PCC7942 (van den Hondel et al., 

1980; Van der Plas et al., 1992; Chen et al., 2008). 

Synechococcus elongatus PCC7942 represent a model organism for studying 

several behaviors, such as circadian rhythms because it has an “endogenous timing 

mechanism” by which it can create and maintain a 24 hour clock period (Andersson et 

al., 2000; Kondo et al., 1993). Because, it was the first cyanobacterium to be cloned by 

DNA added exogenously (Shestakov and Khyen, 1970), and due to their highly versatile 

metabolism and their ability to directly convert solar energy into hydrocarbons, this 

microorganism has been investigated for biotechnological applications. Basically, it 

uses the sun’s energy, H2O and CO2 (together with some minerals) to synthesize its 

storage components, i.e. carbohydrates, lipids and proteins. These storage 

components form a potential feedstock which can be converted into bio-products. 
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Thus, these microorganisms possess special features which make them a promising 

model to transform all these carbon sources into valuable substances (Quintana et al., 

2011). In spite of this, its domestication is at the forefront of current global challenges, 

such as the efficient supply of carbon skeletons from non-fossil resources and the 

efficient sequestration of atmospheric CO2.  

Microbial pathway engineering has been mainly applied to industrial processes for 

biosynthesis of products of high economic value, which is not yet the case for some 

products studied in chapter 4, and is one of the motivations of this thesis. 

Mathematical modeling of Synechococcus elongatus PCC7942 metabolism is therefore 

important to evaluate maximum theoretical product yield and to understand the 

interactions between biochemical energy, carbon fixation and assimilation pathways 

from a system-wide perspective. 
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Chapter 2. Reconstruction of 

cyanobacterium genome-scale 

metabolic network 
The reconstruction of genome-scale metabolic models and their validation represent a 

great challenge in systems biology. This challenge allows researchers to use these as 

stoichiometric simulation models, phenotypic functions of interest can be predicted. 

Here, we present a comprehensive integration of different types of information into a 

cyanobacterium metabolic network model, as well as the study of its topological 

properties. 

 

 

 

 

 

 

 

 

 

 

 
 
Part of the contents of this chapter are based on parts of the following journal articles:  

 Triana J, Montagud A, Siurana M, Gamermann D, Torres J, Tena J, Fernández de Córdoba 
P, Urchueguía JF. Generation and evaluation of a genome-scale metabolic network model of 
Synechococcus elongatus PCC7942. Submitted at Metabolites. 

 Triana J, Montagud A, Gamermann D, Fernández de Córdoba P, Urchueguía JF. In silico 
analysis for bio-products synthesis through genome-scale reconstruction of the Synechococcus 
elongatus PCC7942 metabolic network. In preparation. 

 Reyes R, Gamermann D, Montagud A, Fuente D, Triana J, Urchueguía JF, Fernández de 
Córdoba P. (2012) Automation on the generation of genome scale metabolic models. Journal of 
Computational Biology, 19(12): 1295-1306. 



                                                                                                                                                                                                                                                      
_______________________________________Chapter 2. Reconstruction of cyanobacterium genome-scale metabolic network 

 
 

_____________________________________________________________________________ 
46 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Model-based analysis and metabolic design of a cyanobacterium for bio-products synthesis ___ ______________________ 

_____________________________________________________________________________ 
47 

 

Chapter 2. Reconstruction of cyanobacterium genome-scale 

metabolic network 

2.1 Introduction 

The development of genomic sequencing and genetic mapping together with omics-

science opened up the way towards the quantitative study of biological systems. In this 

panorama, systems biology has emerged as a promising predictive science on a large 

and quantitatively deep scale (Snoep et al. 2006). In this field, the metabolic pathways 

and its capabilities constitute the central insight (Papin et al., 2003). The 

reconstruction of the metabolic genotype into an in silico model is increasingly 

considered an important technology for industrial applications. Optimal characteristics 

within the metabolic network capabilities under physiological and genetic conditions, 

such as different growth media and gene knockout candidates can be identified 

(Edwards et al., 2001). These analyses have been used by researchers to design 

metabolic engineering strategies in a variety of problems (Montagud et al., 2010, 2011; 

Park et al., 2011; Milne et al. 2011). One of such addressed problems has been the 

upcoming energy crisis shortage, causing the funding of many projects that focus on 

the biomass-derived fuels production. The production of biofuels in microorganism has 

been explored in attractive hosts like cyanobacteria. These organisms have simple 

growth requirements; grow to high densities, and use light, carbon dioxide, and other 

inorganic nutrients efficiently (Deng and Coleman, 1999).  

The oligotrophic cyanobacterium Synechococcus elongatus PCC7942 has become 

an interesting platform for bioconversion of light and CO2, into value-added 

substances.  This freshwater and unicellular microorganism (formerly known as 

Anacystis nidulans R2), stands as a prokaryotic model for exploring the circadian 

rhythms (Andersson et al., 2000; Kondo et al., 1993). Engineering techniques for 

genetic manipulation of cyanobacterial including this strain have been reported by, for 

example, Clerico et al., 2007, highlighting the usefulness of this system as a genetic 

host. Additionally, it was the first cyanobacterium to be cloned with exogenous DNA 

(Shestakov and Khyen, 1970).  
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This chapter presents a manually curated genome-scale reconstruction for 

Synechococcus elongatus PCC7942, which represents the first metabolic model for this 

biological system. 

2.2 Synechococcus elongatus PCC7942 genome 

Several cyanobacterial sequencing project have been completed and others, not less 

important, are in progress. Nowadays, more than 50 genomes are available in different 

databases like GenBank of the National Center for Biotechnology Information (NCBI) 

(Benson et al., 2013), Cyanobase (http://genome.kazusa.or.jp/cyanobase), and others. 

Most of them were performed, not only to elucidate ecological aspects or some 

distinctive feature of the genus, but for their biotechnological potentialities.  

In 2004, the DOE Joint Genome Institute (JGI) concluded the genome sequencing 

project of the Synechococcus elongatus PCC7942, for which professor Susan S. 

Golden´s group, of the Texas A&M University, was the leader. The sequence assembly 

process included shotgun sequencing, as a result of JGI project, and transposon-

mediated mutagenesis and sequencing strategy to determine the sequences 

surrounding transposon insertions in essentially every gene, as proposed by Golden´s 

lab (Holtman et al., 2005).  

The annotation of the genome for protein and RNA-encoding regions was carried 

out by two computer predictions. As part of this project, the annotation was 

performed by Computational Biology Department at ORNL (DOE Oak Ridge National 

Laboratory) for JGI and the same time by to the Annotation Engine of TIGR (The 

Institute for Genomic Research) that provide manual curation support (Holtman et al., 

2005, You Chen´s doctoral dissertation, 2007). Along this, the complete genome of 

Synechococcus elongatus PCC6301, a strain of this specie provided the possibility in 

determining the genetic loci that account for this major difference (Sugita et al., 2007). 

A circular chromosome of approximately 2.7 Mb, an essential large plasmid (pANL, 

~46.3 kb), and a non-essential small plasmid (pANS, ~8.6 kb) are the genome 

components of S. elongatus PCC7942 (van den Hondel et al., 1980; Van der Plas et al., 

1992; Chen et al., 2008). Genomic details can be studied in Table II.A. 
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Table II.A. Summary of genome features of Synechococcus elongatus PCC7942. 
 

 Chromosome Plasmid pANL Plasmid pANS 

Length of DNA (base pairs) 2695903 46366 7835 

G+C (%) ~ 55.47 52.9 ~59 

RNA genes 54 - - 

rRNA genes 6 - - 

tRNA genes 45 - - 

Other RNA genes 3 - - 

Protein genes 2856 50 8 

With predicted function 1682 17 - 

Without predicted function 1174 33 - 

Total genes 2906 50 8 

 

2.3 Synechococcus elongatus PCC7942 metabolic model  

2.3.1 Reconstruction procedure 

The reconstruction of genome-scale metabolic models is a process which aims to 

achieve the simulation of the cell metabolism. The closeness of the simulations to the 

in vivo behavior of a given organism will depend on the quality of the data and on the 

caution of the researcher performing each step of this procedure. Several referential 

works can instruct and lead researchers in this task (Förster et al., 2003; Notebaart et 

al., 2006; Feist et al., 2009; Thiele and Palsson, 2010). 

The start of this process consisted on the download of the current annotation and 

genomic sequence files for the Synechococcus elongatus PCC7942. A NCBI Entrez Gene 

repository (NCBI, 2013), a specialized database of genomes and genetic information, 

provided the fundamental starting point for this endeavor. Subsequently, PathoLogic, a 

component of Pathway Tools software (Karp et al., 2002) was used to construct a 

database from the genomic sequence and annotations files. This resulted in an object-

oriented database that includes all genes, proteins, metabolites and reactions present 

in the organism. Alternatively, we used COPABI computational platform to build a 

similar database and then to automatically generate the metabolic model following 

probabilistic criteria of uniqueness and completeness (Reyes et al., 2012). This strategy 
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was conceived in order to double check the results of both tools and to take into 

account the probabilistic criteria in order to fill gaps in metabolic pathways or to 

exclude duplicated reactions suggested by COPABI. The figure 2.1 summarizes the 

process. 

  

 

 

 

 

 

 

 

 

  

 

 

 

Figure 2.1. Genome-scale metabolic models reconstruction process. 

At this point a depuration process of all genes and metabolic pathways was 

started; biochemistry books and journal articles were needed to complete the task. In 

addition, public repositories which useful for the reconstruction such as the specific 

databases for metabolic pathways, enzymes and metabolic compounds are displayed 

in Table II.B. 

Table II.B. Examples of databases that assisted in the Synechococcus elongatus 
PCC7942 reconstruction process. 
 

Databases of genome and genetic information 

NCBI Entrez Gene (National Center of Biotechnology 

Information, provides, among others, genomic information) 

www.ncbi.nlm.nih.gov/sites/entrez 

DDBJ(DNA Data Bank of Japan)  www.ddbj.nig.ac.jp 

EMBL-Bank (Europe's primary nucleotide sequence 

database)  

www.ebi.ac.uk/embl 

KEEG (Kyoto Encyclopedia of Genes and Genome)  www.kegg.com 

BioCyc (collection of genomes and metabolic pathways)  www.biocyc.org 

JGI Genomes (DOE-Joint Genome Institute, is a joint 

repository of various microorganisms and eukaryotic 

genome.jgi.doe.gov 
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genomes)  

CyanoBase (Database of cyanobacterias genomes)  genome.kazusa.or.jp/cyanobase 

Databases of metabolic pathways 

KEEG (Kyoto Encyclopedia of Genes and Genome)  www.kegg.com 

BioCyc (collection of genomes and metabolic pathways)  www.biocyc.org 

BioCarta (Biological Pathways databases) www.biocarta.com 

Databases of enzymes 

ExPASy-Enzyme (Enzyme nomenclature database)  www.expasy.org/enzyme 

BRENDA (The Comprehensive Enzyme Information 

System) 

www.brenda-enzymes.org 

IntEnz (Integrated relational Enzyme database)  www.ebi.ac.uk/intenz 

SABIO (Biochemical Reaction Kinetics Database) sabiork.h-its.org 

CAZy (Carbohydrate Active enZyme database) www.cazy.org 

Databases of metabolic compounds 

EBI-ChEBI (Chemical Entities of Biological Interest) www.ebi.ac.uk/chebi 

PDB (The Chemical Component Dictionary)  remediation.wwpdb.org/ccd.html 

LIPIDMAPS (LIPID Metabolites and Pathways)  www.lipidmaps.org 

LipidBank (The official database of Japanese Conference 

on the Biochemistry of Lipids (JCBL))  

lipidbank.jp 

KNApSAcK (A Comprehensive Species-Metabolite 

Relationship Database)  

kanaya.naist.jp/KNApSAcK 

 

We thoroughly reviewed the experimental data that support the presence of 

metabolic genes. Reactions such as the ones involved in genetic replication, gene 

expression and cell division, which are not commonly included within the metabolic 

models, also have been assessed and removed from final model (Thiele and Palsson, 

2010). We had in consideration the presence of isoenzymes and protein subunits that 

form multimeric enzymes. Thus, the reactions catalyzed by multimeric enzymes or 

enzymatic complexes were described as a single reaction (Förster et al., 2003). 

The enzymes nomenclature, the stoichiometry, the name of the metabolites and 

the reversibility were checked for each biochemical reaction and verified with the help 

of the Enzyme nomenclature database (Bairoch, 2000) and KEGG pathway database 

(Kanehisa et al., 2008). Some enzymes, metabolic pathways and compounds databases 

(see Table II) provided assistance regarding synonyms use, stoichiometric coefficients 

of metabolites and directionality of chemical transformation. In some cases a single 

enzyme may catalyze different reactions; in our model we identified each of these 

reactions with different identifiers as part of the name. In order to follow the law of 

mass conservation we balanced all elements in every reaction, except protons, so that 

chemical conversions were coherent. Moreover, some metabolites are frequently 

reported in reactions’ databases in a non-specific form (e.g. ‘an alcohol’, ‘an electron 

acceptor’, etc) due to lack of experiments that corroborate the existence of certain 
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chemical transformations. This non-specificity was insufficient for our modeling goals 

and, thus, specific nomenclature was sought. Certain published metabolic models, 

such as Synechocystis sp. PCC6803 (Montagud et al., 2010, 2011), that preserve 

phylogenetic relationship with Synechococcus elongatus PCC7942 (belonging to the 

same Phylum), have served as a reference to solve these issues. Through this analysis, 

we assessed the possibility of including missing cofactors (e.g. water molecule or 

hydrogen ion, among others) in some type of reactions, like the ones catalyzed by 

hydrolases, oxidoreductases or transferases. Else, if state of the art was unable to 

specify a single cofactor requirement, like NADH or NADPH, two reactions were 

included in the reconstructed metabolic network. If no conclusive evidence about 

reversibility was found, reactions were set to be reversible. 

No lumped reactions were left in the model. Thereby, some traditional pathways 

like photosynthesis or oxidative phosphorylation were described as a set of reactions, 

thus enabling the tracing of the corresponding fluxes. On the other hand, non-

enzymatic reactions were included in the metabolic model. The inclusion of these filled 

the synthesis or degradation of some compounds that appear at the beginning or at 

the end of a metabolic pathway, known as dead-end metabolites (Thiele and Palsson, 

2010).  

Upon completion of the metabolic model draft, we looked for possible reactions 

gaps in the metabolic network. Many gaps result from the presence of blocked 

reactions (that may be related with dead-end metabolites disconnection), as well as, 

from incorrect gene annotation but for which one can find proper biochemical 

evidence (Thiele and Palsson, 2010). In that debugging step we filled out the gaps by 

an exhaustive search in databases and journal articles looking for experimental data 

that supports the addition of these reactions to the model. Examples of these are two 

reactions whose presence is necessary to complete the glyoxylate shunt, specifically 

the genes that encode for malate synthase (EC number: “2.3.3.9”) and isocitrate lyase 

(EC number: “4.1.3.1”), such enzymatic activities have been measured (Pearce and 

Carr, 1967) but presently do not have a cognate Open Reading Frame (ORF) associated 

to them. Another reaction that was included in our models even though no cognate 

gene has been indentified is the aquaporins reaction that was suggested in a study of 
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the osmotic stress effects on the photosynthetic machinery (Allakhverdiev et al., 

2000). 

Nonetheless, some dead-end metabolites were kept in the curated model; 

meaning that they are required for metabolic model´s functionality, like the biomass 

formation (buildings blocks) and there is no evidence at all of their connection to 

another part of the metabolism or to a possible transport out of the cell. In fact, many 

reactions are necessary for the synthesis of these or others buildings blocks, but that 

have no corresponding enzyme-coding gene assigned. Hence, many gene and enzymes 

were needed to be included in the model to allow the formation of biomass. Another 

essential point in the debugging process was the removing of internal loops that are 

thermodynamically unfeasible, e.g. futile cycles (like substrate cycles (Voet and Voet, 

2004)) and Type III-extreme pathway (Schilling et al., 2000b). That´s crucial since 

several constraint-based approaches, such as FBA, does not account for regulation, 

thus futile cycles cannot be shut down otherwise and could retrieve unnatural flux 

behaviors. 

2.3.2 Versions 

2.3.2.1 iSyf646 metabolic model  

After exhaustive searches the first resulting metabolic model for S. elongatus PCC7942 

(iSyf646) consisted in 835 reactions and 803 metabolites. These reactions are encoded 

by 646 genes, to which 472 enzymes were assigned. The presences of protein 

complexes and multimeric enzymes, explain the differences between the number of 

enzymes and genes.  

A set of reactions with no cognate genes are present in iSyf646: 13 non-enzymatic 

(spontaneous) conversions, 16 passive transport reactions and 11 unassigned reaction 

(the majority according to KEGG report), have been included. In the debugging process 

we also included 80 reactions whose ORFs were not annotated in the genome on the 

basis of biochemical evidence or physiological considerations. Additionally, 319 

reactions of iSyf646 were found to be reversible, 54 external metabolites and 40 

exchange reactions have been taken into account. Table II.C shows the model 

overview.  
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The stoichiometric model comprises 62 metabolic pathways that include the 

synthesis and degradation reactions of primary and secondary metabolites. Thus, 

some processes like photosynthesis, oxidative phosphorylation and glycogen 

biosynthesis are described in detail. 

iSyf646 genome-scale metabolic model is in OptGene (Patil et al., 2005) format.  

2.3.2.2 iSyf715 metabolic model  

Our second version of S. elongatus PCC7942 (iSyf715) metabolic model was generated 

as an upgrade of the first release. We assessed the incorporation of several reactions 

for which, at that time, we did not have enough information. Secondly, we included 

and corrected many isoenzymes and complexes that were incomplete in iSyf646. More 

specifically, this version of the model includes 851 reactions and 838 metabolites, 326 

reactions were found to be reversible. The bulk of reactions are catalyzed by 530 

enzymes encoded by 715 genes. We have previously explained the reason for the 

difference between the number of genes and reactions, which we note here again. 

Reactions with no cognate genes are still present in iSyf715. Here, the only 

difference relates to the reactions whose ORFs were not annotated in the genome, in 

this case 76 reactions, that were included due to experimental evidence of their 

presence. iSyf715 genome-scale metabolic model is available in Appendix 1.1 (in 

OptGene (Patil et al., 2005) format). Table II.C displays the general characteristics of 

both models. 

Both final models include central metabolic pathways such as 

glycolysis/gluconeogenesis pathway, the Calvin-Benson cycle, the pentose phosphate 

pathway, incomplete reactions within the tricarboxylic acid cycle (TCA), as well as the 

complete set of anabolic pathways involved in biosynthesis of chlorophyll, glycogen, 

amino acids, lipids, nucleotides, vitamins, cofactors, etc. Pathways for glyoxylate 

synthesis (via ribulose-1,5-bisphosphate carboxylase/oxygenase and the shunt across 

the TCA), and aminosugars metabolism are also included.  
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Table II.C. Distribution of the model reactions as per cognate genes. 

 

Photosynthetic electron transfer associated with the thylakoid membrane is 

represented as a set of 10 separate reactions, including light capture by photosystem II 

(PSII) and photosystem I (PSI), electron transfer between the two photosystems, and 

cyclic electron transfer which involves PSI ferredoxin. 

2.3.3 Formulation of biomass equation  

Once the cyanobacteria metabolism has been reconstructed, we focused on the 

stoichiometric network analysis. As we explained in the previous chapter, to calculate 

the quantity of the optimal behavior through some constraint-based approach, like 

FBA, it is essential to define an objective function. The biomass growth is the most 

commonly used objective function to simulate the metabolic flux distribution, and it 

GENERAL OVERVIEW  iSyf646 iSyf715 

Number of genes 

Number of metabolic reactions 

Number of metabolites 

Enzymes 

Multimeric enzymes and enzymatic complexes 

646 

835 

803 

472 

69 

715 

851 

838 

530 

79 

REACTION OVERVIEW   

Reversible reactions 

Irreversible reactions 

319 

516 

 326 

 525 

Reactions with assigned genes 715 735 

Enzymatic conversion  

Protein-mediated transport (active and passive-

mediated transports) 

703 

12 

710 

25 

Reactions with no cognate genes 120 116 

Non-enzymatic conversion (spontaneous) 

Passive transport reactions (simple diffusion) 

EC reactions not annotated  

Unassigned reactions 

13 

16 

80 

11 

13 

16 

76 

11 
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has become a standard to assess the best metabolic engineering strategies (Edwards et 

al., 2001; Ibarra et al., 2002).  

From a biochemical point of view, one might think that describing a 

comprehensive biomass synthesis equation would be a difficult task. Especially if one 

considers molecular plurality and the quasi-static and dynamic intermolecular 

relationships among elements. However, in this case, the formulation of biomass 

composition lies on the stoichiometric coefficients of all of the substances that have a 

modular construction (building blocks). They consist of linked monomeric units that 

make up the lowest level of structural hierarchy of the cell. In particular, biomass 

growth is expressed by transforming the building blocks, such as: amino acids, 

deoxyribonucleotides, ribonucleotides, lipids, carbohydrates, antenna chromophores, 

some cofactors, etc, into one mole of biomass. Thus, the growth flux is defined as a 

metabolic flux utilizing the biosynthetic precursors, Xm, in the appropriate ratios to 

produce biomass: 

 

 

where dm is stoichiometric coefficients (biomass fraction) of the metabolite Xm 

(Edwards et al., 2002). 

Seeking information about weight fractions of macromolecules and monomers to 

reflect the composition of any organism is critical. Frequently, data related to the 

relative amounts of these metabolites are not available in literature, or the published 

information is shown in a particular physiological condition not usable for our goals. 

The quantities measured in other phylogenetically related biological system, could be a 

close approximation to the metabolic reality of the concerned organism. 

As a part of the reconstruction process we detailed a biomass equation for S. 

elongatus PCC7942. Little is known about the specific molecular quantities of this 

cyanobacterium. However, the previous study of Rosales-Loaiza et al. in Synechococcus 

sp., isolated from a hypersaline waterhole, served as a reference in the composition of 

total protein, chlorophyll a, β-carotene and zeaxanthin (Rosales-Loaiza et al., 2008). 

We regard that total protein quantities per gram of dry weight (gDW) is not enough to 

describe the composition of this macromolecule in the cell. Especially for being one of 

biomass X · d 
m all

mm →∑
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the polymers more diverse and valuable in terms of the monomeric units composition. 

Hence, we adapted the amino acid quantities by selecting the well-studied biomass 

composition of Synechococcus sp. PCC 7002 metabolic model as a template (Hamilton 

and Reed, 2012). Bearing in mind that the optimum growth rates (calculated by 

sensitivity analysis) do not change drastically by varying the monomeric composition of 

the major macromolecules (Varma and Palsson, 1994a). Because the photosynthetic 

carbon assimilation in cyanobacteria results in the accumulation of polysaccharides, 

mostly glycogen (Nakamura et al., 2005), we agree to define the composition of total 

carbohydrates as the amount of this polymer. Here, the carbohydrate composition 

measured in Synechococcus sp. strain PCC 7002 (Xu et al., 2012) was assumed in our 

models. 

We opted to include values of carotenoid pigment, in this case trans-lycopene, as 

biomass precursors. This substance was taken from data reported for Synechosystis sp. 

PCC6803 (Miao et al., 2003). Moreover, we estimate ratios between the 

concentrations of chlorophyll a and phycocyanobiline measures in S. elongatus 

(González-Barreiro et al., 2004). Thus, phycocyanobiline´s amounts were incorporated 

into biomass equation according to the chlorophylls quantities fixed. 

In addition, the lipids amounts were based on the data displayed for S. elongatus 

PCC7942 used as a limiting resource to feeding an herbivore (Martin-Creuzburg et al., 

2009). Additionally, the molar quantities for the deoxyribonucleotides and 

ribonucleotides were defined from the information available in the works of Herdman 

et al. and Allen and Smith, respectively (Herdman et al., 1979; Allen and Smith, 1969).  

Furthermore, with the goal to form a demand objective function (viz.: biomass 

growth) the information on the maintenance energy requirements must be included. 

The energy is used for both growth-associated and nongrowth-associated maintenance 

functions (Stouthamer, 1979; Förster et al., 2003). Some of them are the cells active 

transports, membrane potentials, turn-over of macromolecules, maintenance of 

concentration gradients (pH or osmotic pressure), mobility and the ATP cost that is 

required for the polymerization of amino acids and nucleotides and for the synthesis of 

building blocks. Because the lack of data, we used the same maintenance energy 

requirements for Synechocystis sp. PCC6803 growth, in this instance 59.28 mmol ATP 
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gDW-1 were added to biomass equation (Montagud et al., 2010). This equation is 

reaction “Biomass” in the whole metabolic model showed in Appendix 1.1 and Table 

II.D illustrates its composition. 

Table II.D. Biomass composition of both S. elongatus PCC7942 metabolic models.  
 

Amino acid counts of the proteome Metabolites mmol/gDW 

Alanine 897 Proteins 0.000459 

Arginine 526 Carbohydrates 

Aspartate      518 Glycogen 0.53439 

Asparagine 374 Antenna chromophores 

Cysteine 102 Zeaxanthin 0.00079 

Glutamine 576 Beta-carotene 0.000875 

Glutamate 614 Trans-lycopene 0.00820225 

Glycine 702 Chlorophyll a 0.0057 

Histidine 197 Phycocyanobiline 0.0285 

Isoleucine 628 Deoxyribonucleotides 

Leucine 128 dATP 0.0201156 

Lysine 417 dTTP 0.0201156 

Methionine 194 dGTP 0.02538445 

Phenylalanine 406 dCTP 0.02538445 

Proline 512 Ribonucleotides 

Serine 548 AMP 0.140389293 

Threonine 580 UMP 0.140389293 

Tryptophan 149 GMP 0.123745851 

Tyrosine 294 CMP 0.123745851 

Valine 638 Lipids 

  14C-lipid 0.028 

  16C-lipid 0.0042 

  18C-lipid 0.00448 

  (9Z)16C-lipid 0.0066 



Model-based analysis and metabolic design of a cyanobacterium for bio-products synthesis ___ ______________________ 

_____________________________________________________________________________ 
59 

 

  (9Z)18C-lipid 0.00625 

At this time, both models were designed that could be applied to linear 

optimization to simulate cellular behavior (see next Chapter). However, this step is not 

conclusive, since the computed results could not be in agreement with experimental 

ones. This incongruity allows the iterative adjustment of the model, as part of 

debugging process, until that gene-reactions list be closer to natural state. 

2.3.4 Network topology. Connectivity analysis  

The topological analysis of Synechococcus elongatus PCC7942 metabolic network can 

lead us to understand how the metabolites and the interactions between them 

(biochemical reactions) determine the metabolic function into the cell. In 

representative manner, compounds involved in a specific number of reactions, will 

form a node with certain connections on the map of metabolic reactions. This 

approach has been widely used in systems biology, with many works from many 

researchers from different fields, like Mathematics and Statistics (Barabási and Oltvai, 

2004; Tanaka, 2005; Mahadevan and Palsson, 2005). 

Many studies have shown that biological systems share an important property 

with others complex system: most of these networks are scale-free and thereby the 

nodes connection can be approximated by a power law distribution (Barabási and 

Albert, 1999; Albert et al., 2000; Barabási and Bonabeau, 2003; Barabási and Oltvai, 

2004). That probability distribution implies that small events are very common, while 

oversized occurrences are less so. Most nodes have just a few connections and some 

have a tremendous number of links (known as metabolic hubs). That means, the 

probability of a given node has exactly “k” links follows a distribution P(k)~k-γ, where 

the exponent “γ”  is the degree exponent. Typically the exponent values fall in the 

range 2<γ<3 (Barabási and Albert, 1999). 

We gave the task of finding what metabolites are more connected in the network. 

Also, all reported hubs were compared with their relative presence in other existing 

genome-scale metabolic models (Table II.E).  
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Table II.E.   in S. elongatus PCC7942 and others metabolic models. “N” are the number 
of connections. 

 
Metabolic hubs N in 

iSyf646 

N in 

iSyf715 

N in 

iSyp611 

N in 

iSyn811 

N in 

iCce806 

N in  

iAF1260 

N in 

iFF708 

H2O 238 243 202 219 245 697 - 

phosphate 174 169 154 112 174 81 113 

ADP 165 159 125 111 143 253 131 

ATP 150 148 129 136 153 338 166 

H+ 139 149 291 153 350 923 188 

diphosphate 107 110 103 84 108 28 - 

CO2 72 69 58 72 64 53 66 

AMP 68 74 63 21 66 86 48 

NADPH 61 74 69 68 78 66 57 

NADP+ 59 72 64 68 71 39 61 

L-glutamate 49 52 44 44 50 52 56 

NAD+ 48 46 50 52 66 79 58 

NADH 43 45 52 48 67 75 52 

oxygen O2 43 45 29 40 33 40 31 

S-adenosyl-L- 

methionine 

37 37 13 28 25 18 19 

ammonia 34 44 26 28 33 22 - 

coenzyme A 32 29 26 23 28 71 39 

pyruvate 31 32 30 20 32 61 20 

L-glutamine 31 30 25 21 28 18 23 

glutathione 31 32 9 26 11 17 10 

S-adenosyl-L-

homocysteine 

26 25 7 24 15 12 14 

iSyp611:  Synechococcus sp. PCC 7002 metabolic model (Hamilton and Reed, 2012). 
iSyn811:  Synechocystis sp. PCC6803 metabolic model (Montagud et al., 2011). 
iCce806:  Cyanothece sp. ATCC 51142 metabolic model (Vu et al., 2012). 
iAF1260: E. coli metabolic model (Feist et al., 2007). 
iFF708: Saccharomyces cerevisiae metabolic model (Förster et al., 2003). 

 

For more details we decided to assess metabolites connectivity to reactions. In 

this case, the links between metabolites to enzymes as well as metabolites more 

connected as substrates or as products (see Table II.F). Similarly, we studied 

connectivity among them, highlighting those with larger connections according the 

edges directionality (in-connected and out-connected) (see Table II.G). 

Table II.F. Most connected metabolites to enzymes, as a substrate and as a product in 
S. elongatus PCC7942. 
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Most connected metabolites to enzymes 
(Metabolite/#connection) 

Most connected metabolites as substrates 
(Metabolite/#connection) 

Most connected metabolites as products 
(Metabolite/#connection) 

iSyf646 iSyf715 iSyf646 iSyf715 iSyf646 iSyf715 
H2O (232) H2O (234) H2O (193) H2O (195) H2O (127) H2O (130) 

ATP (159) ATP (156) ATP (158) ATP (154) ADP (113) H
+
 (116) 

H
+
 (143) H

+
 (155) H

+
 (109) H

+
 (119) Phosphate (109) ADP (110) 

Phosphate (119) Phosphate (117) NADPH (55) NADPH (63) H
+
 (108) phosphate (105) 

ADP (115) ADP (113) Phosphate (45) NADP
+
 (50) Diphosphate (93) Diphosphate (95) 

Diphosphate (95) Diphosphate (97) NADP
+
 (43) ADP (43) CO2 (69) CO2 (67) 

CO2 (73) CO2 (72) ADP (42) phosphate (43) NADP
+
 (55) NADP

+
 (63) 

NADP
+
 (60) NADP

+
 (70) NAD

+
 (37) NAD

+
 (38) ATP (44) NADPH (50) 

NADPH (60) NADPH (70) NADH (30) NADH (30) NADPH (43) ATP (45) 

NAD
+
 (48) NAD

+
 (47) Oxygen O2 (29) Oxygen O2 (27) AMP (39) AMP (42) 

NADH (43) L-glutamate (44) S-adenosyl-L-methionine 
(28) 

L-glutamate (27) NADH (36) NADH (37) 

L-glutamate (43) AMP (43) L-glutamate (25) S-adenosyl-L-methionine 
(27) 

NAD
+
 (34) NAD

+
 (33) 

AMP (40) NADH (43) Glutathione (23) Glutathione (23) L-glutamate (33) L-glutamate (33) 

Oxygen O2 (34) Ammonia (33) Diphosphate (22) Diphosphate (22) S-adenosyl-L-
homocysteine (23) 

Ammonia (27) 

S-adenosyl-L-methionine 
(29) 

Oxygen O2 (32) Malonyl-ACP (22) Malonyl-ACP (22) Ammonia (22) S-adenosyl-L-
homocysteine (22) 

Ammonia (27) S-adenosyl-L-methionine 
(28) 

CO2 (18) CO2 (18) Coenzyme A (21) Pyruvate (21) 

Glutathione (27) Glutathione (28) L-glutamine (18) Pyruvate (17) 5-oxoproline (20) Coenzyme A (20) 

Pyruvate (23) Pyruvate (26) Pyruvate (15) L-glutamine (17) Cysteinylglycine (19) 5-oxoproline (20) 

Coenzyme A (23) Malonyl-ACP (23) Acetyl-CoA (14) Acetyl-CoA (16) Pyruvate (18) Cysteinylglycine (19) 

S-adenosyl-L-
homocysteine (23) 

Coenzyme A (22) 2-ketoglutarate (13) Ammonia (16) Oxygen O2 (16) Oxygen O2 (14) 

Malonyl-ACP (23) S-adenosyl-L-
homocysteine (22) 

Coenzyme A (12) 2-ketoglutarate (13) Tetrahydrofolate (13) 2-ketoglutarate (13) 

L-glutamine (21) L-glutamine (21) Ammonia (12) AMP (12) 2-ketoglutarate (11) Tetrahydrofolate (13) 
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Table II.G. Most out-connected and in-connected metabolites in S. elongatus PCC7942. 

 
Most out-connected metabolites 

(Metabolite/#connection) 
Most in-connected metabolites 

(Metabolite/#connection) 

iSyf646 iSyf715 iSyf646 iSyf715 

H2O (203) H2O (206) Phosphate (166) Phosphate (158) 

ATP (150) ATP (146) ADP (163) ADP (155) 

H+ (110) H+ (119) H2O (144) H2O (152) 

NADPH (57) NADPH (68) H+ (110) H+ (116) 

Phosphate (56) Phosphate (55) Diphosphate (105) Diphosphate (108) 

ADP (48) NADP+ (55) AMP (67) AMP (73) 

NADP+ (46) ADP (49) CO2 (66) NADP+ (64) 

oxygen O2 (39) oxygen O2 (41) NADP+ (53) CO2 (62) 

NAD+ (38) NAD+ (39) NADPH (48) NADPH (56) 

S-adenosyl-L-
methionine (35) 

L-glutamate (37) ATP (47) ATP (48) 

L-glutamate (33) S-adenosyl-L-
methionine (35) 

L-glutamate (40) L-glutamate (41) 

NADH (32) NADH (33) NADH (38) NADH (40) 

Diphosphate (31) Diphosphate (31) NAD+ (37) Ammonia (36) 

L-glutamine (27) L-glutamine (25) Coenzyme A (31) NAD+ (35) 

CO2 (25) Glutathione (25) Ammonia (28) Coenzyme A (29) 

Glutathione (25) CO2 (24) S-adenosyl-L-
homocysteine (26) 

Pyruvate (26) 

Pyruvate (21) Ammonia (24 ) Pyruvate (25) S-adenosyl-L-
homocysteine (25) 

L-aspartate (21) Pyruvate (23) oxygen O2 (21) oxygen O2 (21) 

2-ketoglutarate (19) L-alanine (23) 5-oxoproline (20) Acetate (20) 

L-alanine (19) AMP (21) Acetate (19) 5-oxoproline (20) 

Acetyl-CoA (17) L-aspartate (21) Tetrahydrofolate 
(19) 

tetrahydrofolate (19) 

Coenzyme A (17) Acetyl-CoA (19) Cysteinylglycine (19) UDP (19) 

 

From comparisons between the most connected metabolites in different 

microorganisms, we appreciate a similarity regarding the usage of these compounds by 

these diverse metabolic machineries. 

Unsurprisingly, in all the analyses we could see that water is the more connected 

compound. Water has direct involvement in various kinds of reactions, both as a 

substrate or product, most notably in hydrolysis, condensation and reduction-

oxidation reactions. 

Other highly connected nodes are carrier molecules such as: ADP, ATP, NADP+, 

NAD+, phosphate and oxygen, most of them are involved in the majority of energy 
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releasing and/or consuming pathways. Most of the metabolic pathways are regulated, 

at least in part, by levels of nucleotides such as ATP and ADP. The ATP molecule carries 

energy between different routes as it is a reactive intermediate capable of coupling 

endergonic reactions to exergonic ones. Furthermore, free energy released by 

catabolic processes is conserved through the reduction of the coenzyme NADP+ to 

NADPH. In turn, the NAD+/NADH redox couple functions as the electron acceptor in 

many exergonic metabolites oxidations, while also serves as electron sink along a 

series of redox complex reactions of increasing reduction potential until a final 

acceptor, such as the oxygen in Electron Transport Chain (Voet and Voet, 2004). 

A few amino acids and peptides were shown to have high values of connectivity, 

such as: L-glutamate, L-glutamine, glutathione and cysteinylglycine. The first one, 

among other functions, plays a central role in processes related to transamination as 

well as the synthesis of other amino acids. While L-glutamine, by its ability to donate 

the amino group, has an essential function as intermediate in the vitamin B12 pathway, 

in the purine, folate and glutathione metabolism, among others (Voet and Voet, 2004). 

In this latter process, wherein also is involved the peptide cysteinylglycine, is produced 

the largest endogenous antioxidant in the cells, the glutathione per se (Pompella et al., 

2003). 

The S-adenosyl-L-methionine/S-adenosyl-L-homocysteine pair is another example 

of metabolites that behave as typical hubs. Several methylases use the first as 

substrate, making it a major biological methylating agent, and yield the second as 

product (Finkelstein and Martin, 2000). The S-adenosyl-L-methionine is an essential 

metabolite in certain metabolic pathways like the porphyrin and chlorophyll 

metabolism.  

Additional highly connected metabolites, and no less important, are the ammonia, 

coenzyme A and pyruvate, constituting either the substrates or products of many 

metabolic pathways, for example: glycolysis, tricarboxylic acid (TCA) cycle, glyoxylate 

shunt and amino acids metabolism. 

The network topology analysis of both S. elongatus PCC7942 metabolic models 

(iSyf646 and iSyf715) can help in the understanding of how metabolites and their 

interactions determine their metabolic function in the cell. As many studies have 
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shown, most of these networks are scale-free and thereby the nodes connection can 

be estimated by a power law distribution (Barabási and Albert, 1999; Albert et al., 

2000). For the connectivity distribution analysis of iSyf715 we used a systematic 

mathematical approach: the Pareto´s law in terms of the cumulative distribution 

function (P (K>k)~k-γ) to get a proper fit (Newman, 2005; Hardy, 2010). We used the 

cumulative distribution rather than obtaining a classic log-log scale plot of the 

distribution of connections number among number of nodes, because the tail 

smoothes out in the cumulative distribution and no data is “obscured” as in the 

logarithmic binning procedure (Adamic and Huberman, 2002). In particular, fitting this 

continuous distribution, we find an equation y=-1.189*x+7.23 for iSyf646 whose slope 

is equivalent to an exponent of γ=2.189, and equation y=-1.203*x+7.19 for iSyf715 

with γ=2.203. See figure 2.2 for more details.  

Our analysis points towards the fact that both genome-scale metabolic networks 

are characterized by a power-law distribution with high non-uniformity as we can see 

at the cumulative distribution toward the right; most of the nodes have only a few 

associations. This corresponds with the partial results for metabolites connections 

shown in Tables II.E, II.F and II.G. It follows from this that exist, evidently, a reduced 

number of chemical transformation that the majority of metabolites can undergo (data 

not shown). The biological significance of this hierarchical connectivity should be 

related with evolutionary process, where the hubs were the first compounds that were 

present in the earliest cells predecessor´s metabolism (Wagner and Fell, 2001).  

Likewise, the “attack tolerance” of a network is such that the removal of the most 

highly connected nodes has the broadest impact on network functions (Jeong et al., 

2000; 2001). It should be noted that highly connected nodes may represent effective 

targets for metabolic engineering; or at least should be considered in the design of 

strategies for the production of other metabolites. However, topological properties of 

networks must be interpreted in the more biologically relevant functional network 

states and their properties. One such consideration, for instance, is that a metabolic 

network must make all the biomass components of the cell in order for it to grow. 

Thus, even eliminating a step in a linear low-flux pathway leading to the synthesis of 
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cofactors, vitamins, or amino acids will prevents a genome-scale metabolic network 

from supporting growth. 

                       
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Connectivity distribution of two S. elongatus PCC7942 metabolic models. A. 
Cumulative distribution toward the right via Pareto function plot of iSyf646. B. Cumulative 
distribution toward the right via Pareto function plot of iSyf715. 

In order to compare the compounds participation in networks, we computed the 

connectivity for all metabolites in others genome-scale metabolic network 

reconstructions. The distributions of node connectivities were found for Synechocystis 

sp. PCC6803 (iSyn811) (Montagud et al., 2011), Saccharomyces cerevisiae (iFF708) 

(Förster et al., 2003), Spirulina platensis C1 (iAK692) (Klanchui et al., 2012) and 

Clostridium beijerinckii NCIMB 8052 (iCM925) (Milne et al., 2011). As seen in the figure 

2.3, all the reconstructed networks follow a power-law distribution. There is a high 

probability of low connectivity as well as a low probability of high connectivity. Once 

again, the most highly connected nodes are carrier molecules. 
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Figure 2.3. Connectivity distribution of four genome-scale metabolic network model 
reconstructions. Red crosses and blue lines indicate the metabolic model data and Pareto 
cumulative distribution, respectively. A. Cumulative distribution toward the right via Pareto 
function plot of iSyn811. B. Cumulative distribution toward the right via Pareto function plot of 
iFF708. C. Cumulative distribution toward the right via Pareto function plot of iAK692. D. 
Cumulative distribution toward the right via Pareto function plot of iCM925. 

2.4 Conclusions 

We have successfully reconstructed the first genome-scale metabolic network for 

Synechococcus elongatus PCC7942. This chapter has detailed the reconstruction 

process. By this proceeding we obtained a first version of the metabolic model, 

iSyf646, which was subsequently updated in a second version iSyf715. The curated 

models represent an up-to-date database that encompasses all knowledge available in 

public databases, scientific publications and textbooks on the metabolism of this 

cyanobacterium.  The model has been compiled in OptGene and SBML to enable its 

use with different software.  

This laborious task was initially performed with the support of two semi-automatic 

reconstruction tools: Pathway Tools and COPABI. These softwares, along with some 

manual curation steps, yielded the iSyf646 model consisting in 646 genes, 835 
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reactions and 803 metabolites. While the upgraded version, iSyf715, comprises 715 

genes, 851 reactions and 838 metabolites. Moreover, in the last version we identified 

76 enzymatic reactions needed for the correct function of the metabolism, but with no 

annotated cognate gene. These genes are interesting targets for experimental studies 

as we have seen that their presence is required in order to build up the basic cellular 

components.  

From the topological perspective the characteristics of the model are very similar 

to other published organisms’ providing support for an evolutionary study of the 

structure and organizational properties of metabolic networks, in the line of recent 

works (Gamesman et al., 2014). The connectivity analysis of the model using the 

Pareto cumulative distribution shows a scale-free behaviour with a highly non-

uniformity and a hierarchical connectivity of the metabolites, which is typical of 

biological networks and points towards functional properties discussed in other works 

(Csete and Doyle, 2004). Thus, iSyf646 and iSyf715 represent a common blueprint for 

the large-scale organization of interactions among all cellular constituents. 

These models join the growing list of genome-scale metabolic models and 

specifically to those belonging to this phylum, which has its potential as the 

photosynthetic model organisms. 

Synechococcus elongatus PCC7942 metabolic model is a useful tool in the fields of 

systems biology and metabolic engineering. Applicability of iSyf646 and iSyf715 is 

demonstrated by using a variety of computational analyses in following chapters.  
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Chapter 3. In silico fluxomic 

behavior through constraints-

based approach 

 

A significant milestone in a modeling program is the successful representation of the 

behavior of the biological system by a model. One of the main reasons of model usage 

is hypothesis building and testing, which allows to rapidly analyze the effects of 

manipulating experimental conditions in the model without having to perform 

complex and costly experiments, and ideally decreasing the number of performed 

experiments. In this chapter, we predicted the repertoires of metabolic fluxes that 

optimize a given biological function, as well as we validated the results with reported 

experimental data. 

 

 

 

 

 

 

 

 

 

 

 
 
Part of the contents of this chapter are based on parts of the following journal articles:  

 Triana J, Montagud A, Siurana M, Gamermann D, Torres J, Tena J, Fernández de Córdoba 
P, Urchueguía JF. Generation and evaluation of a genome-scale metabolic network model of 
Synechococcus elongatus PCC7942. Submitted at Metabolites. 

 Triana J, Montagud A, Gamermann D, Fernández de Córdoba P, Urchueguía JF. In silico 
analysis for bio-products synthesis through genome-scale reconstruction of the Synechococcus 
elongatus PCC7942 metabolic network. In preparation. 
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Chapter 3. In silico fluxomic behavior through constraints-based 

approach 

3.1 Introduction 

The reconstructed metabolic models allow direct correlation between the genomic 

information and metabolic activity at the flux level. Through the use of a mathematical 

framework researchers can simulate and quantify the optimal interactive behavior of 

hundred of reactions (and its cognate genes) with hundred metabolites, under 

different conditions (Förster et al., 2003; Edwards et al., 2001). 

With such metabolic models, researchers can quantitatively predict maximum 

theoretical production yields. Examples of these yields are biomass growth (Ibarra et 

al., 2002; Edwards et al., 2001), synthesis of metabolite with economical value (Varma 

et al., 1993a) or both simultaneously (Burgard et al., 2003, Pharkya et al., 2004), as 

well as the minimization of ATP production (Vo et al., 2004) or the uptake rate of 

nutrients (Famili et al., 2003). These are just some examples that have already been 

shown to be effective as a means of improving production yields. 

The applicability of genome-scale metabolic models has been demonstrated 

through the use of several computational analyses. Constraint-based approaches, such 

as FBA, are one of the most common used to simulate phenotypic behavior under 

imposed physiological and/or genetic conditions (Stephanopoulos et al., 1998; Price et 

al., 2003; Durot et al., 2009). FBA aims to obtain, through the optimization of a cellular 

objective (usually growth), the space of allowable flux distributions of a biological 

system under steady-state conditions. The optimization problem is subject to a set of 

constraints associated with minimum (lower) and maximum (upper) bounds in every 

reaction, which are defined by thermodynamical and experimental data. Finally, the 

resulting flux distribution can be contrasted with in vivo information and, thus, the 

metabolic model can be used for further analyses (Price et al., 2004b; Orth et al., 

2010). 

Cyanobacteria, and within them Synechococcus elongatus PCC7942, are oxygenic 

photosynthetic prokaryotes. This genus represents important in vivo biomass 

photoautotrophic producers that are widespread in diverse environments (Whitton 

and Potts, 2000). Also, they possess unique biochemical properties which make them a 
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promising model to transform carbon sources into valuable substances (Quintana et 

al., 2011). 

The focus of this study is on a mathematical analysis of the reconstructed 

Synechococcus elongatus PCC7942 metabolic network. The constraint-based 

optimization methods, introduced in the first chapter, are widely used and can be 

repeatedly applied to compute the metabolic flux distribution under different 

conditions. 

3.2 Finding optimal states  

There are a few number of genome-scale metabolic models for cyanobacteria, and 

therefore, that completely accounts for photosynthesis. The reconstruction and 

analysis of the Synechocystis sp. PCC6803 metabolic model provides an indisputable 

reference point, when photosynthetic description for these prokaryotes it comes. 

There have been published several studies that have increased our understanding of 

the metabolic behavior of this organism and have targeted its use as a biological 

production platform (Yang et al., 2002a, 2002b; Shastri and Morgan, 2005; Kun et al., 

2008; Fu, 2008; Montagud et al., 2010; Knoop et al., 2010; Montagud et al., 2011; 

reviewed in Montagud et al., 2013). Other interesting works, such as the metabolic 

reconstruction of Cyanothece sp. ATCC 51142, have provided a detailed overview of 

interactions between components of photosynthetic and respiratory systems (Vu et 

al., 2012). By means of a bi-level mixed-integer programming approach, the tool 

CONGA, was useful to develop a stoichiometric model for another cyanobacterium 

within the Synechococcus genus. Thus, the Synechococcus sp. PCC 7002 metabolic 

model was described thanks to the comparison with Cyanothece sp. ATCC 51142 

reconstruction (Hamilton and Reed, 2012).  

It´s well known that some experimental parameters imposed on growth 

conditions, such as: unrestricted light, carbon, or nitrogen-limited cultures, may lead to 

significant differences in cell´s macromolecular composition. The measurements of 

biomass molecular quantities would be essential to fulfill the biomass formulation in 

this circumstance. Despite this, we have performed simulation studies with the same 

biomass equation and varying these parameters. We have done this having in mind 

that simulation results are very little altered by changes in the biomass monomeric 
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composition as was described by some works (Varma and Palsson, 1994a; Shastri and 

Morgan, 2005). 

Our developed iSyf646 and iSyf715 models constitute the theoretical baseline of S. 

elongatus PCC7942´s metabolism at the genomic level. The models were simulated by 

constraint-based approaches methods, as those mentioned above, through setting 

objectives functions and constraints for the quantitative calculation of optimal states. 

The validation of our models was the starting point for the assessment of metabolic 

capabilities which will be discussed in the next chapter. 

3.2.1 Constraints settings for system simulation 

Synechococcus elongatus PCC7942 is said to be an obligate photoautotroph organism, 

thus we defined a set of constraints for this growth conditions. This means, that energy 

comes from light and carbon source from CO2. In order to be able to simulate this 

biological system, we need assume a quasi steady-state and the imposition of 

thermodynamical and biological constraints (Covert et al., 2003; Price et al., 2004b). 

This allows reduce the undetermined possible solution space to a biologically-feasible 

solution space that contains the metabolic flux distribution (null vector space of the 

stoichiometric matrix) (see first Chapter).  

The autotrophic growth for iSyf646 and iSyf715 was simulated using a two-step 

optimization. The first step was the maximization of biomass growth while the light 

intake was unconstrained. Next, the maximum growth value was incorporated as a 

constraint to minimize the light uptake rate (the second step). This was designed with 

the aim to estimate physiologically meaningful photon uptake values that tallied 

experimental measurements. Here, an important point for accurate calculation is that 

the capacity constraints must be close as possible to natural fluxes. 

Firstly, in order to estimate a theoretical maximum illumination (radiant flux 

density), the surface area per weight of biomass had to be calculated. Considering the 

geometry of the cell as a prolate spheroid (see methods) in which length and width of 

cell are reported to be 3.57 ± 0.12 μm and 1.47 ± 0.09 μm, respectively, and the dry 

weight is 3.87 ± 0.03 ng, approximately (Rosales-Loaiza et al., 2005). Then, we decided 

to find an appropriate irradiance value because the lack of our own experimental data 

for growth versus irradiance. Some studies have tested the growth of various 
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Synechococcus sp. strains, fixing irradiance values between 0.03 mE m-2 s-1 and 0.234 

mE m-2 s-1 (Bertilsson et al., 2003; Rosales-Loaiza et al., 2005; Fu et al., 2007). However, 

Rosales-Loaiza et al. have asserted that in 12:12 hours photoperiod with values around 

to 0.156 mE m-2 s-1 this cyanobacterium had the highest growth (Rosales-Loaiza et al., 

2008). Thus, assuming this irradiance value the theoretical maximum illumination that 

would reach the cell membrane, in units, used in our model can be calculated as 1.96 

mE gDW-1 h-1. This light flux value is assumed to be the fraction of the total radiant flux 

density, which is actually converted into chemical energy by the system.  

The dissolved inorganic carbon (Ci) exists, on aquatic ecosystems, mainly as two 

slowly interconvertible species, CO2 and carbonic acid (H2CO3 → HCO3
- + H+). Active 

transport for CO2 and HCO3
- are present in Synechococcus elongatus PCC7942 in at 

least four Ci uptake systems with different affinities (Badger and Price, 2003; Price et 

al., 2004a). Although the CO2 and HCO3
- are interconvertible, it has been shown that 

both are simultaneously and continuously transported by the cells (Espie et al., 1988). 

These uptake systems constitute an efficient CO2-concentrating mechanism in 

picocyanobacteria together with the carboxysome that contains the enzyme that 

catalyzes carbon fixation (ribulose-1,5-bisphosphate carboxylase/ oxygenase 

(RuBisCO)) (Price et al., 2004a). Kajiwara and co-workers reported that this 

cyanobacterium achieved a maximum CO2 uptake rate of 0.025 g L-1 h-1 at a cell mass 

concentration of 0.286 g L-1 (Kajiwara et al., 1997). Thus, the first optimization was 

carried out by constraining the CO2 and HCO3
- uptake rates at 1.99 mmol gDW-1 h-1. 

Additionally, some transport systems across the membrane such as: phosphate, 

water, sulphate, nitrate, ammonia as well as carbon monoxide and hydrogen peroxide 

transport were included in the model and properly bounded. Some of the reversible 

reactions involving NADH and NADPH were constrained to be irreversible so that 

spurious transhydrogenation was controlled.  

The second simulation aims at a minimization of photon uptake rate, constraining 

the biomass growth rate at the value obtained from the first optimization. In biological 

terms, we assume that the cells will optimally growth using the amount of measured 

CO2 and only needing the minimized photon usage. 
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Main constraints across the autotrophic growth condition can be seen in Table 

III.A. 

Table III.A. Principal constraints across the autotrophic growth condition. Units in 
mmol gDW-1 h-1, except for light input which is in mE gDW-1 h-1. 

 
Constraints  Values in first 

Optimization* 
Values in second 

Optimization* 

Light input in PSI 0; 1.96 0; 0.1 

Light input in PSII 0; 1.96 0; 0.1 

CO2 uptake rates 0; 1.99 0; 1.99 

HCO3
- uptake rates 0; 1.99 0; 1.99 

Nitrate uptake rates 0; 160 0; 160 

CO uptake rates -10; 10 -10; 10 

Sulphate uptake rates -104; 104 -104; 104 

                 * Values indicate, consecutively, minimum and maximum boundaries. 

3.2.2 Fluxes’ vector space of optimal metabolic growth. Metabolic 

models validation  

With the purpose to evaluate and validate the predictive accuracy of iSyf646 and 

iSyf715, we used FBA to simulate a given physiological behavior. Model validation 

usually focuses on testing whether the growth capabilities, or any particular objective 

flux, correspond to a given set of experimental data. In fact, the known inability of the 

organism can also be evaluated to further confirm the reconstruction accuracy (Thiele 

and Palsson, 2010). Due to the biphasic nature of cyanobacterium growth, we look for 

reported data for exponential growth phase with which to compare the in silico 

simulation of the models. Maximum specific growth rate of Synechococcus elongatus 

PCC7942 has been reported between 0.0519 h-1 to 0.0551 h-1 (Kuan, 2013; Kajiwara et 

al., 1997), despite scarce information about studies on optimization the specific 

growth rate of this prokaryote. Model was simulated under the aforementioned 

conditions while optimizing biomass functions to simulate photoautotrophic growth. 

Interestingly, our simulations resulted in a maximum specific growth of 0.05987 h-1. 

The slight difference with experimental data could be the result of several factors, 

including regulation, stress and feedback inhibition, which cannot be captured in 
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constraints-based stoichiometric models. Moreover, the growth of many laboratory 

strains are not consistent with the computed optimal by FBA because they are not 

necessarily evolved for growth maximization (Lewis et al., 2010a; Imam et al., 2011). 

These results are, therefore, an overall acceptable validation of the genome-scale 

metabolic model.  

As part of the second optimization problem we constrained the in silico growth 

rate to this value and sought for the minimum of light uptake as the objective function. 

This minimization resulted in photon uptake for photosystem I (reaction “_lightI”, in 

iSyf715) and photosystem II (reaction “_lightII”, in iSyf715) being 0.1 mE gDW-1 h-1. 

After verifying that our models could reproduce experimental growth rate, we 

investigated the metabolic fluxes’ vector that corresponds to that growth. As 

expected, during photoautotrophic growth we could see a flux distribution directed 

towards the CO2 fixation at the Calvin-Benson cycle. Likewise the solution space reveals 

that the autotrophic growth flows in the gluconeogenic direction (see figure 3.1). High 

fluxes through RuBisCO (reaction “4.1.1.39b”, in iSyf715) and carbonic anhydrase 

(reaction “4.2.1.1b”, in iSyf715) are due to the need of carbon dioxide and carbonic 

acid as the carbon sources. These are in correspondence with the natural conversion 

of light energy and carbon sources into complex carbohydrate molecules in 

cyanobacterium cells. The demand of ATP and NADPH (reducing power) is covered by 

its synthesis associated with electronic transfers of light-excited photosystems. The 

presence of non-cyclic electron transport influences their synthesis. Similarly, the 

included cyclic electron transport contributes to produce ATP through generation of a 

proton motive force via the pumping of H+ across the membrane. Here, a significant 

flows are observed over the ferredoxin-NADP+ reductase (reaction “_1.18.1.2”, in 

iSyf715) and across the ATPase (reaction “_3.6.3.14”, in iSyf715), the governing 

complex in photophosphorylation process. Thus, the ATP/NADPH ratio is in 

correspondence with the hypothesis that the existence of both electron transports 

must be essential for efficient photosynthesis (Munekaga et al., 2004). 

As example, the photophosphorylation supplied the energy required for the active 

regeneration of both D-glyceraldehyde-3-phosphate from 3-phosphoglycerate as D-

ribulose-5-phosphate from D-ribulose-1,5-bisphosphate. On the other hand, the 
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reducing power provided by the oxidation of water via non-cyclic electron transport is 

essential for many synthesis pathways, such as: L-threonine, L-lysine, L-proline, L-

phenylalanine, L-valine, folate, coenzyme A, chlorophyll biosynthesis among other 

amino acid and cofactor metabolic pathways. Additionally, we have noted the 

activation of glycogen production through ADP-D-glucose synthesis, which serves as a 

form of energy storage. Glyoxylate shunt is basically inactive. Interestingly, we have 

also observed fluxes of acetyl-CoA consumption towards the biosynthesis of some 

biomass formation precursors, e.g. amino acids and fatty acids. 

Results of the FBA simulations of some split-flux reactions in the cyanobacterium’s 

central metabolism are shown in figure 3.1. Appendixe 1.2 contains the entire 

metabolic flux vector generated by the described optimization techniques. 

It is noteworthy that reactions such as those catalyzed by glucokinase (reaction 

“2.7.1.2a”, in iSyf715), phosphofructokinase (reaction “2.7.1.11”, in iSyf715) and 

pyruvate kinase (reactions “2.7.1.40a”, in iSyf715), associated with catabolism of 

carbohydrates, exhibit no metabolic flux, which is in correspondence with 

photoautotrophic growth conditions (Buchanan et al., 2000; Voet and Voet, 2004). 

Whereas others like those catalyzed by glucose-6-phosphate isomerase (reactions 

“5.3.1.9a,b”, in iSyf715), fructose 1,6-bisphosphate phosphatase (reactions “3.1.3.11”, 

in iSyf715) and phosphoribulokinase (reaction “2.7.1.19”, in iSyf715) as well as those 

that produce D-ribulose-1,5-bisphosphate and catalyzed by ribose-5-phosphate 

isomerase (reaction “5.3.1.6”, in iSyf715) and ribulose-phosphate 3-epimerase 

(reaction “5.1.3.1”, in iSyf715), operate at relatively high reaction rates.  

Finally, we would like to focus on the high flux value of the reversible reaction 

"_1.3.99.1" catalyzed by succinate dehydrogenase. In this case the direction implies 

the succinate oxidation to fumarate reducing ubiquinone. The synthesis of fumarate is 

an essential reaction since it represents an intermediate node in many metabolic 

pathways that yield building blocks for biomass formation; such as: pyrimidine 

(specifically, uridine monophosphate (UMP)) and aspartate biosynthesis. It is known 

that this cyanobacterium does not have abundance of complex morphological 

characteristics (Robertson et al., 2001); therefore, the reduced ubiquinone could be 

oxidized by other processes, such as photosynthesis electronic transfer, contributing to 
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the formation of NADPH and ATP without triggering their classical synthesis reactions’ 

fluxes. 

 

 

 

 

 

Figure 3.1. Metabolic flux map of some reactions when optimizing biomass function to 
simulate growth. Here are shown the glycolysis and gluconeogenesis pathways, the incomplete 
TCA cycle and a partial depiction of the Calvin-Benson cycle present in cyanobacterium 
metabolism. Note that the empty arrows, in the TCA cycle, indicate the absence of these 
reactions in the pathway. The values beside each EC number, and locked in box, represent the 
predicted fluxes via FBA with vuptake (CO2; HCO3

-) = 1.99 mmol gDW-1 h-1. All of these are 
expressed in mmol gDW-1 h-1 and correspond to the maximum of the optimization problem. 
Fluxes are not necessarily consistent from one reaction to the next because other, smaller flux 
pathways have interplay with the reactions here. 

3.2.3 Flux variability analysis 

Although the FBA leads to an optimal objective function solution, it is true that there 

are alternate flux distributions that could yield equivalent optimal solutions. Thus, a 

given reaction can be having different flux while still resulting in an optimal solution of 

the optimization problem.  

Abbreviations: β-D-gluc = β-D-glucose; β-D-gluc-6-P = β-D-glucose-6-phosphate; α-D-gluc-6-P = α-D-
glucose-6-phosphate; β-D-fruct-6-P = beta-D-fructose-6-phosphate; β-D-fruct-1,6-P = β-D-fructose-1,6-
bisphosphate; dihydroxi-acet-P = dihydroxy-acetone phosphate; D-glyceral-3-P = D-glyceraldehyde-3-
phosphate; Pi = phosphate; 1,3-di-P-glyc = 1,3 diphosphateglycerate; 3-P-glyc = 3-phosphoglycerate; 2-
P-glyc = 2-phosphoglycerate; P-enolpyr  = phosphoenolpyruvate; pyr = pyruvate; ac-CoA = acetyl-CoA; 
ox-acet = oxaloacetate; mal = malate; fum = fumarate;  UQH2 /UQ = reduced ubiquinone/oxidized 
ubiquinone; succ = succinate; succ-CoA = succinyl-CoA; 2-ketoglut = 2-ketoglutarate; D-isocit = D-
isocitrate; cit = citrate; CoA = coenzyme A; ribul-1,5-bisP = D-ribulose-1,5-bisphosphate; D-ribul-5-P = D-
ribulose-5-phosphate; D-rib-5-P = D-ribose-5-phosphate; D-xylul-5-P = D-xylulose-5-phosphate 
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With the goal to find the allowable flux range for a particular reaction in these 

alternate optima, we used the Flux Variability Analysis (FVA) algorithm. This approach 

has been used to find ranges of values for all fluxes in the set of alternative optima 

without affecting the simulated objective function (Mahadevan and Schilling, 2003).  

 We looked for the range of minimum and maximum flux values of each reaction 

in iSyf646 and iSyf715. All reactions that have the same minimum and maximum flux 

value, viz.: non-zero and zero values, as well as those that have different non-zero 

minimum and maximum flux value were computed. Additionally, we decided to count 

all reactions that achieved non-zero minimum values whereas maximum flux is zero, 

and vice versa and those which varied their flow between -∞ and +∞, non-zero and 

+∞, -∞ and non-zero, zero and +∞ and between -∞ and zero. The figure 3.2 shows in 

details these results.  

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Overview of all minimum and maximum fluxes of each reaction given the biomass 
growth optimal value in iSyf646 and iSyf715.  

As an example, the fluxes distributions of some diagrammed reactions in figure 3.1 

were investigated by this approach. The range in which reactions can change without 

altering the maximum biomass growth (0.05987 h-1) is shown in figure 3.3. 

The variation observed on reactions “5.4.2.1” and “4.2.1.11” gives us an idea of 

the strong coupling between them. In this case, the maximum flow values indicates 

that both reactions occur in the sense of the isomerization of 3-phosphoglycerate to 2-

phosphoglycerate, and dehydration of the latter to become phosphoenolpyruvate, 

respectively. 
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However, alternative solutions demonstrate that higher fluxes can take place in 

the meaning of gluoneogenesis. This is biologically possible since the 3-

phosphoglycerate represents a hub within this pathway. In others words, it is a direct 

product of CO2 fixation as well as the reduction of pyruvate through pyruvate-water 

dikinase (reaction “2.7.9.2”). So, its transformation until α-D-glucose-1-phosphate 

enables glycogen synthesis; a polysaccharide that accumulates and also forms an 

important component of Synechococcus elongatus PCC7942 biomass (Nakamura et al., 

2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Flux distribution, calculated by FVA, of some central metabolism reactions in 
iSyf646 (A) and iSyf715 (B). The y-axis indicates the flux values of each variability range point 
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bounded by the maximum and minimum values. Bold values correspond to the predicted 
maximum values for each reaction.  

Similarly, the variability seen in reaction “_1.3.99.1” indicates that this reaction 

may proceed, thus, in the direction of the oxidation to fumarate as in reducing to 

succinate, both with relatively high values. Further corroborating the TCA cycle 

amphibole nature. Besides the importance of flow direction towards the emergence of 

fumarate (mentioned above), it is also essential the succinate presence, as an 

intermediate metabolite, in many metabolic pathways; such as: glyoxylate shunt and 

pyrimidine biosynthesis. Although, the flux variability of reaction catalyzed by 

fumarate hidratase (reaction “4.2.1.2”) takes both positive and negative values, it 

appears that higher levels of metabolic flux are directed toward the malate 

production; a metabolite involved in the only active reaction (“·2.3.3.9”), and in 

reverse sense, in the glyoxylate shunt (see Appendix 1.2). 

3.3 Robustness analysis of metabolic model networks  

When we evaluate the optimal states by FVA, to some extent we are assessing the 

parametric sensitivity of the metabolic network. But many times it is appropriate to 

perform a Robustness Analysis (RNA) (Edwards and Palsson, 2000) to estimate the 

metabolic network stability under certain perturbations.  

The notion of robustness has recently received considerable interest in diverse 

fields related to complex networks. Examples include Internet, social networks, and 

biology (Strogatz, 2001; Stelling et al., 2004; Kitano et al., 2004). In general, robustness 

means the persistence of a system´s characteristic behavior under perturbation or 

condition of uncertainty. The concept is closely related to stability in dynamical system 

theory, but usually employed with respect to a broader class of phenomena (Kitano, 

2002; Carlson and Doyle, 2002).  

We assessed the sensitivity of the metabolic network by iterative calculation of 

optimal states, varying an environmental parameter over a given range of values. We 

examined the effect of variations in CO2 and HCO3
− uptake rates as constraints that 

support the optimal biomass growth. The range of these parameters was established 

from zero to 80 mmol gDW-1 h-1. In every calculation, these constraints varied in an 

increment within this range. 
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As the Ci flux constraint was increased from the zero value, it was determined that 

the capability of the metabolic network to support growth was sensitive to all Ci flux 

values between the range. Figure 3.4 displays the biomass growth plotted as a function 

of these variables, where we can observe a nearly linear behavior in the biomass 

production with increasing values of CO2 and HCO3
−

 uptake rates. Synechococcus sp. 

growth rates in high CO2 level were observed by Fu et al. (Fu et al., 2007), as well as in 

other works with several autotrophic organisms (Burkhardt and Riebesell 1997, 

Burkhardt et al. 1999, Yang and Gao 2003, Kim et al. 2006).Theoretically, our results 

can be explained because the increased steady-state uptake flux of this substrate leads 

to amplify its incorporation to the greater part of building blocks´ carbon skeleton. In 

natural circumstances, the in silico results can be explained because there are 

constitutive and inducible transporters in response of CO2 and HCO3
− availability in the 

Ci pool (Shibata et al., 2002; Raven, 2003). Even so, this sensitivity analysis shows us 

the capacity of these input variables to disrupt the growth of the cyanobacterium, and 

their importance in the models. 

The CO2 and HCO3
−

 uptake rates required for fully carbon fixation by 

photosynthetic apparatus correspond to the peaks of the both curves. These optimal 

points correlate with perfect conversion of these substrates into precursors that build 

the biomass, perhaps for the high Ci concentration inside the carboxysome that 

causing the saturation of RuBisCO. The fact that there is a little difference between the 

growths values in the peaks is due to that HCO3
− is a metabolite involved in a plurality 

of functions. Stands out as an intermediary in some biomass precursor’s production, 

like fatty acids and pyrimidines. Also, this ion, which dominates in the alkaline oceans, 

is accumulated in the carboxysome and converted into CO2 by carbonic anhydrase, a 

enzyme closely related with RuBisCO. Thus, the metabolic flux is distributed across all 

nodes associated with its consumption. Whereas CO2, besides being the substrate of 

the CO2-concentrating mechanism, is also a product of many reactions of primary 

metabolism. So, theoretically can be reused when build up in the carboxysome. 
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Figure 3.4. Effects on Synechococcus elongatus PCC7942 maximal growth of varying CO2 and 
HCO3

−
 uptake rates. Red squares and blue diamonds mark biomass production values in 

correspondence with changes in HCO3
− and CO2 uptake rates, respectively.  

The Ci flux could be increased to about 3116% for HCO3
- and 3417% for CO2 of the 

in silico wildtype before severe limitations in the growth flux were encountered. Thus, 

the post-peak segment shows the decline in the cyanobacterium growth as the carbon 

input increases. In this region, too much Ci is taken up relative to photons and the 

growth rate drops due to dissipation of the excess Ci. It seems that the energy and 

electrons requirements for biomass production are channeled in reactions related with 

this dissipation. Beyond this, the segment represents an unrealistic physiological 

situation similar to those found by Edwards and Palsson (Edwards and Palsson, 2000) 

in the sensitivity analysis of E. coli metabolic network altering the flux of some 

reactions in the central metabolic pathways. Furthermore, this behavior is common 

under selective pressure, in which the biological system could adapt to new change by 

altering its phenotypic state (Rosales-Loaiza et al., 2005; Rosales-Loaiza et al., 2008).  

The defined regions in the phenotypic phase plane (PhPP) analysis (see Chapter 5) 

when two parameters are varied simultaneously (Edwards et al., 2002), can explain 

this unrealistic physiological situation.  
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3.4 Conclusions 

Through reconstruction and validation of Synechococcus elongatus PCC7942 metabolic 

model, we have simulated autotrophic flux landscapes. The quantifications made by 

different computational analyses reveal the applicability of these genome-scale 

metabolic network models, proving, once more, the usefulness of these in silico 

reconstructions. 

The cyanobacterium’s autotrophic growth was simulated by Flux Balance Analysis 

with OptGene software. To do this, the objective function taken into account was the 

biomass synthesis, a proxy of cell growth.  

Additionally, we evaluated the flux variability across all reactions that support the 

optimal growth of this prokaryote. Moreover, the CO2 and HCO3
−

 uptake rates were 

subjected to a robustness analysis to investigate the optimal systemic effect of flux 

alteration in biomass growth. Reaffirming the important role of these main carbon 

sources in metabolic functionality. 

In the next chapter we will continue exploring the metabolic capabilities of 

Synechococcus elongatus PCC7942, presenting a mutants study targeting at the 

improved production of biofuels.  

3.5 Methods  

3.5.1 Cell surface area calculation 

With the goal to compute theoretical maximum illumination per weight of biomass we 

calculated cyanobacterium cell surface area as a prolate spheroid. This is a type of 

spheroid in which the polar axis is greater than the equatorial diameter (figure 3.5) 

(Hilbert and Cohn-Vossen, 1999).  

 

 

 

 

 

Figure 3.5. Ellipsoid from whose rotation around its major axis is generates a prolate spheroid. 
In where “y” indicates the polar axis and “x” indicates equatorial diameter.  
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Then, the surface area can be calculated as: 

   (Beyer, 1987) 

where “e” may be identified as the eccentricity and can be calculated as:  

 

 

3.5.2 Flux Balance Analysis 

We have used the FBA in all simulations in this chapter. In this optimization method 

the objective function is a linear equation which can be solved by linear programming 

(LP). This approach can be implemented in a computing environment, even for large-

scale systems such as biological ones (Orth et al., 2010). The details of this constraints-

based analysis are outlined in the first Chapter.  

In general terms, the whole metabolic network can be represented in a matrix (S), 

known as stoichiometric matrix. This arrangement is composed of the stoichiometric 

coefficients of each internal metabolite in biochemical reactions. Mathematically, this 

matrix is a linear transformation of flux vector (v) into a vector of time derivatives of 

the metabolite’s concentration vector (x): 

             

 

This equation represents the fundamental equation of dynamic mass balance that 

characterizes all functional states in the network.  

The method assumes that the system operates under the assumption of steady-

state, meaning that the amount of a metabolite (xi) in all reactions does not vary in 

time (t). Thus,  

 

 

where the individual equation in the set represents the summation of all fluxes 

that form xi and those that degrade it (Edwards et al., 1999). Taking this in vectors v 

and x, we have S · v = 0, the main FBA constraint. This physicochemical limitation 

represents itself, a set of linear equations where the number of equations (one for 

each metabolite) is much smaller than the number of unknown variables (fluxes of 
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each reaction). Consequently, this set is indeterminate. Other physico-chemical 

constraints such as the reactions reversibility and the energy required for cell 

maintenance, as well as experimental constraints, are imposed on mathematical 

model associated to linear optimization method (Orth et al., 2010). 

This problem can be formulated as follows: 

                      Max (vj)    

                      Subject to S · vj = 0   ∀j ∈ N     

                                         vj,irr  R+  

                                        vj,rev  R  

                                        vj,cons  R, vmin < vj,cons < vmax 

where  is the rate of the jth reaction. The elements of the flux vector v were 

constrained for the definition of reversible and irreversible reactions, , and ,r, 

respectively. Additionally, a set of equations was established, , , that contain 

constrained metabolic reactions desirable for simulation, as well as uptake reactions 

which were bound by experimentally determined values from the literature. 

Simulations were performed with the OptGene software (Patil et al., 2005), 

currently, available online at Biomet Toolbox (Cvijovic et al., 2010) 

(http://www.sysbio.se/BioMet). 

3.5.3 Flux Variability Analysis 

The range of maximum and minimum flux for a given reaction, that supports a 

particular optimal state, can be computed by this approach (Palsson, 2006). For a 

given flux (vj), we can determine this range by solving two LP problems: 

                      Max or Min (vj)    

                      Subject to S · vj = 0   ∀j ∈ N     

                                         vj,irr  R+  

                                         vj,rev  R  

                                         vj,cons  R, vmin < vj,cons < vmax 

                                         vj = vopt 

http://www.sysbio.se/BioMet
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These calculations were performed with the OptGene software (Patil et al., 2005), 

currently, available online at Biomet Toolbox (Cvijovic et al., 2010) 

(http://www.sysbio.se/BioMet). 

3.5.4 Robustness Analysis 

Environmental and genetic parameters can be varied over a range of values, in order 

to achieve this sensitivity analysis. This variation can be done in a staggered manner 

and the optimization problem can be solved by linear programming like FBA. In this 

case, every parameter value in the range is set as a constraint on the mathematical 

model (Edwards and Palsson, 2000). Thus, the LP problem can be solved for every 

incremental value along this range. 

The method can be formulated as follows: 

                      Max (vjn)    

                      Subject to S · vj = 0   ∀j ∈ N     

                                         vj,irr  R+  

                                        vj,rev  R  

                                        vj,cons  R, vmin < vj,cons < vmax 

                                                           vj  = cn 

where cn is varied in an increment (L) between the minimum and maximum values of 

the range (x and y, respectively), for example, c1 = x and c2 = y with cn+1 = cn + (y-x)/(L-

1). The results will generate a series of value for v (vjn, n ∈ [1, L]) (Palsson, 2006). 

These calculations were performed with the OptGene software (Patil et al., 2005), 

currently, available online at Biomet Toolbox (Cvijovic et al., 2010) 

(http://www.sysbio.se/BioMet). 
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Chapter 4. Assessment of 

metabolic capabilities 

 

Model-based analyses have become a particularly important approach for 

understanding the functions and capabilities of metabolic networks. Many interesting 

ideas involve the assessment of the consequences of the loss or gain of gene function. 

Several of these could have clear relevance for biotechnological applications. Here, we 

present an investigation in which we designed new strains of cyanobacterium that can 

achieve certain functional state of biotechnological interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Part of the contents of this chapter are based on parts of the following journal articles:  

 Triana J, Montagud A, Siurana M, Gamermann D, Torres J, Tena J, Fernández de Córdoba 
P, Urchueguía JF. Generation and evaluation of a genome-scale metabolic network model of 
Synechococcus elongatus PCC7942. Submitted at Metabolites. 

 Triana J, Montagud A, Gamermann D, Fernández de Córdoba P, Urchueguía JF. In silico 
analysis for bio-products synthesis through genome-scale reconstruction of the Synechococcus 
elongatus PCC7942 metabolic network. In preparation. 
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Chapter 4. Assessment of metabolic capabilities 

4.1 Introduction 

Since the reconstruction of the metabolic network has become a powerful tool for 

analysis in systems biology, many researchers have guided their interest in this field 

targeting economically-relevant goals. Analysis of the genetic modifications in 

genome-scale metabolic models is one approach to target these projects. In this 

context, constraint-based methods have been used to indicate mutations that will 

divert flux towards a preferred designed pathway even in the absence of detailed 

mechanistic or kinetic data (Bar-Even et al., 2010).  

These studies have allowed developing strategies for genetically engineered 

microbial hosts for enhanced production of various bio-products (Kim et al., 2012). 

There are many examples of successful investigations where microorganisms are used 

as biological synthesis platform. Some of them have emerged and conducted through 

in silico driven metabolic engineering (Zha et al., 2009; Xu et al., 2011; Ranganathan et 

al., 2012; Lin et al., 2013). 

Despite the fact that the applications of the genome-scale metabolic models were 

initially found in the implementation of metabolic engineering designs, it is 

nonetheless true that their profits in other fields have been particularly important. 

Among these we note understanding of microbial pathogens characteristics and mode 

of action, many biomedical and pharmaceutical applications, to name a few (Kim et al., 

2010, 2011; Duarte et al., 2007; Lewis et al., 2010b). 

Genetically modified cyanobacteria are potential biocatalysts for substances 

production. They possess higher photosynthetic levels and growth rates compared to 

other algae and higher plants and can be easily manipulated through biotechnological 

techniques. Their nutritional requirements are very basic, namely, light and CO2 as the 

energy and carbon source, respectively, water and mineral salts (especially 

phosphorous-containing salts) (Quintana et al., 2011). These advantages have 

suggested the use of these prokaryotes as potential candidates, as an example, for 

biofuels productions (Rittmann, 2008; Montagud et al., 2013).  

After the reconstruction of the metabolic network of Synechococcus elongatus 

PCC7942, we intend to achieve one of the main objectives of this thesis: the in silico 
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design of bio-products cell factory. Synechococcus elongatus PCC7942 has become an 

attractive model to lead CO2 bioconversion toward the heterologous production of 

value-added compounds such as: ethanol (Deng and Coleman, 1999), isobutyraldehyde 

and isobutanol (Atsumi et al., 2009) extracellular non-crystalline cellulose (Nobles and 

Brown, 2008) and bio-hydrogen (Dutta et al., 2005). Although other strategies for 

improving photochemical efficiencies within the carbon fixation machinery might be 

possible, many are limited by inadequate knowledge of cyanobacterial biology and 

metabolic network properties. 

The matter of this chapter is the evaluation of the metabolic capabilities of 

Synechococcus elongatus PCC7942. This CO2 removal system will be the chassis for 

genetic variations analysis. By which we aim to create a light-based bio-substances 

production platform that include the third generation renewable energy resources. 

4.2 Building and enhancing chemical assignments in metabolic 

network 

Microbial cell as have been used for human purposes since the dawn of time. 

Biological systems are able to perform many reactions that result in industrially-

interesting metabolites. These compounds, whose syntheses go both by simple or 

multiple chemical transformations, could be the subject for design new metabolic 

pathways in a particular organism.  

The gathering of information related to genes, proteins and reactions, as well as 

their associations, described for Synechococcus elongatus PCC7942 metabolism 

enables simulations of the metabolic potentialities of this microorganism. This 

information also allows us to properly evaluate the gain or loss of specific genes in 

production strategies.  

New metabolic phenotypes can be predicted after in silico genetic modifications. 

Nevertheless, hypothetical knowledge to which of these modifications are essential or 

not for the metabolic network functioning is required.  
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4.2.1 Gene essentiality analysis 

We have used the metabolic reconstruction as a framework to make a comprehensive 

gene essentiality analysis for every ORF present in the genome annotation. This 

simulation was carried out, using FBA algorithm, on all single-gene knockouts in 

models under photoautotrophic condition. To determine the effect of a gene deletion, 

the reaction(s) associated with each gene in iSyf715 were individually deleted from 

stoichiometric matrix. The simulations were performed using CO2 uptake rate of 1.99 

mmol gDW-1 h-1 and and irradiance of 1.96 mE gDW-1 h-1. Mutant phenotypes were 

classified as lethal (where there was no growth of the biomass), reduced growth 

(where growth was lower than that observed in the wild-type) and wild-type growth. 

In figure 4.1 we have shown the results of this analysis. For comparison purposes, we 

have also shown the published results for various genome-scale metabolic models. 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Distribution of gene knockout results for six model organisms simulated using FBA 
algorithm, classified as wild-type growth, reduced growth and lethal (references for each 
organism in text body). 

 

Single gene knockouts analysis for Synechococcus elongatus PCC7942 showed that 

a core set of 162 reactions were predicted to be essential for growth, necessary for the 

formation of biomass. Enzymes associated with these reactions are encoded in 145 



                                                                                                                             Chapter 4. Assessment of metabolic capabilities 
 
 
 

_____________________________________________________________________________ 
94 

 

genes (20.31% of the total) in iSyf715. Furthermore, the simulation spots 11 genes that 

cause a reduced growth rate (1.54% of the total) under the same growth conditions. 

As shown in figure 4.1, there are notable differences in the proportion of the 

essential genes among different organisms. Lethal genes counts among these 

organisms are as follows: in the metabolic network of Synechococcus sp. PCC 7002, 30 

genes, 4.9 % of the total (Hamilton and Reed, 2012); Cyanothece sp. ATCC 51142, 36 

genes, 4.47 % of the total (Vu et al., 2012); Saccharomyces cerevisiae, 148 genes, 10% 

of the total (Förster et al., 2003) and E. coli, 187 genes, 15% of the total (Feist et al., 

2007). Comparatively, our iSyf715 model has a significantly larger fraction of essential 

metabolic genes. This goes in line with published results of iSyn669, a metabolic model 

of Synechocystis sp. PCC6803 with counts of 304 genes, 34 % of the total (Montagud et 

al., 2010). An extensive experimental setup of S. elongatus PCC7942 mutants does not 

currently exist so to validate gene knockout simulations. However, gene essentiality 

analysis still allows us to generate hypotheses about genes and reactions that are 

potentially essential under one or more growth conditions. This approach has an 

intrinsic relationship with genome annotation as well as the growth medium and 

errors can drive to false positives and false negatives conclusions. These could be one 

of the main causes of the differences in these microorganisms. 

4.2.2 Converting photons and CO2 into photanol 

The long-term availability of fuel fossils has raised great concern in the recent past. 

This, together with the environmental problems derived from their exploitation, has 

encouraged an effort focused on sustainable production methods (Milne et al., 2011). 

Presently, one of the more attractive alternatives of energy sources has been the 

production, by fermentation, of low molecular weight alcohols. There have been many 

investigations to improve this process. One of the most interesting approaches is a 

combination of the fermentative and photosynthetic processes on a single biological 

chassis. 

This is based on the ability of photosynthetic microorganisms to produce 

glyceraldehyde-3-phosphate from CO2 fixation, as well as the skill of fermentative 

microorganisms to use C3 sugars to obtain energy and its subsequent transformation 

to alcohols. This strategy, known as photanol approach, was initially developed for 
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Synechocystis sp. PCC6803 (Hellingwerf and Mattos, 2009). However, this technology 

could be theoretically feasible in other photosynthetic biological systems. Basically in 

those where the techniques of genetic engineering and biotechnology have been 

extensively tested, like Synechococcus elongatus PCC7942. Having this in mind, iSyf715 

metabolic model was used to simulate its potentialities not only to produce a 

metabolite of socio-economic interest, but also to identify hot spots where we can 

improve its productivity. 

4.2.2.1 Ethanol 

One of the most desired and studied ideas have been the use of photosynthetic 

mechanisms for bioconversion of CO2 to ethanol. Nowadays, established technologies 

for ethanol production use the fermentation of sugars from plant sources, C4 plants 

mainly, such as corn (Hill et al., 2006), and sugarcane (Goldemberg, 2007). However, 

this technology is inefficient per se mostly because the energy produced is fewer to 

that the one stored in feedstock (Huber et al., 2006). On the other hand, it is one of 

the most controversial alternatives due to its competition with food production 

(Rittmann, 2008). 

In this regard, cyanobacteria could be one of the most promising non-food-related 

biomass sources for energy generation and, in particular, for ethanol synthesis. The 

first of these microorganisms to be transformed to produce ethanol was 

Synechococcus elongatus PCC7942 (Deng and Coleman, 1999). Genes encoding 

pyruvate decarboxylase and alcohol dehydrogenase II from Zymomonas mobilis were 

cloned into a vector and used to transform this cyanobacterium. 

As an example of the usefulness of the present metabolic models we have 

designed in silico metabolic engineering strategies to improve the production of 

ethanol. The main purpose was to design a metabolic network (through reaction 

knockout simulations) which could potentially overproduce ethanol while still evolving 

some biomass. To this end, we used Minimization of Metabolic Adjustment (MOMA) 

algorithm (see methods) implemented in OptGene software (Patil et al., 2005). MOMA 

algorithm was developed to calculate the changes in fluxes within the solution space as 

a result of a gene deletion process (Segrè et al., 2002). It has been reported that this 
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A B 

C 

algorithm provides better description of flux distributions in mutants or under non-

natural growth conditions than FBA algorithm.  

We simulated single, double and triple knockout strategies in order to find 

possible genetic targets to increase ethanol production, but without drastically 

diminishing biomass production. We used iSyf715 metabolic model for which wild type 

optimal growth rate, under photoautotrophic condition, was 0.05987 h-1.  In the 

following figure it can be seen the simulations results for single knockouts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Proposed single knockouts for an improved ethanol production. A. List of top 10 
single knockouts by which they reached a maximum on the design function (ethanol 
production). B. Percent depicting the mutant objective function (biomass production) relative 
to the wild type objective function. C. Values of the design function (first value in the text box) 
relative to the deleted genes as well as the times improvement on this design function (value 
enclosed in brackets). Units for objective function and design function in h-1 and mmol gDW-1 h-

1, respectively.  

By deleting the adk gene that encodes the enzyme adenylate kinase (reaction 

"2.7.4.3a" in iSyf715 and ORF ID: Synpcc7942_2213), the biological system is capable of 

achieving a greater flow towards the production of ethanol, here, 0.532616 mmol 

gDW-1 h-1, with a growth rate of 0.00644061 h-1 (Figure 4.2). 

By interrupting the flux through this reaction (2.7.4.3a : AMP + ATP <-> 2 ADP), the 

consumption as much the substrates as the products is reduced. This could favor the 
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acetate synthesis, and therefore the acetaldehyde one, by the reaction catalyzed by 

acetyl-CoA synthetase from AMP and acetyl-CoA (reaction “6.2.1.1a” in iSyf715) or by 

the reaction catalyzed by acetate kinase from ADP and acetylphosphate (reaction 

“2.7.2.1a” in iSyf715). On the other hand, by reducing the consumption of ATP the 

NADH synthesis is favored and therefore the ethanol production. 

Second best strategy would be to knockout the gene nrdb that codes for a class II 

ribonucleoside-diphosphate reductase (reaction “1.17.4.1c” in iSyf715 and ORF ID: 

Synpcc7942_1609). Similarly, it would avoid the dGDP formation and therefore 

diminish the phosphates groups transfer, catalyzed by nucleoside diphosphate kinase, 

that uses ATP (reaction "2.7.4.6d" in iSyf715).  

Through double knockout simulation we observed an improved ethanol evolution 

despite some reduction in the biomass growth (see Figure 4.3). Interestingly, best 

double deletion strategy involves adk gene removal (reaction "2.7.4.3a" in iSyf715) 

continuing the results obtained in the single knockout analysis. 

The best double knockout mutant strain for ethanol production would target the 

gene coding for adenylate kinase and the gene pyrF coding for orotidine-5-phosphate 

decarboxylase (reaction "4.1.1.23" in iSyf715 and ORF ID: Synpcc7942_2569). This 

mutant would yield an ethanol synthesis rate of 0.633361 mmol gDW-1 h-1, with a 

growth rate of 0.0090926 h-1. The combination of these two deletions involves the 

reduction of direct and indirect uses of ATP by these two enzymes, respectively. In this 

way, it would increase the NADH pool and the flux of its oxidation by ethanol synthesis 

machinery. 

Best in silico triple knockout strain corresponds to deletions of gene adk encoding 

for adenylate kinase enzyme (reaction "2.7.4.3a" in iSyf715 and ORF ID: 

Synpcc7942_2213), gene ndkR for nucleoside diphosphate kinase enzyme (reaction 

"2.7.4.6a" in iSyf715 and ORF ID: Synpcc7942_2497) and gene pyrC for dihydroorotase 

enzyme (reaction "3.5.2.3" in iSyf715 and ORF ID: Synpcc7942_0486). This simulated 

strain has an ethanol production of 0.724116 mmol gDW-1 h-1 with a growth rate of 

0.00724567 h-1 (see figure 4.3). Again, these knockouts involve the reduction of the 

ATP use, that as explained above, the flow towards ethanol synthesis is increased. 
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Figure 4.3. Proposed double knockouts for an improved ethanol production. A. List of top 10 
single knockouts by which they reached a maximum on the design function (ethanol 
production). B. Percent depicting the mutant objective function (biomass production) relative 
to the wild type objective function. C. Values of the design function (first value in the text box) 
relative to the deleted genes as well as the times improvement on this design function (value 
enclosed in brackets). Units for objective function and design function in h-1 and mmol gDW-1 h-

1, respectively.  

The graph in figure 4.4 shows the most frequent genetic deletions through which, 

theoretically, mutant strains would reach a maximum of the objective and design 

functions. It can be appreciated that the adk gene mutations are the most frequent in 

the phenotypes analyzed, followed by mutations in ndkR and pyrC genes. 

From the engineering point of view, the synthesis of a desired compound has been 

boosted by manipulating one of the factors that affect the rate of reactions. Many 

studies have been achieved that through overexpressing the catalytic mechanisms 

related to its precursors (Duan et al., 2010; Thykaer et al., 2010). 
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Figure 4.4. Most frequent mutations, proposed by MOMA analysis, which include the top 10 
candidates of the single, double and triple knockouts for maximize ethanol production.  

In this case, and taking the example of a Michaelis-Menten reaction, when the 

enzymes concentration becomes high enough to entirely transform the substrate to 

the enzyme-substrate complex, the second step of the reaction becomes rate limiting, 

and overall reaction rate becomes sensitive to further increases in enzymes 

concentration. This was applied in our steady-state system modeling. Thus, with the 

aim of focusing on other metabolic designs, we made sure that the rate of alcohol 

dehydrogenase (reaction “1.1.1.1” in iSyf715) was only restricted by its 

thermodynamical capabilities. Then, we added the missing gene encoding for the 

pyruvate decarboxylase enzyme (reaction “·4.1.1.1” in iSyf715), and again, we made 

sure that the rate was only restricted by its thermodynamical capabilities. This protein 

catalyze the directly conversion of pyruvate, considered a hubs within metabolic 

network, into acetaldehyde.  

The estimation of theoretical maximum yield of ethanol production was 

performed by FBA and compared with results reported by Deng and Coleman in a 

recombinant Synechococcus elongatus PCC7942 (Deng and Coleman, 1999). The 

transformed cells by these authors were grown in 500 mL batch cultures and the 

specific ethanol synthesis rate was 0.2 mg L-1 d-1 (≈ 5.8·10-9 mmol gDW-1 h-1). We found 

that for CO2 uptake rate of 1.99 mmol gDW-1 h-1 and an incident irradiance of 1.96 mE 

gDW-1 h-1, our prediction for theoretical productivity of ethanol behaves as shown in 

the graph in Figure 4.2. For the maximum biomass growth (0.05987 h-1), the 



                                                                                                                             Chapter 4. Assessment of metabolic capabilities 
 
 
 

_____________________________________________________________________________ 
100 

 

0 

0,5 

1 

1,5 

2 

2,5 

0 0,02 0,04 0,06 0,08 

Biomass growth (h-1) 

Et
h

an
o

l s
yn

th
es

is
 (

m
m

o
l g

D
W

-1
 h

-1
) 

 

theoretical synthesis of ethanol was 3.81·10-8 mmol gDW-1 h-1 which is not far from the 

experimental report. On the other hand, the in silico productivity gives us an idea of 

the metabolic capabilities of this cyanobacterium when the carbon flux is directed 

towards ethanol production (see figure 4.5). 

 

 

 

 

 

 

 

 

Figure 4.5. Theoretical productivity of ethanol as predicted by using iSyf715. Maximum ethanol 
production is shown as a function of minimal demand on biomass formation under autotrophic 
growth.  

As we can see the maximal value for ethanol synthesis rate derived by iSyf715 was 

predicted to be larger when the biomass growth is minimal. The left part of the graph 

shows the behavior of a strain whose energy and reduced power are only intended to 

synthesize ethanol. While the right part represent the wild strain, which does not 

produce ethanol, since it is not described in the biomass equation. The graph can be 

used to estimate the theoretical maximum production, and therefore to organize the 

mutants previously simulated. It is not always interesting designing a strategy whose 

objectives are the production of ethanol with a low biomass growth. Usually, a 

compromise solution in the middle of that line will be the desired objective. 

4.2.2.2 Higher chain alcohols 

Despite that ethanol can be mixed with existing fuels and current engines can use it 

without any modification (Kaygusuz, 2009), this biofuel has several drawbacks: low 

energy density, high vapor pressure, and high hygroscopicity (Smith et al., 2010). These 

problems have led us to focus on other alcohols that present high energy content, low 
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volatility and low corrosivity, as well as being less hydroscopic. In this regard, higher 

alcohols, such as the isomers of n-butanol seem to be promising candidates (Cheng et 

al., 2012; Baez et al., 2011; Li et al., 2011; Borden and Papoutsakis 2007; Mariano et 

al., 2009; Atsumi et al. 2008, 2009a, b; Shen and Liao 2008; Cann and Liao 2008; 

Connor and Liao 2008; Smith et al., 2010). Some of them, like isobutanol and even the 

n-butanol, constitute the best targets as potential additives or substitutes of gasoline 

because of their multiple advantages. Nowadays current butanol demand is fulfilled by 

chemical synthesis, which requires high production cost and expensive catalyst (Carlini 

et al., 2003). In fact, higher alcohols such as isobutanol, 2-methyl-1-butanol, 3-methyl-

1-butanol and 1-propanol are rarely synthesized by biological systems even though 

small amounts have been detected as microbial by-products (Sentheshanuganathan, 

1960; Dickinson et al., 1997; 1998; 2000; 2003).  

For successful in situ synthesis of these alcohols, and so as to prevent 

accumulation of heterologous metabolites and hence cytotoxicity (Pitera et al., 2007), 

we looked for pathways that shared common elements with our organism. Non-

fermentative pathways such as the Ehrlich pathway (Sentheshanmuganathan, 1958) 

has been one of the targets for this strategies. The idea is to alter the metabolic fluxes 

of the transformation of 2-keto acids, which are intermediates in amino acid 

biosynthesis pathways, to enhance the synthesis of higher alcohols. These types of 

carboxylic acids can be dehydrogenated to alcohols and reduced to aldehydes, by the 

action of alcohol dehydrogenases and 2-keto acid decarboxylases, which are not 

distinctive of prokaryotes (Konig, 1998). Thus, we added this new gene (“kivd” and 

reaction “·4.1.1.74” in iSyf715) as a heterologous pathway to produce biofuels. 

We decided to perform simulations of different alcohols productions with some 2-

keto acids as precursors. For instance, 2-keto-3-methyl-valerate and 2-

ketoisocaproate, which are intermediates of isoleucine and leucine biosynthesis 

pathway, respectively, can be converted to 2-methyl-1-butanol and 3-methyl-1-

butanol, respectively. The valine biosynthesis pathway produces 2-keto-isovalerate, 

which is the precursor for isobutanol. Finally, we decided to simulate 1-propanol 

synthesis whose substrate is 2-ketobutyrate in isoleucine biosynthesis pathway. 

Although some of the 2-keto-acid decarboxylases (KDCs) have substrate-specific 
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activity (Atsumi et al., 2008), all of these enzymes were modeled as one, having a wide 

substrate range.    

We simulated single, double and triple knockout strategies, using MOMA 

algorithm implemented in OptGene software (Patil et al., 2005), in order to find 

possible genetic targets to increase alcohols production. More specifically, we 

evaluated mutant phenotypes that maximize the production of alcohol. We used 

iSyf715 metabolic model whose wild type growth rate is 0.05987 h-1. 

The following table shows single knockout strains result of MOMA analyses, 

maximizing the synthesis of higher alcohols. 

Table IV.A. Proposed single knockouts for an improved higher alcohols production. 
Units for objective function (biomass production) in h-1 and for design function (higher 
alcohols) in mmol gDW-1 h-1. In all pathways, the knock-in is highlighted in yellow.  

 
2-methyl-1-butanol  

 
Abbreviation: β-D-gluc = β-D-glucose; pyr = pyruvate; 2-oxobutan = 2-oxobutanoate; 2-aceto-2-hydro-buty = 2-aceto-2-
hydroxy-butyrate; 2,3-dihydro-3-met- val = 2,3-dihydroxy-3-methylvalerate; 2-keto-3-methyl-val = 2-keto-3-methyl-valerate. 

Reaction in model Gene 
% of wild type 

objective function 
Design 

function 
Times improvement 
on design function 

4.1.2.13a fba 38,56 0,0783 2260 

2.1.3.2 pyrB 80,74 0,0623 1798 

3.5.2.3 pyrC 80,74 0,0623 1798 

2.4.2.10 pyrE 80,74 0,0623 1798 

4.1.1.23 pyrF 80,74 0,0623 1798 

4.2.1.1b icfA/ecaA 26,21 0,0551 1591 

ammonia H3N 
TRANS-RXN59G-178 

amt1 69,16 0,0447 1290 

2.7.4.6d ndkR 80,35 0,0273 788 

1.4.1.1 ald 74,21 0,0220 635 

2.7.7.6c rpoB 91,59 0,0158 456 
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3-methyl-1-butanol  

 
Abbreviation: 2-keto-isoval = 2-keto-isovalerate; 2-isopropylmal = 2-isopropylmalate; 3-isopropylmal = 3-isopropylmalate; 2-
isopropyl-3-oxosucc = 2-isopropyl-3-oxosuccinate; 2-ketoisocap = 2-ketoisocaproate. 

Reaction in model Gene 
% of wild type 

objective function 
Design 

function 
Times improvement 
on design function 

4.2.1.1b icfA/ecaA 16,18 0,0914 1589 

2.7.4.6d ndkR 67,92 0,0816 1418 

1.17.4.1c nrdb 20,69 0,0634 1102 

2.7.7.7b dnaN 21,44 0,0623 1083 

ammonia H3N 
TRANS RXN59G-178 

amt1 67,09 0,0613 1065 

4.1.2.13a fba 17,52 0,052 904 

3.5.2.3 pyrC 82,17 0,0518 900 

2.4.2.10 pyrE 82,17 0,0518 900 

2.1.3.2 pyrB 82,17 0,0518 900 

4.1.1.23 pyrF 82,17 0,0518 900 

Isobutanol 

 
Abbreviation: β-D-gluc = β-D-glucose; pyr = pyruvate; 2-acetolac = 2-acetolactate; 2,3-dihydroxy-isoval = 2,3-dihydroxy-
isovalerate; 2-keto-isoval = 2-keto-isovalerate; isobutyral = isobutyraldehyde. 

Reaction in model Gene 
% of wild type 

objective function 
Design 

function 
Times improvement 
on design function 

2.7.4.6d ndkR 67,42 0,129 1304 

4.1.2.13a fba 31,21 0,125 1264 

4.2.1.1b icfA/ecaA 18,95 0,112 1132 
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ammonia H3N 
TRANS-RXN59G-178 

amt1 67,65 0,0845 854 

3.5.2.3 pyrC 80,73 0,0776 784 

2.4.2.10 pyrE 80,73 0,0776 784 

2.1.3.2 pyrB 80,73 0,0776 784 

4.1.1.23 pyrF 80,73 0,0776 784 

4.1.1.31 ppc 45,3 0,0756 764 

1.17.4.1c nrdb 26,12 0,0440 444 

1-propanol 

 

Reaction in model Gene 
% of wild type 

objective function 
Design 

function 
Times improvement 
on design function 

2.1.3.2 pyrB 83,75 0,0532 1532 

4.1.1.23 pyrF 83,75 0,0532 1532 

3.5.2.3 pyrC 83,75 0,0532 1532 

2.4.2.10 pyrE 83,75 0,0532 1532 

4.1.2.13a fba 23,75 0,0374 1077 

1.4.1.1 ald 74,77 0,0344 991 

4.2.1.1b icfA/ecaA 32,63 0,0335 965 

ammonia H3N 
TRANS-RXN59G-178 

amt1 72,25 0,0319 919 

4.2.1.2 fum 86,83 0,03 864 

4.3.2.2a purB 90,82 0,0205 590 

 

In the case of 2-methyl-1-butanol, the simulation results indicate that by deleting 

fba gene, which encodes for an aldolase (reaction "4.1.2.13a" in iSyf715 and ORF ID: 

Synpcc7942_1443) has maximal synthesis of this alcohol. Our model achieves an 

alcohol flux production of 0.0783 mmol gDW-1 h-1, with a growth rate of 0.0108696 h-1. 

This is a key enzyme in the glycolytic pathway since it cleaves an aldol, through a retro-

aldol condensation, that initiates the second phase of this path, in which triose 
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phosphates complete its oxidation. Additionally, this reaction is common to the 

gluconeogenesis pathway, an active route in the Synechococcus elongatus PCC7942 

photosynthetic metabolism. By blocking this step the metabolic flux in gluconeogenic 

direction is prevented and the 3-phosphoglycerate from the Calvin-Benson cycle will 

be directed towards the pyruvate formation, one of the precursors of 2-methyl-1-

butanol. The second best mutation targets to the mutation of pyrB gene that encodes 

for aspartate transcarbamylase (ATCase) (reaction "2.1.3.2" in iSyf715 and ORF ID: 

Synpcc7942_0670). Preventing the flux through this reaction, the L-aspartate remains 

available as substrate for other reactions, such as the catalyzed by aspartate kinase 

(reaction "2.7.2.4" in iSyf715) which is part of a set of reactions that transform this 

amino acid to L-threonine. In turn, the L-threonine is deaminated to 2-oxobutanoate 

(reaction "4.3.1.19a" in iSyf715) which is a precursor for the 2-methyl-1-butanol 

synthesis.  

Analyzing the singles knockout for 3-methyl-1-butanol, we can see that the best 

single strategy corresponds to the deletion of the icfA/ecaA genes encoding for 

carbonic anhydrase enzyme (reactions "4.2.1.1b" in iSyf715 and ORF IDs: 

Synpcc7942_1447, Synpcc7942_1388 and Synpcc7942_B2619). As shown in Table IV.A, 

the model is capable of producing a flux of 0.0914 mmol gDW-1 h-1 of alcohol while 

diminishing growth to 0.00455735 h-1. These deletions prevent the dehydration of the 

bicarbonate ion (HCO3
-) and its conversion into CO2. Thus, the CO2 fixation by Calvin -

Benson cycle is decreased and the carbon flux is redirected towards the production of 

this biofuel. This carbon diversion can explain the high rate of its synthesis as well as 

the low biomass growth rate. Furthermore, the second best strategy consists on ndkR 

gene mutation encoding for nucleoside diphosphate kinase (reaction "2.7.4.6d" in 

iSyf715 and ORF ID: Synpcc7942_2497). This mutation prevents the formation of dGTP 

and avoids its reaction with the pyruvate (reaction "2.7.1.40d" in iSyf715). This way, 

pyruvate remains available to be transformed into 2-keto-isovalerate, one of 

precursors of 3-methyl-1-butanol. 

As in the previous case, the mutant phenotype that has the highest flux for 

isobutanol synthesis is the one without ndkR, a gene coding for nucleoside 

diphosphate kinase (reaction "2.7.4.6d" in iSyf715 and ORF ID: Synpcc7942_2497). As 



                                                                                                                             Chapter 4. Assessment of metabolic capabilities 
 
 
 

_____________________________________________________________________________ 
106 

 

we explained further above, this mutation could increase the 2-keto-isovalerate 

formation rate. In this case, the model is capable of producing 0.129 mmol gDW-1 h-1 of 

alcohol with a growth rate of 0.0189957 h-1. Besides, the second best strategy involves 

the fba gene deletion, a gene coding for aldolase enzyme (reaction "4.1.2.13a" in 

iSyf715 and ORF ID: Synpcc7942_1443). This strategy redirects the flow to the end of 

the glycolytic pathway. This mutation could increase the level of pyruvate, substrate of 

the 2-keto-isovalerate formation and therefore of isobutanol. 

We have seen that higher flux in 1-propanol synthesis is reached when blocking 

the flux through the reactions catalyzed by either ATCase, orotidine-5-phosphate 

decarboxylase, dihydroorotase or orotate phosphoribosyltransferase and encoded by 

pyrB, pyrF, pyrC and pyrE, respectively (reactions “2.1.3.2”, “4.1.1.23”, “3.5.2.3” and 

“2.4.2.10”, respectively, in iSyf715 and ORF ID: Synpcc7942_0670, Synpcc7942_2569, 

Synpcc7942_0486 and Synpcc7942_2592). In particular the prokaryote is capable of 

achieving a flux of 0.0532 mmol gDW-1 h-1, with a growth rate of 0.0235939 h-1. As we 

explained, the pyrB deletion increases the conversion flux of L-aspartate to L-threonine 

and this into 2-oxobutanoate that is a precursor of 1-propanol. Additionally, by 

eliminating the activity of these enzymes, which are strongly coupled to pyrimidine 

biosynthesis pathway, the decarboxylation of orotidine-5'-phosphate and its CO2 

release are prevented. As a consequence, the gluconeogenic flux would be diminished 

and flux towards the production of this biofuel would be favored. 

We also looked into combination of double knockouts. The following table shows 

the best double mutant strain result of MOMA analysis, in order to maximize the 

production of higher alcohols. 

As in the case of ethanol, we observed improved alcohols synthesis with these 

double knockouts than with the single ones (see Table). Interestingly, the 10 best 

double deletions strategies involve amt1 genes removal (reaction “ammonia H3N 

TRANS-RXN59G-178” in iSyf715 and ORF ID: Synpcc7942_0442 and Synpcc7942_2279). 

This is in line with the results presented in above single knockout section. 
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Table IV.B. Proposed double knockouts for an improved higher alcohols production. 
Units for objective function (biomass production) in h-1 and for design function (higher 
alcohols) in mmol gDW-1 h-1. In all pathways, the knock-in is highlighted in yellow. 

 
2-methyl-1-butanol  

 
Abbreviation: β-D-gluc = β-D-glucose; pyr = pyruvate; 2-oxobutan = 2-oxobutanoate; 2-aceto-2-hydro-buty = 2-aceto-2-
hydroxy-butyrate; 2,3-dihydro-3-met- val = 2,3-dihydroxy-3-methylvalerate; 2-keto-3-methyl-val = 2-keto-3-methyl-valerate. 

Pair of reactions 
Pair of 
genes 

% of wild type 
objective 
function 

Design 
function 

Times 
improvement 

on design 
function 

3.5.2.3; ammonia H3N 

TRANS-RXN59G-178 
pyrC; amt1 65,66 0,122 4846 

2.4.2.10; ammonia H3N 

TRANS-RXN59G-178 
pyrE; amt1 65,66 0,122 4846 

2.1.3.2; ammonia H3N 

TRANS-RXN59G-178 
pyrB; amt1 65,66 0,122 4846 

4.1.1.23; ammonia H3N 

TRANS-RXN59G-178 
pyrF; amt1 65,66 0,122 4846 

3.5.2.3; _1.4.4.2 pyrC; gcvP 74,66 0,107 4250 

3.5.2.3; _2.1.2.10a pyrC; gcvT 74,66 0,107 4250 

3.5.2.3; _1.8.1.4c pyrC; phdD 74,66 0,107 4250 

2.4.2.10; _1.4.4.2 pyrE; gcvP 74,66 0,107 4250 

2.4.2.10; _2.1.2.10a pyrE; gcvT 74,66 0,107 4250 

2.4.2.10; _1.8.1.4c pyrE; phdD 74,66 0,107 4250 

2.1.3.2; _1.4.4.2 pyrB; gcvP 74,66 0,107 4250 

2.1.3.2; _2.1.2.10a pyrB; gcvT 74,66 0,107 4250 

2.1.3.2; _1.8.1.4c pyrB; phdD 74,66 0,107 4250 

4.1.1.23; _1.4.4.2 pyrF; gcvP 74,66 0,107 4250 

4.1.1.23; _2.1.2.10a pyrF; gcvT 74,66 0,107 4250 

4.1.1.23; _1.8.1.4c pyrF; phdD 74,66 0,107 4250 

3-methyl-1-butanol  
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Abbreviation: 2-keto-isoval = 2-keto-isovalerate; 2-isopropylmal = 2-isopropylmalate; 3-isopropylmal = 3-isopropylmalate; 2-
isopropyl-3-oxosucc = 2-isopropyl-3-oxosuccinate; 2-ketoisocap = 2-ketoisocaproate. 

Pair of reactions 
Pair of 
genes 

% of wild type 
objective 
function 

Design 
function 

Times 
improvement 

on design 
function 

1.17.4.1c; ammonia H3N 

TRANS-RXN59G-178 
nrdb; amt1 11,22 0,138 1056 

2.7.7.7b; ammonia H3N 

TRANS-RXN59G-178 

dnaN; 

amt1 
12,75 0,1369 1048 

2.1.3.2; ammonia H3N 

TRANS-RXN59G-178 
pyrB; amt1 65,06 0,1337 1023 

4.1.1.23; ammonia H3N 

TRANS-RXN59G-178 
pyrF; amt1 65,06 0,1337 1023 

3.5.2.3; ammonia H3N 

TRANS-RXN59G-178 
pyrC; amt1 65,06 0,1337 1023 

2.4.2.10; ammonia H3N 

TRANS-RXN59G-178 
pyrE; amt1 65,06 0,1337 1023 

2.2.1.2; 2.7.4.6d tal; ndkR 41,05 0,1251 957 

2.7.4.6d; ammonia H3N 

TRANS-RXN59G-178 
ndkR; amt1 57,07 0,125 957 

2.7.9.2; 2.7.4.6d ppsA; ndkR 65,83 0,1205 922 

4.2.1.1b; ammonia H3N 

TRANS-RXN59G-178 

icfA/ecaA; 

amt1 
10,25 0,1178 901 

Isobutanol 

 
Abbreviation: β-D-gluc = β-D-glucose; pyr = pyruvate; 2-acetolac = 2-acetolactate; 2,3-dihydroxy-isoval = 2,3-dihydroxy-
isovalerate; 2-keto-isoval = 2-keto-isovalerate; isobutyral = isobutyraldehyde. 
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Pair of reactions 
Pair of 
genes 

% of wild type 
objective 
function 

Design 
function 

Times 
improvement 

on design 
function 

3.6.1.1; 1.2.1.3c ppa; puuC 2,39 0,36233 3418 

4.1.2.13a; 4.1.1.31 fba; ppc 18,09 0,25385 2394 

4.1.2.13a; ammonia H3N 
TRANS-RXN59G-178 

fba; amt1 16,46 0,232886 2196 

2.7.1.146; 2.7.4.6d fba; ndkR 18,39 0,214276 2021 

4.1.2.13a; 1.2.1.3c fba; puuC 18,39 0,212528 2004 

2.7.4.6d; 4.2.1.1b 
ndkR; 

icfA/ecaA 
5,0 0,205815 1941 

2.7.1.146; 1.2.1.3c pfk; puuC 28,46 0,202854 1613 

4.1.2.13a; 1.2.4.1 fba; pdh 9,92 0,201563 1901 

4.1.2.13a; 2.3.1.12 fba; aceF 9,92 0,201563 1901 

4.1.2.13a; 1.8.1.4a fba; phdD 9,924 0,20155 1901 

2.7.4.6d; 1.2.4.1 ndkR; pdh 58,95 0,19966 1883 

2.7.4.6d; 2.3.1.12 ndkR; aceF 58,95 0,19966 1883 

2.7.4.6d; 1.8.1.4a ndkR; phdD 58,95 0,19966 1883 

2.7.9.2; 2.7.4.6d ppsA; ndkR 61,9 0,195749 1846 

1-propanol 

 

Pair of reactions 
Pair of 
genes 

% of wild type 
objective 
function 

Design 
function 

Times 
improvement 

on design 
function 

2.2.1.2; 4.2.1.1b 
tal; 

icfA/ecaA 
7,18 0,074099 1262 

4.2.1.1b; ammonia H3N 
TRANS-RXN59G-178 

icfA/ecaA; 
amt1 

23,96 0,071594 1220 

2.1.3.2; 1.2.1.3c pyrB; puuC 86,64 0,071279 1214 

4.1.1.23; 1.2.1.3c pyrF; puuC 86,64 0,071279 1214 

3.5.2.3; 1.2.1.3c pyrC; puuC 86,64 0,071278 1214 

2.4.2.10; 1.2.1.3c pyrE; puuC 86,64 0,071278 1214 
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2.7.7.8d; ammonia H3N 
TRANS-RXN59G-178 

pnp; amt1 48,27 0,069210 1179 

4.1.2.13b; 1.2.1.3c fba; puuC 85,72 0,068318 1164 

3.1.3.37; 1.2.1.3c glpX; puuC 85,72 0,068318 1164 

3.5.2.3; 2.7.7.6c pyrC; rpoB 80,98 0,068025 1159 

2.4.2.10; 2.7.7.6c pyrE; rpoB 80,98 0,068025 1159 

 

In the case of 2-methyl-1-butanol, there are four candidates that are good double 

knockouts strategies that evolve same alcohol flux and same biomass production. The 

four involve the elimination of amt1 genes combined with the deletions in the pyrC, 

pyrE, pyrB and pyrF genes (reaction "3.5.2.3”, “2.4.2.10”, “2.1.3.2” and “4.1.1.23” in 

iSyf715, respectively, and ORF ID: Synpcc7942_0486, Synpcc7942_0488, 

Synpcc7942_2592, Synpcc7942_0670 and Synpcc7942_2569). In all cases, we predicted 

2-methyl-1-butanol synthesis rate of 0.122 mmol gDW-1 h-1, with a growth rate of 

0.0185017 h-1. 

As we explained before the mutation of these coupled genes have the same 

effect, over the orotidine-5'-phosphate decarboxylation. The removal of amt1 genes 

would affect the ammonium input and thus also affects the back flow of the reaction 

"1.4.1.1", which involves the use of pyruvate to form L-alanine, and the flow of the 

reaction "3.5.1.1" which includes the use of L-aspartate, among other reactions where 

ammonium is used. These changes would mean higher availability of both L-aspartate 

and pyruvate, precursor of higher alcohol. 

The best double knockout for the 3-methyl-1-butanol production, involves the 

combined deletions of nrdb gene, which encodes ribonucleoside diphosphate 

reductase-class II (reaction “1.17.4.1c” in iSyf715 and ORF ID: Synpcc7942_1609) and 

amt1 genes. With these deletions, the system is capable of reaching a maximum of 3-

methyl-1-butanol synthesis of 0.138 mmol gDW-1 h-1, with a growth rate of 0.0031591 

h-1. As was previously mentioned, the amt1 knockouts would increase pyruvate levels 

as this metabolite is also a precursor of 2-keto-isovalerate. Whereas if nrdb gene is 

mutated the dGDP is not produced (in simulation, the flux of this reaction is in reverse 

direction). That's why this mutation may impede the dGDP´s phosphorilation into dGTP 
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(reaction “2.7.4.6d” in iSyf715) and in turn react with the pyruvate (reaction 

“2.7.1.40d” in iSyf715). 

For isobutanol, the best strategy would be to knockout ppa gene that codifies for 

inorganic diphosphatase (reaction "3.6.1.1" in iSyf715 and ORF ID: Synpcc7942_1383) 

and puuC gene that codifies for aldehyde dehydrogenase (NAD+) (reaction "1.2.1.3c" in 

iSyf715 and ORF ID: Synpcc7942_0489). Through this strategy the model is capable of 

reaching a maximum isobutanol production of 0.36233 mmol gDW-1 h-1, with a growth 

rate of 0.000673601 h-1. The first mutation would avoid the hydrolysis of diphosphate 

and therefore diminish the phosphates concentration required in reactions such as the 

one catalyzed by fructose-6-phosphate phosphoketolase (reaction "4.1.2.22" in 

iSyf715). It would also affect the carbon fixation machinery through the Calvin-Benson 

cycle redirecting more flux to the alcohol synthesis. This explains the low growth rate if 

we compare it to the other proposed strategies. Moreover, by removing the aldehyde 

dehydrogenase, NADH consumption is avoided, which is an indispensable cofactor for 

reducing isobutyraldehyde to isobutanol.  

In the case of 1-propanol, the mutations retrieved by the analysis are tal and 

icfA/ecaA genes that code for transaldolase and carbonic anhydrase, respectively 

(reactions “2.2.1.2” and “4.2.1.1b” in iSyf715, respectively, and ORF ID: 

Synpcc7942_2297, Synpcc7942_1447, Synpcc7942_1388 and Synpcc7942_B2619). 

With this mutant phenotype the cyanobacterium is capable of reaching an alcohol 

production of 0.0740992 gDW mmol-1 h-1, with a growth rate of 0.0020217 h-1. The 

transaldolase deletion prevents the synthesis of D-glyceraldehyde-3-phosphate and D-

sedoheptulose-7-phosphate in pentose phosphate pathway, and that these in turn 

react and form D-ribose-5-phosphate (reaction “2.2.1.1a” in iSyf715). This metabolite 

is the precursor of D-ribulose-5-phosphate, which is a key compound in the Calvin-

Benson cycle. Thereby, this strategy would cut the flux to those reactions and 

metabolic pathways associated with cell growth. Similarly, and as we previously 

mentioned, if the genes for carbonic anhydrase are removed the CO2 formation rate 

decreases as well as its fixation by the Calvin-Benson cycle. Thus, the carbon flux is 

redistributed to form 1-propanol. Once more, these mutations explain the predicted 

low growth for this organism. 
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We looked for possible triple knockouts that improved the production of each of 

these higher alcohols. In particular, we saw that 2-methyl-1-butanol production could 

be optimized by eliminating pyrC, pyrB and amt1 genes giving production titters of 

0.28 mmol gDW-1 h-1, with a growth rate of 0.01996 h-1. The impact of the elimination 

of each of these genes has been previously explained. 

In the case of 3-methyl-1-butanol, the best triple knockout involves genes ndkR, 

amt1 and icfA/ecaA. The predicted synthesis of this alcohol is 0.189 mmol gDW -1 h-1, 

with a growth rate of 0.010991 h-1. Once again, the effect of these deletions on 

metabolic phenotype has been explained further above.  

In the case of isobutanol, the best strategy includes the elimination of fba, puuC 

and ppsA genes, the latter encoding for pyruvate-water dikinase (reaction “2.7.9.2” in 

iSyf715 and ORF ID: Synpcc7942_0781). We predicted that the microorganism is 

capable of producing 0.4096 mmol gDW-1 h-1, with a growth rate of 0.00938 h-1. The 

involvement of the mutations in fba and puuC genes in Synechococcus elongatus 

PCC7942 metabolism has been previously explained, while for ppsA gene this effect 

relates to the possibility of increasing the pyruvate levels as precursor of this alcohol.  

Finally, when we analyzed the triple mutant to enhance the 1-propanol synthesis, 

we identified genes pyrC, icfA/ecaA and amt1. Through this mutant phenotype, the 

cyanobacterium is capable of producing 0.0901 mmol gDW-1 h-1, with a growth rate of 

0.00962 h-1. The effects of these knockouts have been described above. 

Figure 4.6 shows the most frequent genetic deletions through which mutant 

strains would reach a maximum of alcohol production and cell growth. As it can be 

appreciated, the mutations fba, pyrB, pyrC, pyrE, pyrF, icfA/ecaA, amt1 and ndkR genes 

are common in all the analyzed phenotypes and the two last genes stand out as the 

most frequent. 

As in the ethanol case, we performed FBA analysis for estimate a theoretical 

maximum yield of all alcohols production. We considered a CO2 uptake rate of 1.99 

mmol gDW-1 h-1 and an incident irradiance of 1.96 mE gDW-1 h-1. Our prediction for 

theoretical productivity of these alcohols behaves as shown in figure 4.7.  
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Figure 4.6. Most frequent mutations, proposed by MOMA analysis, which include the best 
candidates of the single, double and triple knockouts for maximize higher chain alcohols 
production.  

In all cases, the simulation reveals the capability of the metabolic network when 

the flux is rerouted to the synthesis of these bio-products. As seen in the figure 4.7, the 

predicted productivity of both the 2-methyl-1-butanol as the 3-methyl-1-butanol 

behaves equally. Thus, for the maximum biomass growth (0.05987 h-1), the theoretical 

synthesis of these metabolites was 2.42 10-9 mmol gDW-1 h-1. Whereas for the same 

value of biomass growth, the theoretical synthesis of 1-propanol and isobutanol was 

4.03 10-9 mmol gDW-1 h-1 and 3.02·10-9 mmol gDW-1 h-1, respectively.  
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Figure 4.7. Theoretical productivity of higher chain alcohols as predicted by using iSyf715. 
Maximum ethanol production is shown as a function of minimal demand on biomass 
formation under autotrophic growth. The purple squares represent productivity of 1-propanol, 
green triangles represent isobutanol, yellow squares represent 3-methyl-1-butanol and blue 
diamonds correspond to 2-methyl-1-butanol. 

In figure 4.7, the maximal value for higher chain alcohols synthesis rate derived by 

iSyf715 was predicted to be larger when the biomass growth is minimal. Similar to 

ethanol, the intercept to the y-axis represents an strain whose energy and reduced 

power are only intended to synthesize the higher alcohols. While the right part 

represent the wild strain, which does not produce the alcohols, since it is not described 

in the biomass equation. Note that the highest modular value of the slope corresponds 

to 1-propanol, followed by isobutanol and less and equal value for 3-methyl-1-butanol 

and 2-methyl-1-butanol. Once again, the graph can be used to estimate the theoretical 

maximum production, and therefore to organize the mutants previously simulated. It is 

not always interesting designing an strategy whose objectives are the production of 

ethanol with a low biomass growth. Usually, a compromise solution in the middle of 

that line will be the desired objective. 

A metabolic engineering approach, using Escherichia coli, was performed in order 

to produce higher alcohols including those used in our analysis (Atsumi et al. 2008). 

Their production rates for 2-methyl-1-butanol, 3-methyl-1-butanol, isobutanol and 1-

propanol were, approximately, 0.049 mmol gDW-1 h-1, 0.095 mmol gDW-1 h-1, 0.336 

mmol gDW-1 h-1 and 0.0333 mmol gDW-1 h-1, respectively. Although this strategy was 

developed in another biological host, it must be noted that in the present study these 

production values were obtained by in silico simulation with growth values close to the 
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optimal (see figure 4.8). This suggests how efficient the process could be if we wish to 

achieve a maximum in the production of these metabolites and at the same time reach 

a growth rate as close to maximum. 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Relantionship between growth rate of Synechococcus elongatus PCC7942 (y-axis) 
with the synthesis rate values of higher chain alcohols reported for E. coli (x-axis) (Atsumi et al. 
2008). These x-axis values correspond, from left to right, to 1-propanol, 2-methyl-1-butanol, 3-
methyl-1-butanol and isobutanol.  

An engineering approach to synthesize isobutyraldehyde and isobutanol, have 

been successfully developed in Synechococcus elongatus PCC7942 (Atsumi et al., 

2009b). This paper reports a productivity of isobutanol production of 3.125 mg 

(isobutanol) L-1 h-1 at a biomass growth rate approximately 0.0169 h-1. As a result of 

our theoretical calculations, the model can produce 0.408205 mmol gDW-1 h-1 of 

isobutanol at the same biomass growth, which is a 3779-fold increase over the results 

of Atsumi et al. This demonstrates the potentialities of this organism model as high-

yield production platform if metabolic engineering strategies and by-product synthesis 

conditions were designed thoroughly.  

4.2.3 Assessing lipids synthesis for biodiesel and industrial 

applications 

Lipids-fuel, like fatty acid methyl esters (biodiesel), obtained from vegetable oils, 

animal fats and algae have emerged as a viable alternative to petroleum diesel. It has 

received attention as a renewable, biodegradable, and non-polluting fuel (Pearl, 2002; 

Kiss and Bildea, 2012) as well as, being a potential product from microbial biomass. 
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There is little information on whether the cyanobacteria produce and accumulate large 

amounts of lipids. Although these prokaryotes have low lipid content compared to 

other organisms such as microalgae (Francisco et al., 2010), it has been found that lipid 

synthesis is related to high levels of photosynthesis and high biomass productivity, so 

the use of photosynthetic organisms for biodiesel production is becoming more and 

more attractive (Karatay and Donmez, 2011; Costa and Morais, 2011; Taher et al., 

2011; Da Rós et al., 2013). 

For simulation purposes, we designed an design objective function that groups all 

free fatty acids that are described in our model and which quantities have been 

reported by Da Rós and co-workers (Da Rós et al., 2013). This objective function 

consists of octanoic acid (caprylic acid), decanoic acid (capric acid), dodecanoic acid 

(lauric acid), tetradecanoic acid (myristic acid), hexadecanoic acid (palmitic acid), 

octadecanoic acid (stearic acid), palmitoleic acid and oleic acid.  

Additionally, we have chosen free saturated fatty acids (FFA), like palmitic acid 

(C16) and stearic acid (C18), to study the network capacity to synthesize them. These 

FFAs are considered value-added compounds of industrial interest. For example, 

sodium palmitate, which is commonly obtained by saponification of palmitic acid, is 

widely used as feedstock in the food industry, cosmetics and pharmaceutical industries 

(Elder, 1987; Burdock, 2005). Stearic acid is frequently used as lubricants, dispersing 

agent and softener in rubber compounds and in layer coatings. This acid is also 

employed in the manufacture of stearates and stearate dryers, and its salts are used 

for pharmaceuticals preparations and in soaps, detergents, cosmetics and dietary 

supplements production (Elder, 1987; Khalil et al., 2000; Burdock, 2005). 

We simulated single, double and triple knockout strategies in order to find 

possible genetic targets to increase this lipids production. Once again, we used MOMA 

algorithm implemented in OptGene software (Patil et al., 2005). As part of the input 

file format of this software, we defined a “design objective function" as palmitic and 

stearic acids syntheses or fatty acids synthesis and left biomass production as 

“biological objective function”. We used iSyf715 metabolic model for which wild type 

optimal growth rate was 0.05987 h-1.  In figure 4.9 we can see the results for single 

knockouts simulation of the fatty acids mixture´s genes. 
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Figure 4.9. Proposed single knockouts for an improved fatty acids profile production. A. List of 
top 10 single knockouts by which they reached a maximum on the design function (fatty acids 
profile synthesis). B. Percent depicting the mutant objective function (biomass production) 
relative to the wild type objective function. C. Values of the design function (first value in the 
text box) relative to the deleted genes as well as the times improvement on this design 
function (value enclosed in brackets).The knockout in icfA gene implies knockout in ecaA gene. 
Units for objective function and design function in h-1 and mmol gDW-1 h-1, respectively. 

According to these results, the best single knockout strategy to increase the 

synthesis rate for the fatty acids involves the removal of one of the genes from the 

pentose phosphate pathway. In that case, the simulation predicts that the best 

strategy is deleting gdh gene coding for glucose-1-dehydrogenase (reaction "1.1.1.47a" 

and "1.1.1.47b" in iSyf715 and ORF ID: Synpcc7942_1573). With this deletion the 

resulting phenotype is capable of producing 0.00608 mmol gDW-1 h-1 fatty acids mix, as 

well as a growth rate of 0.0227973 h-1 (see Figure 4.9). With this knockout, both NADH 

and NADPH would be more available for the reactions catalyzed by enoyl-[acyl-carrier-

protein] reductase (NADH) and for 3-oxoacyl-[acyl-carrier-protein] reductase, 

respectively (reactions "1.3.1.9" and "1.1.1.100", respectively, in iSyf715).  

The suppression of adk gene that codes for adenylate kinase (reaction "2.7.4.3a" 

in iSyf715 and ORF ID: Synpcc7942_2213), constitutes second best strategy to enhance 
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this lipid production. As in the ethanol case, this deletion could reduce the ATP 

consumption, which is essential in reactions, among many others to the ones of the 

fatty acid biosynthesis pathway, such as those catalyzed by acetyl-CoA carboxylase 

(reaction "_6.4.1.2a" in iSyf715) to yield malonyl-CoA, and the reaction catalyzed by 

biotin carboxylase (reaction "_6.3.4.14" in iSyf715) to form carboxybiotin-carboxyl-

carrier protein which carboxylated the acetyl-CoA to malonyl-CoA.  

Furthermore, the best double knockouts candidates are shown in the figure 4.10. 

The double mutant that allows a theoretical maximum of fatty acid mix is one that 

combines the deletion of aspC and icfA/ecaA encoding for aspartate aminotransferase 

and carbonic anhydrase (reactions “2.6.1.1a” and “4.2.1.1b” in iSyf715 and ORF ID: 

Synpcc7942_2545, Synpcc7942_1447, Synpcc7942_1388 and Synpcc7942_B2619). The 

resulting phenotype is capable of achieving a fatty acids yield of 0,0251 mmol gDW-1 h-

1, as well as a growth rate of 0.0113398 h-1 (Figure 4.10). This strategy includes the 

reverse of the reaction catalyzed by aspartate aminotransferase: the transformation of 

L-glutamate to L-aspartate. Suppressing metabolic flux through this transamination 

reaction prevents the use of this amino acid as substrate in reactions where the direct 

consumption of ATP is required, such as the reactions catalyzed by argininosuccinate 

synthase, aspartate kinase and phosphoribosylaminoimidazolesuccinocarboxamide 

synthase (reactions “6.3.4.5a”, “2.7.2.4” and “6.3.2.6”, respectively, in iSyf715) or the 

indirect use of both this cofactor and HCO3
-, by partially coupled reactions catalyzed by 

carbamoyl-phosphate synthetase and aspartate transcarbamylase (ATCase) (reactions 

“6.3.5.5” and “2.1.3.2” in iSyf715).  

As we discussed previously, the availability of ATP would increase the total flow of 

the fatty acid biosynthesis pathway through the reactions catalyzed by acetyl-CoA 

carboxylase (reaction “_6.4.1.2a” in iSyf715) and biotin carboxylase (reaction 

“_6.3.4.14” in iSyf715).If the flux through the reaction catalyzed by carbonic anhydrase 

is blocked, it prevents the HCO3
- conversion to CO2. Through this strategy we can 

achieve that this carbon source remains available for the carboxylation of acetyl-CoA 

to malonyl-CoA catalyzed by acetyl-CoA carboxylase (reaction “_6.4.1.2a” in iSyf715), 

which represents the first step of fatty acid biosynthesis and one of its rate-controlling 

steps (Molenaar et al., 2003). 
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Figure 4.10. Proposed double knockouts for an improved fatty acids profile production. A. List 
of top 10 single knockouts by which they reached a maximum on the design function (ethanol 
evolution). B. Percent depicting the mutant objective function (biomass production) relative to 
the wild type objective function. C. Values of the design function (first value in the text box) 
relative to the deleted genes as well as the times improvement on this design function (value 
enclosed in brackets). The knockout in icfA gene implies knockout in ecaA gene. Units for 
objective function and design function in h-1 and mmol gDW-1 h-1, respectively.  

The study of triple knockout with MOMA algorithm pointed out that the best 

strategy is one that involved mutations in icfA/ecaA, ndkR, and gdh that encode for 

carbonic anhydrase, nucleoside diphosphate kinase and glucose-1-dehydrogenase, 

respectively (reactions “4.2.1.1b”, “2.7.4.6d” and “1.1.1.47a”, respectively, in iSyf715 

and ORF ID: Synpcc7942_1447, Synpcc7942_1388 and Synpcc7942_B2619, 

Synpcc7942_2497 and Synpcc7942_1573). As we have explained for each of these 

mutations, this strategy prevents to decrease the concentrations of HCO3
-, ATP or 

NADH and NADPH, which are metabolites required in the synthesis of the fatty acids 

and the energetic pathways described in our model.  

In figure 4.11 we list the most frequent genetic deletions with which our simulated 

mutant strains have a maximum fatty acids synthesis. Here, icfA/ecaA mutations are 

the most common ones followed by gdh and adk genes.  
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Figure 4.11. Most frequent mutations, proposed by MOMA analysis, within the top 10 
candidates in single, double and triple knockouts for maximize fatty acids profile production. 
The knockout in icfA gene implies knockout in ecaA gene. 

Figure 4.12 shows the results of the simulation for palmitic and stearic acids genes 

single knockouts. The best single knockouts in the direction of enhancing the synthesis 

of both palmitic and stearic acid coincides with the deletion of icfA/ecaA genes that 

encoding for carbonic anhydrase (reaction "4.2.1.1b” in iSyf715 and ORF ID: 

Synpcc7942_1447, Synpcc7942_1388, Synpcc7942_B2619). The system is capable of 

achieve maximum palmitic acid and stearic acid synthesis at 0.0457 and 0.0403 mmol 

gDW-1 h-1, respectively, as well as a growth rates of 0.0104303 h-1 and 0.0105438 h-1 

(Figure 4.12). As we explained before, this mutation contributes to avoid decrease of 

HCO3
- concentration into the system.  

In the case of palmitic acid, the second best single knockout involves the removal 

of one of the genes required in pentose phosphate pathway. Namely the gdh gene that 

codifies for glucose-1-dehydrogenase (reaction "1.1.1.47a" and "1.1.1.47b" in iSyf715 

and ORF ID: Synpcc7942_1573). The biochemical effects of these mutations have been 

explained above. However, in the case of stearic acid, the second best candidate is 

related to blocking ammonium imports through one of its carriers (reaction “ammonia 

H3N TRANS-RXN59G-178” in iSyf715 and ORF ID: Synpcc7942_0442 and 

Synpcc7942_2279). By means of the ammonia entrance blockage, the metabolic flux 

through the reactions catalyzed by 6.3.1.2, 6.3.4.2 and 6.3.1.5, is affected. All of these 

reactions relate the use of ATP as a phosphate groups donor or as energy currency, 
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thus, without these reactions, the flux through the fatty acid biosynthesis pathway is 

favored. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

Figure 4.12. Proposed single knockouts for an improved palmitic and stearic acid production. 
A. List of top 10 single knockouts by which they reached a maximum on the design function 
(palmitic and stearic acid synthesis). B. Percent depicting the mutant objective function 
(biomass production) relative to the wild type objective function. Blue and green bars 
correspond to mutants whose design functions are the palmitic and stearic acid production, 
respectively. C. Values of the design function (first value in the text box) relative to the deleted 
genes as well as the times improvement on this design function (value enclosed in brackets). 
The blue and green lines belong to the palmitic and stearic acid production, respectively. The 
knockout in icfA gene implies knockout in ecaA gene. Units for objective function and design 
function in h-1 and mmol gDW-1 h-1, respectively.  

The simulation results for double-gene knockouts of palmitic and stearic acids are 

shown in figure 4.13. An increase in the lipids synthesis rate in both double mutants’ 

simulations was observed. For palmitic acid synthesis, the best mutant strain would be 

one devoid of the gdh and ndkR genes coding for glucose-1-dehydrogenase and 

nucleoside diphosphate kinase, respetively (reactions "1.1.1.47a" and "2.7.4.6d", 

respectively, in iSyf715 and ORF ID: Synpcc7942_1573, Synpcc7942_2497). The system 
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is capable of achieving a maximum in the palmitic acid synthesis of 0.0782 mmol gDW-1 

h-1 and a growth rate of 0.00921336 h-1 (Figure 4.13). As can be seen, this design 

shown an increase, about twice, if compared to simulation for single mutants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. Proposed double knockouts for an improved palmitic acid and stearic acid 
production. A. List of top 10 single knockouts by which they reached a maximum on the design 
function (palmitic acid and stearic acid synthesis). B. Percent depicting the mutant objective 
function (biomass production) relative to the wild type objective function. Blue and green bars 
correspond to mutants whose design functions are the palmitic and stearic acid production, 
respectively. C. Values of the design function (first value in the text box) relative to the deleted 
genes as well as the times improvement on this design function (value enclosed in brackets). 
The blue and green lines belong to the palmitic and stearic acid production, respectively. The 
knockout in icfA gene implies knockout in ecaA gene. Units for objective function and design 
function in h-1 and mmol gDW-1 h-1, respectively.  

Like in result for palmitic acid, the best double mutant strain for stearic acid 

maintains the deletion in the gene ndkR. Nevertheless, this deletion combine the 
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knockout in the gene dapB that coding for the enzyme dihydrodipicolinate reductase 

(reaction "2.7.4.6d" and "_1.3.1.26a-_1.3.1.26b", respectively, in iSyf715 and ORF ID: 

Synpcc7942_2497, Synpcc7942_2136). In this case, the system is capable of achieving a 

maximum in the stearic acid synthesis of 0.0759 mmol gDW-1 h-1 and a growth rate of 

0.00727966 h-1 (Figure 4.13). The deletion of dihydrodipicolinate reductase entails the 

non-oxidation of tetrahydrodipicolinate and therefore, as explained above, the 

cofactors NADH and NADPH are kept accessible for the synthesis of fatty acids. 

Through triple knockout simulation we observed an improved lipids production 

relative to the results of the single and double knockouts. The best in silico strain 

includes the knockouts of gene ndkR coding for nucleoside diphosphate kinase 

(reaction "2.7.4.6d" in iSyf715 and ORF ID: Synpcc7942_2497), gene pyrF coding for 

orotidine-5-phosphate decarboxylase (reaction "4.1.1.23" in iSyf715 and ORF ID: 

Synpcc7942_2569) and genes icfA and ecaA that codify for carbonic anhydrase 

(reaction "4.2.1.1b" in iSyf715 and ORF ID: Synpcc7942_1447, Synpcc7942_1388, 

Synpcc7942_B2619). This candidate includes the possibility of removing genes, as 

explained above, involved in the reactions using ATP directly or indirectly, such as the 

reactions "2.7.4.6d" and "4.1.1.23"; and at the elimination of the gene for carbonic 

anhydrase related the dehydration of bicarbonate ion. 

 

 

 

 

 

 

Figure 4.14. Most frequent mutations, proposed by MOMA analysis, within the top 10 
candidates in single, double and triple knockouts for maximize palmitic acid and stearic acid 
production. The knockout in icfA gene implies knockout in ecaA gene. 
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Once again, we show the most frequent genetic deletions for which the mutant 

strains, theoretically, reach a maximum of the objective function (Figure 4.14). 

Mutations on icfA/ecaA genes, followed by the ndkR and gdh genes are most 

commonly predicted knockouts by MOMA simulation.  

Through FBA simulation we estimated theoretical maximum yield of these fatty 

acids production. For comparative purposes we checked the results of the in silico 

simulation with lipid productivity published by Da Ros et al. for this specie (Da Rós et 

al., 2013). Specifically, we compared theoretical productivity of the fatty acids profile, 

in which we took into account only 8 of the 21 reported free fatty acids.  

We found that for CO2 uptake rate of 1.99 mmol gDW-1 h-1 and an incident 

irradiance of 1.96 mE gDW-1 h-1, our prediction for theoretical lipids productivity 

behaves as shown in the graph in Figure 4.2. For a biomass growth of 0.0246 h-1, the 

theoretical synthesis of the fatty acids profile was 0.0501 mmol gDW-1 h-1, a value that 

is very close to the published (≈0.0521 mmol gDW-1 h-1) for a biomass productivity of 

52.7 mg L-1 day-1 in relation to dry biomass. This is an important point within the 

validation process that has been mentioned from the previous chapters.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15. Theoretical productivity of fatty acids as predicted by using iSyf715. Maximum 
fatty acids production is shown as a function of minimal demand on biomass formation under 
autotrophic growth. The blue diamonds, red squares and green triangles correspond to 
productivities of fatty acids profile, palmitic acid and steraric acid, respectively. 



Model-based analysis and metabolic design of a cyanobacterium for bio-products synthesis __                                 ____  
 

_____________________________________________________________________________ 
125 

 

As we expected, the function between lipids productivity and growth rate 

indicates the linear relationship between these variables. As our targeted lipids are 

considered building blocks, it is obvious that the carbon sources are drained towards 

the synthesis of biomass when this is maximized. However, the phenotypes where the 

maximization of these lipids is incorporated as a new feature, show high theoretical 

production rates when the carbon flux is channeled to towards the fatty acids 

biosynthesis. Unlike eukaryotic algae, cyanobacteria are not high natural lipid 

producers. Therefore, these in silico productivities give us an idea of the potentialities 

of possible genetic modifications into this biological system.  

4.2.4 Assessing hydrogen evolution 

Hydrogen gas (H2) features huge potential as a clean energy resource, basically 

because reduction on carbon dioxide production. However, in spite of being 

considered a non-polluting fuel biotechnological development is needed to produce it 

more efficiently from renewable sources. Economically, advances on biological 

hydrogen production processes are still not as attractive as conventional H2-production 

processes, so it is a challenge to make it more competitive in near future (Das, 2010). 

Biological systems possess a broad range of physicochemical mechanisms to produce 

hydrogen, like: photo-fermentations, dark-fermentation direct biophotolysis and 

indirect biophotolysis, (Kondratieva and Gogotov, 1983; Nandi and Sengupta, 1998; 

Das and Veziroglu, 2001; Hallenbeck and Benemann, 2002). Among this bioprosses, the 

photo-fermentation process is an exciting new area of technology development that 

should offer a potential production of usable hydrogen. This process has the strong 

advantages of being of using light as the energy source and is environmentally clean. It 

was found that biological hydrogen synthesis rates are not enough to power small 

hydrogen protons fuel cells on a continuous basis (Levin et al., 2004). In this sense, 

many reports highlight that several cyanobacteria species have the capacity to 

synthesize H2 in a natural way (Abed et al., 2009; Das and Veziroglu 2001; Dutta et al., 

2005).  

This biofuel is produced by metabolic pathways that include nitrogenase or 

hydrogenase depending on the type of cyanobacterium, which may be either nitrogen 

fixing or non-nitrogen fixing. Synechococcus sp. are non-nitrogen fixing organisms that 
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are suitable for higher hydrogen evolution (Lopes-Pinto et al., 2002; Dutta et al., 2005). 

One of the major drawbacks in the use of these microorganisms to produce hydrogen 

is that these enzymes are strongly inhibited by O2 produced by photosynthesis. There 

are some engineering strategies to mitigate this problem, which basically try to 

redirect the metabolic flux towards the bio-hydrogen synthesis as well as to modify the 

hydrogenases to decrease the O2´s negative allosteric effect (Angermayr et al., 2009; 

Weyman 2010; McNeely et al., 2010).  

As part of efforts to find a solution to all these problems, we simulated single, 

double and triple knockout strategies in order to find possible genetic targets to 

increase hydrogen production in S. elongatus PCC7942. As before, we used MOMA 

algorithm implemented in OptGene software (Patil et al., 2005). As part of the input 

file format of this software, we defined the “design objective function" as hydrogen 

synthesis whereas the biomass synthesis was the “biological objective function”. We 

used iSyf715 metabolic model for which wild type optimal growth rate was 

0.00789506 h-1. 

By deleting the genes thiD, tmk, ubiG, Synpcc7249_2055, PduX and cobF that code 

for the enzymes: phosphomethylpyrimidine kinase, thymidylate kinase, 3-

demethylubiquinol 3-O-methyltransferase, 2-octaprenyl-6-methoxyphenol hydroxylase 

(enzyme not annotated in the genome), L-threonine kinase (enzyme not annotated in 

the genome) and precorrin-6A synthase (enzyme not annotated in the genome), 

respectively (reaction "2.7.4.7", “2.7.4.9b”, “·2.1.1.64”, “1.14.13.-a”, “·RXN-8626” and 

“·2.1.1.152”, respectively in iSyf715 and ORF ID: Synpcc7942_2379, Synpcc7942_0093 

and Synpcc7942_2055), the biological system is capable of achieving the greatest flux 

towards the production of hydrogen, here, 4.82·10-5 mmol gDW-1 h-1 (Figure 4.16).  

With the knockout in thiD, the system achieves the greatest flux towards the 

hydrogen evolution with a growth rate of 0.00783143 h-1. When this reaction is 

silenced, hydroxymethylpyrimidine-phosphate phosphorylation can be prevented, 

diminishing the ATP consumption and increasing, indirectly, NADPH concentration as 

indispensable redox cofactor for hydrogen synthesis. Unconsumed ATP quantities 

would be available for NAD+ phosphorylation through the reaction catalyzed by NAD+ 

kinase (reaction "2.7.1.23" in iSyf715). As a result, NADP+ pool would increase, so that 
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its reduction could be enhanced by the reaction catalyzed by ferredoxin-NADP+ 

reductase (reaction “_1.18.1.2” in iSyf715) in photosynthesis. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.16. Proposed single knockouts for an improved hydrogen production. A. List of top 10 
single knockouts by which they reached a maximum on the design function (hydrogen 
evolution). B. Percent depicting the mutant objective function (biomass production) relative to 
the wild type objective function. C. Values of the design function (first value in the text box) 
relative to the deleted genes as well as the times improvement on this design function (value 
enclosed in brackets). Units for objective function and design function in h-1 and mmol gDW-1 h-

1, respectively.  

The best second mutation would involve blocking thymidylate kinase activity 

(reaction “2.7.4.9a” in iSyf715 and ORF ID: Synpcc7942_0093). This knockout from 

pyrimidine biosynthesis pathway would have similar effect to the one mentioned 

above: it would reduce the dTMP phosphorylation by ATP. It is noteworthy to state 

that the best strategies for singles mutants do not increase hydrogen evolution more 

than twice the wild type’s titters.  

There are little differences between double knockouts candidates and single 

knockouts in terms of improved hydrogen production (Figure 4.17). The best double 

deletions increased in 0.6 times the design function flux of the best single mutant. It 
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consists in the combination of deletions of the genes pyrB and glgA that encode for 

aspartate transcarbamylase (ATCase) and ADP-glucose transglycosylase, respectively 

(reactions “2.1.3.2” and “_2.4.1.21b” in iSyf715 and ORF ID: Synpcc7942_0670, 

Synpcc7942_2518). This in silico strain had a hydrogen evolution of 7.64·10-5 mmol 

gDW-1 h-1 and with a growth rate of 0.00784371 h-1.  

The condensation of carbamoyl-phosphate with L-aspartate to form N-carbamoyl-

L-aspartate is interrupted by removing the reaction catalyzed by the ATCase. This 

reaction, considered a flux-generating step of the pathway (Voet and Voet, 2004), 

occurs in the absence of ATP because carbamoyl-phosphate is intrinsically activated. 

However, interrupting the flux through this reaction could also affect the flux of the 

first reaction of pyrimidine biosynthesis, which is, precisely, the synthesis of 

carbamoyl-phosphate by enzyme carbamoyl phosphate synthetase, which involves the 

use of two molecules of ATP. Once again, via this deletion we could prevent the 

consumption of ATP and therefore it would have more reductant power for hydrogen 

production. In addition, by this strategy the transformation of HCO3
- ion in carbamoyl-

phosphate could be reduced, so the carbon incorporation through the carbonic 

anhydrase and RuBisCO could be optimized. 

The mutation in glgA gene, which encodes for ADP-glucose transglycosylase, is 

aimed at eliminating the flux through glycogen synthesis, specifically, it aims at the 

reaction in which ADP-D-glucose units are added to the polymer growing chain. The 

glycogen biosynthesis requires an additional exergonic step since the direct conversion 

of alpha-D-glucose-1-phosphate to glycogen and phosphate is thermodynamically 

unfavorable. In prokaryotes, this process involves the reaction of alpha-D-glucose-1-

phosphate with ATP catalyzed by ADP-glucose diphosphorylase (reaction “2.7.7.27” in 

iSyf715). With this strategy, ATP is once again enhanced.  

The eight best double knockouts candidates include the deletion of ADP-glucose 

transglycosylase, which represents an essential enzyme into glycogen metabolism, an 

active pathway of cyanobacterium carbon metabolism. The following seven 

combinations, in descending order, include simultaneous deletion of this gene with 

genes that encode for orotidine-5'-phosphate decarboxylase (reactions “4.1.1.23” in 

iSyf715), dihydroxy-acid dehydratase (reactions “4.2.1.9a” in iSyf715), acetohydroxy 
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acid isomeroreductase (reactions “1.1.1.86a” in iSyf715), dihydroorotase (reactions 

“3.5.2.3” in iSyf715), orotate phosphoribosyltransferase (reactions “2.4.2.10” in 

iSyf715), nucleoside diphosphate kinase (reactions “2.7.4.6h” in iSyf715) and 

protochlorophyllide reductase (reactions “1.3.1.33b” in iSyf715). 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.17. Proposed double knockouts for an improved hydrogen production. A. List of top 
10 double knockouts by which they reached a maximum on the design function (hydrogen 
evolution). B. Percent depicting the mutant objective function (biomass production) relative to 
the wild type objective function. C. Values of the design function (first value in the text box) 
relative to the deleted genes as well as the times improvement on this design function (value 
enclosed in brackets). Units for objective function and design function in h-1 and mmol gDW-1 h-

1, respectively.  

We looked to the other combination of knockouts that follows in order. It consists 

in the elimination of the genes for alanine-glyoxylate aminotransferase and dihydroxy-

acid dehydratase (reactions “2.6.1.44” and “4.2.1.9a”, respectively, in iSyf715 and ORF 

IDs Synpcc7942_2160, Synpcc7942_0626). This strategy computes a hydrogen 

evolution of 5.55·10-5 mmol gDW-1 h-1, and with a growth rate of 0.00781212 h-1. The 

first gene is associated with the transamination process, in which the amino group of L-

alanine is transferred to glyoxylate to become pyruvate and L-glycine, respectively. 

This last metabolite is involved in some reactions in iSyf715, like tRNA 6.1.1.14, 
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6.3.4.13 and 6.3.2.3 where it involve the use of ATP to provide either a phosphate 

group or to energize the reactions. On the other hand, the other product of 2.6.1.44, 

pyruvate, is involved in reaction 2.7.1.40c, where this metabolite captures a phosphate 

group from GTP to become phosphoenolpyruvate. In our model, GTP comes from GDP 

and ATP by the reaction catalyzed by nucleoside diphosphate kinase (reaction 

“2.7.4.6c” in iSyf715). As noted before, our simulations suggest the optimization of the 

ATP usage as a cofactor in various pathways as well as the optimization of its use to 

phosphorylate NAD+. 

The second gene, which encodes for dihydroxy-acid dehydratase, involves 

dehydratation of 2,3-dihydroxy-isovalerate. This metabolite is the product of the 

reduction of 2-acetolactate by the acetohydroxy acid isomeroreductase enzyme 

(reaction “1.1.1.86a” in iSyf715) where NADPH is the reductant agent. This gene is a 

candidate to be removed from the genome of the cyanobacterium, because NADPH 

would remain available for hydrogen synthesis. 

The results of the triple knockouts analysis shows that the best strategy is 

removing the ndkR gene encoding for nucleoside diphosphate kinase (reaction 

"2.7.4.6h" in iSyf715 and ORF ID: Synpcc7942_2497), the ilvC gene which codes for 

acetohydroxy acid isomeroreductase (reaction “1.1.1.86a” in iSyf715 and gene 

Synpcc7942_1552), and gene glgA for ADP-glucose transglucosylase (reaction 

“_2.4.1.21b” in iSyf715 and ORF ID: Synpcc7942_2518). With these knockouts, the 

hydrogen evolution was the highest, 0.00963842 mmol gDW-1 h-1 with a growth rate of 

0.01602 h-1. The mutations of ndkR and glgA, impact on the minimization of ATP 

consumption. IlvC gene mutation increases the NADPH accessibility for hydrogen 

production.  

We have seen that through MOMA analysis, the most frequent genetic deletions 

that enhance hydrogen production and biomass evolution, figure 4.18, include glgA 

gene as the most frequent mutation, followed by mutations in ilvD and ubiG genes. 
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Figure 4.18. Most frequent mutations, proposed by MOMA analysis, which include the top 10 
candidates of the single, double and triple knockouts for maximize hydrogen evolution. 

As done previously, the estimation of theoretical maximum yield of hydrogen 

production was performed by FBA.  Here, we compared our data with results reported 

by Asada et al. in a genetically modified Synechococcus elongatus PCC7942 strain 

(Asada et al., 2000). This study demonstrated that transformed cells were capable of 

producing hydrogen by receiving the electrons from photosynthesis and catalyzed by 

clostridial hydrogenasa I protein. Although these authors did not report values of 

biomass growth rate, this research could serve, once again, as a reference to validate 

our metabolic models. We found that for CO2 uptake rate of 1.99 mmol gDW-1 h-1 and 

an incident irradiance of 1.96 mE gDW-1 h-1, our prediction for theoretical hydrogen 

productivity behaves as shown in figure 4.19. 

 For the maximum biomass growth (0.05987 h-1), the theoretical synthesis of 

hydrogen was 6.04·10-10 mmol gDW-1 h-1. However, for a value of 0.0278 h-1 (very close 

to the maximum growth) the corresponding hydrogen evolution match perfectly with 
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the value reported by Asada et al. (≈0.002899 mmol gDW-1 h-1) (Asada et al., 2000) in 

cell-free extracts of Synechococcus wild-type cells (assuming that cell concentration is 

108 cells ml-1 that correspond to an OD730 of 1.0 (Deng and Coleman, 1999)). 

Furthermore, H2 production in cell-free extracts of transformant cells (0.0569 mmol 

gDW-1 h-1, Asada et al., 2000) is reached by iSyf715 with a growth rate of 0.02 h-1, 

which is a coherent growth rate in this specie (Bertilsson et al., 2003; Rosales-Loaiza et 

al., 2005; Fu et al., 2007).  

 

 

 

 

 

 

 

 

 

 

Figure 4.19. Theoretical productivity of hydrogen as predicted by using iSyf715. Maximum 
hydrogen production is shown as a function of minimal demand on biomass formation under 
autotrophic growth. 

In figure 4.19, the hydrogen evolution maximal value for iSyf715 was predicted to 

be larger when the biomass growth is minimal. As can be seen, the maximum 

hydrogen evolution for growing cells was linearly related to the available electrons 

from NADPH, basically, generated by photosynthesis. As in the ethanol case, the 

intercept to the x-axis, where no electrons are available to support H2 production, 

shows the reducing power that allows biomass growth alone. Also, the slope indicates 

the theoretical maximum that can be achieved if the electron flux is channeled 

towards the protons reduction. This graph allows us to evaluate what is the potential 

of this organism if all energy available on the cell was directed to hydrogen production. 

This value is obviously unreachable in naturally occurring cells, but its value is 

interesting to study what is the theoretical maximum of the hydrogen production. 
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To address if H2 evolution is a direct function of the cyanobaterium carbon 

substrates, we analyzed the influence of both CO2 and HCO3
- uptakes rates into 

maximal hydrogen synthesis rate (figure 4.20). As we could imagine from the lineal 

dependence of carbon inputs and hydrogen evolution, higher values of hydrogen 

evolution correspond to higher carbon inputs. Interestingly, with CO2 inputs higher of 

15 mmol gDW-1 h-1, hydrogen drains much more from CO2 than from HCO3
-. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20. Relationship between carbon sources and maximal H2 production rate. This last 
parameter was normalized per number of carbon atoms. The blue diamonds and red circles 
correspond to the influence of CO2 and HCO3

- uptake rates in maximal H2 production rate, 
respectively. 

4.3 Conclusions 

Constraint-based methods, such as FBA and MOMA, are useful for aiding in metabolic 

engineering approaches. Furthermore, these methods have been used to assess 

possible genetic modifications that redirect the metabolic flux towards biological 

targets.  

In the present study, we ventured into the metabolic capabilities of Synechococcus 

elongatus PCC7942, as a potential value added-compounds factory. We have 

demonstrated the use of this specie as a novel photon-fuelled production platform in 

order to generate metabolites of interest such as ethanol, higher chain alcohols, fatty 

acids and hydrogen. These novel studies can help discover strategies and understand 

experimental efforts that have been taken already in this organism for the synthesis of 

ethanol, isobutanol and hydrogen (Deng and Coleman, 1999; Atsumi et al., 2009b; 

Asada et al., 2000).  
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In our studies we have shown the enormous advantages of the introduction of 

non-intuitive perturbations in the metabolic network in order to improve the synthesis 

of these metabolites. Such as in the case of ethanol, lipids and higher chain alcohols 

synthesis.  

It is important to note that while these predicted genotype-phenotype 

relationships demonstrate a compelling prospective use of the network, the majority 

of the proposed mutant phenotypes remain to be validated experimentally. 

Nevertheless, these predictions could be used to help define the scope and expected 

outcomes of such future studies. 

4.4 Methods 

4.4.1 Minimization of metabolic adjustment  

In order to identify identity the gene knockout targets for the enhanced production of 

metabolites of interest, the method of minimization of metabolic adjustment (MOMA) 

(from Segrè et al., 2002) using quadratic programming (QP) was employed. These 

calculations were performed with the OptGene software (Patil et al., 2005), currently, 

available online at Biomet Toolbox (Cvijovic et al., 2010) 

(http://www.sysbio.se/BioMet). 

This tool has the advantage of simultaneously could help us to design higher 

production strains and couple metabolites production to growth rate, unlike other 

traditional computational tools. MOMA provides a mathematical approach based on 

the assumption that the mutant organism initially remains as close as possible to the 

organism in its native or wild state, in terms of values of metabolic fluxes (Segrè et al., 

2002). 

MOMA algorithm searches for a point in the feasible space of the solutions space 

of the knockout (Фj) that has minimal distance from a given flux vector . The goal is 

to find the vector x∈ Фj such that the Euclidean distance: 

                 

is minimized. 

 

N
)(=x)D(w,

1

2
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Expressed as a standard QP problem, the objective is to minimize f (x) on a set of 

linear constraints: 

  

In where, the vector L of length N and matrix Q of NxN defined linear and 

quadratic part of the objective function, respectively, and xT is the transpose of x. By 

observing that the minimization of the Euclidean distance is equivalent to minimizing 

its square and the constant terms can be omitted from the objective function, one can 

choose Q to be an unit matrix NxN and set L =-W and thus reduce of minimize D(w,x) 

to minimizing f(x). Here, we are interested in the case w = vwt (flux vector of the 

organism in the wild-type), i.e., finding the point uj in Фj that is closer to the point of 

wild-type (Segrè et al., 2002). 

Finally, the mathematical model is as follows: 

      Minimize  Z  = (Vko - Vwt)
T (Vko – Vwt) 

      Subject to S · vj = 0   ∀j ∈ N     

                   vj,irr  R+  

                   vj,rev  R  

                   vj,cons  R, vmin < vj,cons < vmax 

                             and vj = 0 as a result of  knockout 

Where Vko refers to the vector that reference the reactions of the organism in its 

mutant status. Vwt refers to the vector of the flux values of the reactions of the 

organism in its natural state. S represents the stoichiometric matrix of the system and j 

the indices of eliminated reactions results from mutations imposed on the biological 

system.  

As part of input file format of this software, in all cases we defined the “design 

objective function" as bio-products synthesis whereas the biomass synthesis was the 

“biological objective function”. 

4.4.2 Converting units of production rates to flux values 

The production rate values of the higher alcohols in E. coli genetically engineered 

(Atsumi et al. 2008) were converted to flux values. For this purpose, we assume that 

QxxT

2

1
-Lx=f(x)
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OD600 of 1.0 is equivalent to approximately 0.39 g L-1 of dry weight (Glazyrina et al., 

2010). 

We calculated that the isobutanol synthesis rate in Synechococcus elongatus 

PCC7942 genetically engineered (Atsumi et al., 2009b) was ≈1.08 10-4 mmol gDW-1 h-1. 

For that, we assume that OD730 of 1.0 is equivalent to approximately 108 cells ml-1 

(Deng and Coleman, 1999). 
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Chapter 5. Phenotypic phase 

plane analysis of Synechococcus 

elongatus  PCC7942 

 
Mathematical modeling of metabolic functions has been developed over the past 

several decades. One of the most commonly used methods is linear programming, 

implemented on powerful tools, such as FBA. This implementation has proven useful 

for the analysis of genome-scale reconstructed metabolic maps, an approach with 

considerable potential for the analysis of metabolic functions. However, its use is 

restricted to compute the flux distribution for a single growth condition with well 

defined constraints. We hereby present phenotypic phase plane analysis that gives the 

possibility to compute all biologically-feasible growth conditions defined by varying 

more than one parameter.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Part of the contents of this chapter are based on parts of the following journal articles:  

 Triana J, Montagud A, Gamermann D, Fernández de Córdoba P, Urchueguía JF. In silico 
analysis for bio-products synthesis through genome-scale reconstruction of the Synechococcus 
elongatus PCC7942 metabolic network. In preparation. 
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Chapter 5. Phenotypic phase plane analysis of Synechococcus 

elongatus PCC7942 

5.1 Introduction 

Many authors believe the genome-scale metabolic maps and its analysis conducted by 

the FBA are the keys to studying systems biology (Thiele and Palsson, 2010; Orth et al., 

2010; Blazier and Papin, 2012). The genome-scale metabolic networks can be 

reconstructed from annotated genome sequence data, biochemical literature, 

bioinformatic analysis, and strain-specific information. Flux balance analysis has been 

successfully tested and validated on several metabolic networks (Orth et al., 2010), 

despite assuming the unrealistic situation of a “pure steady-state”. As mentioned, this 

method has been widely used for describing and/or predicting metabolic functions and 

capabilities of a given organism. However, one of the drawbacks of using this tool is 

that it typically offers a limited view of the metabolic behavior of the system, a single 

snapshot. This is mainly due to large-scale metabolic models that are subject to a well-

defined set of constraints under a single growth condition, in order to be able to have 

a single solution, not a space of solutions. Edwards et al. developed an interesting 

approach to generate a global view of the optimality properties of a network (Edwards 

et al., 2002). They suggest a different approach using FBA, named phenotypic phase 

planes (PhPPs) analysis, in which the optimal metabolic flux distribution is charted 

onto a single plane, which is defined by the availability of two external substrates. 

PhPPs is a linear optimization procedure which can be used to study the value of the 

objective function (a desired phenotype) as two constraints (external substrates) vary 

simultaneously. If the constraints vary, the shape of the cone that contains the 

solution space changes and the optimal flux vector may qualitatively change. 

This method allows for identification, in this plane, of a finite number of 

qualitatively distinct patterns of metabolic pathway utilization (metabolic 

phenotypes), dividing it into discrete phases. In this parametric sensitivity analysis 

the shadow prices throughout the two-substrate space are computed and used, in 

the form of isoclines, to identify phase planes (Edwards et al., 2002). These regions 

can be used to classify the qualitative state of metabolic network in a range of two 
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constrained fluxes. Shadow prices define the incremental change in the objective 

function when an exchange flux is incrementally changed.     

One important feature of the PhPP is the line of optimality (LO), which is defined 

as the line that represents the optimal relation between the two analyzed parameters 

(Edwards et al., 2002).  When the cell is operating along the LO, calculated when the 

growth rate is used as the objective function, the cell is growing at its maximal biomass 

yield.  

The main goal of this chapter is, first to generate Synechococcus elongatus 

PCC7942 PhPPs for the growth and production of the previously studied bio-products, 

viz.: ethanol, higher chain alcohols, lipids and hydrogen, with CO2 as a carbon source 

at all levels of illumination; and finally, the study of the resulting optimal metabolic 

phenotypes. 

5.2 CO2 and light phenotype phase plane for biomass growth rate  

In the previous chapter, parametric sensitivity of the optimal properties of 

cyanobaterium metabolic networks, such as robustness analysis, was assessed using 

only one parameter. However, PhPP analysis is a valuable method to characterize 

different functional states by projection of the steady-state solution space in two or 

three dimensions (Edwards et al., 2002). Also, this analysis is developed to consider all 

possible outcome variations studying two constraining environmental variables. Thus, 

we decided to vary the CO2 uptake rate and light input simultaneously then analyze its 

contributions to the objective function, in this case biomass growth.  

The iSyf715 metabolic network was used to generate a PhPP. We calculated all 

points in a plane formed by using the light input on the x-axis and the CO2 uptake rate 

on the y-axis. As shown in figure 5.1, we arbitrarily constrained our sensitivity analysis 

to a CO2 uptake rate range from 0 to 95 mmol gDW-1 h-1 and light uptake rate from 0 to 

52 mE gDW-1 h-1. We varied the light input constraint among both photosystems: 

photosystem I (reaction “_lightI” in iSyf715) and photosystem II (reaction “_lightII” in 

iSyf715). This type of analysis allowed the steady-state flux distributions to be divided 

into a finite number of regions, each one with similar metabolic flux patterns and 

characterized by equivalent shadow prices.  
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Figure 5.1. The iSyf715 CO2-light phenotypic phase plane for biomass growth. A. The three-
dimensional PhPP. B. A two-dimensional projection of the 3-D polytope in panel. The line of 
optimality is shown in red.  

As can be seen in figure 5.1-A, the surface of the three-dimensional PhPP 

corresponds to the maximum growth rate allowable for each pair of CO2 and light 

uptake rates in the x-y plane. The two-dimensional projection of the PhPP (Figure 5.1-

B) has been divided into three different optimal phenotypes or phases (P1CO2,light - 
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P3CO2,light), where optimal use of the metabolic network is fundamentally dissimilar. 

This projection allowed the metabolic fluxes distributions to be split, each one 

characterized by the effect that CO2 uptake rate and light input had on the objective 

function.  

Due to stoichiometric limitations, there also are two regions of the PhPP with 

infeasible steady-state flux distributions; the small areas along the x-axis and y-axis 

(Figure 5.1-B). Cell growth is infeasible in both regions since there are incompatibilities 

between the demands of energy and carbon sources, for biomass formation, and the 

low uptake rates of light (area along the y-axis) and CO2 (area along the x-axis). If the 

substrates are taken up at the rates represented by these points, the metabolic 

network is not able to produce the mass, energy, and redox constraints while 

generating biomass. The metabolic network can only transiently operate in such a 

region (Palsson, 2006), not as a steady-state solution.  

The phase P1CO2,light, where the isoclines are vertical, we found the so-called phase 

of single substrate limitation (Edwards et al., 2002). In this case the slopes (α) of 

isoclines (see methods) are infinite. These phase´s arise because the shadow price for 

CO2 goes to zero, and therefore has no value for the cell.  In this phase, the CO2 was 

provided beyond the optimal amount required by the metabolic network to support 

growth.  

The LO represents the optimal light input for the complete carbon fixation in order 

to support the maximal biomass yield. Below the LO there is another optimal 

metabolic phenotype: P2CO2,light. In this plane the absolute value of α is greater than 

unity, therefore, the photons that come into the system could be more valuable 

towards achieving the objective. This phenotype was characterized by CO2 limitation, 

so that, the metabolic flux distribution might be useful to interpret the operational 

principles of this phenotype. Thus, the FBA simulation was carried out by fixing the 

light uptake rate at 30 mE gDW-1 h-1 and for all CO2 uptake rates across all phases. 

Results show that the optimal fluxes of Calvin-Benson cycle and photosynthetic 

machinery were sensitive to the CO2 uptake rate in this region.  Additionally, we see 

that the O2 evolution decreases as the CO2 uptake decreases. This could be due a 

possible diversion of the optimal carbon flux in the synthesis of reduced by-products, 
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for instance, ethanol. The optimal flux in the acetyl-CoA formation and in the reduced 

branch of the pentose phosphate pathway was sensitive to CO2 uptake, as was the 

gluconeogenesis increase with increasing CO2 uptake rate.  

The P3CO2,light region was also characterized by CO2 limitation and was defined as a 

futile phase with excess photons. These “futile” phases are characterized by a negative 

effect of one of the substrates on the objective function (Edwards and Palsson, 2000). 

Interestingly, the shadow price for ATP is zero, suggesting a situation where the ATP 

production by ATPase complex (reaction “_3.6.3.14” in iSyf715), which coupled with 

photosynthesis, would exceed the biosynthetic/maintenance demands for biomass 

growth. The metabolic network would dissipate the photons excess by increasing the 

ATPase flux, which would generate ATP but also reduce the NADP+ by ferredoxin-

NADP+ reductase (reaction “_1.18.1.2” in iSyf715). At the same time, the 

transhydrogenase reaction was used to convert the excess NADPH to NADH. When the 

CO2 uptake rate and the light input force the lower limits of P3CO2,light, the produced 

ATP and NADH formed reduced by-products such as hydrogen or ethanol, and no 

biomass was generated. The shadow prices for both by-products, indicates that they 

have no value to the cell in this region, and therefore, they were secreted to optimally 

balance the redox potential of the cell. Thus, the metabolic operation in this phase is 

wasteful and probably physiologically unstable; this might explain the observed post-

peak segment in robustness analysis presented in chapter 3.  

5.3 CO2 and light phenotype phase plane for alcohols production  

Use of Synechococcus elongatus PCC7942 metabolism was assessed for synthesis of 

ethanol, 2-methyl-1-butanol, 3-methyl-1-butanol, isobutanol and 1-propanol, with CO2 

and light as substrates. For each environmental variable, a PhPP was plotted to map 

the optimal metabolic characteristic for the alcohols productions.  

Once again, we used the iSyf715 metabolic network to generate PhPPs and 

arbitrarily constrained our sensitivity analysis to CO2 uptake rate ranging from 0 to 95 

mmol gDW-1 h-1 and light uptake rate from 0 to 52 mE gDW-1 h-1. We found two regions 

in the PhPPs, each one characterized by a qualitatively different optimal use of 

metabolic pathways (see figure 5.2).  
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Figure 5.2. A two-dimensional projection of the 3-D polytope in panel of iSyf715 CO2-light 
phenotypic phase plane for ethanol synthesis (A), 2-methyl-1-butanol (B), 3-methyl-1-butanol 
(C), isobutanol (D) and 1-propanol (E). The line of optimality (LO) is shown in every projection.  

In this case, all the CO2-light PhPPs consist of two phases, each one corresponding 

to a futile region separated by the LO. Points on the line of optimality represent the 

optimal light input required for the complete carbon fixation to maximize the alcohols 

synthesis. 
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The first phase is a futile region (P1CO2,light), that is defined by an excess of CO2. A 

defining characteristic of this futile phase was that the shadow price of the 3-

phosphoglycerate is zero. This would indicate a condition where the excess of CO2 was 

dissipated by increasing the gluconeogenesis pathway flux. In the lower limits of the 

plane, the in silico analysis shows that an increase in the CO2 uptake rate, at a fixed 

light input (30 mE gDW-1 h-1), increases the objectives functions until a threshold is 

reached. At CO2 uptake rates higher than this value, inhibitory effects on the alcohols 

synthesis are observed. Here, the available photons are not enough to synthesize the 

ATP and NADPH molecules needed for ethanol and higher chain alcohols formation 

and hence reduces its synthesis.  

Similar to P3CO2,light region for biomass growth, the P2CO2,light region was 

characterized by CO2 limitation with excess photons. This variable has a positive 

shadow price and it is inhibitory toward obtaining the biological objective. Here, too 

much photons are taken up relative to CO2 and ethanol and higher alcohols synthesis 

rates drop due to forced dissipation of the excess light. We observed the effects of the 

zero value in the shadow prices for ATP and GTP. The metabolic network dissipated 

the excess photons by increasing the ATPase flux as well as the nucleoside-

diphosphate kinase flux (reaction “2.7.4.6c” in iSyf715). When the CO2 uptake rate and 

the light input defined the points on the lower limits of P2CO2,light, the produced ATP 

and GTP were directed to the formation of a by-product like glycolaldehyde or to the 

export of organic carbon through the glycolysis, and, therefore, no ethanol was 

generated. That is consistent with the steady-state metabolomic and transcriptomic 

analyses of this cyanobacterium under low CO2 acclimation (Schwarz et al., 2011). 

There are distinguishable physiological differences between this phase and P3CO2,light 

region for biomass growth in terms of their secretion profiles. 

There also are two small areas along the x-axis and y-axis of the PhPP with 

infeasible steady-state flux distributions (areas in dark blue). The low uptake rates of 

light (area along the y-axis) and CO2 (area along the x-axis) do not supply enough 

source material to get the system working.  
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5.4 CO2 and light phenotype phase plane for lipids synthesis  

We analyzed the steady-state fatty acids profile productions of iSyf715 under the 

influence of variations in carbon (CO2) and energy (light) uptake rates. Restricted 

parameters were bounded, one more time, from 0 to 95 mmol gDW-1 h-1 for CO2 and 0 

to 52 mE gDW-1 h-1 for light. The two-dimensional projection of the PhPPs result in 

three different optimal phenotypes (see figure 5.3). 

The LO represents the optimal light input for the complete carbon fixation in order 

to support the maximal lipids yields. The phase P1CO2,light is characterized as a futile 

region. This phase has isoclines with positives slope and are thus phenotypically 

unstable, for example; if the light input is fixed, then lowering the CO2 uptake rate 

toward the LO will increase the fatty acids synthesis rates. Thus, the maximum 

allowable CO2 uptake rate would not be chosen to maximize the objective function.  

The P2CO2,light metabolic phenotype, where α value is negative, is defined by dual 

limitation of the substrates. In this phase, the ratio of CO2 uptake rate and light uptake 

rate is lower than on the LO. Again, the FBA simulation was performed by fixing the 

light uptake rate at 30 mE gDW-1 h-1 and for all CO2 uptake rates across all phases.  The 

cell is CO2 limited and, NADH and NADPH are available in excess, meaning that the 

fatty acids synthesis would improve if its availabilities decreased. In order to maintain 

the cell's redox balance, the excess of these cofactors must be oxidized. In the case of 

NADH, this is done through the production of ethanol, which begins to be secreted in 

this phase. The NADPH oxidation is achieved by increasing Calvin-Benson cycle flux 

with the excess of photons.  

As the ratio of CO2 and light uptake rates is further decreased, cyclic electron 

transfer, which involves PSI ferredoxin, and ferredoxin-NADP+ reductase become 

essential for biological objective in P3CO2,light region. The flow of carbon compounds 

decreases into the central metabolism, nonetheless, the intermediary anabolism, 

dependent on redox cofactor, becomes more effective. 
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Figure 5.3. The iSyf715 CO2-light phenotypic phase plane for lipids synthesis. A. The three-
dimensional PhPP. B. A two-dimensional projection of the 3-D polytope in panel. The line of 
optimality is shown in red.  

Once again, there are unfeasible steady-state flux distributions along the x-axis 

and y-axis of the PhPP. The low uptake rates of light (area along the y-axis) and CO2 
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(area along the x-axis) do not supply enough source material to get the system 

working.  

5.5 CO2 and light phenotype phase plane for hydrogen evolution  

Parametric sensitivity of the hydrogen optimal production in cyanobaterium metabolic 

network was assessed. We carried out a PhPP analysis to model metabolic functional 

states and analyze the contribution of CO2 uptake rate and light input to this objective 

function. These parameters were constrained between 0 to 95 mmol gDW-1 h-1 and 0 

to 52 mE gDW-1 h-1, respectively. 

 

 

 

 

 

 

 

  

Figure 5.4. The iSyf715 CO2-light phenotypic phase plane for hydrogen evolution. The line of 
optimality is shown between both regions. 

With this approach, two futile phases were identified: P1CO2,light and P2CO2,light, 

which are separated by the LO line (figure 5.4). As in previous analyses, the first phase 

was characterized by the excess of CO2 and by pyruvate shadow price being zero. This 

metabolic condition suggests that the excess of CO2 was dissipated by increasing the 

TCA cycle flux, specifically, the reaction catalyzed by isocitrate dehydrogenase (NADP+) 

(reaction “1.1.1.42a” in iSyf715). In the lower limits of the plane, an increase in the CO2 

uptake rate, at a fixed light input (30 mE gDW-1 h-1), augments the hydrogen synthesis 

rate until a threshold is reached. As in the alcohols PhPPs analyses, at CO2 uptake rates 

higher than this value, inhibitory effects on the hydrogen synthesis are observed. Here, 

the available photons are not enough to synthesize the NADPH molecules needed for 

hydrogen formation and hence reduces its synthesis.  
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The line of optimality, between the phases, and two small areas along the x-axis 

and y-axis of the PhPP with unfeasible steady-state flux distributions, can be seen in 

the figure (areas in dark blue). 

In P2CO2,light, much more photons are being taken in relation to CO2 and the 

hydrogen synthesis rates drops due to forced dissipation of the excess light. As in the 

alcohols PhPPs analyses, we observed the effects of the zero value in the shadow 

prices for ATP and GTP and the formation of by-product. We also observed a 

considerable decrease of the reducing branch of the pentose phosphate pathway 

fluxes and subsequent reduction of NADPH synthesis by this route.  

5.6 Conclusions 

The reconstruction of genome-scale metabolic models and their applications represent 

a great advantage of systems biology. Some methods used to analyze them, such as:  

phenotypic phase planes analysis, allow us for the prediction of a cell's phenotype 

based on its genotype and environmental conditions (Duarte et al., 2004). We have 

proven the use of PhPP analyses to improve growth rates or useful metabolite 

production in biological systems. This approach consists on execution of several FBA on 

the model, and simultaneously the value of the objective function (or by-product 

fluxes) is tested when certain nutrient uptake constraints are co-varied. 

With this approach we have further explored the capabilities of Synechococcus 

elongatus PCC7942 metabolism. We can generate new hypotheses on how this 

organism operates, and, more importantly, we have gained insights into what distinct 

patterns of pathway utilization the model uses when optimizing for different well-

defined objective functions.  

5.7 Methods 

5.7.1 Computing the Phase Plane 

To compute PhPPs we have followed the methodology described in (Edwards et al., 

2002). In general, as this analysis is based on the FBA is a linear optimization procedure 

and is based on computing shadow prices as defined in classical linear programming 

duality theory (Varma et al., 1993b). The delimitation of the phases are defined by 



                                                             Chapter 5. Phenotypic phase plane analysis of Synechococcus elongatus PCC7942 
 
 
 

_____________________________________________________________________________ 
150 

 

calculating the shadow prices, which define the incremental change in the objective 

function if a constraining exchange flux is incrementally changed.   

Mathematically, the shadow prices (πi) are defined as the derivatives of the 

objective function (Z) at the boundary with respect to an exchange flux (bi) (Edwards et 

al., 2002):  

 

 

The values of the shadow prices were used to compute the slope of isoclines 

within each region of the PhPP. The isoclines were also defined to interpret the 

metabolic phenotype and to represent the locus of points within the two-dimensional 

space that provide for the same value of the objective function (Edwards et al., 2002). 

A ratio of the shadow prices was used to define these slopes (α):  

 

 

The negative sign in the equation was introduced in anticipation of its 

interpretation.  

To generate all the regions in the PhPP we used MATLAB (The MathWorks Inc., 

Natwick, MA).  
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Chapter 6. Metabolome 

dynamic upon inorganic carbon 

acclimation 
 

 

Sometimes, the high-dimensionality of biological networks has hampered the 

elucidation of the principles of certain cellular processes functioning. However, the 

topological studies of these interactions are interesting from diverse points of views.  

One of these is the integration of -omics data with the connectivity features of the 

network. Thus, the combination of the transcriptome data with metabolome 

information provides the opportunity to identify regulatory principles under certain 

physiological conditions. 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part of the contents of this chapter is based on parts of the following journal article:  
 Triana J., Montagud A., Gamermann D., Fernández de Córdoba P., Urchueguía J. F. In silico 

analysis for bio-products synthesis through genome-scale reconstruction of the Synechococcus 
elongatus PCC7942 metabolic network. In preparation. 
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Chapter 6. Metabolome dynamic upon inorganic carbon 

acclimation 

6.1 Introduction 

The high-throughput analytical chemistry´s emergence has forced changes in classical 

reductionist analyses towards new integrative approaches (Hood et al., 2004). 

Nowadays, many biologists acknowledge the use of bioinformatics, mathematical 

models and computer simulation to make integrative analyses of the cell as a system. 

The analysis of multiple entities, such as genes, proteins or metabolites, has become a 

critical issue for the future development of biology (Palsson, 2006).   

The relationship between genetics and cellular functions is hierarchical and 

involves many steps which are well described in the central dogma of molecular 

biology (Crick, 1958; Crick, 1970). However, genome-wide quantification of genes and 

the mapping of their functional relationship have been great challenges in systems 

biology. Several techniques have been used in order to analyze and extract knowledge 

from the vast amounts of -omics data, such as transcriptome and metabolome, yet the 

problem of integrating these layers of information and elucidate new system’s 

principles is still unresolved. 

Oliveira et al. proposed a new approach that considerably intents to reduce the 

dimensionality of the data analysis problem. These authors propose the use of 

genome-scale bio-molecular interaction information, such as physical or functional 

interactions between metabolites in reconstructed metabolic networks, constraining 

the solution space and revealing regulatory principles under certain physiological 

conditions (Oliveira et al., 2008). The developed algorithm, named Reporter Features, 

allows for the identification of cellular regulatory focal points (i.e. reporter features). In 

the case of the metabolic network, the algorithm would unveil reporter metabolites, 

which can represent regulatory hubs of the metabolism.  

Following the scope of studying the characteristics of Synechococcus elongatus 

PCC7942 as photo-biological production platform, in this chapter we have explored 

system-wide variations upon inorganic carbon acclimation. The transcriptional 

phenotyping of these inorganic carbon variations was reported by Schwarz et al. 

(Schwarz et al., 2011). 



Model-based analysis and metabolic design of a cyanobacterium for bio-products synthesis __                                ____  
  
 
 

_____________________________________________________________________________ 
154 

 

6.2 iSyf715 as bio-molecular interaction network for integration 

We applied the Reporter Feature algorithm to analyze the transcriptional changes in S. 

elongatus PCC7942 cells that had been shifted from high to low CO2 levels of growth 

conditions.  

In order to effectively perform modular analysis we used iSyf715 as a metabolites 

interaction network to integrate transcriptional information for inorganic carbon 

acclimation (Schwarz et al., 2011). As we have seen in previous chapters, a 

perturbation in the CO2 input flux of iSyf715 metabolic model drives big changes in the 

flux distribution through the network. This observation led us to perform analyses that 

help to identify around which metabolites the transcriptional changes are significantly 

concentrated. These metabolites, termed reporter metabolites, represent key 

regulatory nodes in the landscape of the metabolism. For this purpose, gene-reactions 

associations derived from the metabolic model reconstruction process were used (see 

method).  

Synechococcus elongatus PCC7942 is strictly photoautotrophic and cannot use 

organic carbon such as glucose or nitrogen sources. This causes its metabolism to be 

less flexible to the availability of other nutrients, and much easier to elucidate. This 

advantage was taken into account by Schwarz et al. (2011), to analyze the acclimation 

of S. elongatus PCC7942 to low inorganic carbon (Ci). In this case, high CO2 condition 

(HC)-acclimated wild type cells were grown for several days under 5% CO2. Then, the 

exponentially growing cells under this regimen were shifted to low ambient CO2 (LC) 

conditions (grown under 0.035% CO2 by bubbling with ambient air), and the 

transcriptome was characterized after 6 and 24 h. 

Our goals were to identify metabolites around which regulation is centered during 

CO2 regime transitions and to find clusters of metabolic genes that were significantly 

co-regulated across these transitions (Patil and Nielsen, 2005). The analysis was 

performed with whole-genome S. elongatus PCC7942 microarrays data. For a study of 

the overall genome and its inorganic carbon acclimation regulation, as well as the fold 

change (Nodop et al., 2008) gene expression levels in response to this shift refer to 

Schwarz et al., (2011). In this chapter, we focused on the relationship between the 
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metabolism and its regulation, so genes with no direct relationship to a metabolic 

reaction were not considered.  

The metabolic model file together with the p-values for differential expression 

under the two conditions (see methods) was used to rank the reporter metabolites. 

The top 20 ranking metabolites out of 52 significant hits (p<0.05) are shown in Table 

VI.A. 

Drastic metabolic shifts are observed with the change from growth on HC to 

growth on LC for 6 and 24 h. In particular, reporter metabolites were found scattered 

across the whole metabolism (see Table VI.A), thus offering a global view of the 

transcriptional response in the metabolic network. During growth on high CO2 

condition, all building blocks for biomass synthesis can be derived from the coupling of 

mechanism for capturing CO2 and HCO3
- and steady-state photosynthetic carbon 

fixation. Although it is known that Ci uptake system is both constitutively expressed 

(Badger and Gallagher, 1987) as inducibly expressed, e.g. high affinity HCO3
- uptake 

system, during growth at low Ci levels (Badger, 1987; Price and Badger, 1989). Thus, 

during growth on low ambient CO2 condition, HCO3
- transporters together with 

carbonic anhydrase form the central component of the CO2 concentrating mechanism 

that support the production of the biomass precursors. 

The output from in silico analysis accurately captures several reporter features 

under LC condition. For example, H2CO3 and H2CO3_extrac are the reporters with the 

highest score and are involved in system uptake of carbon source. It is obvious that 

these metabolites represent regulatory hot spots in a Ci shift regime. UDP-GlcNAc-

enolpyruvate, N-acetylmuramic acid 6-phosphate and (R)-lactate are important 

intermediates in aminosugars metabolism. The second and third reporter metabolites 

are substrate and product, respectively, of a reaction which is sequentially involved in 

UDP-GlcNAc-enolpyruvate synthesis. This later metabolite is implicated in redox 

reaction in where NADPH (cofactor required in Calvin-Benson cycle) is produced. It is 

valid to note that an increase in these metabolites concentration also causes an 

increase in the metabolic flux. 
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Table VI.A. The top 20 reporter metabolites from Reporter Features. 

 

Cellobiose stands as a reporter as the cell can hydrolyze this disaccharide to beta-

D-glucose, as an alternative carbon source in response to low carbon fixation flux. 

Phytofluene participate in carotenoid biosynthesis, such as zeta-carotene. This type of 

pigment is the precursor of others which are intimately associated with the 

photosynthetic reaction centers and plays a vital role in protecting against potentially 

lethal photooxidative damage (Koyama, 1991). Also, these carotenoids serve as light-

harvesting pigments (Siefermann-Harms, 1987) and are involved in the thermal 

Metabolite Number of neighbors 

H2CO3_extrac 1 

H2CO3 2 

UDP-GlcNAc-enolpyruvate 2 

cellobiose 1 

phytofluene 1 

tRNAtrp 1 

L-tryptophanyl-tRNAtrp 1 

N-acetylmuramic acid 6-phosphate 1 

(R)-lactate 1 

2-keto-isovalerate 4 

Ca2+_extrac 1 

Ca2+ 1 

ADP-ribose 1 

R-4'-phosphopantothenoyl-L-cysteine 1 

L-glutamine 15 

2-keto-3-deoxy-6-phospho-gluconate 1 

dGDP 4 

4-amino-4-deoxychorismate 1 

5-phospho-beta-D-ribosyl-amine 2 

UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-

2,6-diaminoheptanedioate 

2 
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dissipation of excess light energy captured by the light-harvesting antenna (Demmig-

Adams and Adams, 1992). These pigments are possibly reporter metabolites related to 

inorganic carbon acclimation since the biological system would protect from the excess 

of photon due to the low flux of carbon fixation. tRNAtrp and L-tryptophanyl-tRNAtrp 

are substrate and product, respectively, of the reaction in where the L-tryptophan is 

activated for the protein biosynthesis. 2-keto-isovalerate is a 2-keto acid implicated in 

several pathways, such as: L-valine, L-leucine and coenzyme A biosynthesis. In the 

majority of these pathways, the participation of this 2-keto acid is indirectly related to 

decarboxylation processes of other 2-keto acids, and thus the release of CO2. 

Ca2+_extrac and Ca2+ correspond to the uptake of this cofactor. It is found that a 

transient increase in intracellular free Ca2+ is also triggered following nitrogen 

deprivation in S. elongates PCC7942, which has evidenced the role of this ion in the 

acclimation of this cyanobacterium to nitrogen starvation (Leganés et al., 2009). This 

effect could be also related to inorganic carbon acclimation of this biological system 

and would make a nice hypothesis to test in the future. ADP-ribose is involved in 

purine metabolism and is a precursor of D-ribose-5-phosphate and thereby of D-

ribulose-5-phosphate. The decrease in expression levels of the enzyme ADP-ribose 

diphosphatase (reaction “3.6.1.13” in iSyf715) appears to be a physiological response 

of the system to a reduction in carbon sequestration. Another reporter metabolite is R-

4'-phosphopantothenoyl-L-cysteine which is related with coenzyme A biosynthesis. This 

metabolite is decarboxylated to pantetheine 4'-phosphate; consequently, the released 

CO2 can be used by RuBisCO. The L-glutamine is an interesting hub that is intermediate 

in several pathways, like: amino acids metabolism, pyrimidine, purine and folate 

biosynthesis, cobalt, non-cobalt and coenzyme B12 pathway, glutathione and 

aminosugars metabolism. Conversely, it seems that only some reactions of these 

pathways, picture a scenario of global regulation. These reactions are those that 

involve the following enzymes: phosphoribosyldiphosphate 5-amidotransferase 

(reaction “2.4.2.14” in iSyf715), glutamine amidotransferase/cyclase (reaction “4.1.3.-” 

in iSyf715), glutaminyl-tRNA synthase (reaction “tRNA _6.3.5.7” in iSyf715), 

asparaginyl-tRNA synthase (reaction “tRNA 6.3.5.6” in iSyf715), aminodeoxychorismate 

synthase (reaction “2.6.1.85” in iSyf715), cobyrinate a,c-diamide synthase (reaction 
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“6.3.5.11” in iSyf715), adenosylcobyric acid synthase (reaction “6.3.5.10” in iSyf715) 

and gamma-glutamyltransferase (reaction “_2.3.2.2k” in iSyf715) picture a scenario of 

global regulation. 2-keto-3-deoxy-6-phospho-gluconate is a reporter from pentose 

phosphate pathway. This indicates that the statistically significant differences in the 

expression of 2-dehydro-3-deoxy-phosphogluconate aldolase (reaction “4.1.2.14” in 

iSyf715), could be related to the successive pyruvate decarboxylations in some 

reactions or with the involvement of D-glyceraldehyde-3-phosphate in redox reactions 

which produces NADPH. On the other hand, it has recently been shown that this 

reaction has an increased carbon flux into the glycolytic pathway on HC/LC-shifted 

cyanobacteria cells (Huege et al., 2011; Schwarz et al., 2011). dGDP is an intermediate 

of purine metabolism. Interestingly, all the genes implicated in reactions in where 

dGDP is an intermediate, show differences in expression levels in both conditions. 

Other reporters are 4-amino-4-deoxychorismate and 5-phospho-beta-D-ribosyl-amine, 

which constitute intermediates in folate biosynthesis and purine metabolism, 

respectively. Here, chorismate and 5-phosphoribosyl 1-pyrophosphate are probably 

mostly used as a carbon skeletons for subsequent nitrogen assimilation via the 

glutamine synthetase/glutamate synthase cycle. The glutamate produced is 

subsequently used as an amino donator or building block for other biosyntheses such 

as amino acids, chlorophylls, antennas or heme/bilin. Finally, UDP-N-acetylmuramoyl-

L-alanyl-D-glutamyl-meso-2,6-diaminoheptanedioate constitutes a metabolite 

belongings to peptidoglycan biosynthesis pathway. The low-growing S. elongatus 

PCC7942 show a decrease in the expression of the gene coding for UDP-N-

acetylmuramoyl-L-alanyl-D-glutamate-2,6-diaminopimelate ligase, therefore the 

peptidoglycan synthesis could be affected. Thus, another hypothesis is that cell wall 

would be different under starvation of inorganic carbon than under high Ci regime. 

To acquire a better overview of the hot spots within the metabolic network, we 

visualize each of 52 reporter metabolite in a whole metabolic map (see figure 6.1). 
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By using the Reporter Subnetwork algorithm, we uncover sets of genes that 

significantly change their expression coordinately. We found a big set of 184 ORFs 

divided in two set of 88 and 96 ORFs. The first set consists of the genes from 

carbohydrate metabolism (89%) and amino acids metabolism (11%). The second set is 

representative of a variety of genes from different pathways such as nucleotide 

metabolism (42%), metabolism of cofactors (39%), nitrogen metabolism (18%) and 

carotenoids metabolism (1%). 

It seems clear that more experimental data are necessary to clarify the regulatory 

principles of the inorganic carbon acclimation. Specially, the quantification of 

transients metabolites across the whole metabolic map. 

6.3 Conclusions 

Reporter Features can be applied to study a series of related perturbations where 

results can be used to construct an inferred regulatory map connecting physical or 

functional interactions between the perturbed elements (Oliveira et al., 2008). In 

iSyf715, each perturbed element was linked to the Reporter Features calculated from 

the corresponding perturbation data, viz.: inorganic carbon acclimation. The resulting 

network is a representation of direct and/or indirect mechanisms of regulation that 

span the set of (related) perturbations used. As reporter metabolites, we have 

identified several metabolites that play a role as regulatory hubs when metabolism is 

being turned on from HC to LC for 6 and 24 h.  

If researchers aim to design and build mutants with improved production of a 

given industrially relevant metabolite, focus should be laid upon the regulatory hubs 

that drive the production of this metabolite and to the energetic metabolic pathways 

that fuel up the cell. Else, mutants can be undermined by a lack of precursors or 

biomass potential.  

The analyses presented in this chapter demonstrate the utility of this hypothesis-

driven method when knowledge useful for metabolic design can be retrieved from it. 

From our results, it seems that the hypothesis that cellular response to a perturbation 

can be modularized and characterized by using network topology information alone is 

insufficient and, thus, algorithms such as Reporter Features can be successfully applied 

to a great extent to biological networks.  
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6.4 Methods 

6.4.1 Transcriptome data analysis  

Gene expression data from the comparison of two inorganic carbon acclimation 

conditions (Schwarz et al., 2011) was integrated in the metabolic reconstruction. 

Reporter Features algorithm (Patil and Nielsen, 2005; Oliveira et al., 2008), currently 

available online at Biomet Toolbox (Cvijovic et al., 2010) 

(http://www.sysbio.se/BioMet), was used for this purpose. This algorithm works with 

three kinds of information:  

(a) p-values for genes, resulting from, for example, Student’s t-test or the Mann-

Whitney u-test run on transcriptomic data,  

 (b) interaction file, where genes/reactions are connected to the corresponding 

features, in this case the corresponding substrates and products, and  

 (c) association file, where genes are linked to the corresponding reactions, either by 

coding for the enzyme or by regulating the gene that codes for the enzyme.  

In brief, Reporter algorithm converts the p-value for a given node (pgene i) to a z-

score by using the inverse normal cumulative distribution function (cdf-1).  

 

 

After scoring each non-feature node in this fashion, we need to calculate the score 

of each feature j, zfeature j. We used the scoring method based on distribution of the 

means, which is a test for the null hypothesis “genes adjacent to feature j display their 

normalized average response by chance”. In particular, the score of each feature j is 

defined as the average of the scores of its neighbor Nj nodes (genes), i.e.:  

 

 

To evaluate the significance of each zfeature j, this value should be corrected for the 

background distribution of z-scores in the data, by subtracting the mean (mN) and 

dividing by the standard deviation (SN) of random aggregates of size N: 
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Chapter 7. Concluding remarks 
 

 

Mathematical modeling has been practiced in various branches of science and 

engineering. Genome-scale models and their analyses can be useful for addressing 

several issues from the classical biology. Here, we draw a set of concluding remarks as 

well as the main workflow presented in this thesis.  
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Chapter 7. Concluding remarks 

7.1 System biology is inherently mathematical 

Biological systems can be characterized by the interactions between their components. 

Detailed catalogs of biological parts of cells have emerged and its chemical and causal 

interactions are being documented in those databases. The basic laws of chemistry 

governed the interactions of these molecular components. Multiple associations 

between biological components can be seen as a network, and can have different 

functional states. Several factors constrain these states such as: physicochemical, 

environmental, and biological. The number of possible functional states of networks 

typically grows much faster than the number of components in the network and also 

far exceeds the number of biologically useful states to an organism (Palsson, 2006). 

Metabolism is one of the best characterized cellular networks in terms of its 

biochemistry, kinetics and thermodynamics. These networks are based on all 

information of biochemical reactions, like stoichiometry, which can serve as base to 

form a matrix, named stoichiometric matrix. This network can be described at different 

levels of information enabling us to conceptualize their functionalities in a hierarchical 

fashion (Palsson, 2006).  

Two-dimensional or systemic annotation of genomes is emerging and represents 

unity of effort in systems biology through metabolic network reconstruction. Network 

reconstruction is a detailed, laborious process that needs careful examination of all the 

components and links in the network. Procedures to perform this task have been 

developed. Numerous web resources and tools are available to aid in developing 

curated networks. Metabolic network interact with essentially all other cellular 

processes. The reconstruction of these processes and the integration of multiple 

networks will lead to the description of a comprehensive range of cellular functions. 

Such a multinetwork reconstruction represents a biochemically, genetically and 

genomically, structured database that provides the framework for analyzing -omics 

data types (Palsson, 2006). 

Mathematically, the reconstruction process leads to the stoichiometric matrix 

which is becomes a key in systems biology. Structurally, or topologically, the 

stoichiometric matrix represents a reaction map, and mathematically, is a linear 
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mapping operation. Direct topological studies are interesting from a variety of 

standpoints. They focus on relatively easy to understand and intuitive properties of the 

structure of the network. Elementary topological properties relate to how connected a 

network is and how its components participate in forming the connectivity properties 

of the network. The number of reactions that compounds participate in network 

follows an approximate power law distribution in genome-scale matrices of 

metabolism (Palsson, 2006).  

A wide range of constraint-based analysis methods have appeared and are being 

used to analyze various aspects of genome-scale models and the biological properties 

of the organisms that these models represents. Genome-scale reconstructions are 

mathematically represented and the governing constraints are imposed. This 

procedure leads to an in silico organism that contains all the known components of the 

real organism that it represents, and allows the simulation of allowable states given a 

set of governing constraints. Biological systems have to abide by a series of constraints, 

including those arising form basic natural laws, spatial constraints, and the 

environment in which they operate. Many possible biological functions are achievable 

under these constraints, and organisms willfully impose constraints through various 

regulatory mechanisms to select useful functional states from all allowable states. A 

constraint-based approach emerges from these considerations that enable the 

simultaneous analysis of physicochemical factors and biological properties. 

Bounds and balance form linear constraints that comprise non-negativity 

constraints on the variables and by mass or flux balances. Specific points within these 

bounded solution spaces can be determined through optimization procedures, which 

are based on a stated objective function. These objectives can be used to probe 

network capabilities, to represent likely physiological objectives, and to represent 

candidate biological designs. If the objective function is linear, the linear programming 

can be used to find the optimal solution. In such cases, many different solutions 

(alternate optima) lead to the same optimal objective value. Thus, various analysis 

methods that look at optimal states and parameters variation have been programmed. 

As well as, several sophisticated in silico analysis methods, in which the objective 

function is non-linear, have been developed to carry out analyses of the consequence 
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of gene knockouts. Summarizing, these methods are principally based on the use of 

constraint-based optimization. 

These considerations encompass the answers to many questions in systems 

biology. However, due to that systems and network analysis is at an early stage of 

development, there are some challenges that the field faces and constitute the horizon 

for future works.  

7.2 Workflow  

The scope of this thesis lied on two categories: biological content and in silico analyses 

methods applied to it.  

The thesis work started from a model‐driven systems biology workflow. We first 

gathered all kinds of biological information from Synechococcus elongatus PCC7942, 

including -omics elements, for example: genomics data, proteomics, transcriptomics, 

metabolomics, fluxomics, etc. Similarly, we deepened on the importance of the use of 

genome-scale metabolic models, with emphasis on its applicability to socioeconomic 

purposes. With retrieved information, we reconstructed the cyanobacterium 

metabolic model at genome-scale. Once reconstructed cellular metabolism, the 

accuracy and quality of the model was validated by comparison with experimental 

data for this cyanobacterium. This involved a series of computational simulations, by 

which the optimal states of the metabolic network were determined. Also, we 

calculated the variability of metabolic flux distributions without affecting the simulated 

objective function. We assessed the robustness of the network by studying the effects 

of varying CO2 and HCO3
−

 uptake rates on maximal growth. 

The second phase was characterized by the analysis of the metabolic capabilities 

of this prokaryote. Using the reconstructed metabolic model we evaluated genetic 

perturbations which lead to the maximum in the synthesis of different bio-products. 

With this purpose, we studied economically important metabolites such as: ethanol, 

higher chain alcohols, lipids and hydrogen. Likewise, we proposed feasible metabolic 

designs by which the microorganism may be capable of overproduce these mentioned 

metabolites. 

In the same way, the in silico metabolic model was used to predict cellular 

metabolic states. We characterized metabolic phenotypes and their respective 
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biomass, alcohols, lipids and hydrogen productions over a range of CO2 and photons 

uptake rates. 

Finally, the genome-scale metabolic model has served as a basis to integrate 

different biological information levels, like: transcriptome. In this way, we inferred new 

hot spots related to metabolic dynamic under inorganic carbon starvation, which can 

be useful in the design of metabolic engineering strategies. 

Results of this PhD dissertation can be the foundation of future integrative 

approaches that will give continuity to the work performed in order to obtain an 

industrially-relevant production platform out of Synechococcus elongatus PCC7942. 
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Appendixes 

Appendix 1.1  

iSyf715: Synechococcus elongatus PCC7942 genome-scale metabolic 

model 

 
-REACTIONS 

 

# GLYCOLYSIS  

2.7.1.2a : beta-D-glucose + ATP -> beta-D-glucose-6-phosphate + ADP  

2.7.1.2b : alpha-D-glucose + ATP -> alpha-D-glucose-6-phosphate + ADP  

5.3.1.9a : alpha-D-glucose-6-phosphate <-> beta-D-glucose-6-phosphate 

5.3.1.9b : beta-D-glucose-6-phosphate <-> beta-D-fructose-6-phosphate  

2.7.1.11 : ATP + beta-D-fructose-6-phosphate -> ADP + beta-D-fructose-

1,6-bisphosphate 

3.1.3.11 : beta-D-fructose-1,6-bisphosphate + H2O -> beta-D-fructose-

6-phosphate + phosphate O4P 

4.1.2.13a : beta-D-fructose-1,6-bisphosphate <-> dihydroxy-acetone 

phosphate + D-glyceraldehyde-3-phosphate  

5.3.1.1 : D-glyceraldehyde-3-phosphate <-> dihydroxy-acetone phosphate  

_1.2.1.59a : NAD+ + D-glyceraldehyde-3-phosphate + phosphate O4P -> 

NADH + H+ + 1,3-diphosphateglycerate  

_1.2.1.59b : NADP+ + D-glyceraldehyde-3-phosphate + phosphate O4P -> 

NADPH + H+ + 1,3-diphosphateglycerate  

1.2.1.12 : NAD+ + D-glyceraldehyde-3-phosphate + phosphate O4P <-> 

NADH + H+ + 1,3-diphosphateglycerate  

2.7.2.3 : 1,3-diphosphateglycerate + ADP <-> 3-phosphoglycerate + ATP  

5.4.2.1 : 3-phosphoglycerate <-> 2-phosphoglycerate  

4.2.1.11 : 2-phosphoglycerate <-> phosphoenolpyruvate + H2O  

2.7.1.40a : ADP + phosphoenolpyruvate -> ATP + pyruvate  

2.7.9.2 : H2O + pyruvate + ATP -> phosphate O4P + phosphoenolpyruvate 

+ AMP  

 

# TCA CYCLE  

2.3.3.1 : oxaloacetate + acetyl-CoA + H2O <-> citrate + coenzyme A 

4.2.1.3a : citrate <-> cis-aconitate + H2O 

4.2.1.3b : cis-aconitate + H2O <-> D-isocitrate 

1.1.1.42a : D-isocitrate + NADP+ <-> oxalosuccinate + NADPH + H+  

1.1.1.42b : oxalosuccinate <-> 2-ketoglutarate + CO2  

_1.3.99.1 : succinate + UQ <-> fumarate + UQH2 

4.2.1.2 : malate <-> fumarate + H2O 

 

# GLYOXYLATE SHUNT 

# not pres ! would made up glyoxylate shunt ~~IMPORTANT, following 2 

reactions not in sequence!!~~ 

·4.1.3.1 : D-isocitrate -> glyoxylate + succinate 

·2.3.3.9 : acetyl-CoA + H2O + glyoxylate <-> malate + coenzyme A 

4.1.1.39a : D-ribulose-1,5-bisphosphate + O2 + H2O -> 3-

phosphoglycerate + 2-phosphoglycolate + 2 H+ 

_3.1.3.18 : 2-phosphoglycolate + H2O -> glycolate + phosphate O4P 

_1.1.3.15 : glycolate + O2 <-> glyoxylate + H2O2 

_4.1.1.2 : oxalate + H+ -> formate + CO2 
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# PENTOSE PHOSPHATE PATHWAY 

1.1.1.49 : beta-D-glucose-6-phosphate + NADP+ <-> D-glucono-delta-

lactone-6-phosphate + NADPH + H+  

3.1.1.31 : D-glucono-delta-lactone-6-phosphate + H2O -> 6-phospho-D-

gluconate  

1.1.1.44 : 6-phospho-D-gluconate + NADP+ -> D-ribulose-5-phosphate + 

CO2 + NADPH + H+  

5.1.3.1 : D-ribulose-5-phosphate <-> D-xylulose-5-phosphate  

5.3.1.6 : D-ribose-5-phosphate <-> D-ribulose-5-phosphate  

5.3.1.9c : alfa-D-glucose-6-phosphate <-> beta-D-fructose-6-phosphate  

2.2.1.1a : D-ribose-5-phosphate + D-xylulose-5-phosphate <-> D-

sedoheptulose-7-phosphate + D-glyceraldehyde-3-phosphate  

2.2.1.1b : D-erythrose-4-phosphate + D-xylulose-5-phosphate <-> beta-

D-fructose-6-phosphate + D-glyceraldehyde-3-phosphate  

_2.2.1.2 : beta-D-fructose-6-phosphate + D-erythrose-4-phosphate -> D-

glyceraldehyde-3-phosphate + D-sedoheptulose-7-phosphate    

4.1.2.14 : 2-keto-3-deoxy-6-phospho-gluconate -> D-glyceraldehyde-3-

phosphate + pyruvate  

4.1.2.4 : deoxyribose-5-phosphate <-> acetaldehyde + D-glyceraldehyde-

3-phosphate 

1.1.1.47a : beta-D-glucose + NAD+ <-> D-glucono-1,5-lactone + NADH + 

H+  

1.1.1.47b : beta-D-glucose + NADP+ <-> D-glucono-1,5-lactone + NADPH + 

H+  

 

# CALVIN CYCLE ADDITION TO PPP 

2.7.1.19 : D-ribulose-5-phosphate + ATP -> D-ribulose-1,5-bisphosphate 

+ ADP  

4.1.2.13b : dihydroxy-acetone phosphate + D-erythrose-4-phosphate -> 

D-sedoheptulose-1,7-bisphosphate  

3.1.3.37 : H2O + D-sedoheptulose-1,7-bisphosphate -> phosphate O4P + 

D-sedoheptulose-7-phosphate  

4.1.2.22 : beta-D-fructose-6-phosphate + phosphate O4P + 2 H+ -> 

acetyl phosphate + D-erythrose 4-phosphate + H2O 

# in "SPECIAL"  

4.1.1.39b : D-ribulose-1,5-bisphosphate + CO2 + H2O -> 2 3-

phosphoglycerate + 2 H+  

 

# AMINO ACIDS 

# alanine - Ala 

5.1.1.1 : L-alanine <-> D-alanine 

1.4.1.1 : NAD+ + H2O + L-alanine <-> ammonia H3N + NADH + H+ + 

pyruvate 

tRNA 6.1.1.7 : tRNAala + L-alanine + ATP -> L-alanyl-tRNAala + 

diphosphate + AMP 

2.6.1.44 : L-alanine + glyoxylate -> pyruvate + glycine 

 

# Asp, Arg, Asn, Lys and Thr 

# aspartate - Asp 

1.4.3.16a : O2 + H2O + L-aspartate -> ammonia H3N + H2O2 + 

oxaloacetate 

2.6.1.1a : L-aspartate + 2-ketoglutarate <-> L-glutamate + 

oxaloacetate 

# - from fumarate to Asp 

4.3.2.2a : adenylo-succinate <-> fumarate + AMP 

6.3.4.4 : L-aspartate + inosine-5'-phosphate + GTP <-> adenylo-

succinate + phosphate O4P + GDP 

# - from Asp to Arg 

2.1.3.3 : L-ornithine + carbamoyl-phosphate <-> citrulline + phosphate 

O4P 
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6.3.4.5a : L-aspartate + citrulline + ATP <-> L-arginino-succinate + 

diphosphate + AMP 

4.3.2.1 : L-arginino-succinate <-> L-arginine + fumarate 

# - from Asp to Asn 

3.5.1.1 : L-asparagine + H2O <-> ammonia H3N + L-aspartate 

# - from Asp to Thr 

2.7.2.4 : L-aspartate + ATP -> L-aspartyl-4-phosphate + ADP 

1.2.1.11 : NADPH + H+ + L-aspartyl-4-phosphate -> NADP+ + phosphate 

O4P + L-aspartate-semialdehyde 

_1.1.1.3a : L-aspartate-semialdehyde + NADPH + H+ <-> L-homoserine + 

NADP+  

_1.1.1.3b : L-homoserine + NAD+ <-> L-aspartate-semialdehyde + NADH + 

H+  

2.7.1.39 : L-homoserine + ATP -> O-phospho-L-homoserine + ADP 

4.2.3.1a : O-phospho-L-homoserine + H2O -> phosphate O4P + L-threonine 

# - from Asp to Lys 

4.2.1.52 : pyruvate + L-aspartate-semialdehyde -> 2 H2O + L-2,3-

dihydrodipicolinate 

_1.3.1.26a : tetrahydrodipicolinate + NADP+ <-> L-2,3-

dihydrodipicolinate + NADPH + H+ 

_1.3.1.26b : tetrahydrodipicolinate + NAD+ <-> L-2,3-

dihydrodipicolinate + NADH + H+ 

2.6.1.83 : L,L-diaminopimelate + 2-ketoglutarate <-> 

tetrahydrodipicolinate + L-glutamate + H2O 

5.1.1.7 : L,L-diaminopimelate <-> meso-diaminopimelate 

4.1.1.20 : meso-diaminopimelate -> CO2 + L-lysine 

tRNA 6.1.1.12 : tRNAasp + L-aspartate + ATP -> L-aspartyl-tRNAasp + 

diphosphate + AMP 

 

# arginine - Arg 

# - from Asp to Arg 

tRNA 6.1.1.19 : tRNAarg + L-arginine + ATP -> L-arginyl-tRNAarg + 

diphosphate + AMP 

# - from Arg to putrescine 

4.1.1.19 : L-arginine -> CO2 + agmatine 

# not pres ! (would connect 4.1.1.19 to putrescine) ~~IMPORTANT, 

following reaction not in sequence!!~~ 

·3.5.3.12 : agmatine + H2O -> N-carbamoyl putrescine + ammonia H3N  

3.5.1.53 : N-carbamoyl putrescine + H2O -> putrescine + CO2 + ammonia 

H3N 

 

# asparagine - Asn 

# - from Asp to Asn 

tRNA 6.1.1.22 : tRNAasn + L-asparagine + ATP -> L-asparaginyl-tRNAasn 

+ diphosphate + AMP 

tRNA 6.3.5.6 : L-glutamine + L-aspartyl-tRNAAsn + ATP -> L-glutamate + 

L-asparaginyl-tRNAAsn + phosphate O4P + ADP 

 

# lysine - Lys 

# - from Asp to Lys 

tRNA 6.1.1.6 : tRNAlys + L-lysine + ATP -> L-lysyl-tRNAlys + 

diphosphate + AMP 

4.1.1.18 : L-lysine -> CO2 + cadaverine 

 

# threonine - Thr 

# - from Asp to Thr 

THREOSPON-RXN : 2-amino-3-oxobutanoate <-> aminoacetone + CO2 

# not pres ! (would connect 2-oxobutanoate whith Valine, Isoleucine 

and Leucine biosynthesis) ~~IMPORTANT, following reaction not in 

sequence!!~~  

·4.3.1.19a : L-threonine -> 2-oxobutanoate + ammonia H3N 
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tRNA 6.1.1.3 : tRNAthr + L-threonine + ATP -> L-threonyl-tRNAthr + 

diphosphate + AMP 

 

# Ser, Cys and Gly 

# serine - Ser 

# - from 3PG to Ser 

2.7.1.31 : glicerate + ATP <-> 3-phosphoglycerate + ADP  

1.1.1.95 : 3-phosphoglycerate + NAD+ -> 3-phospho-hydroxypyruvate + 

NADH + H+ 

# not pres ! (would connect pyruvate with this pathway) ~~IMPORTANT, 

following reaction not in sequence!!~~  

·_4.3.1.19b : L-serine <-> pyruvate + ammonia H3N 

# - from Ser to Cys 

2.3.1.30 : L-serine + acetyl-CoA <-> O-acetyl-L-serine + coenzyme A 

2.5.1.47 : O-acetyl-L-serine + hydrogen sulfide <-> L-cysteine + 

acetate 

2.5.1.49a : O-acetyl-L-serine + thiosulfate + thioredoxin + H+ -> L-

cysteine + sulfite O3s + thioredoxin disulfide + acetate  

# - from Ser to Gly (& viceversa) 

2.1.2.1 : L-serine + tetrahydrofolate <-> 5,10-methylene-THF + glycine 

+ H2O 

2.6.1.45 : hydroxypyruvate + glycine <-> L-serine + glyoxylate  

tRNA 6.1.1.11 : tRNAser + L-serine + ATP -> L-seryl-tRNAser + 

diphosphate + AMP 

2.6.1.51 : L-serine + pyruvate <-> hydroxypyruvate + L-alanine 

 

# cysteine - Cys 

# - from Ser to Cys 

CYSPON-RXN : 3-sulfinyl-pyruvate + H2O -> sulfite O3s + pyruvate  

2.6.1.1e : L-cysteine + 2-ketoglutarate <-> mercaptopyruvate + L-

glutamate  

2.8.1.2 : mercaptopyruvate + sulfite O3s -> thiosulfate + pyruvate  

tRNA 6.1.1.16 : tRNAcys + L-cysteine + ATP -> L-cysteinyl-tRNAcys + 

diphosphate + AMP 

 

# glycine - Gly 

# - from Ser to Gly (& viceversa) 

tRNA 6.1.1.14 : tRNAgly + glycine + ATP -> glycyl-tRNAgly + 

diphosphate + AMP 

3.4.11.1 : L-cysteine-glycine + H2O -> L-cysteine + glycine 

 

# Glu, Gln, Pro and Trp 

# glutamate - Glu 

transport TRANS-RXN59G-639 : L-glutamate_extrac + H+_extrac -> L-

glutamate + H+ 

# - from Glu to Pro 

2.7.2.11 : L-glutamate + ATP -> L-glutamate-5-phosphate + ADP 

1.2.1.41 : L-glutamate gamma-semialdehyde + phosphate O4P + NADP+ <-> 

L-glutamate-5-phosphate + NADPH + H+ 

SPONTPRO-RXN : L-glutamate gamma-semialdehyde <-> H2O + pyrroline 5-

carboxylate 

_1.5.1.2a1 : L-proline + NADP+ <-> pyrroline 5-carboxylate + NADPH + 

H+ 

_1.5.1.2a2 : L-proline + NAD+ <-> pyrroline 5-carboxylate + NADH + H+ 

# - from Glu to Gln 

6.3.1.2 : ammonia H3N + L-glutamate + ATP -> L-glutamine + ADP + 

phosphate O4P  

5.1.1.3 : L-glutamate <-> D-glutamate  

1.4.7.1 : 2 L-glutamate + 2 Fd -> L-glutamine + 2-ketoglutarate + 2 

Fd* + 2 H+ 
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# not pres ! would interconvert D-Gln and L-Gln ~~IMPORTANT, following 

reaction not in sequence!!~~  

·5.1.1.9 : D-glutamine <-> L-glutamine  

# - from Glu to Trp - chorismate comes from Phe biosynthesis  

4.1.3.27 : chorismate + L-glutamine -> L-glutamate + anthranilate + 

pyruvate  

2.4.2.18 : N-(5'-phosphoribosyl)-anthranilate + diphosphate <-> 

anthranilate + 5-phosphoribosyl 1-pyrophosphate  

5.3.1.24 : N-(5'-phosphoribosyl)-anthranilate <-> 1-(o-

carboxyphenylamino)-1'-deoxyribulose-5'-phosphate  

4.1.1.48 : 1-(o-carboxyphenylamino)-1'-deoxyribulose-5'-phosphate -> 

indole-3-glycerol-phosphate + CO2 + H2O  

4.2.1.20a : indole-3-glycerol-phosphate + L-serine <-> L-tryptophan + 

H2O + D-glyceraldehyde-3-phosphate  

_4.2.1.20b : indole-3-glycerol-phosphate <-> indole + D-

glyceraldehyde-3-phosphate  

4.2.1.20c : indole + L-serine -> L-tryptophan + H2O  

2.6.1.1b : 3-sulfinoalanine + 2-ketoglutarate -> L-glutamate + 3-

sulfinyl-pyruvate  

tRNA 6.1.1.17 : tRNAGlu + L-glutamate + ATP -> L-glutamyl-tRNAGlu + 

diphosphate + AMP 

 

# glutamine - Gln 

transport TRANS-RXN59G-245 : L-glutamine_extrac + H+_extrac -> L-

glutamine + H+ 

# - from Glu to Gln 

tRNA _6.3.5.7 : L-glutamine + L-glutamyl-tRNAGlu + ATP -> L-glutamate 

+ L-glutaminyl-tRNAGln + phosphate O4P + ADP 

# not pres ! would produce Gln's tRNA ~~IMPORTANT, following reaction 

not in sequence!!~~ 

·tRNA 6.1.1.18 : tRNAgln + L-glutamine + ATP <-> L-glutaminyl-tRNAgln 

+ diphosphate + AMP 

 

# proline - Pro 

# - from Glu to Pro 

# - from Pro to pyruvate - not pres 

_1.5.1.2b : L-1 pyrroline-3-hydroxy-5-carboxylate + NADH + H+ -> 

trans-4-Hydroxy-L-proline + NAD+  

_1.5.1.2c : L-1 pyrroline-3-hydroxy-5-carboxylate + NADPH + H+ -> 

trans-4-Hydroxy-L-proline + NADP+  

_2.6.1.1c : L-erythro-4-hydroxy-glutamate + 2-ketoglutarate -> D-4-

hydroxy-2-keto-glutarate + L-glutamate  

4.1.3.16 : D-4-hydroxy-2-keto-glutarate <-> glyoxylate + pyruvate  

_spont1 : L-1 pyrroline-3-hydroxy-5-carboxylate <-> L-4-hydroxy-

glutamate semialdehyde  

tRNA 6.1.1.15 : L-proline + tRNApro + ATP -> L-prolyl-tRNApro + 

diphosphate + AMP  

5.2.1.8 : peptidylproline (omega = 180) -> peptidylproline (omega = 0)  

 

# tryptophan - Trp 

# - from Glu to Trp  

tRNA 6.1.1.2 : ATP + tRNAtrp + L-tryptophan -> AMP + diphosphate + L-

tryptophanyl-tRNAtrp 

 

# Phe and Tyr 

# phenylalanine - Phe 

# - chorismate production (common to Phe, Tyr and Trp) 

2.5.1.54 : phosphoenolpyruvate + D-erythrose-4-phosphate + H2O -> 3-

deoxy-D-arabino-heptulosonate-7-phosphate + phosphate O4P 

4.2.3.4 : 3-deoxy-D-arabino-heptulosonate-7-phosphate -> 3-

dehydroquinate + phosphate O4P 
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4.2.1.10 : 3-dehydroquinate -> H2O + 3-dehydro-shikimate 

1.1.1.25 : NADP+ + shikimate <-> NADPH + H+ + 3-dehydro-shikimate 

2.7.1.71 : shikimate + ATP -> shikimate-3-phosphate + ADP 

2.5.1.19 : shikimate-3-phosphate + phosphoenolpyruvate <-> 5-

enolpyruvyl-shikimate-3-phosphate + phosphate O4P 

4.2.3.5 : 5-enolpyruvyl-shikimate-3-phosphate -> phosphate O4P + 

chorismate 

# - from chorismate to prephenate (common to Phe and Tyr) 

5.4.99.5 : chorismate <-> prephenate 

# - from prephenate to Phe 

4.2.1.51 : prephenate <-> phenylpyruvate + H2O + CO2 

2.6.1.9b : phenylpyruvate + L-glutamate <-> L-phenylalanine + 2-

ketoglutarate 

# - from Phe to Tyr (not pres) 

4.2.1.96 : 4alpha-hydroxy-tetrahydrobiopterin -> dihydrobiopterin + 

H2O 

tRNA 6.1.1.20 : tRNAphe + L-phenylalanine + ATP -> L-phenylalanyl-

tRNAphe + diphosphate + AMP 

 

# tyrosine - Tyr 

# - chorismate production (common to Phe, Tyr and Trp) 

# - from chorismate to prephenate (common to Phe and Tyr) 

# - from prephenate to Tyr I 

# not pres ! would interconnect prephenate with L-tyrosine 

~~IMPORTANT, following reaction not in sequence!!~~  

·1.3.1.12 : prephenate + NAD+ <-> 4-hydroxyphenylpyruvate + CO2 + NADH 

+ H+ 

_2.6.1.1d : 4-hydroxyphenylpyruvate + L-glutamate <-> L-tyrosine + 2-

ketoglutarate 

1.3.1.78 : L-arogenate + NADP+ -> L-tyrosine + CO2 + NADPH + H+  

# - from prephenate to Tyr II - not pres  

# - from Phe to Tyr - not pres 

tRNA 6.1.1.1 : L-tyrosine + tRNAtyr + ATP -> L-tyrosyl-tRNAtyr + 

diphosphate + AMP 

 

# histidine - His 

# - 5-phosphoribosyl 1-pyrophosphate comes from Pirimidine 

biosynthesis 

2.4.2.17 : phosphoribosyl-ATP + diphosphate <-> ATP + 5-phosphoribosyl 

1-pyrophosphate 

3.6.1.31 : phosphoribosyl-ATP + H2O -> phosphoribosyl-AMP + 

diphosphate 

3.5.4.19 : phosphoribosyl-AMP + H2O -> phosphoribosylformiminoAICAR-

phosphate 

5.3.1.16 : phosphoribosylformiminoAICAR-phosphate -> 

phosphoribulosylformimino-AICAR-P 

4.1.3.- : phosphoribulosylformimino-AICAR-P + L-glutamine -> L-

glutamate + D-erythro-imidazole-glycerol-phosphate + aminoimidazole 

carboxamide ribonucleotide 

4.2.1.19 : D-erythro-imidazole-glycerol-phosphate -> imidazole acetol-

phosphate + H2O 

2.6.1.9a : imidazole acetol-phosphate + L-glutamate <-> L-histidinol-

phosphate + 2-ketoglutarate 

# not pres ! would close His production ~~IMPORTANT, following 

reaction not in sequence!!~~ 

·3.1.3.15 : L-histidinol-phosphate + H2O <-> histidinol + phosphate 

O4P 

1.1.1.23a : histidinol + NAD+ -> histidinal + NADH + H+ 

1.1.1.23b : histidinal + NAD+ + H2O -> L-histidine + NADH + H+ 
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tRNA 6.1.1.21 : tRNAhis + L-histidine + ATP -> L-histidyl-tRNAhis + 

diphosphate + AMP 

 

# Val, Ile and Leu 

# valine - Val 

_2.2.1.6d : 2 pyruvate -> 2-acetolactate + CO2 

1.1.1.86a : 2,3-dihydroxy-isovalerate + NADP+ <-> 2-acetolactate + 

NADPH + H+  

4.2.1.9a : 2,3-dihydroxy-isovalerate -> 2-keto-isovalerate + H2O  

2.6.1.42a : L-glutamate + 2-keto-isovalerate <-> L-valine + 2-

ketoglutarate  

2.6.1.66 : L-valine + pyruvate <-> 3-methyl-2-oxobutanoic acid + L-

alanine  

tRNA 6.1.1.9 : tRNAval + L-valine + ATP -> L-valyl-tRNAval 

+diphosphate + AMP  

 

# isoleucine - Ile 

_2.2.1.6e : pyruvate + 2-oxobutanoate -> 2-aceto-2-hydroxy-butyrate + 

CO2 

_1.1.1.85b : D-erythro-3-methylmalate -> 2-oxobutanoate + CO2  

1.1.1.86b : 2-aceto-2-hydroxy-butyrate + NADPH + H+ <-> 2,3-dihydroxy-

3-methylvalerate + NADP+  

4.2.1.9b : 2,3-dihydroxy-3-methylvalerate -> 2-keto-3-methyl-valerate 

+ H2O  

2.6.1.42b : L-isoleucine + 2-ketoglutarate <-> L-glutamate + 2-keto-3-

methyl-valerate 

tRNA 6.1.1.5 : tRNAile + L-isoleucine + ATP -> L-isoleucyl-tRNAile + 

diphosphate + AMP  

  

# leucine - Leu 

2.3.3.13 : 2-keto-isovalerate + acetyl-CoA + H2O -> 2-isopropylmalate 

+ coenzyme A 

4.2.1.33a : 2-isopropylmalate <-> isopropylmaleate + H2O 

4.2.1.33b : 3-isopropylmalate <-> isopropylmaleate + H2O 

1.1.1.85a : 3-isopropylmalate + NAD+ -> 2-isopropyl-3-oxosuccinate + 

NADH + H+ 

RXN-7800 : 2-isopropyl-3-oxosuccinate <-> 2-ketoisocaproate + CO2 

2.6.1.42c : L-glutamate + 2-ketoisocaproate -> L-leucine + 2-

ketoglutarate  

tRNA 6.1.1.4 : L-leucine + tRNAleu + ATP -> L-leucyl-tRNAleu + 

diphosphate + AMP 

 

# methionine - Met 

# from L-homoserine to L-homocysteine 

2.3.1.31 : acetyl-CoA + L-homoserine <-> coenzyme A + O-acetyl-L-

homoserine  

2.3.1.46 : succinyl-CoA + L-homoserine <-> coenzyme A + O-succinyl-L-

homoserine  

2.5.1.49b : O-acetyl-L-homoserine + hydrogen sulfide -> L-homocysteine 

+ acetate  

# from L-homocysteine to Met  

3.3.1.1 : S-adenosyl-L-homocysteine + H2O <-> L-homocysteine + 

adenosine  

2.1.1.13 : L-homocysteine + 5-methyl-THF <-> L-methionine + 

tetrahydrofolate  

2.5.1.6 : ATP + L-methionine + H2O -> phosphate O4P + diphosphate + S-

adenosyl-L-methionine  

2.1.1.37 : S-adenosyl-L-methionine + DNA <-> S-adenosyl-L-homocysteine 

+ DNA 5-methylcytosine 

4.1.1.50 : S-adenosyl-L-methionine + H+ -> S-adenosyl-metioninamine + 

CO2  
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2.5.1.16a : S-adenosyl-metioninamine + putrescine -> spermidine + S-

methyl-5'-thioadenosine  

2.4.2.28 : S-methyl-5'-thioadenosine + phosphate O4P -> adenine + 5-

methylthioribose-1-phosphate  

5.3.1.23 : 5-methylthioribose-1-phosphate -> 5-methylthioribulose-1-

phosphate  

4.2.1.109 : 5-methylthioribulose-1-phosphate -> 2,3-diketo-5-

methylthiopentyl-1-phosphate + H2O  

3.1.3.77 : 2,3-diketo-5-methylthiopentyl-1-phosphate + H2O -> 1,2-

dihydroxy-3-keto-5-methylthiopentene + phosphate O4P 

1.13.11.54 : 1,2-dihydroxy-3-keto-5-methylthiopentene + O2 -> 4-

methylthio-2-oxobutanoic acid + formate  

1.13.11.53 : 1,2-dihydroxy-3-keto-5-methylthiopentene + O2 -> 3-

methylthio-propionato + formate + CO  

tRNA 2.1.2.9b : 10-formyl-tetrahydrofolate + L-methionyl-tRNAmet + H2O 

-> tetrahydrofolate + N-formyl-L-methionyl-tRNAfmet  

tRNA 6.1.1.10 : tRNAmet + L-methionine + ATP -> L-methionyl-tRNAmet + 

diphosphate + AMP  

 

# additional aa reactions  

3.5.2.10 : H2O + creatinine -> creatine 

4.4.1.16 : selenocysteine + UQH2 <-> selenide + L-alanine + UQ 

 

# NUCLEIC ACIDS 

# Pyrimidine biosynthesis (C, T, U) 

6.3.5.5 : 2 ATP + L-glutamine + HCO3- + H2O -> L-glutamate + 2 ADP + 

phosphate O4P + carbamoyl-phosphate 

2.1.3.2 : L-aspartate + carbamoyl-phosphate -> N-carbamoyl-L-aspartate 

+ phosphate O4P 

3.5.2.3 : dihydroorotate + H2O <-> N-carbamoyl-L-aspartate 

1.3.98.1a : O2 + dihydroorotate <-> H2O2 + orotate 

2.4.2.10 : orotidine-5'-phosphate + diphosphate <-> 5-phosphoribosyl 

1-pyrophosphate + orotate 

4.1.1.23 : orotidine-5'-phosphate -> CO2 + UMP 

1.3.98.1b : dihydroorotate + fumarate <-> orotate + succinate 

 

# - Uracil 

3.1.3.5g : UMP + H2O <-> uridine + phosphate O4P 

2.7.4.14a : ATP + UMP <-> ADP + UDP 

_2.7.4.22 : ATP + UMP <-> ADP + UDP 

2.4.2.9 : diphosphate + UMP <-> 5-phosphoribosyl 1-pyrophosphate + 

uracil 

3.6.1.19e : H2O + UTP -> diphosphate + UMP 

2.7.4.6e : UDP + ATP <-> UTP + ADP 

3.5.4.13a : H2O + CTP -> ammonia H3N + UTP 

6.3.4.2 : ATP + UTP + ammonia H3N -> ADP + phosphate O4P + CTP 

2.7.4.6h : dUDP + ATP <-> dUTP + ADP 

3.6.1.19f : H2O + dUTP -> diphosphate + dUMP 

2.7.4.9b : ATP + dUMP <-> ADP + dUDP  

1.17.4.1e : dUDP + thioredoxin + H2O <-> UDP + thioredoxin disulfide 

2.1.1.148 : 5,10-methylene-THF + dUMP + FADH2 -> dTMP + 

tetrahydrofolate + FAD 

2.7.7.8c : RNAn1 + phosphate O4P -> RNAn + UDP 

2.7.7.6c : UTP + RNAn -> diphosphate + RNAn1 

3.5.4.5a : cytidine + H2O <-> uridine + ammonia H3N 

3.5.4.1a : H2O + cytosine -> ammonia H3N + uracil 

 

# - Cytosine 

2.7.4.6f : CDP + ATP <-> CTP + ADP 

2.7.4.14b : ATP + CMP <-> ADP + CDP 
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1.17.4.1d : dCDP + thioredoxin + H2O <-> CDP + thioredoxin disulfide  

3.1.3.5h : CMP + H2O <-> cytidine + phosphate O4P  

2.7.4.6g : dCDP + ATP <-> dCTP + ADP 

2.7.4.14c : ATP + dCMP <-> ADP + dCDP 

3.1.3.5i : dCMP + H2O <-> deoxycytidine + phosphate O4P  

3.5.4.5b : deoxycytidine + H2O <-> deoxyuridine + ammonia H3N  

3.5.4.13b : H2O + dCTP -> ammonia H3N + dUTP  

2.7.7.6d : CTP + RNAn -> diphosphate + RNAn1  

2.7.7.8d : RNAn1 + phosphate O4P -> RNAn + CDP  

2.7.7.7c : dCTP + DNAn <-> diphosphate + DNAn1  

# - Thymine 

3.1.3.5j : thymidine + H2O <-> dTMP + phosphate O4P 

2.7.4.9a : ATP + dTMP <-> ADP + dTDP 

2.7.4.6i : dTDP + ATP <-> dTTP + ADP 

2.7.7.7d : dTTP + DNAn <-> diphosphate + DNAn1 

_3.5.4.1b : H2O + thymine -> ammonia H3N + 5-methylcytosine 

 

# Purine metabolism (A, G) 

3.6.1.13 : ADP-ribose + H2O -> AMP + D-ribose-5-phosphate  

2.7.6.1 : ATP + D-ribose-5-phosphate -> 5-phosphoribosyl 1-

pyrophosphate + AMP  

2.4.2.14 : 5-phosphoribosyl 1-pyrophosphate + L-glutamine + H2O -> 5-

phospho-beta-D-ribosyl-amine + diphosphate + L-glutamate 

6.3.4.13 : 5-phospho-beta-D-ribosyl-amine + ATP + glycine -> ADP + 

phosphate O4P + 5-phospho-ribosyl-glycineamide 

2.1.2.2a : 10-formyl-tetrahydrofolate + 5-phospho-ribosyl-glycineamide 

<-> tetrahydrofolate + 5'-phosphoribosyl-N-formylglycineamide 

6.3.5.3 : ATP + 5'-phosphoribosyl-N-formylglycineamide + L-glutamine + 

H2O -> L-glutamate + ADP + phosphate O4P + 5-phosphoribosyl-N-

formylglycineamidine  

6.3.3.1 : ATP + 5-phosphoribosyl-N-formylglycineamidine -> ADP + 

phosphate O4P + 5-aminoimidazole ribonucleotide  

6.3.4.18 : ATP + 5-aminoimidazole ribonucleotide + HCO3- -> ADP + 

phosphate O4P + 5-carboxyamino-1-(5-phospho-D-ribosyl)imidazole 

5.4.99.18 : 5-carboxyamino-1-(5-phospho-D-ribosyl)imidazole <-> 4-

carboxyaminoimidazole ribonucleotide 

6.3.2.6 : ATP + 4-carboxyaminoimidazole ribonucleotide + L-aspartate 

<-> ADP + phosphate O4P + 5'-phosphoribosyl-4-(N-succinocarboxamide)-

5-aminoimidazole  

4.3.2.2b : 5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole 

<-> fumarate + aminoimidazole carboxamide ribonucleotide  

2.1.2.3a : 10-formyl-tetrahydrofolate + aminoimidazole carboxamide 

ribonucleotide <-> tetrahydrofolate + phosphoribosyl-formamido-

carboxamide  

2.4.2.7c : aminoimidazole carboxamide ribonucleotide <-> 5-amino-4-

imidazolecarboxyamide 

 

# - Inosine 

3.5.4.10 : inosine-5'-phosphate + H2O <-> phosphoribosyl-formamido-

carboxamide  

2.1.2.3b : inosine-5'-phosphate + H2O <-> phosphoribosyl-formamido-

carboxamide  

3.1.3.5c : inosine-5'-phosphate + H2O <-> inosine + phosphate O4P  

_2.7.4.3c : inosine-5'-phosphate + ITP <-> 2 IDP  

3.6.1.19a : H2O + ITP -> diphosphate + inosine-5'-phosphate  

3.6.1.19g : H2O + dITP -> diphosphate + dIMP  

_1.17.4.1b : dIDP + thioredoxin + H2O <-> IDP + thioredoxin disulfide  

2.7.4.6j : IDP + ATP <-> ITP + ADP  

2.7.4.6b : dIDP + ATP <-> dITP + ADP  

1.1.1.205 : H2O + NAD+ + inosine-5'-phosphate <-> xanthosine-5-

phosphate + NADH + H+  
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3.5.4.4a : adenosine + H2O -> inosine + ammonia H3N 

# - Xanthosine 

3.1.3.5d : xanthosine-5-phosphate + H2O <-> xanthosine + phosphate O4P 

3.6.1.19b : H2O + XTP -> diphosphate + xanthosine 

6.3.5.2 : xanthosine-5-phosphate + H2O + L-glutamine + ATP -> L-

glutamate + GMP + diphosphate + AMP 

# - Adenine 

3.1.3.5a : AMP + H2O <-> adenosine + phosphate O4P  

2.4.2.7a : AMP + diphosphate <-> 5-phosphoribosyl 1-pyrophosphate + 

adenine  

2.7.4.3a : AMP + ATP <-> 2 ADP  

2.7.4.6a : dADP + ATP <-> dATP + ADP 

2.7.1.40b : dATP + pyruvate <-> dADP + phosphoenolpyruvate  

1.17.4.1a : dADP + thioredoxin + H2O <-> ADP + thioredoxin disulfide  

2.7.4.3b : ATP + dAMP <-> ADP + dADP  

3.1.3.5b : dAMP + H2O <-> 5'-deoxyadenosine + phosphate O4P  

2.7.7.7a : dATP + DNAn <-> diphosphate + DNAn1  

2.7.7.6a : ATP + RNAn -> diphosphate + RNAn1  

2.7.7.8a : RNAn1 + phosphate O4P -> RNAn + ADP  

3.5.4.4b : 5'-deoxyadenosine + H2O <-> deoxyinosine + ammonia H3N  

# - Guanine 

3.1.3.5e : GMP + H2O <-> guanosine + phosphate O4P  

2.4.2.7b : GMP + diphosphate <-> 5-phosphoribosyl 1-pyrophosphate + 

guanine  

2.7.4.8a : GMP + ATP <-> GDP + ADP 

3.6.1.19c : H2O + GTP -> diphosphate + GMP  

1.17.4.1c : dGDP + thioredoxin + H2O <-> GDP + thioredoxin disulfide  

2.7.4.6c : GDP + ATP <-> GTP + ADP 

2.7.1.40c : GTP + pyruvate <-> GDP + phosphoenolpyruvate  

2.7.4.8b : dGMP + ATP <-> dGDP + ADP 

2.7.4.6d : dGDP + ATP <-> dGTP + ADP 

2.7.1.40d : dGTP + pyruvate <-> dGDP + phosphoenolpyruvate  

3.1.3.5f : dGMP + H2O <-> deoxyguanosine + phosphate O4P  

3.6.1.19d : H2O + dGTP -> diphosphate + dGMP  

3.1.7.2 : guanosine 5'-diphosphate,3'-diphosphate + H2O <-> 

diphosphate + GDP  

3.6.1.11 : H2O + guanosine 3'-diphosphate 5'-triphosphate <-> 

phosphate O4P + guanosine 5'-diphosphate,3'-diphosphate  

2.7.7.6b : GTP + RNAn -> diphosphate + RNAn1  

2.7.7.8b : RNAn1 + phosphate O4P -> RNAn + GDP  

2.7.7.7b : dGTP + DNAn <-> diphosphate + DNAn1 

 

# - ApppA production 

2.7.7.4 : sulfate O4s + ATP -> adenosine 5'-phosphosulfate + 

diphosphate 

2.7.1.25 : adenosine 5'-phosphosulfate + ATP -> phosphoadenosine-5'-

phosphosulfate + ADP 

_2.7.7.53a : 2 adenosine 5'-phosphosulfate + ATP -> sulfate O4s + 

phosphate O4P + 5',5'''-diadenosine tetraphosphate + AMP 

2.7.7.53b : ATP + ADP <-> phosphate O4P + 5',5'''-diadenosine 

tetraphosphate 

# - Purine cyclases 

4.6.1.1a : ATP -> cyclic-AMP + diphosphate 

4.6.1.1b : GTP -> cyclic-GMP + diphosphate 

 

# Folate biosynthesis 

3.5.4.16 : GTP + H2O -> formate + 7,8-dihydroneopterin triphosphate  

4.1.2.25 : 7,8-dihydro-D-neopterin <-> glycolaldehyde + 6-

hydroxymethyl-7,8-dihydropterin  
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2.7.6.3 : 6-hydroxymethyl-7,8-dihydropterin + ATP -> (2-amino-4-

hydroxy-7,8-dihydropteridin-6-yl)methyl diphosphate + AMP 

2.5.1.15a : p-aminobenzoate + (2-amino-4-hydroxy-7,8-dihydropteridin-

6-yl)methyl diphosphate -> 7,8-dihydropteroate + diphosphate  

2.5.1.15b : p-aminobenzoate + 6-hydroxymethyl-7,8-dihydropterin -> 

7,8-dihydropteroate + H2O  

2.6.1.85 : L-glutamine + chorismate <-> L-glutamate + 4-amino-4-

deoxychorismate  

# not pres ! (would connect formate to folate biosynthesis) 

~~IMPORTANT, following reaction not in sequence!!~~ 

·6.3.4.3 : tetrahydrofolate + formate + ATP <-> ADP + phosphate O4P + 

10-formyl-tetrahydrofolate  

# not pres ! (would connect chorismate to folate biosynthesis and p-

aminobenzoate to aa production) ~~IMPORTANT, following reaction not in 

sequence!!~~  

·4.1.3.38 : 4-amino-4-deoxychorismate <-> p-aminobenzoate + pyruvate  

6.3.2.12 : L-glutamate + 7,8-dihydropteroate + ATP -> 7,8-

dihydrofolate + phosphate O4P + ADP  

# not pres ! (would complete this pathway) ~~IMPORTANT, following 

reaction not in sequence!!~~  

·1.5.1.3 : NADP+ + tetrahydrofolate <-> NADPH + H+ + 7,8-dihydrofolate  

# - from tetrahydrofolate to a tetrahydrofolate polyglutamate 

6.3.2.17a : tetrahydrofolate + L-glutamate + ATP <-> tetrahydrofolate-

L-glutamate + ADP + phosphate O4P 

6.3.2.17b : tetrahydrofolate-L-glutamate + L-glutamate + ATP <-> a 

tetrahydrofolate polyglutamate + ADP + phosphate O4P 

# - from 7,8-dihydropteroate to dihydrobiopterin 

6.3.2.17c : L-glutamate + 7,8-dihydropteroate + ATP -> 7,8-

dihydrofolate + phosphate O4P + ADP 

_4.2.3.12 : 7,8-dihydroneopterin triphosphate -> 6-pyruvoyl-5,6,7,8-

tetrahydropterin + diphosphate 

# - one carbon pool by folate 

2.1.2.2b : H2O + 5,10-methenyltetrahydrofolate + 5-phospho-ribosyl-

glycineamide -> tetrahydrofolate + 5'-phosphoribosyl-N-

formylglycineamide  

_1.4.4.2 : H-protein-lipoyllysine + glycine -> H-Protein-S-

aminomethyldihydrolipoyllysine + CO2  

_2.1.2.10a : H-Protein-S-aminomethyldihydrolipoyllysine + 

tetrahydrofolate -> [H protein]-dihydrolipoyllysine + 5,10-methylene-

THF + ammonia H3N  

_1.8.1.4c : [H protein]-dihydrolipoyllysine + NAD+ -> H-protein-

lipoyllysine + NADH + H+  

1.5.1.5 : 5,10-methylene-THF + NADP+ <-> NADPH + H+ + 5,10-

methenyltetrahydrofolate  

3.5.1.10 : H2O + 10-formyl-tetrahydrofolate -> tetrahydrofolate + 

formate  

3.5.4.9a : H2O + 5,10-methenyltetrahydrofolate <-> 10-formyl-

tetrahydrofolate  

6.3.3.2 : 5-formyl-tetrahydrofolate + ATP -> 5,10-

methenyltetrahydrofolate + ADP + phosphate O4P  

2.1.2.10b : 5,10-methenyltetrahydrofolate + H2O <-> 5-formyl-

tetrahydrofolate  

# not pres ! (would complete this pathway, reaction 2.1.1.13 HAS TO 

CONSUME 5-methyl-THF) ~~IMPORTANT, following 2 reactions not in 

sequence!!~~  

·1.5.1.20a : 5-methyl-THF + NADP+ <-> 5,10-methylene-THF + NADPH + H+  

·1.5.1.20b : 5-methyl-THF + NAD+ <-> 5,10-methylene-THF + NADH + H+  

2.1.2.9a : 10-formyl-tetrahydrofolate + L-methionyl-tRNAfmet + H2O -> 

tetrahydrofolate + N-formyl-L-methionyl-tRNAfmet  

 

# Photosynthesis 
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# in "SPECIAL" _lightII : photonII_extrac -> photonII 

# in "SPECIAL" _lightI : photonI_extrac -> photonI 

# the following two reactions are catalyzed by 1.10.3.9 (according to 

ExPaSy and BRENDA databases) 

_PSII : 2 photonII + H2O + PSII -> 0.5 O2 + 2 H+_thylac + PSII* 

_UQ : PSII* + UQ + 2 H+ -> PSII + UQH2 

_citb6 : UQH2 + citb6f + 2 H+ -> UQ + citb6f* + 4 H+_thylac 

_1.10.9.1 : citb6f* + 2 PC -> citb6f + 2 PC* 

# the following two reactions are catalyzed by 1.97.1.1 (according to 

ExPaSy and BRENDA databases) 

_PSI : photonI + PC* + PSI -> PC + PSI* 

_Fd : PSI* + Fd -> PSI + Fd* 

_FNR : 2 Fd* + FNR -> 2 Fd + FNR* 

_1.18.1.2 : FNR* + NADP+ -> FNR + NADPH + H+ 

_3.6.3.14 : 4 H+_thylac + phosphate O4P + ADP <-> 4 H+ + H2O + ATP 

3.6.1.1 : H2O + diphosphate -> 2 phosphate O4P 

2.7.4.1 : ATP + diphosphate <-> ADP + PPPi 

#_NADPH + H+2 : NADPH + H+ -> NADPH + H+2 + NADP+ 

#_BidHyd : NADPH + H+2 + 2 H+ <-> H2 

_NADH2 : NADH + H+ -> NADH2 + NAD+  

_BidHyd : NADH2 + 2 H+ <-> H2 

 

# - cyclic part  

_cyclic : 2 Fd* + UQ + 2 H+ -> 2 Fd + UQH2  

_NDH1 : NADPH + H+ + 2 PC -> NADP+ + 2 PC*  

 

# Oxidative phosphorylation 

_1.6.5.3 : NADH + UQ + 5 H+ -> NAD+ + UQH2 + 4 H+_thylac  

_1.6.99.3 : NADH + UQ + 5 H+ -> NAD+ + UQH2 + 4 H+_thylac 

_quinol oxidase : 2 UQH2 + O2 + 4 H+ -> 2 UQ + 2 H2O + 4 H+_thylac 

_cit c : citb6f* + 2 cit c -> citb6f + 2 cit c*  

_1.9.3.1 : 4 cit c* + O2 + 8 H+ -> 4 cit c + 4 H+_thylac + 2 H2O 

_PSIaltern : photonI + cit c* + PSI -> cit c + PSI*  

 

# Urea Cycle and metabolism of amino groups 

2.3.1.35 : L-glutamate + N-acetyl-L-ornithine <-> N-acetyl-L-glutamate 

+ L-ornithine  

2.6.1.11 : N-acetyl-L-ornithine + 2-ketoglutarate <-> L-glutamate + N-

acetyl-L-glutamate 5-semialdehyde  

1.2.1.38 : N-acetyl-L-glutamate 5-semialdehyde + NADP+ + phosphate O4P 

<-> N-acetylglutamyl-phosphate + NADPH + H+  

2.7.2.8 : N-acetyl-L-glutamate + ATP -> N-acetylglutamyl-phosphate + 

ADP  

2.3.1.1 : L-glutamate + acetyl-CoA -> N-acetyl-L-glutamate + coenzyme 

A  

4.2.1.1a : H2CO3 <-> H2O + CO2  

_1.4.3.4 : O2 + H2O + N-acetylputrescine -> ammonia H3N + H2O2 + N4-

acetylaminobutanal  

_1.2.1.3a : N4-acetylaminobutanal + NAD+ + H2O <-> N4-

acetylaminobutanoate + NADH + H+  

_1.2.1.3b : 4-aminobutanal + NAD+ + H2O <-> 4-aminobutanoate + NADH + 

H+  

 

# Nitrogen metabolism 

1.7.7.2 : nitrite + 2 Fd + H2O <-> 2 Fd* + nitrate NO3 + 2 H+ 

1.7.7.1 : ammonia H3N + 2 H2O + 6 Fd <-> nitrite + 6 Fd* + 7 H+  

4.2.1.104 : cyanate + HCO3- + H+ <-> carbamate + CO2  

3.5.5.1 : nitrile + 2 H2O <-> carboxylate + ammonia H3N 

 

# Nicotinate and nicotinamide metabolism (NAD biosynthesis) 
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1.4.3.16b : O2 + L-aspartate -> H2O2 + iminoaspartate 

_2.5.1.72 : iminoaspartate + dihydroxy-acetone phosphate -> 

quinolinate + 2 H2O + phosphate O4P 

2.4.2.19 : 5-phosphoribosyl 1-pyrophosphate + quinolinate -> CO2 + 

diphosphate + nicotinate nucleotide  

3.1.3.5k : nicotinate nucleotide + H2O -> nicotinate D-ribonucleoside 

+ phosphate O4P  

2.7.7.1a : nicotinate nucleotide + ATP -> deamido-NAD + diphosphate  

2.7.7.18a : ATP + nicotinate nucleotide -> diphosphate + deamido-NAD  

6.3.1.5 : ammonia H3N + ATP + deamido-NAD -> AMP + diphosphate + NAD+  

2.7.7.1b : nicotinamide mononucleotide + ATP -> NAD+ + diphosphate  

2.7.7.18b : ATP + nicotinamide mononucleotide -> diphosphate + NAD+  

3.1.3.5l : nicotinamide mononucleotide + H2O -> N-ribosylnicotinamide 

+ phosphate O4P  

2.7.1.23 : NAD+ + ATP -> NADP+ + ADP 

1.6.1.2 : NAD+ + NADPH <-> NADH + NADP+ 

 

# Ubiquinone biosynthesis (not complete, should be! -> forced to be 

complete) 

# - Ubiquinone branch 

# not pres ! would begin UQ branch ~~IMPORTANT, following 2 reactions 

not in sequence!!~~ 

·4.1.3.40 : chorismate <-> 4-hydroxybenzoate + pyruvate 

·octaprenylsyn : all-trans-geranyl-geranyl diphosphate -> all-trans-

octaprenyl diphosphate 

2.5.1.-a : all-trans-octaprenyl diphosphate + 4-hydroxybenzoate -> 3-

octaprenyl-4-hydroxybenzoate + diphosphate 

4.1.1.-a : 3-octaprenyl-4-hydroxybenzoate -> 2-octaprenylphenol + CO2 

# not pres ! would allow UQ biosynthesis ~~IMPORTANT, following 

reaction not in sequence!!~~ 

·OCTAPRENYLPHENOL-HYDROX-RXN : 2 2-octaprenylphenol + O2 <-> 2 2-

octaprenyl-6-hydroxyphenol 

·2.1.1.64b : S-adenosyl-L-methionine + 2-octaprenyl-6-hydroxyphenol <-

> S-adenosyl-L-homocysteine + 2-octaprenyl-6-methoxyphenol 

1.14.13.-a : 2-octaprenyl-6-methoxyphenol + O2 + NADPH + H+ -> 2-

octaprenyl-6-methoxy-1,4-benzoquinone + NADP+ + H2O 

2.1.1.201 : 2-octaprenyl-6-methoxy-1,4-benzoquinone + S-adenosyl-L-

methionine -> S-adenosyl-L-homocysteine + 2-octaprenyl-3-methyl-6-

methoxy-1,4-benzoquinone 

1.14.13.-b : 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone + O2 + 

NADPH + H+ <-> 3-demethylubiquinone-8 + H2O + NADP+ 

# not pres ! would allow UQ biosynthesis ~~IMPORTANT, following 

reaction not in sequence!!~~ 

·2.1.1.64a : S-adenosyl-L-methionine + 2-octaprenyl-3-methyl-5-

hydroxy-6-methoxy-1,4-benzoquinone <-> S-adenosyl-L-homocysteine + 

ubiquinone-8 

_UQsyf : ubiquinone-8 -> UQ 

# - Phylloquinone/Menaquinone branch 

5.4.4.2 : chorismate -> isochorismate 

2.2.1.9 : isochorismate + 2-ketoglutarate <-> 5-enolpyruvoyl-6-

hydroxy-2-succinyl-cyclohex-3-ene-1-carboxylate + CO2  

4.2.99.20 : 5-enolpyruvoyl-6-hydroxy-2-succinyl-cyclohex-3-ene-1-

carboxylate <-> 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate 

+ pyruvate 

4.2.1.113 : 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate -> 

o-succinylbenzoate + H2O 

6.2.1.26 : ATP + o-succinylbenzoate + coenzyme A -> AMP + diphosphate 

+ O-succinylbenzoyl-CoA 

4.1.3.36 : O-succinylbenzoyl-CoA <-> coenzyme A + 1,4-dihydroxy-2-

naphthoate 
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2.5.1.74a : all-trans-octaprenyl diphosphate + 1,4-dihydroxy-2-

naphthoate -> demethylmenaquinone-8 + diphosphate + CO2 

2.5.1.74b : 1,4-dihydroxy-2-naphthoate + phytyl diphosphate -> 

demethylphylloquinone + CO2 + diphosphate 

2.1.1.163a : demethylmenaquinone-8 + S-adenosyl-L-methionine -> S-

adenosyl-L-homocysteine + menaquinone-8 

2.1.1.163b : demethylphylloquinone + S-adenosyl-L-methionine -> 

phylloquinone + S-adenosyl-L-homocysteine 

3.1.2.28 : 1,4-dihydroxy-2-naphthoyl-CoA + H2O -> 1,4-dihydroxy-2-

naphthoate + CoA 

 

# Sulfur metabolism 

1.8.4.8 : phosphoadenosine-5'-phosphosulfate + thioredoxin <-> sulfite 

O3s + adenosine-3',5'-bisphosphate + thioredoxin disulfide 

# not pres ! ~~IMPORTANT, following reaction not in sequence!!~~ 

·1.13.11.8 : sulfite O3s -> SO + O2 + H2O 

1.8.7.1 : sulfite O3s + 6 Fd* + 6 H+ <-> hydrogen sulfide + 6 Fd + 3 

H2O 

3.1.3.7 : phosphoadenosine-5'-phosphosulfate + H2O -> adenosine 5'-

phosphosulfate + phosphate O4P 

 

# Ethanol metabolism (part of Glycolysis) 

6.2.1.1a : coenzyme A + acetate + ATP <-> acetyl-CoA + diphosphate + 

AMP 

1.2.1.3c : acetaldehyde + NAD+ + H2O <-> NADH + H+ + acetate 

1.1.1.1 : acetaldehyde + NADH + H+ -> ethanol + NAD+  

2.7.2.1a : ATP + acetate <-> ADP + acetylphosphate 

 

# coenzyme A biosynthesis 

_1.1.1.86c : 2-acetolactate + NADPH + H+ -> 2,3-dihydroxy-3-

methylbutanoate + NADP+ 

_4.2.1.9c : 2,3-dihydroxy-3-methylbutanoate -> 2-keto-isovalerate + 

H2O 

2.1.2.11 : 5,10-methylene-THF + 2-keto-isovalerate + H2O -> 

tetrahydrofolate + 2-dehydropantoate 

6.3.2.1 : beta-alanine + R-pantoate + ATP -> pantothenate + 

diphosphate + AMP 

_1.2.1.3d : beta-aminopropion aldehyde + NAD+ + H2O <-> NADH + H+ + 

beta-alanine 

2.7.1.33 : pantothenate + ATP -> D-4'-phosphopantothenate + ADP 

6.3.2.5 : D-4'-phosphopantothenate + L-cysteine + CTP -> R-4'-

phosphopantothenoyl-L-cysteine + diphosphate + CMP 

4.1.1.36 : R-4'-phosphopantothenoyl-L-cysteine -> pantetheine 4'-

phosphate + CO2 

_2.7.7.3 : ATP + pantetheine 4'-phosphate -> diphosphate + 3'-

dephospho-CoA  

_2.7.1.24 : ATP + 3'-dephospho-CoA -> ADP + coenzyme A 

 

 

# Fatty acid biosynthesis 

_6.4.1.2a : ATP + acetyl-CoA + HCO3- + H+ -> ADP + phosphate O4P + 

malonyl-CoA 

_6.4.1.2b : carboxybiotin-carboxyl-carrier protein + acetyl-CoA -> 

biotin-BCCP (monomer) + malonyl-CoA 

_6.3.4.14 : ATP + biotin-BCCP (monomer) + CO2 -> ADP + phosphate O4P + 

carboxybiotin-carboxyl-carrier protein 

2.3.1.39 : malonyl-CoA + an [acyl-carrier protein] -> coenzyme A + a 

malonyl-ACP 

2.3.1.41a : acetyl-CoA + an [acyl-carrier protein] -> an acetyl-ACP + 

coenzyme A + CO2 
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2.3.1.41b : an acetyl-ACP + a malonyl-ACP -> acetoacetyl-[acp] 

C4H5O2SR + CO2 

1.1.1.100a : acetoacetyl-[acp] C4H5O2SR + NADPH + H+ <-> (3R)-3-

Hydroxybutanoyl-[acyl-carrier protein] C4H7O2SR + NADP+  

4.2.1.-a : (3R)-3-Hydroxybutanoyl-[acyl-carrier protein] C4H7O2SR <-> 

but-2-enoyl-[acyl-carrier protein] C4H5OSR + H2O 

1.3.1.9a : but-2-enoyl-[acyl-carrier protein] C4H5OSR + NADH + H+ <-> 

butyryl-[acyl-carrier protein] C4H7OSR + NAD+ 

2.3.1.41c : butyryl-[acyl-carrier protein] C4H7OSR + a malonyl-ACP -> 

3-oxohexanoyl-[acyl-carrier protein] C6H9O2SR + CO2 

1.1.1.100b : 3-oxohexanoyl-[acyl-carrier protein] C6H9O2SR + NADPH + 

H+ <-> (R)-3-Hydroxyhexanoyl-[acyl-carrier protein] C6H11O2SR + NADP+ 

4.2.1.-b : (R)-3-Hydroxyhexanoyl-[acyl-carrier protein] C6H11O2SR <-> 

trans-hex-2-enoyl-[acyl-carrier protein] C6H9OSR + H2O 

1.3.1.9b : trans-hex-2-enoyl-[acyl-carrier protein] C6H9OSR + NADH + 

H+ <-> hexanoyl-[acyl-carrier protein] C6H11OSR + NAD+ 

2.3.1.41d : hexanoyl-[acyl-carrier protein] C6H11OSR + a malonyl-ACP -

> 3-oxooctanoyl-[acyl-carrier protein] C8H13O2SR + CO2 + an [acyl-

carrier protein] 

1.1.1.100c : 3-oxooctanoyl-[acyl-carrier protein] C8H13O2SR + NADPH + 

H+ <-> (R)-3-Hydroxyoctanoyl-[acyl-carrier protein] C8H15O2SR + NADP+ 

4.2.1.-c : (R)-3-Hydroxyoctanoyl-[acyl-carrier protein] C8H15O2SR <-> 

trans-oct-2-enoyl-[acyl-carrier protein] C8H13OSR + H2O 

1.3.1.9c : trans-oct-2-enoyl-[acyl-carrier protein] C8H13OSR + NADH + 

H+ <-> octanoyl-[acyl-carrier protein] C8H15OSR + NAD+ 

2.3.1.41e : octanoyl-[acyl-carrier protein] C8H15OSR + a malonyl-ACP -

> 3-oxodecanoyl-[acyl-carrier protein] C10H17O2SR + CO2 + an [acyl-

carrier protein] 

1.1.1.100d : 3-oxodecanoyl-[acyl-carrier protein] C10H17O2SR + NADPH + 

H+ <-> (R)-3-Hydroxydecanoyl-[acyl-carrier protein] C10H19O2SR + NADP+ 

1.3.1.9d : trans-dec-2-enoyl-[acyl-carrier protein] C10H17OSR + NADH + 

H+ <-> decanoyl-[acyl-carrier protein] C10H19OSR + NAD+ 

4.2.1.-d : (R)-3-Hydroxydecanoyl-[acyl-carrier protein] C10H19O2SR <-> 

trans-dec-2-enoyl-[acyl-carrier protein] C10H17OSR + H2O 

2.3.1.41f : decanoyl-[acyl-carrier protein] C10H19OSR + a malonyl-ACP 

-> 3-oxododecanoyl-[acyl-carrier protein] C12H21O2SR + CO2 + an [acyl-

carrier protein] 

1.1.1.100e : 3-oxododecanoyl-[acyl-carrier protein] C12H21O2SR + NADPH 

+ H+ <-> (R)-3-Hydroxydodecanoyl-[acyl-carrier protein] C12H23O2SR + 

NADP+ 

4.2.1.-e : (R)-3-Hydroxydodecanoyl-[acyl-carrier protein] C12H23O2SR 

<-> trans-dodec-2-enoyl-[acyl-carrier protein] C12H21OSR + H2O 

1.3.1.9e : trans-dodec-2-enoyl-[acyl-carrier protein] C12H21OSR + NADH 

+ H+ <-> dodecanoyl-[acyl-carrier protein] C12H23OSR + NAD+ 

2.3.1.41g : dodecanoyl-[acyl-carrier protein] C12H23OSR + a malonyl-

ACP -> 3-oxotetradecanoyl-[acyl-carrier protein] C14H25O2SR + CO2 + an 

[acyl-carrier protein] 

1.1.1.100f : 3-oxotetradecanoyl-[acyl-carrier protein] C14H25O2SR + 

NADPH + H+ <-> (R)-3-Hydroxytetradecanoyl-[acyl-carrier protein] 

C14H27O2SR + NADP+ 

4.2.1.-f : (R)-3-Hydroxytetradecanoyl-[acyl-carrier protein] 

C14H27O2SR <-> trans-tetradec-2-enoyl-[acyl-carrier protein] C14H25OSR 

+ H2O 

1.3.1.9f : trans-tetradec-2-enoyl-[acyl-carrier protein] C14H25OSR + 

NADH + H+ <-> tetradecanoyl-[acyl-carrier protein] C14H27OSR + NAD+ 

2.3.1.41h : tetradecanoyl-[acyl-carrier protein] C14H27OSR + a 

malonyl-ACP -> 3-oxohexadecanoyl-[acyl-carrier protein] C16H29O2SR + 

CO2 + an [acyl-carrier protein] 

1.1.1.100g : 3-oxohexadecanoyl-[acyl-carrier protein] C16H29O2SR + 

NADPH + H+ <-> (R)-3-Hydroxypalmitoyl-[acyl-carrier protein] 

C16H31O2SR + NADP+ 
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4.2.1.-g : (R)-3-Hydroxypalmitoyl-[acyl-carrier protein] C16H31O2SR <-

> trans-hexadec-2-enoyl-[acyl-carrier protein] C16H29OSR + H2O 

1.3.1.9g : trans-hexadec-2-enoyl-[acyl-carrier protein] C16H29OSR + 

NADH + H+ <-> hexadecanoyl-[acyl-carrier protein] C16H31OSR + NAD+ 

2.3.1.179i : hexadecanoyl-[acyl-carrier protein] C16H31OSR + a 

malonyl-ACP -> 3-oxooctadecanoyl-[acp] C18H33O2SR + CO2 + an [acyl-

carrier protein] 

1.1.1.100h : 3-oxooctadecanoyl-[acp] C18H33O2SR + NADPH + H+ <-> 3-

Hydroxyoctadecanoyl-[acp] C18H35O2SR + NADP+ 

4.2.1.-h : 3-Hydroxyoctadecanoyl-[acp] C18H35O2SR <-> trans-octadec-2-

enoyl-[acp] C18H33OSR + H2O 

1.3.1.9h : trans-octadec-2-enoyl-[acp] C18H33OSR + NADH + H+ <-> 

octadecanoyl-[acyl-carrier protein] C18H35OSR + NAD+ 

_1.14.19.1a : hexadecanoyl-[acyl-carrier protein] C16H31OSR + O2 + 2 

H+ <-> (9Z)-hexadecanoyl-[acyl-carrier protein] C16H31OSR + H2O 

_1.14.19.1b : octadecanoyl-[acyl-carrier protein] C18H35OSR + O2 + 2 

H+ <-> (9Z)-octadecanoyl-[acyl-carrier protein] C18H33OSR + H2O 

# not pres ! would end ACP release and fatty acid formation 

~~IMPORTANT, following 13 reactions not in sequence!!~~ 

·3.1.2.14a : octanoyl-[acyl-carrier protein] C8H15OSR + H2O -> 

octanoic acid + an [acyl-carrier protein] 

·3.1.2.14b : decanoyl-[acyl-carrier protein] C10H19OSR + H2O -> 

decanoic acid + an [acyl-carrier protein] 

·3.1.2.14c : dodecanoyl-[acyl-carrier protein] C12H23OSR + H2O -> 

dodecanoic acid + an [acyl-carrier protein] 

·3.1.2.14d : tetradecanoyl-[acyl-carrier protein] C14H27OSR + H2O -> 

tetradecanoic acid + an [acyl-carrier protein] 

·3.1.2.14e : hexadecanoyl-[acyl-carrier protein] C16H31OSR + H2O -> 

hexadecanoic acid + an [acyl-carrier protein] 

·3.1.2.14f : (9Z)-hexadecanoyl-[acyl-carrier protein] C16H31OSR + H2O 

-> (9Z)-hexadecanoic acid + an [acyl-carrier protein] 

·3.1.2.14g : octadecanoyl-[acyl-carrier protein] C18H35OSR + H2O -> 

octadecanoic acid + an [acyl-carrier protein] 

·3.1.2.14h : (9Z)-octadecanoyl-[acyl-carrier protein] C18H33OSR + H2O 

-> (9Z)-octadecanoic acid + an [acyl-carrier protein] 

2.3.1.179a : acetyl-CoA + acyl-carrier protein HSR -> an acetyl-ACP + 

CO2 

2.3.1.179b : an acetyl-ACP + a malonyl-ACP -> acetoacetyl-[acp] 

C4H5O2SR + CO2 + an [acyl-carrier protein] 

2.3.1.179c : butyryl-[acyl-carrier protein] C4H7OSR + a malonyl-ACP -> 

3-oxohexanoyl-[acyl-carrier protein] C6H9O2SR + CO2 + an [acyl-carrier 

protein] 

2.3.1.179d : hexanoyl-[acyl-carrier protein] C6H11OSR + a malonyl-ACP 

-> 3-oxooctanoyl-[acyl-carrier protein] C8H13O2SR + CO2 + an [acyl-

carrier protein] 

2.3.1.179e : octanoyl-[acyl-carrier protein] C8H15OSR + a malonyl-ACP 

-> 3-oxodecanoyl-[acyl-carrier protein] C10H17O2SR + CO2 + an [acyl-

carrier protein] 

2.3.1.179f : decanoyl-[acyl-carrier protein] C10H19OSR + a malonyl-ACP 

-> 3-oxododecanoyl-[acyl-carrier protein] C12H21O2SR + CO2 + an [acyl-

carrier protein] 

2.3.1.179g : dodecanoyl-[acyl-carrier protein] C12H23OSR + a malonyl-

ACP -> 3-oxotetradecanoyl-[acyl-carrier protein] C14H25O2SR + CO2 + an 

[acyl-carrier protein] 

2.3.1.179h : tetradecanoyl-[acyl-carrier protein] C14H27OSR + a 

malonyl-ACP -> 3-oxohexadecanoyl-[acyl-carrier protein] C16H29O2SR + 

CO2 + an [acyl-carrier protein] 

2.3.1.180a : acetyl-CoA + acyl-carrier protein HSR -> an acetyl-ACP + 

CO2 
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2.3.1.180b : an acetyl-ACP + a malonyl-ACP -> acetoacetyl-[acp] 

C4H5O2SR + CO2 + an [acyl-carrier protein] 

2.3.1.180c : butyryl-[acyl-carrier protein] C4H7OSR + a malonyl-ACP -> 

3-oxohexanoyl-[acyl-carrier protein] C6H9O2SR + CO2 + an [acyl-carrier 

protein] 

2.3.1.180d : hexanoyl-[acyl-carrier protein] C6H11OSR + a malonyl-ACP 

-> 3-oxooctanoyl-[acyl-carrier protein] C8H13O2SR + CO2 + an [acyl-

carrier protein] 

2.3.1.180e : octanoyl-[acyl-carrier protein] C8H15OSR + a malonyl-ACP 

-> 3-oxodecanoyl-[acyl-carrier protein] C10H17O2SR + CO2 + an [acyl-

carrier protein] 

2.3.1.180f : decanoyl-[acyl-carrier protein] C10H19OSR + a malonyl-ACP 

-> 3-oxododecanoyl-[acyl-carrier protein] C12H21O2SR + CO2 + an [acyl-

carrier protein] 

2.3.1.180g : dodecanoyl-[acyl-carrier protein] C12H23OSR + a malonyl-

ACP -> 3-oxotetradecanoyl-[acyl-carrier protein] C14H25O2SR + CO2 + an 

[acyl-carrier protein] 

2.3.1.180h : tetradecanoyl-[acyl-carrier protein] C14H27OSR + a 

malonyl-ACP -> 3-oxohexadecanoyl-[acyl-carrier protein] C16H29O2SR + 

CO2 + an [acyl-carrier protein] 

6.2.1.3 : coenzyme A + a fatty acid + ATP -> acyl-CoA + diphosphate + 

AMP  

 

# Porphyrin and chlorophyll metabolism 

# - from glutamate-1-semialdehyde to uroporphyrinogen-III 

tRNA 1.2.1.70 : glutamate-1-semialdehyde + NADP+ + tRNAGlu <-> L-

glutamyl-tRNAGlu + NADPH + H+ 

5.4.3.8 : glutamate-1-semialdehyde -> 5-amino-levulinate 

4.2.1.24 : 2 5-amino-levulinate -> 2 H2O + porphobilinogen 

2.5.1.61 : H2O + 4 porphobilinogen -> 4 ammonia H3N + 

hydroxymethylbilane 

4.2.1.75 : hydroxymethylbilane -> uroporphyrinogen-III + H2O 

_uroporphyrinogen-I_spont : hydroxymethylbilane -> uroporphyrinogen-I 

+ H2O 

_uroporphyrin-I_spont : uroporphyrinogen-I -> uroporphyrin-I + 6 H+ 

4.1.1.37b : uroporphyrinogen-III -> 4 CO2 + coproporphyrinogen I 

_coproporphyrin-I_spont : coproporphyrinogen I -> coproporphyrin I + 6 

H+ 

_uroporphyrin-III_spont : uroporphyrinogen-III -> uroporphyrin-III + 6 

H+ 

# - from uroporphyrinogen-III to protoporphyrinogen-IX 

4.1.1.37a : uroporphyrinogen-III -> 4 CO2 + coproporphyrinogen III 

_1.3.3.3 : coproporphyrinogen III + O2 + 2 H+ -> protoporphyrinogen-IX 

+ 2 CO2 + 2 H2O  

_1.3.99.22 : coproporphyrinogen III + 2 S-adenosyl-L-methionine -> 

protoporphyrinogen-IX + 2 CO2 + 2 L-methionine + 2 5'-deoxyadenosine 

# not pres ! (would connect protoporphyrinogen-IX to protoporphyrin IX 

production) ~~IMPORTANT, following reaction not in sequence!!~~  

·1.3.3.4 : protoporphyrinogen-IX + O2 -> protoporphyrin IX + 3 H2O 

# - Heme production 

4.99.1.1 : Fe2+ + protoporphyrin IX -> 2 H+ + protoheme IX 

2.5.1.-c : protoheme IX + (E,E)-farnesyl diphosphate + H2O -> heme o + 

diphosphate 

_COX15 : heme o -> heme a 

_1.14.99.3 : 3 O2 + 3 thioredoxin + protoheme IX -> biliverdin + 3 H2O 

+ 3 thioredoxin disulfide + CO + Fe2+ 

1.3.7.5 : biliverdin + 2 Fd* -> (3Z)-phycocyanobilin + 2 Fd 

# - Chlorophyll pathway 

6.6.1.1 : ATP + protoporphyrin IX + Mg2+ + H2O -> Mg-protoporphyrin + 

phosphate O4P + ADP + 2 H+ 
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2.1.1.11 : Mg-protoporphyrin + S-adenosyl-L-methionine -> S-adenosyl-

L-homocysteine + Mg-protoporphyrin monomethyl ester 

Zn-Bacterio-chlorophyll-a : Mg-protoporphyrin monomethyl ester + Zn2+ 

-> Zn-Bacterio-chlorophyll a + Mg2+ 

1.14.13.81a : Mg-protoporphyrin monomethyl ester + NADPH + H+ + O2 -> 

131-hydroxy-magnesium-protoporphyrin IX 13-monomethyl ester + NADP+ + 

H2O 

1.14.13.81b : 131-hydroxy-magnesium-protoporphyrin IX 13-monomethyl 

ester + NADPH + H+ + O2 -> 131-oxo-magnesium-protoporphyrin IX 13-

monomethyl ester + NADP+ + 2 H2O 

1.14.13.81c : 131-oxo-magnesium-protoporphyrin IX 13-monomethyl ester 

+ NADPH + H+ + O2 -> divinyl protochlorophyllide a + NADP+ + 2 H2O 

1.3.1.33a : divinyl protochlorophyllide a + NADPH + H+ -> NADP+ + 

divinylchlorophyllide a 

# not pres ! (would connect divinylchlorophyllide a to chlorophyllide 

a production) ~~IMPORTANT, following reaction not in sequence!!~~  

·1.3.1.75a : divinylchlorophyllide a + NADPH + H+ <-> chlorophyllide a 

+ NADP+ 

# not pres ! (would connect divinyl protochlorophyllide a to monovinyl 

protochlorophyllide a production) ~~IMPORTANT, following reaction not 

in sequence!!~~  

·1.3.1.75b : divinyl protochlorophyllide a + NADPH + H+ <-> monovinyl 

protochlorophyllide a + NADP+ 

1.3.7.7 : monovinyl protochlorophyllide a + Fd + 2 ADP + 2 phosphate 

O4P -> chlorophyllide a + Fd* + 2 ATP 

_BacChl : monovinyl protochlorophyllide a + phytyl diphosphate -> 

bacterio-chlorophylls 

_BacPheo : phytyl diphosphate + chlorophyllide a <-> bacterio-

pheophytins + Mg2+ + diphosphate   

1.3.1.33b : monovinyl protochlorophyllide a + NADPH + H+ -> NADP+ + 

chlorophyllide a 

_dChla : divinyl protochlorophyllide a -> divinylchlorophyll a 

_Chla : divinylchlorophyll a -> chlorophyll a 

2.5.1.62a : chlorophyllide a + phytyl diphosphate -> chlorophyll a + 

diphosphate 

_Chlb : bacterio-chlorophyllide a + H2O -> bacterio-chlorophyllide b + 

4 H+ 

_Pheo : chlorophyll a + 2 H+ -> pheophytins + Mg2+ 

# - Cob(II)yrinate a,c diamide pathway 

2.1.1.107a : S-adenosyl-L-methionine + uroporphyrinogen-III -> S-

adenosyl-L-homocysteine + precorrin-1 

2.1.1.107b : S-adenosyl-L-methionine + precorrin-1 -> S-adenosyl-L-

homocysteine + precorrin-2 

_2.1.1.130 : S-adenosyl-L-methionine + precorrin-2 -> S-adenosyl-L-

homocysteine + precorrin-3A 

# - Cobalt pathway 

# not pres ! (would connect cobalt pathway to Cob(II)yrinate a,c 

diamide production) ~~IMPORTANT, following reaction not in 

sequence!!~~ 

·4.99.1.3 : precorrin-2 + Co2+ <-> cobalt-precorrin-2 + 2 H+  

2.1.1.151 : S-adenosyl-L-methionine + cobalt-precorrin-2 <-> S-

adenosyl-L-homocysteine + cobalt-precorrin-3  

2.1.1.131a : cobalt-precorrin-3 + S-adenosyl-L-methionine <-> cobalt-

precorrin-4 + S-adenosyl-L-homocysteine  

2.1.1.133a : S-adenosyl-L-methionine + cobalt-precorrin-4 <-> S-

adenosyl-L-homocysteine + cobalt-precorrin-5A  

3.7.1.12 : cobalt-precorrin-5A + H2O <-> cobalt-precorrin-5B + 

acetaldehyde  

2.1.1.195 : cobalt-precorrin-5B + S-adenosyl-L-methionine -> cobalt-

precorrin-6A + S-adenosyl-L-homocysteine  
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_1.3.1.54a : cobalt-precorrin-6A + NADPH + H+ <-> cobalt-precorrin-6B 

+ NADP+  

# not pres ! (would complete this pathway)~~IMPORTANT, following 2 

reaction not in sequence!!~~ 

·RXN-8766 : cobalt-precorrin-6B + S-adenosyl-L-methionine -> cobalt-

precorrin-7 + S-adenosyl-L-homocysteine  

·RXN-8767 : cobalt-precorrin-7 + S-adenosyl-L-methionine -> cobalt-

precorrin-8x + S-adenosyl-L-homocysteine + CO2  

5.4.1.2a : cobalt-precorrin-8x <-> cobyrinate  

6.3.5.11 : cobyrinate + 2 L-glutamine + 2 ATP + 2 H2O <-> 

cob(II)yrinate a,c-diamide + 2 L-glutamate + 2 ADP + 2 phosphate O4P  

# - Non-Cobalt pathway  

2.1.1.131b : precorrin-3B + S-adenosyl-L-methionine -> precorrin-4 + 

S-adenosyl-L-homocysteine  

2.1.1.133b : S-adenosyl-L-methionine + precorrin-4 -> S-adenosyl-L-

homocysteine + precorrin-5  

# not pres ! (would complete this pathway)~~IMPORTANT, following 

reaction not in sequence!!~~ 

·2.1.1.152 : precorrin-5 + S-adenosyl-L-methionine + H2O <-> 

precorrin-6A + S-adenosyl-L-homocysteine + acetate  

1.3.1.54b : precorrin-6A + NADPH + H+ -> precorrin-6B + NADP+  

2.1.1.132 : precorrin-6B + 2 S-adenosyl-L-methionine -> precorrin-8x + 

2 S-adenosyl-L-homocysteine + CO2  

5.4.1.2b : precorrin-8x -> hydrogenobyrinate  

6.3.5.9 : hydrogenobyrinate + 2 L-glutamine + 2 ATP + 2 H2O -> 2 L-

glutamate + hydrogenobyrinate a,c-diamide + 2 ADP + 2 phosphate O4P  

6.6.1.2 : hydrogenobyrinate a,c-diamide + Co2+ + ATP + H2O -> 

cob(II)yrinate a,c-diamide + ADP + phosphate O4P + 2 H+  

# - coenzyme B12 pathway 

# not pres ! (would connect cob(II)yrinate a,c-diamide to 

cob(I)yrinate a,c-diamide production) ~~IMPORTANT, following reaction 

not in sequence!!~~  

·1.16.8.1 : 2 cob(II)yrinate a,c-diamide + FMN -> 2 cob(I)yrinate a,c-

diamide + FMNH2 

2.5.1.17a : cob(I)yrinate a,c-diamide + ATP -> adenosyl-cobyrinate 

a,c-diamide + PPPi 

6.3.5.10 : adenosyl-cobyrinate a,c-diamide + 4 L-glutamine + 4 ATP + 4 

H2O -> 4 L-glutamate + adenosyl-cobyrate + 4 ADP + 4 phosphate O4P 

6.3.1.10a : ATP + adenosyl-cobyrate + (R)-1-amino-2-propanol O-2-

phosphate -> ADP + phosphate O4P + adenosylcobinamide 

# not pres ! (would connect L-threonine O-3-phosphate to 

adenosylcobinamide) ~~IMPORTANT, following 2 reaction not in 

sequence!!~~  

·RXN-8626 : L-threonine + ATP <-> L-threonine O-3-phosphate + ADP 

·4.1.1.81 : L-threonine O-3-phosphate -> (R)-1-amino-2-propanol O-2-

phosphate + CO2 

6.3.1.10b : ATP + adenosyl-cobyrate + (R)-1-Aminopropan-2-ol -> ADP + 

phosphate O4P + adenosylcobinamide 

2.5.1.17b : cobinamide + ATP -> adenosylcobinamide + PPPi 

2.7.1.156 : adenosylcobinamide + ATP -> adenosyl-cobinamide phosphate 

+ ADP 

2.7.7.62 : adenosyl-cobinamide phosphate + GTP -> adenosylcobinamide-

GDP + diphosphate 

2.7.8.26 : adenosylcobinamide-GDP + alpha-ribazole -> coenzyme B12 + 

GMP 

 

# Riboflavin metabolism 

3.5.4.25 : 3 H2O + GTP -> diphosphate + 2,5-diamino-6-(ribosylamino)-

4-(3H)-pyrimidinone 5'-phosphate + formate 

3.5.4.26 : H2O + 2,5-diamino-6-(ribosylamino)-4-(3H)-pyrimidinone 5'-

phosphate -> 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia H3N 
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1.1.1.193 : 5-amino-6-(5'-phosphoribosylamino)uracil + NADPH + H+ -> 

5-amino-6-(5'-phosphoribitylamino)uracil + NADP+ 

2.5.1.78 : 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione + 3,4-

dihydroxy-2-butanone-4-P -> 6,7-dimethyl-8-(1-D-ribityl)lumazine + 

phosphate O4P + 2 H2O 

DIOHBUTANONEPSYN-RXN : D-ribulose-5-phosphate -> 3,4-dihydroxy-2-

butanone-4-P + formate 

2.5.1.9 : 2 6,7-dimethyl-8-(1-D-ribityl)lumazine -> 5-amino-6-

ribitylamino-2,4(1H,3H)-pyrimidinedione + riboflavin 

_lumazine-spont : 6,7-dimethyl-8-(1-D-ribityl)lumazine + UQ -> 7-

Hydroxy-6-methyl-8-ribityl lumazine + UQH2  

2.7.1.26 : riboflavin + ATP -> FMN + ADP 

2.7.7.2 : FMN + ATP -> FAD + diphosphate 

_benzimidazole-spont : 2 riboflavin + 2 CO2 -> 4 dimethylbenzimidazole 

+ 3 O2 

# not pres ! would end producing alpha-ribazole ~~IMPORTANT, following 

4 reactions not in sequence!!~~ 

·2.4.2.21 : nicotinate nucleotide + dimethylbenzimidazole <-> 

nicotinate + alpha-ribazole-5'-P 

·3.1.3.73 : H2O + alpha-ribazole-5'-P <-> alpha-ribazole + phosphate 

O4P 

·2.4.2.1 : nicotinate + ribose-1-phosphate <-> nicotinate D-

ribonucleoside + phosphate O4P 

·2.7.1.1 : nicotinate D-ribonucleoside + ATP -> nicotinate nucleotide 

+ ADP  

 

# REDOX compounds 

_1.8.1.9 : thioredoxin disulfide + NADPH + H+ <-> thioredoxin + NADP+ 

# not pres ! would produce thioredoxin~~IMPORTANT, following reaction 

not in sequence!!~~ 

·_Thiored : thioredoxin disulfide + 2 Fd* + 2 H+ <-> 2 Fd + 

thioredoxin 

1.11.1.6 : 2 H2O2 -> 2 H2O + O2 

_1.15.1.1 : 2 O2.- + 2 H+ <-> O2 + H2O2 

 

# Pyruvate metabolism 

1.1.1.38 : NAD+ + malate -> NADH + H+ + CO2 + pyruvate  

4.1.1.31 : phosphoenolpyruvate + H2O + CO2 -> phosphate O4P + 

oxaloacetate  

1.2.4.1 : pyruvate + lipoate acetyltransferase N6-(lipoyl)lysine <-> 

lipoate acetyltransferase N6-(S-acetyldihydrolipoyl)lysine + CO2  

2.3.1.12 : acetyl-CoA + lipoate acetyltransferase N6-

(dihydrolipoyl)lysine <-> coenzyme A + lipoate acetyltransferase N6-

(S-acetyldihydrolipoyl)lysine  

1.8.1.4a : lipoate acetyltransferase N6-(dihydrolipoyl)lysine + NAD+ -

> lipoate acetyltransferase N6-(lipoyl)lysine + NADH + H+  

# not pres ! (would produce methylglyoxal) ~~IMPORTANT, following 

reaction not in sequence!!~~ 

·4.2.3.3 : dihydroxy-acetone phosphate -> methylglyoxal + phosphate 

O4P 

4.4.1.5 : S-lactoyl-glutathione <-> methylglyoxal + glutathione 

3.1.2.6 : S-lactoyl-glutathione + H2O -> glutathione + D-lactate  

1.1.1.28 : NAD+ + D-lactate -> NADH + H+ + pyruvate  

 

# Glutathione metabolism 

3.4.11.2a : cysteinylglycine + H2O -> L-cysteine + glycine 

3.4.11.2b : R-S-cysteinylglycine + H2O -> R-S-cysteine + glycine  

6.3.2.3 : glycine + L-gamma-glutamylcysteine + ATP -> glutathione + 

phosphate O4P + ADP  

_2.3.2.2a : glutathione -> L-glutamate + cysteinylglycine 
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_2.3.2.2b : L-alanine + glutathione -> (5-L-glutamyl)-L-alanine + 

cysteinylglycine  

_2.3.2.2c : L-aspartate + glutathione -> (5-L-glutamyl)-L-aspartate + 

cysteinylglycine  

_2.3.2.2d : L-arginine + glutathione -> (5-L-glutamyl)-L-arginine + 

cysteinylglycine  

_2.3.2.2e : L-asparagine + glutathione -> (5-L-glutamyl)-L-asparagine 

+ cysteinylglycine  

_2.3.2.2f : L-lysine + glutathione -> (5-L-glutamyl)-L-lysine + 

cysteinylglycine  

_2.3.2.2g : L-threonine + glutathione -> (5-L-glutamyl)-L-threonine + 

cysteinylglycine  

_2.3.2.2h : L-serine + glutathione -> (5-L-glutamyl)-L-serine + 

cysteinylglycine  

_2.3.2.2i : L-cysteine + glutathione -> (5-L-glutamyl)-L-cysteine + 

cysteinylglycine  

_2.3.2.2j : L-glutamate + glutathione -> (5-L-glutamyl)-L-glutamate + 

cysteinylglycine  

_2.3.2.2k : L-glutamine + glutathione -> (5-L-glutamyl)-L-glutamine + 

cysteinylglycine  

_2.3.2.2l : L-proline + glutathione -> (5-L-glutamyl)-L-proline + 

cysteinylglycine  

_2.3.2.2m : L-tryptophan + glutathione -> (5-L-glutamyl)-L-tryptophan 

cysteinylglycine  

_2.3.2.2n : L-phenylalanine + glutathione -> (5-L-glutamyl)-L-

phenylalanine + cysteinylglycine  

_2.3.2.2o : L-tyrosine + glutathione -> (5-L-glutamyl)-L-tyrosine + 

cysteinylglycine  

_2.3.2.2p : L-histidine + glutathione -> (5-L-glutamyl)-L-histidine + 

cysteinylglycine  

_2.3.2.2q : L-valine + glutathione -> (5-L-glutamyl)-L-valine + 

cysteinylglycine  

_2.3.2.2r : L-isoleucine + glutathione -> (5-L-glutamyl)-L-isoleucine 

+ cysteinylglycine  

_2.3.2.2s : L-leucine + glutathione -> (5-L-glutamyl)-L-leucine + 

cysteinylglycine  

_2.3.2.2t : L-methionine + glutathione -> (5-L-glutamyl)-L-methionine 

+ cysteinylglycine  

3.5.2.9 : 5-oxoproline + 2 H2O + ATP -> L-glutamate + phosphate O4P + 

ADP  

_2.5.1.18 : glutathione -> R-S-glutathione  

_2.3.2.2u : R-S-glutathione + H2O -> R-S-cysteinylglycine + L-

glutamate  

1.11.1.9 : H2O2 + 2 glutathione -> glutathione disulfide + 2 H2O  

_1.8.1.7a : glutathione disulfide + NADPH + H+ -> 2 glutathione + 

NADP+  

_1.8.1.7b : glutathione disulfide + NADH + H+ -> 2 glutathione + NAD+  

# not pres ! would close g-glutamyl cycle ~~IMPORTANT, following 20 

reactions not in sequence!!~~  

·6.3.2.2 : ATP + L-glutamate + L-cysteine -> ADP + diphosphate + L-

gamma-glutamylcysteine  

·2.3.2.4a : (5-L-glutamyl)-L-alanine -> L-alanine + 5-oxoproline 

·2.3.2.4b : (5-L-glutamyl)-L-aspartate -> L-aspartate + 5-oxoproline 

·2.3.2.4c : (5-L-glutamyl)-L-arginine -> L-arginine + 5-oxoproline  

·2.3.2.4d : (5-L-glutamyl)-L-asparagine -> L-asparagine + 5-oxoproline  

·2.3.2.4e : (5-L-glutamyl)-L-lysine -> L-lysine + 5-oxoproline 

·2.3.2.4f : (5-L-glutamyl)-L-threonine -> L-threonine + 5-oxoproline 

·2.3.2.4g : (5-L-glutamyl)-L-serine -> L-serine + 5-oxoproline  

·2.3.2.4h : (5-L-glutamyl)-L-cysteine -> L-cysteine + 5-oxoproline 

·2.3.2.4i : (5-L-glutamyl)-L-glutamate -> L-glutamate + 5-oxoproline 

·2.3.2.4j : (5-L-glutamyl)-L-glutamine -> L-glutamine + 5-oxoproline  
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·2.3.2.4k : (5-L-glutamyl)-L-proline -> L-proline + 5-oxoproline 

·2.3.2.4l : (5-L-glutamyl)-L-tryptophan -> L-tryptophan + 5-oxoproline  

·2.3.2.4m : (5-L-glutamyl)-L-phenylalanine -> L-phenylalanine + 5-

oxoproline  

·2.3.2.4n : (5-L-glutamyl)-L-tyrosine -> L-tyrosine + 5-oxoproline 

·2.3.2.4o : (5-L-glutamyl)-L-histidine -> L-histidine + 5-oxoproline  

·2.3.2.4p : (5-L-glutamyl)-L-valine -> L-valine + 5-oxoproline 

·2.3.2.4q : (5-L-glutamyl)-L-isoleucine -> L-isoleucine + 5-oxoproline  

·2.3.2.4r : (5-L-glutamyl)-L-leucine -> L-leucine + 5-oxoproline 

·2.3.2.4s : (5-L-glutamyl)-L-methionine -> L-methionine + 5-oxoproline 

·2.3.2.4t : (5-L-glutamyl)-L-glicine -> L-glicine + 5-oxoproline 

1.1.1.284a : S-(hydroxymethyl)glutathione + NAD+ -> S-

formylglutathione + NADH + H+  

1.1.1.284b : S-(hydroxymethyl)glutathione + NADP+ <-> S-

formylglutathione + NADPH + H+  

3.1.2.12 : S-formylglutathione + H2O -> formate + glutathione 

 

# Fructose and mannose metabolism 

4.1.2.13c : fructose-1-phosphate <-> dihydroxy-acetone phosphate + 

glyceraldehyde  

2.7.1.4 : beta-D-fructose + ATP <-> beta-D-fructose-6-phosphate + ADP  

5.3.1.8 : D-mannose-6-phosphate <-> beta-D-fructose-6-phosphate 

5.4.2.8 : alpha-D-mannose 1-phosphate <-> D-mannose-6-phosphate  

2.7.7.13 : alpha-D-mannose 1-phosphate + GTP -> GDP-D-mannose + 

diphosphate  

4.2.1.47 : GDP-D-mannose -> H2O + GDP-4-dehydro-6-deoxy-D-mannose 

1.1.1.271 : NADP+ + GDP-L-fucose <-> NADPH + H+ + GDP-4-dehydro-6-

deoxy-D-mannose  

2.4.1.83 : dolichyl-phosphate + GDP-D-mannose -> dolichyl beta-D-

mannosyl phosphate + GDP  

2.7.7.22 : GDP + alpha-D-mannose 1-phosphate -> phosphate O4P + GDP-D-

mannose 

 

# Aminosugars metabolism  

2.6.1.16 : beta-D-fructose-6-phosphate + L-glutamine <-> L-glutamate + 

D-glucosamine 6-phosphate  

3.5.99.6 : D-glucosamine 6-phosphate + H2O -> beta-D-fructose-6-

phosphate + ammonia H3N  

3.5.1.25 : N-acetyl-D-glucosamine-6-phosphate + H2O <-> D-glucosamine 

6-phosphate + acetate 

4.2.1.126 : N-acetylmuramic acid 6-phosphate + H2O <-> N-acetyl-D-

glucosamine-6-phosphate + (R)-lactate  

5.4.2.10 : D-glucosamine 6-phosphate -> D-glucosamine 1-phosphate  

2.3.1.157 : D-glucosamine 1-phosphate + acetyl-CoA -> N-acetyl-

glucosamine-1-phosphate + coenzyme A  

2.7.7.23 : N-acetyl-glucosamine-1-phosphate + UTP <-> UDP-N-acetyl-D-

glucosamine + diphosphate  

2.5.1.7 : UDP-N-acetyl-D-glucosamine + phosphoenolpyruvate <-> UDP-

GlcNAc-enolpyruvate + phosphate O4P  

_1.1.1.158 : NADP+ + UDP-N-acetylmuramate <-> NADPH + H+ + UDP-GlcNAc-

enolpyruvate  

_5.1.3.14a : N-acetyl-D-mannosamine + UTP <-> UDP-N-acetyl-D-

glucosamine + diphosphate  

_5.1.3.14b : UDP-N-acetyl-D-mannosamine <-> UDP-N-acetyl-D-glucosamine  

5.1.3.9 : N-acetyl-D-glucosamine-6-phosphate <-> N-acetyl-D-

mannosamine-6-phosphate  

 

# Peptidoglycan biosynthesis 

6.3.2.8 : L-alanine + UDP-N-acetylmuramate + ATP -> UDP-N-

acetylmuramoyl-L-alanine + phosphate O4P + ADP  
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6.3.2.9 : UDP-N-acetylmuramoyl-L-alanine + D-glutamate + ATP -> UDP-N-

acetylmuramoyl-L-alanyl-D-glutamate + phosphate O4P + ADP  

6.3.2.13 : UDP-N-acetylmuramoyl-L-alanyl-D-glutamate + meso-

diaminopimelate + ATP -> UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-

meso-2,6-diaminoheptanedioate + phosphate O4P + ADP  

6.3.2.10a : UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-

diaminoheptanedioate + D-alanyl-D-alanine + ATP -> UDP-N-

acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-diaminoheptanedioate-D-

alanyl-D-alanine + phosphate O4P + ADP  

2.7.8.13a : UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-

diaminoheptanedioate-D-alanyl-D-alanine + undecaprenyl phosphate -> 

undecaprenyl-diphospho-N-cetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-

diaminopimeloyl-D-alanyl-D-alanine + UMP  

2.4.1.227a : undecaprenyl-diphospho-N-acetylmuramoyl-L-alanyl-D-

glutamyl-meso-2,6-diaminopimeloyl-D-alanyl-D-alanine + UDP-N-acetyl-D-

glucosamine -> undecaprenyl-diphospho-N-acetylmuramoyl-(N-

acetylglucosamine)-L-alanyl-D-glutamyl-meso-2,6-diaminopimeloyl-D-

alanyl-D-alanine + UDP  

_6.3.1.2b : undecaprenyl-diphospho-N-acetylmuramoyl-(N-

acetylglucosamine)-L-alanyl-D-glutamyl-meso-2,6-diaminopimeloyl-D-

alanyl-D-alanine + ATP + ammonia H3N -> undecaprenyl-diphospho-N-

acetylmuramoyl-(N acetylglucosamine)-L-alanyl-D-glutaminyl-meso-2,6-

diaminopimeloyl-D-alanyl-D-alanine + ADP + phosphate O4P  

6.3.2.10b : UDP-N-acetylmuramoyl-L-alanyl-gamma-D-glutamyl-L-lysine + 

D-alanyl-D-alanine + ATP -> UDPMurAc(oyl-L-Ala-D-gamma-Glu-L-Lys-D-

Ala-D-Ala) + phosphate O4P + ADP  

2.7.8.13b : UDPMurAc(oyl-L-Ala-D-gamma-Glu-L-Lys-D-Ala-D-Ala) + 

undecaprenyl phosphate -> MurAc(oyl-L-Ala-D-gamma-Glu-L-Lys-D-Ala-D-

Ala)-diphospho-undecaprenol + UMP  

2.4.1.227b : MurAc(oyl-L-Ala-D-gamma-Glu-L-Lys-D-Ala-D-Ala)-diphospho-

undecaprenol + UDP-N-acetyl-D-glucosamine -> undecaprenyl-diphospho-N-

acetylmuramoyl-(N-acetylglucosamine)-L-alanyl-gamma-D-glutamyl-L-

lysyl-D-alanyl-D-alanine + UDP  

_6.3.1.2c : undecaprenyl-diphospho-N-acetylmuramoyl-(N-

acetylglucosamine)-L-alanyl-gamma-D-glutamyl-L-lysyl-D-alanyl-D-

alanine + ATP + ammonia H3N -> undecaprenyl-diphospho-N-

acetylmuramoyl-(N-acetylglucosamine)-L-alanyl-D-isoglutaminyl-L-lysyl-

D-alanyl-D-alanine + ADP + phosphate O4P  

6.3.2.10c : UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysine + D-

alanyl-D-alanine + ATP -> UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-

lysyl-D-alanyl-D-alanine + phosphate O4P + ADP  

2.7.8.13c : UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysyl-D-alanyl-

D-alanine + undecaprenyl phosphate -> undecaprenyl-diphospho-N-

acetylmuramoyl-L-alanyl-D-glutamyl-L-lysyl-D-alanyl-D-alanine + UMP  

2.4.1.227c : undecaprenyl-diphospho-N-acetylmuramoyl-L-alanyl-D-

glutamyl-L-lysyl-D-alanyl-D-alanine + UDP-N-acetyl-D-glucosamine -> 

undecaprenyl-diphospho-N-acetylmuramoyl-(N-acetylglucosamine)-L-

alanyl-D-glutamyl-L-lysyl-D-alanyl-D-alanine + UDP  

_6.3.1.2d : undecaprenyl-diphospho-N-acetylmuramoyl-(N-

acetylglucosamine)-L-alanyl-D-glutamyl-L-lysyl-D-alanyl-D-alanine + 

ATP + ammonia H3N -> undecaprenyl-diphospho-N-acetylmuramoyl-(N-

acetylglucosamine)-L-alanyl-D-glutaminyl-L-lysyl-D-alanyl-D-alanine + 

ADP + phosphate O4P  

# not pres ! would complete peptidoglycan biosynthesis ~~IMPORTANT, 

following 3 reactions not in sequence!!~~  

·2.3.2.10a : undecaprenyl-diphospho-N-acetylmuramoyl-(N-

acetylglucosamine)-L-alanyl-D-glutaminyl-meso-2,6-diaminopimeloyl-D-

alanyl-D-alanine + glycyl-tRNAgly <-> undecaprenyl-diphospho-N-

acetylmuramoyl-(N-acetylglucosamine)-L-alanyl-D-glutaminyl-meso-2,6-

diaminopimeloyl-(glycyl)5-D-alanyl-D-alanine + tRNAgly  
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·2.3.2.10b : undecaprenyl-diphospho-N-acetylmuramoyl-(N-

acetylglucosamine)-L-alanyl-D-isoglutaminyl-L-lysyl-D-alanyl-D-alanine 

+ glycyl-tRNAgly <-> undecaprenyl-diphospho-N-acetylmuramoyl-(N-

acetylglucosamine)-L-alanyl-D isoglutaminyl-L-lysyl-(glycyl)5-D-

alanyl-D-alanine + tRNAgly  

·2.3.2.10c : undecaprenyl-diphospho-N-acetylmuramoyl-(N-

acetylglucosamine)-L-alanyl-D-glutaminyl-L-lysyl-D-alanyl-D-alanine + 

glycyl-tRNAgly <-> undecaprenyl-diphospho-N-acetylmuramoyl-(N-

acetylglucosamine)-L-alanyl-D-glutaminyl-L-lysyl-(glycyl)5-D-alanyl-D-

alanine + tRNAgly  

6.3.2.4 : 2 D-alanine + ATP -> D-alanyl-D-alanine + phosphate O4P + 

ADP  

3.6.1.27 : undecaprenyl diphosphate + H2O -> undecaprenyl phosphate + 

phosphate O4P  

_peptidoglycan_syfa : undecaprenyl-diphospho-N-acetylmuramoyl-(N-

acetylglucosamine)-L-alanyl-D-glutaminyl-meso-2,6-diaminopimeloyl-

(glycyl)5-D-alanyl-D-alanine -> peptidoglycan + undecaprenyl 

diphosphate 

_2.4.1.129 : [GlcNAc-(1-4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-

Ala)]n-diphosphoundecaprenol + GlcNAc-(1-4)-Mur2Ac(oyl-L-Ala-gamma-D-

Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol -> [GlcNAc-(1-4)-

Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)]n+1-

diphosphoundecaprenol + undecaprenyl diphosphate 

3.4.16.4 : (Ac)2-L-lys-D-alanyl-D-alanine + H2O <-> D-alanine + (Ac)2-

L-lys-D-alanine 

3.5.1.28 : N-acetylmuramoyl-Ala + H2O <-> N-acetylmuramate + L-alanine 

 

# additional glycan biosynthesis  

2.3.1.129 : (R)-3-hydroxymyristoyl-ACP + UDP-N-acetyl-D-glucosamine -> 

UDP-3-O-(3-hydroxymyristoyl)-N-acetylglucosamine + an [acyl-carrier 

protein]  

3.2.1.24 : [2Man-(1->6)-(1->3)- Man-(1->4)- GlcNAc] + H2O <-> [Man-(1-

>3)- Man-(1->4)- GlcNAc] + D-mannose 

 

# Starch and sucrose metabolism  

2.4.1.14 : beta-D-fructose-6-phosphate + UDP-D-glucose -> sucrose-6-

phosphate + UDP  

3.2.1.26 : sucrose-6-phosphate + H2O <-> beta-D-fructose + alpha-D-

glucose-6-phosphate 

2.4.1.25 : maltotriose + maltose -> maltotetraose + beta-D-glucose  

_2.4.1.1 : a glycogen_n1 + phosphate O4P -> a glycogen_n + alpha-D-

glucose 1-phosphate  

2.7.7.27 : alpha-D-glucose 1-phosphate + ATP -> ADP-D-glucose + 

diphosphate  

_a-glucansyf : 2 ADP-D-glucose -> a 1,4-alpha-D-glucan_n  

_2.4.1.21a : ADP-D-glucose + a 1,4-alpha-D-glucan_n -> ADP + a 1,4-

alpha-D-glucan_n1  

_glycsyf : 2 ADP-D-glucose + a 1,4-alpha-D-glucan_n1 -> a glycogen_n  

_2.4.1.21b : ADP-D-glucose + a glycogen_n -> ADP + a glycogen_n1  

_2.4.1.18 : a glycogen_n1 + a 1,4-alpha-D-glucan_n <-> a glycogen_n + 

a 1,4-alpha-D-glucan_n1  

5.4.2.2 : alpha-D-glucose 1-phosphate <-> alpha-D-glucose-6-phosphate 

4.2.1.45 : CDP-D-glucose -> H2O + CDP-4-dehydro-6-deoxy-D-glucose 

2.4.1.12 : 1,4-beta-D-glucan_n + UDP-D-glucose <-> 1,4-beta-D-

glucan_n1 + UDP  

_3.2.1.21a : cellobiose <-> 2 beta-D-glucose  

_3.2.1.21b : 1,4-beta-D-glucan_n <-> beta-D-glucose 

 

# Biosynthesis of steroids 

# - NON-Mevalonate pathway - produces Isopentenyl-PP  
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2.2.1.7 : pyruvate + D-glyceraldehyde-3-phosphate -> 1-deoxy-D-

xylulose 5-phosphate + CO2  

1.1.1.267 : 2-C-methyl-D-erythritol-4-phosphate + NADP+ <-> 1-deoxy-D-

xylulose 5-phosphate + NADPH + H+  

2.7.7.60 : 2-C-methyl-D-erythritol-4-phosphate + CTP -> 4-(cytidine 

5'-diphospho)-2-C-methyl-D-erythritol + diphosphate  

2.7.1.148 : 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol + ATP -> 

2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol + ADP  

4.6.1.12 : 2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol 

-> 2-C-methyl-D-erythritol-2,4-cyclodiphosphate + CMP  

1.17.7.1 : 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate + H2O + 

thioredoxin disulfide <-> 2-C-methyl-D-erythritol-2,4-cyclodiphosphate 

+ thioredoxin 

1.17.1.2a : 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate + NADPH + 

H+ -> isopentenyl diphosphate + NADP+ + H2O  

1.17.1.2b : isopentenyl diphosphate + NADP+ + H2O -> (E)-4-hydroxy-3-

methylbut 2-en-1-yl diphosphate + NADPH + H+ 

# - Isopentenyl-PP to Squalene  

5.3.3.2 : isopentenyl diphosphate -> dimethylallyl diphosphate  

2.5.1.29a : isopentenyl diphosphate + (E,E)-farnesyl diphosphate -> 

all-trans-geranyl-geranyl diphosphate + diphosphate  

2.5.1.1 : dimethylallyl diphosphate + isopentenyl diphosphate -> 

geranyl diphosphate + diphosphate  

2.5.1.84 : geranyl diphosphate + 7 isopentenyl diphosphate <-> all-

trans-nonaprenyl diphosphate + 7 diphosphate 

2.5.1.85 : geranylgeranyl diphosphate + 5 isopentenyl diphosphate -> 

all-trans-nonaprenyl diphosphate + 5 diphosphate 

 

# - Vit E production (no pres) 

1.3.1.83 : all-trans-geranyl-geranyl diphosphate + 3 H+ + 3 NADPH -> 

phytyl diphosphate + 3 NADP+  

_VitE-spont : beta-tocopherol -> alpha-tocopherol 

 

# Lipoic acid metabolism  

_2.3.1.181a : octanoyl-[acyl-carrier protein] + a protein -> a 

protein-N-6-octanoyl-lysine + an [acyl-carrier protein]  

_2.8.1.8a : a protein-N-6-octanoyl-lysine + 2 SO + 2 S-adenosyl-L-

methionine -> a protein-N-6-lipoyl-lysine + 2 L-methionine + 2 5'-

deoxyadenosine  

_2.8.1.8b : octanoyl-[acyl-carrier protein] + 2 SO + 2 S-adenosyl-L-

methionine -> lipoyl-[acyl carrier protein] + 2 L-methionine + 2 5'-

deoxyadenosine  

_2.3.1.181b : lipoyl-[acyl carrier protein] + a protein -> a protein-

N-6-lipoyl-lysine + an [acyl-carrier protein]  

_2.7.7.63a : ATP + lipoate -> diphosphate + lipoyl-AMP  

# not pres ! would allow lipoate input~~IMPORTANT, following 3 

reactions not in sequence!!~~ 

·transp_lipoate : lipoate_extrac -> lipoate  

_2.7.7.63b : lipoyl-AMP + a protein -> a protein-N-6-lipoyl-lysine + 

AMP  

 

# Carotenoid biosynthesis  

_2.5.1.32 : 2 all-trans-geranyl-geranyl diphosphate -> phytoene + 

diphosphate 

_1.3.5.5a : phytoene + thioredoxin disulfide <-> phytofluene + 

thioredoxin 

_1.3.5.5b : phytofluene + thioredoxin disulfide  <-> zeta-carotene + 

thioredoxin 

1.3.5.6a : zeta-carotene + O2 + thioredoxin -> neurosporene + 2 H2O + 

thioredoxin disulfide  
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1.3.5.6b : O2 + thioredoxin + neurosporene -> 2 H2O + thioredoxin 

disulfide + trans-lycopene 

CrtLb-a : neurosporene -> beta-zeacarotene  

CrtLb-b : beta-zeacarotene -> 7,8-dihydro-beta-carotene  

CrtLb-c : trans-lycopene -> gamma-carotene 

CruA : trans-lycopene -> gamma-carotene 

CrtLb-d : gamma-carotene -> beta-carotene  

_CrtRa : beta-carotene + NADH + H+ + O2 -> beta-cryptoxanthin + NAD+ + 

H2O 

_CrtRb : beta-cryptoxanthin + NADH + H+ + O2 -> zeaxanthin + NAD+ + 

H2O 

# not pres ! would complete the carotenoid biosynthesis ~~IMPORTANT, 

following 2 reactions not in sequence!!~~ 

·CrtOa : beta-carotene -> echinenone  

·CrtOb : echinenone -> canthaxanthin  

_CrtRc : echinenone + NADH + H+ + O2 -> 3-hydroxyechinenone + NAD+ + 

H2O 

_CrtRd : 3-hydroxyechinenone + NADH + H+ + O2 -> adonixanthin + NAD+ + 

H2O 

_CrtRe : canthaxanthin + NADH + H+ + O2 -> phoenicoxanthin + NAD+ + 

H2O 

_CrtRf : phoenicoxanthin + NADH + H+ + O2 -> astaxanthin + NAD+ + H2O 

_gCar : gamma-carotene <-> (2'S)-deoxymyxol 2'-(2,4-di-O-methyl-alpha-

L-fucoside)  

_CrtRg : (2'S)-deoxymyxol 2'-(2,4-di-O-methyl-alpha-L-fucoside) <-> 

(3R,2'S)-myxol 2'-(2,4-di-O-methyl-alpha-L-fucoside) 

5.2.1.13 : 7,9,7',9'-tetracis-lycopene -> trans-lycopene 

 

# Nucleotide sugars metabolism - present? necessary? 

# not pres ! would complete the UDP-D-glucose biosynthesis 

~~IMPORTANT, following 1 reactions not in sequence!!~~ 

·2.7.7.9 : UTP + alpha-D-glucose 1-phosphate -> diphosphate + UDP-D-

glucose 

5.1.3.2a : UDP-D-glucose <-> UDP-D-galactose  

3.13.1.1 : UDP-D-glucose + sulfite O3s -> UDP-6-sulfoquinovose + H2O  

1.1.1.22 : UDP-D-glucose + H2O + 2 NAD+ -> UDP-D-glucuronate + 2 NADH 

+ H+  

2.7.7.24 : alpha-D-glucose 1-phosphate + dTTP -> dTDP-D-glucose + 

diphosphate  

5.1.3.2b : dTDP-D-glucose <-> dTDP-D-galactose  

2.7.7.33 : alpha-D-glucose 1-phosphate + CTP -> CDP-D-glucose + 

diphosphate  

4.2.1.46 : dTDP-D-glucose -> H2O +dTDP-4-dehydro-6-deoxy-D-glucose  

5.1.3.13a : dTDP-4-dehydro-6-deoxy-D-glucose -> dTDP-4-dehydro-6-

deoxy-L-mannose  

5.1.3.13b : dTDP-4-dehydro-6-deoxy-D-glucose + GTP -> GDP-4-dehydro-6-

deoxy-L-mannose + dTDP + phosphate O4P  

1.1.1.133a : NADP+ + dTDP-alpha-L-rhamnose <-> NADPH + H+ + dTDP-4-

dehydro-6-deoxy-L-mannose 

1.1.1.133b : NADP+ + GDP-6-deoxy-L-mannose <-> NADPH + H+ + GDP-4-

dehydro-6-deoxy-L-mannose 

5.4.99.9 : UDP-D-galactose <-> UDP-alpha-D-galacto-1,4-furanose 

 

# Propanoate metabolism - present?  

6.2.1.1b : propionyladenylate + CoA <-> AMP + propanoyl-CoA 

2.7.2.1b : ATP + propanoate <-> ADP + propanoyl phosphate 

6.2.1.1c : ATP + propanoate <-> diphosphate + propionyladenylate 

_1.2.1.3e : 2-propyn-1-al + NAD+ + H2O -> NADH + H+ + propynoate  

4.2.1.99 : (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate <-> (Z)-but-2-

ene-1,2,3-tricarboxylate + H2O 
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# Thiamine metabolism - present? 

PYRIMSYF1-RXN : 5-aminoimidazole ribonucleotide <-> 

hydroxymethylpyrimidine  

# not pres ! would complete the thiamine-phosphate biosynthesis 

~~IMPORTANT, following reaction not in sequence!!~~ 

·2.7.1.49 : ATP + hydroxymethylpyrimidine <-> ADP + 

hydroxymethylpyrimidine phosphate  

2.7.4.7 : hydroxymethylpyrimidine phosphate + ATP <-> 4-amino-5-

hydroxymethyl-2-methylpyrimidine-pyrophosphate + ADP 

1.4.3.19 : glycine <-> iminoglycine  

ThiG : iminoglycine + L-tyrosine + [ThiS]-COSS-[ThiF] -> 4-methyl-5-

(beta-hydroxyethyl)thiazole phosphate   

2.5.1.3 : 4-methyl-5-(beta-hydroxyethyl)thiazole phosphate + 4-amino-

5-hydroxymethyl-2-methylpyrimidine-pyrophosphate -> thiamine-phosphate 

+ diphosphate  

2.7.4.16 : thiamine-phosphate + ATP -> thiamine diphosphate + ADP  

# not pres ! would complete the thiamine biosynthesis ~~IMPORTANT, 

following reaction not in sequence!!~~ 

·2.7.1.89 : thiamine + ATP <-> thiamine-phosphate + ADP  

3.5.99.2 : thiamine + H2O <-> hydroxymethylpyrimidine + 5-(2-

Hydroxyethyl)-4-methylthiazole + H+  

 

# Biotin metabolism - present? 

2.3.1.47 : pimeloyl-CoA + L-alanine -> CO2 + coenzyme A + 7-keto-8-

aminopelargonate  

2.6.1.62 : S-adenosyl-L-methionine + 7-keto-8-aminopelargonate <-> S-

adenosyl-4-methylthio-2-oxobutanoate + 7,8-diaminopelargonate  

6.3.3.3 : CO2 + 7,8-diaminopelargonate + ATP -> dethiobiotin + 

phosphate O4P + ADP  

2.8.1.6 : dethiobiotin + 2 S-adenosyl-L-methionine + hydrogen sulfide 

-> biotin + 2 5'-deoxyadenosine + 2 L-methionine 

6.3.4.15 : BCCP + biotin + ATP -> diphosphate + AMP + biotin-BCCP 

(monomer)  

RXN-7101 : 2 biotin-BCCP (monomer) <-> a biotin-BCCP (dimer)  

_3.4.1.- : N6-D-biotinyl-L-lysine + BCCP <-> biotin-BCCP (monomer)  

 

# Penicillin and cephalosporin biosynthesis - mostly not present 

_3.5.2.6 : H2O + penicillin -> penicilloic acid 

 

# Terpenoid biosynthesis - mostly not present 

_2.5.1.31a : (E,E)-farnesyl diphosphate + isopentenyl diphosphate <-> 

all-trans-geranyl-geranyl diphosphate + diphosphate  

_2.5.1.31b : all-trans-geranyl-geranyl diphosphate + 7 isopentenyl 

diphosphate <-> di-trans,poly-cis-Undecaprenyl diphosphate + 7 

diphosphate 

2.5.1.10 : geranyl diphosphate + isopentenyl diphosphate -> 

diphosphate + (E,E)-farnesyl diphosphate 

 

# Vitamin B6 metabolism - present?  

2.6.99.2 : 1-deoxy-D-xylulose 5-phosphate + 1-amino-propan-2-one-3-

phosphate -> pyridoxine-5'-phosphate + phosphate O4P + 2 H2O  

_1.1.1.262 : O-phospho-4-hydroxy-L-threonine + NAD+ -> NADH + H+ + 

(2S)-2-amino-3-oxo-4-phosphonooxybutanoate  

RXN-8447 : (2S)-2-amino-3-oxo-4-phosphonooxybutanoate + H+ <-> 1-

amino-propan-2-one-3-phosphate + CO2  

4.2.3.1b : O-phospho-4-hydroxy-L-threonine + H2O -> phosphate O4P + 4-

hydroxy-L threonine  

_VitB6 : 4-hydroxy-L threonine -> pyridoxine  
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# Glycerophospholipid metabolism & Inositol phosphate metabolism & 

Glycerolipid metabolism - mostly not present 

1.1.1.94 : sn-glycerol 3-phosphate + NADP+ -> dihydroxy-acetone 

phosphate + NADPH + H+ 

_2.3.1.15 : sn-glycerol 3-phosphate + acyl-CoA -> 1-acyl-sn-glycerol 

3-phosphate + coenzyme A  

2.3.1.51 : a fatty acyl CoA + a 2-lysophosphatidate -> an L-

phosphatidate + coenzyme A  

2.7.7.41 : CTP + an L-phosphatidate -> a CDP-diacylglycerol + 

diphosphate  

2.7.1.107 : ATP + a 1,2-diacylglycerol -> an L-phosphatidate + ADP  

2.7.8.5 : a CDP-diacylglycerol + sn-glycerol 3-phosphate -> an L-1-

phosphatidylglycerol-phosphate + CMP  

3.1.3.25 : D-myo-inositol (3)-monophosphate + H2O -> myo-inositol + 

phosphate O4P  

 

# rest of reactions with cognate genes 

3.1.4.- : 1-(1-Alkenyl)-sn-glycero-3-phosphoethanolamine + H2O <-> 1-

(1-Alkenyl)-sn-glycerol + ethanolamine phosphate  

1.1.1.31 : (S)-3-hydroxyisobutyrate + NAD+ <-> (S)-methylmalonate 

semialdehyde + NADH + H+   

5.3.1.13 : D-arabinose-5-phosphate <->  D-ribulose-5-phosphate  

2.5.1.55 : 3-Deoxy-D-manno-octulosonate-8-phosphate + phosphate O4P -> 

phosphoenolpyruvate + D-arabinose-5-phosphate + H2O 

3.1.3.45 : 3-Deoxy-D-manno-octulosonate-8-phosphate + H2O -> 3-Deoxy-

D-manno-octulosonate + phosphate O4P 

2.7.7.38 : CTP + 3-Deoxy-D-manno-octulosonate -> diphosphate + CMP-3-

deoxy-D-manno-octulosonate 

3.5.1.108 : UDP-3-O-(3-hydroxytetradecanoyl)-N-acetylglucosamine + H2O 

-> UDP-3-O-(3-hydroxytetradecanoyl)-D-glucosamine + acetate 

2.4.1.182 : UDP-2,3-bis(3-hydroxytetradecanoyl)glucosamine + 2,3-

bis(3-hydroxytetradecanoyl)-beta-D-glucosaminyl 1-phosphate -> UDP + 

2,3-bis(3-hydroxytetradecanoyl)-D-glucosaminyl-(1-6)-beta-D-2,3- 

bis(3-hydroxytetradecanoyl)-beta-D-glucosaminyl 1-phosphate  

2.7.1.170 : ATP + 1,6-anhydro-N-acetyl-beta-muramate + H2O <-> ADP + 

N-acetyl-beta-muramate 6-phosphate 

1.1.1.6 : glycerol + NAD+ <-> dihydroxy-acetone phosphate + NADH + H+  

4.1.99.5 : octadecanal + O2 + 2 NADPH + 2 H+ <-> heptadecane + formate 

+ H2O + 2 NADP+ 

2.8.1.1 : thiosulfate + cyanide <-> sulfite O3s + thiocyanate 

3.8.1.5 : 1,2-dichloroethane + H2O <-> 2-chloroethanol + HCL 

4.1.99.12 : D-ribulose-5-phosphate -> L-3,4-dihydroxybutan-2-one-4-

phosphate + formate 

3.4.13.22 : D-alanyl-D-alanine + H2O <-> 2 D-alanine 

1.14.99.41 : all-trans-8'-apo-beta-carotenal + O2 <-> all-trans-

retinal + (2E,4E,6E)-2,6-dimethylocta-2,4,6-trienedial 

1.12.98.1 : coenzyme-F420 + H2 <-> reduced coenzyme-F420 

3.1.1.45 : cis-4-carboxymethylenebut-2-en-4-olide + H2O -> 2-

maleylacetate 

2.5.1.77 : 3-(4-hydroxyphenyl)-pyruvate + 5-amino-6-ribitylamino-

2,4(1H,3H)-pyrimidinedione + 2 S-adenosyl-L-methionine + H2O -> 7,8-

didemethyl-8-hydroxy-5-deazariboflavin + 2 L-methionine + 2 5'-

deoxyadenosine + oxalate + ammonia H3N 

1.7.1.13 : 7-aminomethyl-7-deazaguanine + 2 NADP+ <-> 7-cyano-7-

deazaguanine + 2 NADPH + 2 H+  

2.10.1.1 : adenylated molybdopterin + molybdate <-> molybdenum 

cofactor + AMP + H2O 

_1.16.1.1 : Hg + NADP+ <-> Hg2+ + NADPH + H+ 

3.5.4.- : cyromazine + H2O -> N-cyclopropylammeline + ammonia H3N 
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2.3.1.28 : acetyl-CoA + chloramphenicol <-> coenzyme A + 

chloramphenicol-3-acetate 

4.2.1.35 : (R)-2-methylmalate -> 2-methylmaleate + H2O 

3.1.3.71 : (2R)-O-phospho-3-sulfolactate + H2O -> (2R)-3-sulfolactate 

+ phosphate O4P 

2.1.1.104 : S-adenosyl-L-methionine + caffeoyl-CoA -> S-adenosyl-L-

homocysteine + feruloyl-CoA 

 

### 

# BIOMASS out of amino acids, nucleic acids, lipids and antenna 

proteins 

Alabm : L-alanine -> Ala 

Aspbm : L-aspartate -> Asp 

Argbm : L-arginine -> Arg 

Asnbm : L-asparagine -> Asn 

Lysbm : L-lysine -> Lys 

Thrbm : L-threonine -> Thr 

Serbm : L-serine -> Ser 

Cysbm : L-cysteine -> Cys 

Glybm : glycine -> Gly 

Glubm : L-glutamate -> Glu 

Glnbm : L-glutamine -> Gln 

Probm : L-proline -> Pro 

Trpbm : L-tryptophan -> Trp 

Phebm : L-phenylalanine -> Phe 

Tyrbm : L-tyrosine -> Tyr 

Hisbm : L-histidine -> His 

Valbm : L-valine -> Val 

Ilebm : L-isoleucine -> Ile 

Leubm : L-leucine -> Leu 

Metbm : L-methionine -> Met 

_a protein : 897 Ala + 526 Arg + 518 Asp + 374 Asn + 102 Cys + 576 Gln 

+ 614 Glu + 702 Gly + 197 His + 628 Ile + 128 Leu + 417 Lys + 194 Met 

+ 406 Phe + 512 Pro + 548 Ser + 580 Thr + 149 Trp + 294 Tyr + 638 Val 

-> a protein  

 

dATP : dATP -> dATPbm 

dGTP : dGTP -> dGTPbm 

dTTP : dTTP -> dTTPbm 

dUTP : dUTP -> dUTPbm 

dCTP : dCTP -> dCTPbm 

 

AMP : AMP -> AMPbm 

UMP : UMP -> UMPbm 

CMP : CMP -> CMPbm 

GMP : GMP -> GMPbm 

 

8C-lipidbm : octanoic acid -> 8C-lipidbm 

10C-lipidbm : decanoic acid -> 10C-lipidbm 

12C-lipidbm : dodecanoic acid -> 12C-lipidbm 

14C-lipidbm : tetradecanoic acid -> 14C-lipidbm 

16C-lipidbm : hexadecanoic acid -> 16C-lipidbm 

18C-lipidbm : octadecanoic acid -> 18C-lipidbm 

(9Z)16C-lipidbm : (9Z)-hexadecanoic acid -> (9Z)16C-lipidbm 

(9Z)18C-lipidbm : (9Z)-octadecanoic acid -> (9Z)18C-lipidbm 

 

PhCybibm : (3Z)-phycocyanobilin -> PhCybibm 

Chlabm : chlorophyll a -> Chlabm 

Carotenebm : trans-lycopene -> Lycopbm 

Glycbm : a glycogen_n1 -> Glycbm 

Zeaxbm : zeaxanthin -> Zeaxbm 
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Beta-carotenebm : beta-carotene -> Betacarotenebm 

trans-lycopene -> Lycopbm 

 

ATPbm : ATP -> ATPbm 

ADPbm : ADP -> ADPbm 

 

Biomass : 0.000459 a protein + 0.028 14C-lipidbm + 0.0042 16C-lipidbm 

+ 0.00448 18C-lipidbm + 0.0066 (9Z)16C-lipidbm + 0.00625 (9Z)18C-

lipidbm + 0.53439 Glycbm + 0.00079 Zeaxbm + 0.000875 Betacarotenebm + 

0.00820225 Lycopbm + 0.0057 Chlabm + 0.0285 PhCybibm + 0.0201156 

dATPbm + 0.0201156 dTTPbm + 0.02538445 dGTPbm + 0.02538445 dCTPbm + 

0.140389293 AMPbm + 0.140389293 UMPbm + 0.123745851 GMPbm + 

0.123745851 CMPbm + 59.28 H2O + 59.28 ATP -> BM + 59.28 ADP + 59.28 

phosphate O4P + 59.28 H+ 

 

_Growth : BM -> BM_out 

 

 

### 

 

# SPECIAL 

# - autotrophic growth 

_lightII : photonII_extrac -> photonII 

_lightI : photonI_extrac -> photonI 

CO2in : CO2_extrac <-> CO2 

4.2.1.1b : CO2 + H2O <-> HCO3- + H+ 

_H2CO3transport : H2CO3_extrac <-> H2CO3 

_H2CO3desprot : H2CO3 <-> HCO3- + H+ 

 

# maintenance 

NADHmain : NADH -> NAD+ + H+  

NADPHmain : NADPH -> NADP+ + H+  

 

# - transport 

Phosphate TRANS-RXN59G-90 : phosphate O4P_extrac + H+_extrac -> 

phosphate O4P + H+ 

_3.6.3.27 : ATP + H2O + phosphate O4P_extrac -> ADP + 2 phosphate O4P 

_Phosphate_out : phosphate O4P -> phosphate O4P_extrac 

H2O : H2O_extrac <-> H2O 

PROTONS : H+_extrac <-> H+ 

sulfate TRANS-RXN59G-407 : sulfate O4S_extrac <-> sulfate O4s 

nitrate TRANS-RXN59G-237 : nitrate NO3_extrac + ATP + H2O -> nitrate 

NO3 + ADP + phosphate O4P 

ammonia H3N TRANS-RXN59G-178 : NH4+_extrac + H+_extrac <-> NH4+ + H+ 

_ammonia H3N : ammonia H3N <-> NH4+ 

iron TRANS-RXN59G-711 : Fe2+_extrac -> Fe2+ 

magnesium TRANS-RXN59G-340 : Mg2+_extrac + ATP + H2O -> Mg2+ + ADP + 

phosphate O4P 

magnesium TRANS-RXN59G-53 : Mg2+_extrac <-> Mg2+ 

cobalt TRANS-RXN59G-71 : Co2+_extrac + ATP + H2O -> Co2+ + ADP + 

phosphate O4P 

_COtransp : CO_extrac <-> CO 

_H2O2transp : H2O2_extrac <-> H2O2 

_O2in : O2_extrac -> O2 

_O2out : O2 -> O2_extrac 

 

potassium 3.6.3.12 : K+_extrac + ATP + H2O -> K+ + ADP + phosphate O4P 

potassium TRANS-RXN59G-35 : K+_extrac -> K+ 

chloride TRANS-RXN59G-171 : chloride_extrac -> chloride 
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chloride_ATPase : chloride_extrac + ATP + H2O -> chloride + ADP + 

phosphate O4P 

sodium_symporter : Na+_extrac -> Na+  

sodium_antiporter : Na+_extrac + H+ -> Na+ + H+_extrac 

calcium TRANS-RXN59G-708 : Ca2+_extrac + H+ -> Ca2+ + H+_extrac 

molybdate_transport : molybdate_extrac -> molybdate 

_3.6.3.4 : ATP + H2O + Cu2+ -> ADP + phosphate O4P + Cu2+_extrac 

_3.6.3.30 : ATP + H2O + Fe3+_extrac -> ADP + phosphate O4P + Fe3+ 

_3.6.3.25 : ATP + H2O + sulfate O4S_extrac -> ADP + phosphate O4P + 

sulfate O4s 

 

_H2 : H2 -> H2_extrac 

 

sulfide TRANSP : hydrogen sulfide_extrac -> hydrogen sulfide 

sulfite TRANSP : sulfite O3s_extrac -> sulfite O3s 

 

_an [acyl-carrier protein] : an [acyl-carrier protein]_extrac <-> an 

[acyl-carrier protein] 

# not pres ! would complete the thiamine biosynthesis ~~IMPORTANT, 

following two reactions not in sequence!!~~ 

·_a protein disulfide R1Protein2R2R3S2 : a protein + 2 hydrogen 

sulfide <-> a protein disulfide 

·_a protein dithiol H2R1Protein2R2R3S2 : a protein dithiol + NAD+ <-> 

a protein disulfide + NADH 

_3.1.3.16 : a phosphoprotein + H2O <-> a protein + phosphate O4P 

_2.7.11.1 : ATP + a protein -> ADP + a phosphoprotein 

 

_RNAout : RNAn1 -> RNAn1_out 

_DNAout : DNAn1 -> DNAn1_out 

_glycout : a glycogen_n1 -> a glycogen_n1_out 

_glycolaldehyde : glycolaldehyde -> glycolaldehyde_extrac 

 

_eth : ethanol -> ethanol_extrac 

 

-CONSTRAINTS 

# all units should be mmol/g DCW/h 

# carbon input normalized: input flux/number C 

 

# - autotrophic 

# -- theoretical values: 

_lightI [0, 1.96] 

_lightII [0, 1.96] 

# -- for a doubling time of 8 hours, a 0.09 specific growth is needed, 

# -- values resulting from the inverse optimization of light uptake: 

CO2in [0, 1.99] 

_H2CO3transport [0, 1.99] 

4.2.1.1b [-10, 10] 

·_Thiored [0, 100] 

 

### 

NADHmain [0.5, 1000] 

NADPHmain [0.5, 1000] 

 

# constraints used for light and CO2in minimization 

#_Growth [0.0598681, 0.0598681] 

#_1.18.1.2 [0.5, 0.5] 

 

 

# - transport 

Phosphate TRANS-RXN59G-90 [0, 1000] 

_3.6.3.27 [0, 1000] 
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_Phosphate_out [0, 100] 

H2O [-500, 500] 

sulfate TRANS-RXN59G-407 [-104, 104] 

_3.6.3.25 [0, 105] 

nitrate TRANS-RXN59G-237 [0, 160] 

ammonia H3N TRANS-RXN59G-178 [-1000, 1000] 

_COtransp [-10, 10] 

_H2O2transp [-100, 100] 

 

# shut down transport for Glu and Gln 

transport TRANS-RXN59G-639 [0, 0] 

transport TRANS-RXN59G-245 [0, 0] 

 

 

-EXTERNAL METABOLITES 

BM_out 

 

photonII_extrac 

photonI_extrac 

O2_extrac 

H2O2_extrac 

 

H2CO3_extrac 

glycolaldehyde_extrac 

an [acyl-carrier protein]_extrac 

Fe2+_extrac 

Mg2+_extrac 

Co2+_extrac 

CO_extrac 

Cu2+_extrac 

Fe3+_extrac 

 

tRNAala 

tRNAasp 

tRNAarg 

tRNAasn 

tRNAlys 

tRNAthr 

tRNAser 

tRNAcys 

tRNAgly 

tRNAGlu 

tRNApro 

tRNAtrp 

tRNAphe 

tRNAtyr 

tRNAhis 

tRNAval 

tRNAile 

tRNAleu 

tRNAmet 

 

RNAn1_out 

DNAn1_out 

a glycogen_n1_out 

lipoate_extrac 

 

L-glutamate_extrac 

L-glutamine_extrac 

nitrate NO3_extrac 
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sulfate O4S_extrac 

NH4+_extrac 

 

hydrogen sulfide_extrac 

sulfite O3s_extrac 

 

phosphate O4P_extrac 

CO2_extrac 

H2O_extrac 

H+_extrac 

K+_extrac 

chloride_extrac 

Na+_extrac 

Ca2+_extrac 

molybdate_extrac 

H2_extrac 

ethanol_extrac 

 

-OBJ 

_Growth 1 1 

 

-DESIGNOBJ 

_Growth 1 1 
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Appendix 1.2 

FBA and FVA of iSyf715 (Flux values and Minimum and Maximum 

values, respectively)   

 

Objective = 0.0598681 

 

Reaction name Flux Value Minimum Maximum 

2.7.1.2a 0 0 0 

2.7.1.2b 0 0 0 

5.3.1.9a -0.191957 -0.331667 1.84266e-016 

5.3.1.9b -0.191957 -50.47 1.84266e-016 

2.7.1.11 0 0 151.41 

3.1.3.11 1.52122 0 151.41 

4.1.2.13a -1.52122 -50.47 0 

5.3.1.1 2.82716 -1.916e-016 75.705 

_1.2.1.59a 0 0 1000 

_1.2.1.59b 0 0 1000 

1.2.1.12 -6.98422 -1000 2.63678e-016 

2.7.2.3 -6.98422 -126.175 2.63678e-016 

5.4.2.1 0.548951 -75.705 25.235 

4.2.1.11 0.548951 -75.705 25.235 

2.7.1.40a 0 0 1000 

2.7.9.2 0 0 151.41 

2.3.3.1 0.0776041 0 60.564 

4.2.1.3a 0.0776041 0 60.564 

4.2.1.3b 0.0776041 0 60.564 

1.1.1.42a 0.0776041 -1.20183e-016 0.0776042 

1.1.1.42b 0.0776041 -1.20183e-016 0.0776042 

_1.3.99.1 27.0365 -0.705 160.564 

4.2.1.2 -0.10381 -60.564 0.317147 

·4.1.3.1 0 0 60.564 

·2.3.3.9 -0.10381 -60.564 23.2938 

4.1.1.39a 0 0 12.6175 

_3.1.3.18 0 0 12.6175 

_1.1.3.15 0 0 12.6175 

_4.1.1.2 0 0 0 

1.1.1.49 0 0 50.47 

3.1.1.31 0 0 50.47 

1.1.1.44 0 0 50.47 

5.1.3.1 -2.6352 -50.47 0 

5.3.1.6 1.13138 0 25.235 

5.3.1.9c 0 0 0 

2.2.1.1a -1.30594 -25.235 0 

2.2.1.1b -1.32927 -25.235 0 

_2.2.1.2 0 0 25.235 

4.1.2.14 0 0 0 

4.1.2.4 0 0 0 

1.1.1.47a -0.169915 -1000 1000 

1.1.1.47b 0.169915 -1000 1000 

2.7.1.19 3.76658 0 75.705 

4.1.2.13b 1.30594 0 25.235 

3.1.3.37 1.30594 0 25.235 

4.1.2.22 0 0 0 

4.1.1.39b 3.76658 0 75.705 

5.1.1.1 0 0 0 
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1.4.1.1 -0.128459 -121.128 0.209474 

tRNA 6.1.1.7 0 0 0 

2.6.1.44 0.10381 0 1000 

1.4.3.16a 0 0 43.26 

2.6.1.1a -0.343353 -43.26 50.47 

4.3.2.2a 0.0893555 -50.47 37.8525 

6.3.4.4 0.0893555 -50.47 37.8525 

2.1.3.3 0.0144542 0 0.0144542 

6.3.4.5a 0.0144542 0 0.0144542 

4.3.2.1 0.0144542 0 0.0144542 

3.5.1.1 -0.0102773 -0.0102773 0 

2.7.2.4 0.0499851 0 0.0499851 

1.2.1.11 0.0499851 0 0.0499851 

_1.1.1.3a 0.0385262 -1000 1000 

_1.1.1.3b 0 -1000 1000 

2.7.1.39 0.0331952 0 0.0331952 

4.2.3.1a 0.0331952 0 0.0331952 

4.2.1.52 0.0114589 0 0.0114589 

_1.3.1.26a -0.0114589 -1000 1000 

_1.3.1.26b 0 -1000 1000 

2.6.1.83 -0.0114589 -0.0114589 0 

5.1.1.7 0.0114589 0 0.0114589 

4.1.1.20 0.0114589 0 0.0114589 

tRNA 6.1.1.12 0 0 0 

tRNA 6.1.1.19 0 0 0 

4.1.1.19 0 0 0 

·3.5.3.12 0 0 0 

3.5.1.53 0 0 0 

tRNA 6.1.1.22 0 0 0 

tRNA 6.3.5.6 0 0 0 

tRNA 6.1.1.6 0 0 0 

4.1.1.18 0 0 0 

THREOSPON-RXN 0 0 0 

·4.3.1.19a 0.0172571 0 0.0172571 

tRNA 6.1.1.3 0 0 0 

2.7.1.31 0 0 0 

1.1.1.95 0 0 0 

·_4.3.1.19b -0.495065 -100.947 60.564 

2.3.1.30 0.512628 0 100.947 

2.5.1.47 0.0028029 0 0.0028029 

2.5.1.49a 0.509825 0 100.947 

2.1.2.1 -0.0367167 -60.564 0.418947 

2.6.1.45 0 -121.128 1000 

tRNA 6.1.1.11 0 0 0 

2.6.1.51 0 -121.128 1000 

CYSPON-RXN 0 0 0 

2.6.1.1e 0.509825 0 100.947 

2.8.1.2 0.509825 0 100.947 

tRNA 6.1.1.16 0 0 0 

tRNA 6.1.1.14 0 0 0 

3.4.11.1 0 0 0 

transport TRANS-

RXN59G-639 

0 0 0 

2.7.2.11 0.0140695 0 0.0140695 

1.2.1.41 -0.0140695 -0.0140695 0 

SPONTPRO-RXN 0.0140695 0 0.0140695 

_1.5.1.2a1 -0.0140695 -1000 1000 

_1.5.1.2a2 0 -1000 1000 
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6.3.1.2 7.89757 0 302.84 

5.1.1.3 0 0 0 

1.4.7.1 0 0 100.947 

·5.1.1.9 0 0 0 

4.1.3.27 0.00409444 0 0.00409444 

2.4.2.18 -0.00409444 -0.00409444 0 

5.3.1.24 0.00409444 0 0.00409444 

4.1.1.48 0.00409444 0 0.00409444 

4.2.1.20a 0 -1000 0.00409444 

_4.2.1.20b 0.00409444 0 1000 

4.2.1.20c 0.00409444 0 1000 

2.6.1.1b 0 0 0 

tRNA 6.1.1.17 0.0163799 0 0.0163799 

transport TRANS-

RXN59G-245 

0 0 0 

tRNA _6.3.5.7 0 0 0 

·tRNA 6.1.1.18 0 0 0 

_1.5.1.2b 0 0 0 

_1.5.1.2c 0 0 0 

_2.6.1.1c 0 0 0 

4.1.3.16 0 0 0 

_spont1 0 0 0 

tRNA 6.1.1.15 0 0 0 

5.2.1.8 0 0 0 

tRNA 6.1.1.2 0 0 0 

2.5.1.54 0.0233301 0 0.0233301 

4.2.3.4 0.0233301 0 0.0233301 

4.2.1.10 0.0233301 0 0.0233301 

1.1.1.25 -0.0233301 -0.0233301 0 

2.7.1.71 0.0233301 0 0.0233301 

2.5.1.19 0.0233301 0 0.0233301 

4.2.3.5 0.0233301 0 0.0233301 

5.4.99.5 0.0192356 0 0.0192356 

4.2.1.51 0.0111567 0 0.0111567 

2.6.1.9b 0.0111567 0 0.0111567 

4.2.1.96 0 0 0 

tRNA 6.1.1.20 0 0 0 

·1.3.1.12 0.00807896 0 0.00807896 

_2.6.1.1d 0.00807896 0 0.00807896 

1.3.1.78 0 0 0 

tRNA 6.1.1.1 0 0 0 

2.4.2.17 -0.00541345 -0.00541345 -4.56036e-017 

3.6.1.31 0.00541345 4.56036e-017 0.00541345 

3.5.4.19 0.00541345 4.56036e-017 0.00541345 

5.3.1.16 0.00541345 4.56036e-017 0.00541345 

4.1.3.- 0.00541345 4.56036e-017 0.00541345 

4.2.1.19 0.00541345 4.56036e-017 0.00541345 

2.6.1.9a 0.00541345 4.56036e-017 0.00541345 

·3.1.3.15 0.00541345 4.56036e-017 0.00541345 

1.1.1.23a 0.00541345 4.56036e-017 0.00541345 

1.1.1.23b 0.00541345 4.56036e-017 0.00541345 

tRNA 6.1.1.21 0 0 0 

_2.2.1.6d 0.0210493 -3.14411e-017 0.0210493 

1.1.1.86a -0.0210493 -0.0210493 0 

4.2.1.9a 0.0210493 0 0.0210493 

2.6.1.42a 0.0175319 0 0.0175319 

2.6.1.66 0 0 0 

tRNA 6.1.1.9 0 0 0 
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_2.2.1.6e 0.0172571 0 0.0172571 

_1.1.1.85b 0 0 0 

1.1.1.86b 0.0172571 0 0.0172571 

4.2.1.9b 0.0172571 0 0.0172571 

2.6.1.42b -0.0172571 -0.0172571 0 

tRNA 6.1.1.5 0 0 0 

2.3.3.13 0.00351737 -3.14411e-017 0.00351737 

4.2.1.33a 0.00351737 -3.14411e-017 0.00351737 

4.2.1.33b -0.00351737 -0.00351737 3.14411e-017 

1.1.1.85a 0.00351737 -3.14411e-017 0.00351737 

RXN-7800 0.00351737 -3.14411e-017 0.00351737 

2.6.1.42c 0.00351737 -3.14411e-017 0.00351737 

tRNA 6.1.1.4 0 0 0 

2.3.1.31 0.00533102 0 0.00533102 

2.3.1.46 0 0 0 

2.5.1.49b 0.00533102 0 0.00533102 

3.3.1.1 0.000341248 0 0.000341248 

2.1.1.13 0.00567226 0 0.00567226 

2.5.1.6 0.000341248 0 0.00443623 

2.1.1.37 0 0 0 

4.1.1.50 0 0 0 

2.5.1.16a 0 0 0 

2.4.2.28 0 0 0 

5.3.1.23 0 0 0 

4.2.1.109 0 0 0 

3.1.3.77 0 0 0 

1.13.11.54 0 0 0 

1.13.11.53 0 0 0 

tRNA 2.1.2.9b 0 0 0 

tRNA 6.1.1.10 0 0 0 

3.5.2.10 0 0 0 

4.4.1.16 0 0 0 

6.3.5.5 0.1795 0 0.221111 

2.1.3.2 0.165046 0 0.221111 

3.5.2.3 -0.165046 -0.221111 0 

1.3.98.1a -26.8715 -143.26 0.705 

2.4.2.10 -0.165046 -0.221111 0 

4.1.1.23 0.165046 0 0.221111 

1.3.98.1b 27.0365 -0.705 143.26 

3.1.3.5g 0 -151.41 1000 

2.7.4.14a 0.156641 -1000 1000 

_2.7.4.22 0 -1000 1000 

2.4.2.9 0 0 0 

3.6.1.19e 0 0 75.705 

2.7.4.6e 0.156641 -1000 151.41 

3.5.4.13a 0 0 1000 

6.3.4.2 0.156641 0 151.41 

2.7.4.6h 0 -1000 75.705 

3.6.1.19f 0 0 75.705 

2.7.4.9b 0 0 75.705 

1.17.4.1e 0 0 1000 

2.1.1.148 0 0 0 

2.7.7.8c 0 0 151.41 

2.7.7.6c 0 0 151.41 

3.5.4.5a 0 -1000 151.41 

3.5.4.1a 0 0 0 

2.7.4.6f -0.151915 -151.41 1000 

2.7.4.14b -0.00268256 -151.41 1000 
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1.17.4.1d -0.149233 -1000 151.41 

3.1.3.5h 0 -1000 151.41 

2.7.4.6g 0.149233 -151.41 1000 

2.7.4.14c 0 0 0 

3.1.3.5i 0 0 0 

3.5.4.5b 0 0 0 

3.5.4.13b 0 0 1000 

2.7.7.6d 0 0 151.41 

2.7.7.8d 0 0 151.41 

2.7.7.7c 0.147713 -151.41 151.41 

3.1.3.5j 0 0 0 

2.7.4.9a 0 0 0 

2.7.4.6i 0 0 0 

2.7.7.7d -0.00120428 -0.00120428 0 

_3.5.4.1b 0 0 0 

3.6.1.13 0 0 0 

2.7.6.1 0.174554 0 0.221111 

2.4.2.14 0 0 0.209474 

6.3.4.13 0 0 0.209474 

2.1.2.2a 0 -1000 0.209474 

6.3.5.3 -1.66973e-017 0 0.209474 

6.3.3.1 -1.66973e-017 0 0.209474 

6.3.4.18 -1.66973e-017 0 0.209474 

5.4.99.18 -1.66973e-017 0 0.209474 

6.3.2.6 -1.66973e-017 0 0.209474 

4.3.2.2b -1.66973e-017 0 0.209474 

2.1.2.3a 0.00541345 4.56036e-017 0.209474 

2.4.2.7c 0 0 0 

3.5.4.10 -0.00541345 -1000 1000 

2.1.2.3b 0 -1000 1000 

3.1.3.5c -7.77668 -302.84 -0.02 

_2.7.4.3c 0 0 75.705 

3.6.1.19a 0 0 75.705 

3.6.1.19g 0 0 0 

_1.17.4.1b 0 0 0 

2.7.4.6j 0 0 151.41 

2.7.4.6b 0 0 0 

1.1.1.205 7.69274 0.02 302.84 

3.5.4.4a 7.77668 0.02 302.84 

3.1.3.5d 0 0 0 

3.6.1.19b 0 0 0 

6.3.5.2 7.69274 0.02 302.84 

3.1.3.5a 7.77634 0.02 302.84 

2.4.2.7a 0 0 0 

2.7.4.3a 0.720697 -1.99 151.41 

2.7.4.6a -7.82911 -1000 1000 

2.7.1.40b 0 -1000 1000 

1.17.4.1a 7.82911 -151.39 302.84 

2.7.4.3b 0 0 0.00409498 

3.1.3.5b 0 -0.00409498 0 

2.7.7.7a -7.83032 -302.84 151.39 

2.7.7.6a 0 0 151.41 

2.7.7.8a 5.5203e-017 0 151.41 

3.5.4.4b 0 0 0 

3.1.3.5e 0 0 0 

2.4.2.7b 0 0 0 

2.7.4.8a 7.68533 0.02 302.84 

3.6.1.19c 0 0 75.705 
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1.17.4.1c -7.68533 -302.84 151.39 

2.7.4.6c 0 -1000 1000 

2.7.1.40c -0.0893555 -1000 1000 

2.7.4.8b 0 0 75.705 

2.7.4.6d 7.69335 -1000 1000 

2.7.1.40d 0.0080211 -1000 1000 

3.1.3.5f 0 0 0 

3.6.1.19d 0 0 75.705 

3.1.7.2 0 0 0 

3.6.1.11 0 0 0 

2.7.7.6b 0 0 151.41 

2.7.7.8b 0 0 151.41 

2.7.7.7b 7.68381 -151.39 302.84 

2.7.7.4 0 0 100.94 

2.7.1.25 0 0 151.41 

_2.7.7.53a 0 0 50.47 

2.7.7.53b 0 -50.47 0 

4.6.1.1a 0 0 0 

4.6.1.1b 0 0 0 

3.5.4.16 0 0 0 

4.1.2.25 0 0 0 

2.7.6.3 0 0 0 

2.5.1.15a 0 0 0 

2.5.1.15b 0 0 0 

2.6.1.85 0 0 0 

·6.3.4.3 0 0 151.41 

·4.1.3.38 0 0 0 

6.3.2.12 0 0 0 

·1.5.1.3 0 0 0 

6.3.2.17a 0 0 0 

6.3.2.17b 0 0 0 

6.3.2.17c 0 0 0 

_4.2.3.12 0 0 0 

2.1.2.2b 0 0 1000 

_1.4.4.2 0.0478024 0 60.564 

_2.1.2.10a 0.0478024 0 60.564 

_1.8.1.4c 0.0478024 0 60.564 

1.5.1.5 0.00541345 4.56036e-017 0.418947 

3.5.1.10 0 0 151.41 

3.5.4.9a 0.00541345 -1000 0.418947 

6.3.3.2 0 0 151.41 

2.1.2.10b 0 0 151.41 

·1.5.1.20a -0.00567226 -1000 1000 

·1.5.1.20b 0 -1000 1000 

2.1.2.9a 0 0 0 

_PSII 0 0 0.98 

_UQ 0 0 0.98 

_citb6 27.0365 0 403.8 

_1.10.9.1 0 0 0.98 

_PSI 0 0 1.96 

_Fd 1.96 0 1.96 

_FNR 0.978294 -8.32667e-017 101.927 

_1.18.1.2 0.978294 0 101.927 

_3.6.3.14 40.0648 0.75 908.52 

3.6.1.1 8.62266 0.02 302.84 

2.7.4.1 0 0 0 

_NADH2 0 0 50.47 

_BidHyd 0 0 50.47 
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_cyclic 0 0 60.956 

_NDH1 0 0 0.98 

_1.6.5.3 0 0 302.82 

_1.6.99.3 0 0 302.82 

_quinol oxidase 0 0 67.1367 

_cit c 27.0365 0 403.8 

_1.9.3.1 13.0283 0 201.41 

_PSIaltern 1.96 0 1.96 

2.3.1.35 0.0144542 0 0.0144542 

2.6.1.11 -0.0144542 -0.0144542 0 

1.2.1.38 -0.0144542 -0.0144542 0 

2.7.2.8 0.0144542 0 0.0144542 

2.3.1.1 0 0 0 

4.2.1.1a 0 -10.1106 11.99 

_1.4.3.4 0 0 0 

_1.2.1.3a 0 0 0 

_1.2.1.3b 0 0 0 

1.7.7.2 0 -8.96412 0 

1.7.7.1 0 -8.96412 0 

4.2.1.104 0 0 0 

3.5.5.1 0 0 0 

1.4.3.16b 0 0 8.85319e-017 

_2.5.1.72 0 0 8.85319e-017 

2.4.2.19 0 0 8.85319e-017 

3.1.3.5k 0 0 151.41 

2.7.7.1a 0 0 8.85319e-017 

2.7.7.18a 0 0 8.85319e-017 

6.3.1.5 0 0 0 

2.7.7.1b 0 0 0 

2.7.7.18b 0 0 0 

3.1.3.5l 0 0 0 

2.7.1.23 0 0 0 

1.6.1.2 0 -1000 1000 

·4.1.3.40 0 0 0 

·octaprenylsyn 0 0 0 

2.5.1.-a 0 0 0 

4.1.1.-a 0 0 0 

·OCTAPRENYLPHENOL-

HYDROX-RXN 

0 0 0 

·2.1.1.64b 0 0 0 

1.14.13.-a 0 0 0 

2.1.1.201 0 0 0 

1.14.13.-b 0 0 0 

·2.1.1.64a 0 0 0 

_UQsyf 0 0 0 

5.4.4.2 0 0 0 

2.2.1.9 0 0 0 

4.2.99.20 0 0 0 

4.2.1.113 0 0 0 

6.2.1.26 0 0 0 

4.1.3.36 0 0 0 

2.5.1.74a 0 0 0 

2.5.1.74b 0 0 0 

2.1.1.163a 0 0 0 

2.1.1.163b 0 0 0 

3.1.2.28 0 0 0 

1.8.4.8 0 0 0 

·1.13.11.8 0 0 0 
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1.8.7.1 0 0 0.00813392 

3.1.3.7 0 0 151.41 

6.2.1.1a 0.517959 -1.99 100.947 

1.2.1.3c 0 -1.99 1.21198e-017 

1.1.1.1 0 0 1.99 

2.7.2.1a 0 0 0 

_1.1.1.86c 0 0 0.0210493 

_4.2.1.9c 0 0 0.0210493 

2.1.2.11 0 0 0 

6.3.2.1 0 0 0 

_1.2.1.3d 0 0 0 

2.7.1.33 0 0 0 

6.3.2.5 0 0 0 

4.1.1.36 0 0 0 

_2.7.7.3 0 0 0 

_2.7.1.24 0 0 0 

_6.4.1.2a 0 0 0.0197229 

_6.4.1.2b 0.0197229 0 0.0197229 

_6.3.4.14 0.0197229 0 0.0197229 

2.3.1.39 0.0197229 0 0.0197229 

2.3.1.41a 0.00296527 -1.93632e-018 0.00296527 

2.3.1.41b 0.00296527 0 0.00296527 

1.1.1.100a 0.00296527 0 0.00296527 

4.2.1.-a 0.00296527 0 0.00296527 

1.3.1.9a 0.00296527 0 0.00296527 

2.3.1.41c 0.00296527 0 0.00296527 

1.1.1.100b 0.00296527 0 0.00296527 

4.2.1.-b 0.00296527 0 0.00296527 

1.3.1.9b 0.00296527 0 0.00296527 

2.3.1.41d 0.00296527 0 0.00296527 

1.1.1.100c 0.00296527 0 0.00296527 

4.2.1.-c 0.00296527 0 0.00296527 

1.3.1.9c 0.00296527 0 0.00296527 

2.3.1.41e 0.00296527 0 0.00296527 

1.1.1.100d 0.00296527 0 0.00296527 

1.3.1.9d 0.00296527 0 0.00296527 

4.2.1.-d 0.00296527 0 0.00296527 

2.3.1.41f 0.00296527 0 0.00296527 

1.1.1.100e 0.00296527 0 0.00296527 

4.2.1.-e 0.00296527 0 0.00296527 

1.3.1.9e 0.00296527 0 0.00296527 

2.3.1.41g 0.00296527 0 0.00296527 

1.1.1.100f 0.00296527 0 0.00296527 

4.2.1.-f 0.00296527 0 0.00296527 

1.3.1.9f 0.00296527 0 0.00296527 

2.3.1.41h 0.00128896 0 0.00128896 

1.1.1.100g 0.00128896 0 0.00128896 

4.2.1.-g 0.00128896 0 0.00128896 

1.3.1.9g 0.00128896 0 0.00128896 

2.3.1.179i 0.000642385 0 0.000642385 

1.1.1.100h 0.000642385 0 0.000642385 

4.2.1.-h 0.000642385 0 0.000642385 

1.3.1.9h 0.000642385 0 0.000642385 

_1.14.19.1a 0.000395129 0 0.000395129 

_1.14.19.1b 0.000374176 0 0.000374176 

·3.1.2.14a 0 0 0 

·3.1.2.14b 0 0 0 

·3.1.2.14c 0 0 0 
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·3.1.2.14d 0.00167631 0 0.00167631 

·3.1.2.14e 0.000251446 0 0.000251446 

·3.1.2.14f 0.000395129 0 0.000395129 

·3.1.2.14g 0.000268209 0 0.000268209 

·3.1.2.14h 0.000374176 0 0.000374176 

2.3.1.179a 0 0 0 

2.3.1.179b 0 0 0.00296527 

2.3.1.179c 0 0 0.00296527 

2.3.1.179d 0 0 0.00296527 

2.3.1.179e 0 0 0.00296527 

2.3.1.179f 0 0 0.00296527 

2.3.1.179g 0 0 0.00296527 

2.3.1.179h 0 0 0.00128896 

2.3.1.180a 0 0 0 

2.3.1.180b 0 0 0.00296527 

2.3.1.180c 0 0 0.00296527 

2.3.1.180d 0 0 0.00296527 

2.3.1.180e 0 0 0.00296527 

2.3.1.180f 0 0 0.00296527 

2.3.1.180g 0 0 0.00296527 

2.3.1.180h 0 0 0.00128896 

6.2.1.3 0 0 0 

tRNA 1.2.1.70 -0.0163799 -0.0163799 0 

5.4.3.8 0.0163799 0 0.0163799 

4.2.1.24 0.00818996 0 0.00818996 

2.5.1.61 0.00204749 0 0.00204749 

4.2.1.75 0.00204749 0 0.00204749 

_uroporphyrinogen-

I_spont 

0 0 0 

_uroporphyrin-

I_spont 

0 0 0 

4.1.1.37b 0 0 0 

_coproporphyrin-

I_spont 

0 0 0 

_uroporphyrin-

III_spont 

0 0 0 

4.1.1.37a 0.00204749 0 0.00204749 

_1.3.3.3 0.00204749 0 0.00204749 

_1.3.99.22 0 0 0.00204749 

·1.3.3.4 0.00204749 0 0.00204749 

4.99.1.1 0.00170624 0 0.00170624 

2.5.1.-c 0 0 0 

_COX15 0 0 0 

_1.14.99.3 0.00170624 0 0.00170624 

1.3.7.5 0.00170624 0 0.00170624 

6.6.1.1 0.000341248 0 0.000341248 

2.1.1.11 0.000341248 0 0.000341248 

Zn-Bacterio-

chlorophyll-a 

0 0 0 

1.14.13.81a 0.000341248 0 0.000341248 

1.14.13.81b 0.000341248 0 0.000341248 

1.14.13.81c 0.000341248 0 0.000341248 

1.3.1.33a 0 0 0.000340664 

·1.3.1.75a 0 -8.62589e-017 0.000340664 

·1.3.1.75b -2.1684e-019 -1.78551e-036 0.000340664 

1.3.7.7 0 0 0.000340664 

_BacChl 0 0 0 

_BacPheo 0 0 0 
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1.3.1.33b 0 0 0.000340664 

_dChla 0.000341248 0 0.000341248 

_Chla 0.000341248 0 0.000341248 

2.5.1.62a 0 0 0.000340664 

_Chlb 0 0 0 

_Pheo 0 0 0 

2.1.1.107a 0 0 0 

2.1.1.107b 0 0 0 

_2.1.1.130 0 0 0 

·4.99.1.3 0 0 0 

2.1.1.151 0 0 0 

2.1.1.131a 0 0 0 

2.1.1.133a 0 0 0 

3.7.1.12 0 0 0 

2.1.1.195 0 0 0 

_1.3.1.54a 0 0 0 

·RXN-8766 0 0 0 

·RXN-8767 0 0 0 

5.4.1.2a 0 0 0 

6.3.5.11 0 0 0 

2.1.1.131b 0 0 0 

2.1.1.133b 0 0 0 

·2.1.1.152 0 0 0 

1.3.1.54b 0 0 0 

2.1.1.132 0 0 0 

5.4.1.2b 0 0 0 

6.3.5.9 0 0 0 

6.6.1.2 0 0 0 

·1.16.8.1 0 0 0 

2.5.1.17a 0 0 0 

6.3.5.10 0 0 0 

6.3.1.10a 0 0 0 

·RXN-8626 0 0 0 

·4.1.1.81 0 0 0 

6.3.1.10b 0 0 0 

2.5.1.17b 0 0 0 

2.7.1.156 0 0 0 

2.7.7.62 0 0 0 

2.7.8.26 0 0 0 

3.5.4.25 0 0 0 

3.5.4.26 0 0 0 

1.1.1.193 0 0 0 

2.5.1.78 0 0 0 

DIOHBUTANONEPSYN-RXN 0 0 0 

2.5.1.9 0 0 0 

_lumazine-spont 0 0 0 

2.7.1.26 0 0 0 

2.7.7.2 0 0 0 

_benzimidazole-spont 0 0 0 

·2.4.2.21 0 0 0 

·3.1.3.73 0 0 0 

·2.4.2.1 0 0 0 

·2.7.1.1 0 0 151.41 

_1.8.1.9 0.514222 -51.45 100.947 

·_Thiored 0 0 100 

1.11.1.6 0 0 50.3525 

_1.15.1.1 0 0 0 

1.1.1.38 0 0 37.8525 
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4.1.1.31 0.420957 0 60.564 

1.2.4.1 0 0 50.47 

2.3.1.12 0 -50.47 0 

1.8.1.4a 0 0 50.47 

·4.2.3.3 0 0 75.705 

4.4.1.5 0 -75.705 0 

3.1.2.6 0 0 75.705 

1.1.1.28 0 0 75.705 

3.4.11.2a 3.3695e-018 0 75.705 

3.4.11.2b 0 0 0 

6.3.2.3 0 0 75.705 

_2.3.2.2a 1.97901e-017 0 75.705 

_2.3.2.2b -1.46859e-017 0 50.47 

_2.3.2.2c 0 0 50.47 

_2.3.2.2d 0 0 50.47 

_2.3.2.2e 0 0 50.47 

_2.3.2.2f 0 0 50.47 

_2.3.2.2g 0 0 50.47 

_2.3.2.2h 0 0 50.47 

_2.3.2.2i 0 0 50.47 

_2.3.2.2j 0 0 50.47 

_2.3.2.2k 0 0 50.47 

_2.3.2.2l 0 0 50.47 

_2.3.2.2m 0 0 0 

_2.3.2.2n 0 0 50.47 

_2.3.2.2o 0 0 50.47 

_2.3.2.2p 0 0 50.47 

_2.3.2.2q 0 0 50.47 

_2.3.2.2r 0 0 50.47 

_2.3.2.2s 0 0 50.47 

_2.3.2.2t 0 0 50.47 

3.5.2.9 0 0 50.47 

_2.5.1.18 0 0 0 

_2.3.2.2u 0 0 0 

1.11.1.9 0 0 33.6467 

_1.8.1.7a 0 0 33.6467 

_1.8.1.7b 0 0 33.6467 

·6.3.2.2 0 0 75.705 

·2.3.2.4a -1.46859e-017 0 50.47 

·2.3.2.4b 0 -7.67119e-017 50.47 

·2.3.2.4c 0 0 50.47 

·2.3.2.4d 0 0 50.47 

·2.3.2.4e 0 0 50.47 

·2.3.2.4f 0 0 50.47 

·2.3.2.4g 0 0 50.47 

·2.3.2.4h 0 0 50.47 

·2.3.2.4i 0 0 50.47 

·2.3.2.4j 0 1.09732e-016 50.47 

·2.3.2.4k 0 0 50.47 

·2.3.2.4l 0 0 0 

·2.3.2.4m 1.46859e-017 0 50.47 

·2.3.2.4n 0 0 50.47 

·2.3.2.4o 0 -4.56036e-017 50.47 

·2.3.2.4p 0 0 50.47 

·2.3.2.4q 0 0 50.47 

·2.3.2.4r 0 3.14411e-017 50.47 

·2.3.2.4s 0 0 50.47 

·2.3.2.4t 0 0 0 
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1.1.1.284a 0 0 1000 

1.1.1.284b 0 -1000 0 

3.1.2.12 0 0 0 

4.1.2.13c 0 0 0 

2.7.1.4 0 0 75.705 

5.3.1.8 0 0 0 

5.4.2.8 0 0 0 

2.7.7.13 0 0 0 

4.2.1.47 0 0 0 

1.1.1.271 0 0 0 

2.4.1.83 0 0 0 

2.7.7.22 0 0 0 

2.6.1.16 0 -1.7436e-016 151.41 

3.5.99.6 0 0 151.41 

3.5.1.25 0 0 0 

4.2.1.126 0 0 0 

5.4.2.10 0 0 0 

2.3.1.157 0 0 0 

2.7.7.23 0 0 0 

2.5.1.7 0 0 0 

_1.1.1.158 0 0 0 

_5.1.3.14a 0 0 0 

_5.1.3.14b 0 0 0 

5.1.3.9 0 0 0 

6.3.2.8 0 0 0 

6.3.2.9 0 0 0 

6.3.2.13 0 0 0 

6.3.2.10a 0 0 0 

2.7.8.13a 0 0 0 

2.4.1.227a 0 0 0 

_6.3.1.2b 0 0 0 

6.3.2.10b 0 0 0 

2.7.8.13b 0 0 0 

2.4.1.227b 0 0 0 

_6.3.1.2c 0 0 0 

6.3.2.10c 0 0 0 

2.7.8.13c 0 0 0 

2.4.1.227c 0 0 0 

_6.3.1.2d 0 0 0 

·2.3.2.10a 0 0 0 

·2.3.2.10b 0 0 0 

·2.3.2.10c 0 0 0 

6.3.2.4 0 0 151.41 

3.6.1.27 0 0 0 

_peptidoglycan_syfa 0 0 0 

_2.4.1.129 0 0 0 

3.4.16.4 0 0 0 

3.5.1.28 0 0 0 

2.3.1.129 0 0 0 

3.2.1.24 0 0 0 

2.4.1.14 0 0 75.705 

3.2.1.26 0 0 75.705 

2.4.1.25 0 0 0 

_2.4.1.1 0 0 151.41 

2.7.7.27 0.191957 0 151.41 

_a-glucansyf 0.0319929 -3.93972e-017 0.0552778 

_2.4.1.21a 0 0 151.41 

_glycsyf 0.0319929 -3.93972e-017 0.0552778 
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_2.4.1.21b 0.0639858 0 151.41 

_2.4.1.18 0.0319929 -151.41 0.0552778 

5.4.2.2 -0.191957 -75.705 1.84266e-016 

4.2.1.45 0 0 0 

2.4.1.12 0 0 0 

_3.2.1.21a 0 0 0 

_3.2.1.21b 0 0 0 

2.2.1.7 0.00472587 0 0.00608043 

1.1.1.267 -0.00472587 -0.00608043 0 

2.7.7.60 0.00472587 0 0.00608043 

2.7.1.148 0.00472587 0 0.00608043 

4.6.1.12 0.00472587 0 0.00608043 

1.17.7.1 -0.00472587 -0.00608043 0 

1.17.1.2a 0.00472587 0 0.00608043 

1.17.1.2b 0 0 0 

5.3.3.2 0.00118147 0 0.00152011 

2.5.1.29a 0.00118147 0 1000 

2.5.1.1 0.00118147 0 0.00152011 

2.5.1.84 0 0 0 

2.5.1.85 0 0 0 

1.3.1.83 0 0 0.000340664 

_VitE-spont 0 0 0 

_2.3.1.181a 0 0 0 

_2.8.1.8a 0 0 0 

_2.8.1.8b 0 0 0 

_2.3.1.181b 0 0 0 

_2.7.7.63a 0 0 0 

·transp_lipoate 0 0 0 

_2.7.7.63b 0 0 0 

_2.5.1.32 0.000590734 2.69789e-036 0.000590734 

_1.3.5.5a 0.000590734 2.69789e-036 0.000590734 

_1.3.5.5b 0.000590734 2.69789e-036 0.000590734 

1.3.5.6a 0.000590734 2.69789e-036 0.000590734 

1.3.5.6b 0.000590734 2.69789e-036 0.000590734 

CrtLb-a 0 0 0 

CrtLb-b 0 0 0 

CrtLb-c 9.96804e-005 0 9.96804e-005 

CruA 0 0 9.96804e-005 

CrtLb-d 9.96804e-005 0 9.96804e-005 

_CrtRa 4.72958e-005 0 4.72958e-005 

_CrtRb 4.72958e-005 0 4.72958e-005 

·CrtOa 0 0 0 

·CrtOb 0 0 0 

_CrtRc 0 0 0 

_CrtRd 0 0 0 

_CrtRe 0 0 0 

_CrtRf 0 0 0 

_gCar 0 0 0 

_CrtRg 0 0 0 

5.2.1.13 0 0 0 

·2.7.7.9 0 0 75.705 

5.1.3.2a 0 0 0 

3.13.1.1 0 0 0 

1.1.1.22 0 0 0 

2.7.7.24 0 0 0 

5.1.3.2b 0 0 0 

2.7.7.33 0 0 0 

4.2.1.46 0 0 0 
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5.1.3.13a 0 0 0 

5.1.3.13b 0 0 0 

1.1.1.133a 0 0 0 

1.1.1.133b 0 0 0 

5.4.99.9 0 0 0 

6.2.1.1b 0 0 0 

2.7.2.1b 0 0 0 

6.2.1.1c 0 0 0 

_1.2.1.3e 0 0 0 

4.2.1.99 0 0 0 

PYRIMSYF1-RXN 0 0 0 

·2.7.1.49 0 0 0 

2.7.4.7 0 0 0 

1.4.3.19 0 0 0 

ThiG 0 0 0 

2.5.1.3 0 0 0 

2.7.4.16 0 0 0 

·2.7.1.89 0 0 0 

3.5.99.2 0 0 0 

2.3.1.47 0 0 0 

2.6.1.62 0 0 0 

6.3.3.3 0 0 0 

2.8.1.6 0 0 0 

6.3.4.15 0 0 0 

RXN-7101 0 0 0 

_3.4.1.- 0 0 0 

_3.5.2.6 0 0 0 

_2.5.1.31a 0 -1000 0.00152011 

_2.5.1.31b 0 0 0 

2.5.1.10 0.00118147 0 0.00152011 

2.6.99.2 0 0 0 

_1.1.1.262 0 0 0 

RXN-8447 0 0 0 

4.2.3.1b 0 0 0 

_VitB6 0 0 0 

1.1.1.94 0 0 0 

_2.3.1.15 0 0 0 

2.3.1.51 0 0 0 

2.7.7.41 0 0 0 

2.7.1.107 0 0 0 

2.7.8.5 0 0 0 

3.1.3.25 0 0 0 

3.1.4.- 0 0 0 

1.1.1.31 0 0 0 

5.3.1.13 0 0 0 

2.5.1.55 0 0 0 

3.1.3.45 0 0 0 

2.7.7.38 0 0 0 

3.5.1.108 0 0 0 

2.4.1.182 0 0 0 

2.7.1.170 0 0 0 

1.1.1.6 0 0 0 

4.1.99.5 0 0 0 

2.8.1.1 0 0 0 

3.8.1.5 0 0 0 

4.1.99.12 0 0 0 

3.4.13.22 0 0 151.41 

1.14.99.41 0 0 0 
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1.12.98.1 0 0 0 

3.1.1.45 0 0 0 

2.5.1.77 0 0 0 

1.7.1.13 0 0 0 

2.10.1.1 0 0 0 

_1.16.1.1 0 0 0 

3.5.4.- 0 0 0 

2.3.1.28 0 0 0 

4.2.1.35 0 0 0 

3.1.3.71 0 0 0 

2.1.1.104 0 0 0 

Alabm 0.0246491 0 0.0246491 

Aspbm 0.0142344 0 0.0142344 

Argbm 0.0144542 0 0.0144542 

Asnbm 0.0102773 0 0.0102773 

Lysbm 0.0114589 0 0.0114589 

Thrbm 0.0159381 0 0.0159381 

Serbm 0.0150587 0 0.0150587 

Cysbm 0.0028029 0 0.0028029 

Glybm 0.0192906 0 0.0192906 

Glubm 0.0168724 0 0.0168724 

Glnbm 0.0158282 0 0.0158282 

Probm 0.0140695 0 0.0140695 

Trpbm 0.00409444 0 0.00409444 

Phebm 0.0111567 0 0.0111567 

Tyrbm 0.00807896 0 0.00807896 

Hisbm 0.00541345 0 0.00541345 

Valbm 0.0175319 0 0.0175319 

Ilebm 0.0172571 0 0.0172571 

Leubm 0.00351737 0 0.00351737 

Metbm 0.00533102 0 0.00533102 

_a protein 2.74795e-005 0 2.74795e-005 

dATP 0.00120428 0 0.00120428 

dGTP 0.00151972 0 0.00151972 

dTTP 0.00120428 0 0.00120428 

dUTP 0 0 0 

dCTP 0.00151972 0 0.00151972 

AMP 0.00840484 0 0.00840484 

UMP 0.00840484 0 0.00840484 

CMP 0.00740843 0 0.00740843 

GMP 0.00740843 0 0.00740843 

8C-lipidbm 0 0 0 

10C-lipidbm 0 0 0 

12C-lipidbm 0 0 0 

14C-lipidbm 0.00167631 0 0.00167631 

16C-lipidbm 0.000251446 0 0.000251446 

18C-lipidbm 0.000268209 0 0.000268209 

(9Z)16C-lipidbm 0.000395129 0 0.000395129 

(9Z)18C-lipidbm 0.000374176 0 0.000374176 

PhCybibm 0.00170624 0 0.00170624 

Chlabm 0.000341248 0 0.000341248 

Carotenebm 0.000491053 0 0.000491053 

Glycbm 0.0319929 0 0.0319929 

Zeaxbm 4.72958e-005 0 4.72958e-005 

Beta-carotenebm 5.23846e-005 0 5.23846e-005 

ATPbm 0 0 0 

ADPbm 0 0 0 

Biomass 0.0598681 0 0.0598681 
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_Growth 0.0598681 0 0.0598681 

_lightII 0 0 1.96 

_lightI 1.96 0 1.96 

CO2in 1.99 0 1.99 

4.2.1.1b -1.8105 -10 10 

_H2CO3transport 1.99 0 1.99 

_H2CO3desprot 1.99 -10 10.2211 

NADHmain 0.5 0.5 50.97 

NADPHmain 0.5 0.5 50.97 

Phosphate TRANS-

RXN59G-90 

0.305095 0 100.442 

_3.6.3.27 0 0 100.442 

_Phosphate_out 0 0 100 

H2O -26.2401 -250.41 52.41 

PROTONS -15.8535 -356.31 149.41 

sulfate TRANS-

RXN59G-407 

0 -104 50.47 

nitrate TRANS-

RXN59G-237 

0 0 8.96412 

ammonia H3N TRANS-

RXN59G-178 

0.838087 -151.41 151.41 

_ammonia H3N -0.838087 -151.41 151.41 

iron TRANS-RXN59G-

711 

0 0 0 

magnesium TRANS-

RXN59G-340 

0 0 151.41 

magnesium TRANS-

RXN59G-53 

0.000341248 -151.41 0.000341248 

cobalt TRANS-RXN59G-

71 

0 0 0 

_COtransp -0.00170624 -0.00170624 0 

_H2O2transp 26.8715 -0.705 100 

_O2in 0 0 1000 

_O2out 13.8309 0 1000 

potassium 3.6.3.12 0 0 0 

potassium TRANS-

RXN59G-35 

0 0 0 

chloride TRANS-

RXN59G-171 

0 0 0 

chloride_ATPase 0 0 0 

sodium_symporter 0 0 0 

sodium_antiporter 0 0 0 

calcium TRANS-

RXN59G-708 

0 0 0 

molybdate_transport 0 0 0 

_3.6.3.4 0 0 0 

_3.6.3.30 0 0 0 

_3.6.3.25 0 0 105 

_H2 0 0 50.47 

sulfide TRANSP 0.00813392 0 0.00813392 

sulfite TRANSP 0 0 0.00813392 

_an [acyl-carrier 

protein] 

0.00593053 -1.93632e-018 0.00593053 

·_a protein 

disulfide 

R1Protein2R2R3S2 

0 0 0 

·_a protein dithiol 

H2R1Protein2R2R3S2 

0 0 0 
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_3.1.3.16 1.70962e-020 0 151.41 

_2.7.11.1 0 0 151.41 

_RNAout -5.5203e-017 0 0 

_DNAout -3.08998e-016 0 0 

_glycout 0 0 0.0552778 

_glycolaldehyde 0 0 0 

_eth 0 0 1.99 
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