A study of vulnerabilities on Android systems

Author: Vicente Javier Mozos Pérez

Directors: Dr. David de Andrés Martinez DISCA-UPV, Spain
Dr. Jesus Friginal Lopez LAAS-CNRS, France
Dr. Juan Carlos Ruiz Garcia DISCA-UPYV, Spain

Master's thesis
Master Universitario en Ingenieria de computadores
Departamento de Informatica de Sistemas y Computadores

September 2013

Table of Contents

T INEEOAUCTION ...ttt ettt ettt et s ae e bt et e e st e bt et e see e bt e ebeeenaeeennneennneans 8
2 Android 10 @ NUESHELL...c..oiiiiii et e 10
2.1 ANAIOIA TAYETS. ..ottt ettt ettt ettt e et e st e et e e neeentee e nnaas 10
2.2 Application COMPONENLS.ccueeeiieiieeieeitieeieeieeeeteerteeeteeteesebeesseesnbeesseeesseensaesnseenseesnseensseeas 11
2.3 Communication betWeen COMPONENLS.cecveerrierirrerreeereenieeereesseesreesseesseesseessseeessssesennnes 13
2.4 Android, a VUINETable SYSTEIM.......ccciuiieiiie ittt e e et e e e e eae e rae e e aaeeeaeeas 14
2.5 SUIMIMIATY ..ccuteeeiieeiie ettt ettt ettt et s bt e st et esae e et e esae e s ateesaneemneeseeeenneeseneensneeenannee 19

3 Classification of security t0ols for ANAIoidccceeeiiieiiiiiiiiiieeieee e 20
3.1 DYNAMIC tOOIS.....ueiiuiieiieeiieeiieeieeite ettt ettt e et e et e e b e e taeesseessaeesseessesssaesseeesseensseeassseeennnes 21
T B AN 416 1041 - 3 (s AU PRRPSP 21

T N N o S o T) PSSR 22

3 1.3 APK MUIHA00] ..ttt ettt e e e 24

I B Y, (5] (o115 oy SRS PPUPRPRRN 26

3.1.5 ASEF-Android Security Evaluation Frameworkcccccoooiiiiiiiniiiiiee e, 28

RIS ¥ 1 (o2 10 1o T TSR PRS PSPPSR 29
3.2.1 COMDIOTA ..ottt b et st b et et s 29
3.2.2 STOWAWAY ...eeitieeitieeeiteeeitee ettt e ettt e sttt e etteeeabeeesaseeesaseeeasseesanseeeanseeensseeennssaeeeeeanssssaeesennns 30

323 INEENE FUZZET.c....iiiiiiiiiieee ettt et e e e e 31

3.2.4 INtENt SIITTRT. ..ottt e e e e e st e e e aee e e e enraaeeeeeennes 32

3.3 TOOIS SUIMIMATY....cueiiiiieiiieiieiieetie et eteeete et teebeeteeesbeesteeesbeenseeeaseenseesnseenssesnseenseeenseensneesnnes 34
3.4 WhY WE ChOOSE IMEICUIYocutiiiiiiiieiiieeitesiie ettt e siteete et e ebeessbeeabaessaessseesssaeesasssaessnneas 35
TN U1 10010 | PSRRI 36

4 Methodology Supported DY METCULY.......cccuiiiiiiiieiieie ettt e ee e e ee e 37
4.1 Common attack injection Methodology.........ccoieriiiiiiiiiiiiiieieeee e 37
4.2 Attacks SuppOrted DY IMEICULYcccviieiiieiieeiieeieeeie et eeite et et e eaeesteeebeesteeenbeessaeenseessaeeennnes 37
4.2.1 Malformed INtENTS.cooiiiiiiiiiiiee ettt et et 37
4.2.1.1 SUIACE ATLACK.eeeieiieeciiie ettt e e e et e e e ta e e e aaeeeeeeenabaaeaeeenens 38

4.2.1.2 TNJECTIOMNS. ..ottt et tte ettt e bttt e et estteeaseessteeabeessaeenseensseenseesannseesansaeeennsees 38

4.2.1.3 ODbSEIrVabIle OULPUL.....ccueieiieiieiiieiieeie ettt ettt e st e ereesaeeebeessaesnsaessaeenseesseeennes 39

4.2.2 BIOAACASTS.veetieiiieette ettt ettt ettt e h e et e bttt e b e et e bt e et e e bt e e enbeeeeennes 40
4.2.2.1 AttaCK SUITACE......ccuiieiiiieciee ettt ettt e s e et e e e eaeeeenssaaeaeeennns 40

4.2.2.2 TNJECTIONS ..eeevieniieeiiieiie et eite et et e et e estte e bt estteesbeessaesaseessaeenseensseenseesansseesansaeeennsees 40

4.2.2.3 ODbSEIrVabIe OULPUL.....cviieiieiieiiieiieeieeiee ettt et e st e ereesareebeessaesnseesseesnseenseesnnes 41

4.2.3 SQL INJECTIOMN. ...utieiiieiieeiieeieeete ettt et et e et e sateeteesteeebeessaeenseenseesnseenseesnsaeeansseeeennsens 42

4.2.3.1 Attack SUITACE.ccueiiiiiiiieieeee et 42

4.2.3.2 INJECHIOMNS. ..eeetieeiiieeiieecitee ettt e et e e e tteeebeeesbeeessbeeessseeesseeesseesssseesnsseaeseennssseaeeeannnns 44

4.2.3.3 ODSEIrvable OULPUL.......cceiriiriiriiiieeieeitete ettt 46

4.2.4 Command EXECULION.cc.eiiiiiiiriiiiieiierieete ettt ettt sttt 47
4.2.4.1 Attack SUITACE.ccueiiiiiiiieiee et e e 47

4.2.4.2 TNJECTIOMNS. ..eeutreeiiieeeiieeeeteeeiteeeetteeeteeeeseeesbeeessseeessseeesseeessseessseesasssaessensssseeesansns 47

4.2.4.3 ODSErvable OULPUL.......cceiriiiiiriieeteeieeteet ettt st 48

I 1110111 F2) o SRR RURPPRRRP 48

R O I 1 1 16 2SRRI 49
5.1 TaIZEt DIEVICES...uuvieeiieeeiieeeiteeeieeeettee ettt e ettt e et e e st e e e teeesatee e sseesssaesssaaessssaessseeensseeensseeesseens 50
5.2 WOTK L0QQ.......eiiiiiieeiiee ettt e et e et e e e tae e e aaeesssaeesssaeesssaeesasaeeensnnaeeens 50
5.3 EXperiments CONTIGUIATION. .. .ccvtrtirtiiieriieteete ettt sbe et s e e ebee e 51
5.3.1 Relevant ParameEters.cecueeueeruerierieeieeiesteeteeiee st ettt e bt e tesieesteenbeeseenbeeteseeeenteesnreeeas 51

S RESUILS....eeetiie ettt e et e et e e e tb e e e ta e e e taeeetaeeeaeeeeataeeabaeeanreeeanbaeeanraeennraeens 52
5.4.1 Malformed INTENES.eiiiiiieiiieeciie ettt ettt e e e e et e e stae e s reeessreeesaseeesssaeeaeeenns 53

5.4.2 BrOACASTS. ...c..eiuiiiiiiieeieiitest ettt ettt sttt et b et bbb et e st e e 54

5.4.3 SQL INJECHION. ..c.uiiitieiieeiteeiie et ete et et e et et e et e stteesbeesaaeesseesssaesseessseeseesssaeeanssaesansseas 56

5.4.4 Command EXECULION.ceiutiiriiiaiieiie ettt ettt ettt ettt et e st e e sbb e e e sbbeeesbbeeesanaeeas 58

Rl 11 1070 3 - TSRO PR 59

6 TIPS AN LTICKS L.uviiiiieiieeie ettt ettt et e et e st e st e e s bt e enbe e steenteenseeenbeenseeenns 61
6.1 STOTING AALA.eeiieeiiieiieeie ettt ettt ettt et e et e e teeeabe e saeesseenssessbeessaessseensseeansseeeannees 61
6.1.1 USING INtEINAL STOTAZE. ... eeeivieeiiiieeiiieeiee et e ettt e e rtteesieeestaeesaeeesbeeessnssaeeesenssnneeesannes 62

6.1.2 USING eXtErNAl STOTAZE......cciiiieiiieeiiieeiiee et e erteeetteeeteeesteeessaeeessseeesseeessseessseessneaaeens 62

6.1.3 USING CONLENTE PIOVIACTS.eeeieeieieiieeiieeiie ettt et eee et e siee et e st eebeesateesnbeeeenbeeeenneeas 62

6.2 USING PeIMISSIONS. ... eeeiiieiieeiiieiieetierite et et e eteeteesteeteessbeesseessseesseessseanseesssesnseenseeanseesssesnses 63
6.2.1 Requesting PermISSIONS.uieiiieeriieeiiieeiieeeiieeeiteeeiteeeteeesaeeessaeeeeaeaaeeesssnssaeeeeennnns 63

6.2.2 Creating PermISSIONS. ...cccuviieeiieeeiieeeiieeeteeeeteeeeteeeetteessaeeesseeessaeesssaeessseeesssaeassseesssseennns 64

0.3 SUINIMIATY ...ceeuiiieeiieeeite ettt et e ettt e ettt e sttt e sttt e sabeeesabee e st eesasbeeensbeeeabaeesnbaeesabaeennnbneeeeens 65

7 Conclusion and further WOTK.........cocooiiiiiiiinii e 66
S ITACA RESCATCH DAY.....coiiiiiiiiieeiie ettt ettt e e e e et e e st e e e beeesnsbaeeesennnnsaaeens 67
O RETEIEICES ...ttt ettt et sttt e e at e e bt e s ab e et e e eateenbeesabeeeeasbeeeeanbeeeensneeas 69
TO ATIIIEX ..ottt ettt ettt ettt ettt et a e e bt sa e et e e ettt s et e bt e sae e e beenaneeneeenaee 73
10.1 Automating the experiments: Masquerade...........ccoeecveeiierieeiiienieeieeieeiee e ereeeeeee e 73

LO. 1.1 MASQUETAAE.eeiiieiieeiie ettt ettt ettt ettt et e eete et e s ebeeseesabeeseesnbeeensseeeensseeeenses 73

LO T T T ACHVIEIES. .eettenteeieeeeieste ettt ettt ettt et sb et et esaeebeeaeesseebeeneeeneee 74
TO.1.1.2 BrOAACASES. ... eeeueieeiieeiie ettt ettt ettt et s e e ettt e e et e e enneeeaas 75
10.1.1.3 PaCKAZE MENUL....ccutiiiiiiiieiie ettt ettt et e et eeebeee e 76
LO.1. 1.4 PLOVIARTS. ..ottt et sttt ettt et e e 77
LO. LTS SIVICES. ¢ttt ettt ettt ettt et e bt e et a e et e st e e et e e e eabeeeenaeeeeas 78
10.1.1.6 EXPIOTES TNEINUvieeiiiiieiiieeiiee ettt e ettt e eiteeeiee e aeeeeveeeeiveeesaseeessseeesseeesseesnsneaeeenns 79
10.1.1.7 InfOormation MENUL.........cc.eeiiiieriieniieiie ettt ettt et e siee et eeeebeeeereeeeneeeas 79
1O.1.1.8 SCANNET MENU....cutiiiiiiiiiiieeieeeit ettt ettt sttt e st et e st e sttt e e eabeeeeenneeens 80
10.1.1.9 Generate general N0ccoeciiiiiiiieeiieieee e 81
TO.1.1.10 SQL INJECHIOMN. .. .teieiiieeiiieeiieeecieeeette et e et e e eteeesebeeesaveeesaseeesssaaeeeeennnsaeaeesennnnnes 82
11 Intents ClasSTIICAtION.eeiuiiiiietie ettt et ettt et s bt et e e eebee e esbeeeeaeneeas 83

List of figures

Figure 1: Android architeCture LaYers..........ueiuieiiiriiriieiieies ettt 10
Figure 2: Android SO diStribULION........cccuiiieiiiiciie et e e e e taee e e eeeneeas 15
Figure 3: ANAroid VEISIONS......cc.eiiiiiiiiieiieiie ettt ettt ettt et e et e st e st e e sbe e e s e e eenneeeeanneeas 16
Figure 4: ANdroid threats...........ooiiiiiiiiiieiieeee ettt ettt s 17
Figure 5: ANAroid thr@ats...........ooiiiiieiiiieiieieee ettt ettt e 18
Figure 6: APK-t0O] MENUL......ociiiiiiiiiieciiie et tee et e et e et e e et e e eabaaeeeeennsseeeeeennnnees 23
Figure 7: APK-MUulti t0O] MENU.......cccuiiiiiiiiiiiiiiieie ettt e e e et eesneeee s 25
Figure 8: MErCUIY IMEMUL.......oiuiiiiiiiiiiieiecitesieete ettt sttt ettt ettt et e st e et e e e eaeee 27
Figure 9: DIOZEN L0ZO0......couiiiieiiiiieeee ettt ettt ettt et et saeenaeeen 27
Figure 10: ASEF dIaIam......coiiiiiiieiiieeiieeeiie ettt ettt ett e et e e steeesaaeeessaeeesnaaeessaesnssaeesennnnnes 29
Figure 11: AnalysiS @XamMPIE.......cccuieiiiiiiiiiieiiieeie ettt ettt e ettt e e et e e entaeeeeneeee s 31
Figure 12:: INtent fUZZET OVEIVIEW......ccueiiiiiiiriiiiiiieeitee ettt st et 32
FIGUIE 132 OVETVIEW .ottt ettt sttt ettt s bt et et esb e e bt ent e e bt ebeentesaeeenneeens 33
Figure 14: EXPOTtEd ACtIVITIES. ...cccouiieeiiieeiieeeiieeetteeeteeeeteeeseteeestteeeeaeeesseessaeesssssseaaesesnnssseeesensssees 38
Figure 15: ImPIiCit and eXPIiCIt.......coouieiiiiiiieiieee ettt e et e e 38
FIgUIe 16: FOTCE CLOSE......eiiuiiiiiiiiiieie ettt ettt et st e st 39
Figure 17: Providers SEATCH.c...oiiuiiiiiiiiiiiieeieeeeee ettt 40
Figure 18: BroadCast TESPOMSE.......ccevuiiieiiiieeiieeiiieeeteeeeieeertteesteeeteeesaeeesseeessseeesssaeesssaeensseeassseennnes 41
Figure 19: Web CONent T€SO0IVET.......couiiiiiiiiieiieeie ettt 42
Figure 20: vulnerable contents ProVIAET..........coviruiiriiriirieiieiiereeteete ettt 43
Figure 21: SQL oUtpUt €XAMPILE.....cueieiiiiriiieiieiieeie ettt ettt et et seeebeeetbeeeesereeeensseeeennns 46
Figure 22: Launching @ Shell.........c.ooooiiiiiiiiiiiicceeee et et a e e e eeneeas 47
Figure 23: Content of the file BOOT.EXt......couiriiiiiiiiie e 48
Figure 24: User network information............ooeeriiiiiniiiiiiineieeeseeeseseete et 60
FIGUIE 25: TACA POSTET.....eeueiieiiieiieeie ettt ettt be e st e bt e st e e e e e e e eaneee 68
Figure 26: MasqUETade MEMUL.........ccecuiieeiiieeeiieeeiieeeieeeeieeeetteesetteesaeeesbeeessseeessseeensseeessssseaeeesnssseees 73
Figure 27: ACHIVIEIES OULPUL......iiiiiiiieitieeie ettt ettt et et e st e et e e saeeeabeesaeeeabeesetesateeeenseeeennnes 74
Figure 28: BroadCasts OULPUL.........cc.eeiirieriiiieriieieeteeit ettt sttt sttt ettt st esaee e 75
Figure 29: Package SUD-INEINUL......cccuiitiiiiiiiiieieee sttt ettt e e e e naee e 76
Figure 30: ProvIiders OULPUL.........eeeiiieeiiieeiiee ettt et e et e e eeetaeeeaeeessteeessseeesssaeesnssaeesennsnnees 77
FIgUIe 31: SeIVICES OUIPUL....eeuviiuiiiiiiiiiiieteeteett ettt ettt ettt et sttt ettt sttt et e saeenaeeeaee 78
Figure 32: EXPIOItS MEMUL...couiiiiitiiiiiieiiieieeteeete ettt sttt ettt e st e s e e 79
Figure 33: Information SUb- MENU.........cccoeiuiiiiiiieiieieeieee ettt 79

Figure 34: Scanner sub-menu

Figure 35: general info eXample.........c.ooiiriiiiiiiiriieieeieee ettt

Figure 36: SQL vulnerabilitie

e et e e

Index of tables

Table 1: ANdroguard's fEATUIES.cccuieruiiiiieiie ettt ettt eae et e e e et e e enabeeeennes 22
Table 2: TOOI'S SUMMATY.....c..eiiiiiiiiiieiieitie ettt e et et et eeteeebeeseaeebeestaeesseessaeenseessseesseessseenseessseeesnnses 35
TAbIE 31 RESUILS ...t ettt et e ht e et e sbt e e st e e s st e e ssbeeesaaeeas 44
TabIE 4: tArZEt AEVICES. ..ecuuieiiieiiieeiie ettt ettt et et e bt e sat e e bt e sabeeabeesaeeenbeesnbeeesennaeesanneeas 50
Table 5: Malformed INtENLS.couiiiiriiiierieeeeeeee ettt st st 53
Table 6: Access CONIOl PrODICINS.cccviiiiieiieeiiieieecie ettt ettt s ebeessbeensaeesbeeeseeeenens 54
Table 7: Secure storage and €NCTYPLION.ccviieriieeiieeeciieeeeeeeieeeeteeesaeeeseteeeeaeeeeaeessaeesssaeeeeesnsnnes 56
Table 8: INSECUre flle OPETAtIONS.eeiiiiiiieiieiie ettt ettt et e et esateebee s 58

1 Introduction

During the last decade, we have seen the rise of a new generation of personal devices that
has revolutionized our daily lives. The reduction of integration scales of computer components as
well as the efforts to develop new communication technologies, and the advances to enlarge power
battery lifetime, has led to an evolution of the functionalities traditionally offered by mobile phones.
Such functionalities are addressed to offer new services that will redefine our relationship with
other individuals thus gradually approaching that many have a deep impact on the security of
mobile devices. Unfortunately these are just some examples showing the magnitude of the problem.
Consequently, the provision of mechanisms to preserve the security in our daily mobile devices is as
important as the need for methodologies and approaches to analyse the level of security they
provide to such devices. Although their use is generalized in developed countries, and is
increasingly common to find them in various forms, sizes or names (tablets, eye-wear, watches),
their most important boom is taking place in developing countries, even overcoming the

conventional PC, given the higher capabilities they offer at a lower cost.

The architecture of these devices, increasingly diverse and complex, is now more similar to
personal computers. This fact is illustrated through the extended use of operating systems (OS)
addressed to mobile devices. The pioneer in the field of mobile phones was Apple, with its iPhone,
which incorporates 10S. This system captures much of the market share. Windows' proposal is
called Windows Phone, but it lacks of enough acceptance. Finally we have the Android operating
system, the most widespread. It has significant market share because it is freely available and each
manufacturer can adapt it to their own mobile phone. In the last five years the Android operating
system has experienced a tremendous growth, becoming the best-selling operating system for
mobile devices. It is based on a robust Linux kernel, and is designed for touch-screen phones or
tablets. Currently, Android has 75% of the market share. Part of its success is due to the facility of
customization offered by the operating system. Unfortunately, this same reason has become Android
in the main target of malware developers. Basically, developers try to exploit potential
vulnerabilities resulting from modifications made by the device manufacturer, or the negligence of
application developers, as they often do not bear in mind the recommendations set out to create a

program.

Lately, we have seen more and more cases of serious vulnerabilities, such as the ability to
remotely wipe a terminal (especially affecting Samsung devices) or run malicious codes [24].
Security is important for any device, but it is particularly important in personal devices in which we

stored all kind of information concerning the private life of users, such as emails, photos, etc..

Currently there are almost barely tools to evaluate the Android system security. Although
there have been various studies as those shown in [7] [28], [29], [30], [31], [32], and gradually new
frameworks are emerging, such as Mercury, AndroGuard, ASEF, etc., there is still a long way to go
in determining with rigour the degree of vulnerability of the system. One of the most important
steps in the development of a new device and its potential applications, is the assessment of their

vulnerabilities and that today, in the realm of Android, is a topic with a huge room for improvement.

Thus, the main objective of this master's thesis is to study the security issues of mobile
devices based on the Android operating system. By covering this goal, we expect to answer

questions such as:
o How to classify current applications for vulnerability assessment on Android?
© What kind of vulnerabilities can be exploited on Android systems?

o [Is there any way to systematise the injection of attack on Android systems to show their

security bottlenecks?

© What kind of results can be obtained from evaluating the security of real mainstream

devices

To address these issues, the rent of this master's thesis is structured as follows: Chapter 11
introduces the Android systems and its most important security threats. Chapter III presents current
security application, classified according to a novel taxonomy. Chapter IV proposes a methodology
to apply the most interesting properties identified in Chapter III from an experimental viewpoint.
At the chapter V we can see the case of study. Chapter VI shows the results of a case study where
different mobile devices have been evaluated using our methodology. Finally, chapter VII concludes
this master's thesis with the most important remarks. At the chapter IX we can see the Annex, with a
tool created for us, to automate some tasks, and we can see too, the poster showed at ITACA work

day.

2 Android in a nutshell

This section explains how Android works. We will briefly introduce all the elements that
compound Android, especially focusing on the Android components and the communications

among one another.

2.1 Android layers

APPLICATIONS

Fhicnic

APPLICATION FRAMEWIRK

Actragy Manyper
Package Manager

LIBRARIES

MMeds

Surface Manager
L i Framework

._ AErTaa

OeenGLIES FreeType Mahing

3GL

Haik Memcry
irionr

F:.:'rF.1|: Diriwer WiFH Driver

Figure 1: Android architecture layers
Let's start off by taking a look at the overall system architecture of the Android stack in the Figure 1

we have a graphical overview from the Android layers.

At the lowest level we find is the Linux Kernel. Android uses Linux for its device drivers,

memory management, process management, and networking.

The next level up contains the Android native libraries. They are all written in C/C++
internally, but you'll be calling them through Java interfaces. In this layer you can find the Surface
Manager (for compositing windows), 2D and 3D graphics, Media codecs (MPEG-4, H.264, MP3,
etc.), the SQL database (SQLite), and a native web browser engine (WebKit).

Next is the Android runtime, including the Dalvik Virtual Machine. Dalvik runs dex files,

which are converted at compile time from standard class and jar files. Dex files are more compact

10

and efficient than class files, an important consideration for the limited memory and battery

powered devices that Android targets.

The core Java libraries are also part of the Android runtime. They are written in Java, as is
everything above this layer. Here, Android provides a substantial subset of the Java 5 Standard
Edition packages, including Collections, I/O, and so forth.

The next level up is the Application Framework layer. Parts of this tool-kit are provided by
Google, and parts are extensions or services customized by the manufactures. The most important
component of the framework is the Activity Manager, which manages the life cycle of applications

and a common "back-stack" for user navigation.

Finally, the top layer is the Applications layer, where ours apps are typically located, such as

the Phone and Web Browser utilities.

Since applications become an important security bottleneck we will pay especial attention to

them in the rest of this chapter.

Android applications are built using essential components blocks, each of which exists as its
own entity and plays a specific role, each item is a unique piece that helps define the overall
behaviour of the application. It is noteworthy that some of these elements are the entry point for
users to interact with the application and in many cases we see that depend on other elements.

There are four types of components in an Android application. Each has a purpose and a
different life cycle that defines how it creates and destroys the component. Activities, Intents,

Contents Providers, Services and Broadcasts receivers.

2.2 Application Components

As we can read in the Google developers guide, application components are the essential
building blocks of an Android application. Each component is a different point through which the
system can enter your application. Not all components are actual entry points for the user and some
depend on each other, but each one exists as its own entity and plays a specific role—each one is a
unique building block that helps define your application's overall behaviour. In this section we will

link the components with the potential vulnerabilities.
Activities

An activity represents a single screen with a user interface. For example, an email application

might have one activity that shows a list of new emails, another activity to compose an email,

11

and another activity for reading emails. Although the activities work together to form a
cohesive user experience in the email application, each one is independent of the others. As
such, a different application can start any one of these activities (if the email application
allows it). For example, a camera application can start the activity in the email application that
composes new mail, in order for the user to share a picture. Here we can find some
vulnerabilities (Invalidated Input vulnerability) when we start an activity we have to do it
through an Intent, in this Intents often, we have to include some fields like Integers, Strings or
similar, the problem begin with the no validation of these fields by the developer of the
activity, that receives the intent, a malicious app can launch a malformed intent an if we didn't
filtered the fields, we can receive a String in the field where we expect an Integer for example,

making the app crash.

Services
A service is a component that runs in the background to perform long-running operations or to
perform work for remote processes. A service does not provide a user interface. For example,
a service might play music in the background while the user is in a different application, or it
might fetch data over the network without blocking user interaction with an activity. Another
component, such as an activity, can start the service and let it run or bind to it in order to
interact with it. In this component we can find the typical Denial of service (DoS) attack, for
example we can launch a series of services that requires a lot of CPU, for example a complex
algorithm, to reach the objective of exhaust the battery of the mobile device, the user of that
mobile will not understand why the battery runs out so quickly, because the services in

Android doesn’t require a layout so it runs in background.

Content providers
A content provider manages a shared set of application data. You can store the data in the file
system, an SQLite database, on the web, or any other persistent storage location your
application can access. Through the content provider, other applications can query or even
modify the data (if the content provider allows it). For example, the Android system provides
a content provider that manages the user's contact information. As such, any application with
the proper permissions can query part of the content provider (such as ContactsContract.Data)
to read and write information about a particular person. Content providers are also useful for
reading and writing data that is private to your application and not shared. For example, the
Note Pad sample application, uses a content provider to save notes. In this case we can find a

pair of vulnerabilities, first the acces-control, we can access to Contents Providers from

12

another apps or from the OS, without requiring a special permission, and the second
vulnerability the Bypass, the Content Provider of an app is supposedly protected against
unauthorized access by others apps by the sandbox, but it's proved that we can cross that
sandbox easily[45], this is a big problem, because we're not sure if the information that we

store in our Content Provider is secure or not.

Broadcast receivers
A broadcast receiver is a component that responds to system-wide broadcast announcements.
Many broadcasts originate from the system—for example, a broadcast announcing that the
screen has turned off, the battery is low, or a picture was captured. Applications can also
initiate broadcasts—for example, to let other applications know that some data has been
downloaded to the device and is available for them to use. Although broadcast receivers don't
display a user interface, they may create a status bar notification to alert the user when a
broadcast event occurs. More commonly, though, a broadcast receiver is just a "gateway" to
other components and is intended to do a very minimal amount of work. For instance, it might
initiate a service to perform some work based on the event. In this component we can find
another access-control vulnerability, we can launch a System Broadcast, that supposedly only
the OS can launch, like Dreaming Started or Dreaming Stopped, launching this type of
broadcasts we can modify the behaviour of a app that considers that broadcasts, like

modifying their operations or just stopping it.

2.3 Communication between components

The communication between the Android components is essential. Android uses an IPC
(Inter Process Communication) mechanisms, very similar to that used on 10S (Apple operative
system), to allow the communication among the processes of the system. Interprocess
communication (IPC) is a set of programming interfaces that allow a programmer to coordinate
activities among different program processes that can run concurrently in an operating system. This
allows a program to handle many user requests at the same time. Since even a single user request
may result in multiple processes running in the operating system on the user's behalf, the processes
need to communicate with each other. The IPC interfaces make this possible. Each IPC method has
its own advantages and limitations so it is not unusual for a single program to use all of the IPC

methods. There are three types of IPC mechanisms in Android:

* Intents, are messages between components. They are a mechanism to pass data between

processes. Through intents one can starts services or activities, or invoke broadcast

13

receivers.

* Bundles, are entities to encapsulate data. Their use is similar to the concept of object

serialisation, but faster in Android.

* Binders, are entities that allow the permissions to obtain a reference to another service as

well as to send messages.

But we have some studies that the IPC is not as strength as we think, in [25] we can read that
we are able to crash the Android runtime from unprivileged user processes, because the exception

handling is a rarity between the Android developers.

2.4 Android, a vulnerable system

Even though our device contains vulnerabilities, they may not be exploitable, ie, although
our system contains multiple vulnerabilities, this does not mean that this is vulnerable, as these can
be not exploited, either because they are unaware of just no-one known to exist, although they are in
our system, because they are not accessible, not having a tool that possibility us to access them.
One of the consequences is that they simplify the attacks on our system, as it is much easier to try to
exploit a weakness in our system to be tested potential vulnerabilities in our system, the means to
exploit a vulnerability in the attack and subsequent consequences can be of any kind, theft of
private information, introduction of erroneous data in the system, denial of services, remote control

socket terminal or just, turn our mobile device to a brick.

Securing an open platform as Android requires a robust security architecture and rigorous
security programs. Android was designed with multi-layered security that provides the flexibility
required for an open platform, while providing protection for all users of the platform. Android
considers the use of security controls to reduce damage of the bugs introduced by developers. Thus,
even less skilled developers can work with and rely on flexible security controls. Unfortunately the
design of these controls is vulnerable to malware, and attacks on third-party applications on
Android. Android was designed to reduce both the probability of these attacks and greatly limit the
impact of the attack in the event it was successful. However, despite such efforts Android is still a

vulnerable system.

Some studies claim that in late 2013, the Android system, could be threatened by over 1
million threats as we can read in [26], as on Figure 4 shows. One of the main causes is that is that
Google is much more flexible than Apple and therefore does not restrict the freedom of users when
changing their mobile system. But delving a little more, the above answer that we have is a little

short, if you look at the mechanism of use we found large differences as we can see in the figure 2.

14

On the one hand we have Google, that has delegated the control of the Android operative system to
mobile producers, and the decision of when and how they will upgrade your operating system, so
we are in a market, in which there are many versions of Android as manufacturers, for this reason,
we have one of the biggest problems of Android, the fragmentation, on the other hand we have

Apple, which is the leading version control and delivers these versions directly to users.

Desktops/i0S Android

Microsoft/Apple Google

Enterprises Enterprises

Consumers

TELCO 1 TELCO2

.«
i

Ay A

End users

Figure 2: Android SO distribution
Talking bout the fragmentation of Android, let us illustrate the below example, with some

graphics, considering data from Google, the most common version is 2.3 (44%), as we can see in
the figure 3, is was last updated in September 2011, while the 4.1 version only 14.9% used, and
very likely to get forgotten, because the version called “Key Lime Pie” will be released soon. By
contrast, Apple got that over 20% of its users were in version 6.1, after 36 hours of this release. We

can read more about most used versions in [27]

15

Version | Codename

1.6 Donut

2.1 Eclair

2.2 Froyo

2.3- Gingerbread
232

2.3.3-

237

3.1 Honeycomb
3.2

4.0.3- Ice Cream
4.0.4 Sandwich
4.1 Jelly Bean
4.2

12
13
15

16
17

Figure 3: Android versions

T T E fee Cream Sandwich

0.2%

Jally Baan
1.9%

Honeycomb
T6%

0.2% — Eclair & older

Froyo
44%

0.3% Gingerbread
0.9%
28.6%

14.9%
1.6%

For the end user, it may sound trivial, but it is not. The Android updates, has associated

security enhancements and more features. The above cycle, makes updates slower, opening one

window to the hackers, allowing them to create new malware to exploit the vulnerabilities

discovered. And so the malware charts show disturbing increases.

16

Android Threats in

February | e

varch | p———— e

april [———— jacsie

vy [D—— 19476

- >—— 26550

sty I D 2 0 K,
agust [R R
september [> 35438 ¢

October J}———— 39034 =

ey ———— >————— 40154 ¢
December 7 1% R — 43262

Backdoor SMS Spy Downloader Other
Provides unauthorized access ; Dirains yous mabile account by E Steals your data and/ar c Provides tools to dewnload
o your mokile device serding premium text messages cellme ks yoam passward and faursh malicicars programs

0 5
NOTABLE MALWARE BY REGION 0.03% Other _ — Android
: 2bdda) 0
L L= Europe E@ Russia mm N 2 Y 98.96%
0.04% o 8 of all mobile threats
Trojan Trojan Trojan it
Androtdos. FakeRun.a Android0Ss.Flangton.a SMS.Androld0s.Opfake.ba o8 =
displays annaying ads dlisphays acls and radifes serids bests o AT e T g at =T 2 =
instead of promised game ar browser bookmarks. Exposes premium-rate numbess. 9
usaful saftwara wictims to onling scams aswell directly stealing victims' 0.97% lava

money

KASPERSIKY S

& 1907-2013 Kaspersky Lab ZAD

Figure 4: Android threats

At the above picture we can see the Android threats in 2012, as we can see the number of
hazards are increasing monthly, illustrating that data we have the figure 5, and mainly affect
android. That numbers are disturbing, we can see that in early 2012, the threats were only 3000,
only in four months that threats were almost quadruplicate the initial number, closer to 11.000, but
not only that, in the last 6 months of the year, the number has increased to the amazing amount of
129.000, 43 times more than in the beginning of the year! Where we will en up! If we don't stop
that, that problem may will end with Android.

17

Figure 5: Android threats

Now, we will explain the most common vulnerabilities that we can find in our systems and
mobile devices. Some of them are invalidated input, access-control problems, secure storage an
encryption, insecure file operations, DoS, Bypass.

In the follow lines, we are going to explain the vulnerabilities that we can commonly find in
Android systems.

* Unvalidated input: Information from another activity or Intent that it has not been

validated, before being used by the receiver. Attackers can use these flaws to attack the

components of our app.

* Acces-control: It is an error due to the lack of enforcement pertaining to users or

functions that are permitted, or denied, access to an object or a resource.

* Secure storage and encryption: Is a common vulnerability that occurs when sensitive

data is not stored securely. Insecure Cryptographic Storage isn’t a single vulnerability, is a
collection of vulnerabilities.

* DoS: Attackers can consume mobile phone resources, to achieve the goal of, prevent the normal
use of the owner's mobile device. Attackers can also steal users accounts or even stop the mobile
device.

* Bypass: Bypass, in general, means either to go around something by an external route rather than

going through it. In network security, a bypass is a flaw in a security system that allows an attacker

18

to circumvent security mechanisms to get system or network access.

In conclusion, the security industry must be one step ahead of the hackers. As we see in
previous graphics Android in under serious threat and may be, if we don't make nothing, Android
will disappear drowned by countless threats, malicious apps, malware etc. But this creates new
answers from the community, for example the Cloud, which has created an app repository and a
reputation service, that protects us from malicious or fraudulent apps, avoiding that the download to
our device. We have too an evaluation by the users, voting the apps, causing the suspicious apps be
blocked. Furthermore we can use an anti-virus but as we can see in [33] they are useless, because in

Android, does not exist the typical pc virus, we have a new model of attacks.

2.5 Summary

In this chapter we have taken a quick look to the Android SO, we have seen its main
components, layers, explaining its main components and how they interact between them. We have
introduced the vulnerabilities related to Android, explaining why Android is a very threatened and
vulnerable OS. But what is the next step? Now that we have focused the main threats, and the
possibles consequences, we have to find the way to avoid and detect such problems. In the next
chapter we will characterize and classify an extensive collection of tools, as a result of an

exhaustive search.

19

3 Classification of security tools for Android

Currently there is a wide variety of tools that help us to evaluate the security of the
applications we have installed in our phones or tablets. However, given their heterogeneous nature,
it is difficult to select which is the most adequate tool for a given system. Unfortunately, to this day
there is an absence of the tools that can help us in determining the functionalities they offer

This chapter proposes a taxonomy to characterize the purpose of the security tools in the
domain of Android.

The main features we look for in these tools, which help us in finding vulnerabilities are,
that is a dynamic tool and allows us to interact with the device that we're looking for vulnerabilities,
and be able to work with him, is a very important point in our search, to be able to work in real
time, we are able to do experiments in various contexts and workloads, it is not the same find
security flaws in a terminal, in actual use, than with an emulator. The actual device will always be
more reliable, and we will get real results with an emulator.

It is also important to have a proper working environment, to make the work easier, we don't
want to have to be introducing complicated orders, or spend too much time to learn how to use it. It
is also valuable that already contains predefined orders to allow us to start working immediately,
since we are interested in studying ourselves immediately, that is our goal. Another feature to
appreciate is that, the tool has a community that gives us support when we have a problem, or when
we find a bug, it's always important to have this type of aid to choose one option over another. It is
also important that the tool in question this regularly updated, with input from other users, such as
improvements or even with user's new contributions, that are not linked to the project, because our
experience says that, an application or tool grows faster if you have a large community supporting
it.

According to their way of working, the tools can be dynamic or static, depending on the type
of the analysis that they perform of the system. The first, enables an interaction between user and
system, while the second does not require the system executed nor the user interaction.

According to their deployments, tools may require the use of additional hardware or
software, or the tools may be executed desolately in devices, may be we need more components to
start working with the tool.

According to their purpose, we can find tools that just analyse the manifest of the installed
apps, we have another’s that decompile the apk packets, we have tools that can draw the logical
flow of the application, we have applications that searches for atypical patters, we can find tools to

modify the entire Android system, changing the icons of the battery, the sounds, and much more.

20

3.1 Dynamic tools

In this section we can find two types of security tools, on the one hand dynamic tools, why
dynamic? because we can interact with them, we can change the inputs and get different outputs, in

the other hand we have the static tools, we can not interact with them, we just wait for the results.

3.11 Androguard

Androguard [7, 12, 16, 20] is programmed in python, is not just a malware

analysis tool on Android, actually it is a complete framework that allows us to
interact directly with malicious code, read their resources, access the code, and even compare
different threats, find similarities or differences in their methods, classes and resources. It is also
possible to incorporate all the features of Androguard to make custom scripts in Python to obtain

all the details in a simply way about a file.

This framework first available in the project website Androguard, or can be used through
Santoku[34] distribution, which includes ans it's already installed. In either case, Androguard
makes it possible for security experts a platform extremely complex, useful for analysing
malicious code on mobile platforms. In addition, you can also download the necessary modules

for inclusion within any personal tool for analysing malware[11, 13] on Android.

The reach that this framework provides for the analysis of Android malware is excellent
and allows a better understanding of the threat as well as a better knowledge of its internal
structure and functionalities. In addition, features Androguard file comparison tools, similarity

search with other known threats[14], visualization capabilities and more.

The tool is available only for Linux, you can install it in various ways, we can get off the
binaries and compile them on our own, on the other hand we can install it with the order apt-get
install and following a few simple steps will have installed in minutes. Whether you choose an
option as another, we have to overcome a dependency accounts, such as python 2.6 and
optionally if we want all the functionality available Androguard, ipython, pygments (colour
code), pyfuzzy (to calculate the risk of the. apk), mercury (to activate andromercury.py) psyco (to
speed up Androguard). [15]

By default Androguard brings a series of tools and scripts to facilitate the work of the
analyst and lets you interact in a simple and dynamic threats. One of the most practical options,
and a good place to start learning about this framework is Androlyze, which allows us to start an

interactive shell analysis.

Androguard's analysis is static, as the program runs on a computer with Linux not in the

21

mobile device. This analysis focuses on the apk packages. We can find more information in the

Androguard's blog in [10]. In the table I we have the main features from Androguad.

Main features

Format types supported Differences similarity | Static analysis Support
analysis

APK APK/DEX Flow control graphs Support sessions

DEX Similarities ~ between| Search for packages,| Remember orders history
methods methods, fields

JAR It detects plagiarism
between apps

Bytecodes (Dalvik) Comparison based on

compressors

Byte-codes (Java)

Table 1: Androguard's features

3.1.2

APK-tool

I

I
APK-tool[3] is a reverse engineering tool[18], designed to analyse third-party

<
L

Android apps. Provides the ability to debug Smali[19] code step by step. Makes working with
apps easier, APK-tool can decode source code to make it very close to the original, and rebuild
after being modified, you can automate tasks like building, sign, align apks. It also offers the
possibility of access to the app resources, such as icons or strings and can change them to need
and return to recompile the app and install it. The code is available at [9]
Features
* Decode source code (including resources.arsc, XMLs and 9.png) and compile it.
* APK-tool, give us the option to debug Smali code.
* Give support for repetitive tasks.
» Sign an apk
APK-tool is available for Windows, MacOS and Linux, installation is as easy as
unpacking the file we downloaded and run, we do no need to install additional packages or
dependencies, so just have superuser permissions.
Apk-tool is a closed tool, we can not change anything, just have available the functionality
that it offers, just have a series of commands accessible via cmd console or in case of Windows,
with their respective options.

It is an open project we can find it in code.google, APK-tool is programmed in Python, we

22

can support the project by downloading the repository on GitHub and we can contribute to the
project with ours features or ideas.

APK-tool is a static analysis tool, that is restricted to analysing the contents of the package
apk, running on the computer on which you have installed and not on the mobile device, so we
don't need a real mobile device, that tool is focused on the analysis of the contents of the install
application package.

In the figure 6 we have an example from the available commands from APK-tool, we can
find decoding orders, with the options from debug mode, decode source, deleting destination

folder, and installing a framework.

BN Administrator: C:\Windows\system32\cmd.exe ‘\‘ ﬂ Tr' DI A .

Apktool vl1.4.3 — a tool for reengineering Android apk files -
Copyright 2818 Ryszard Wi?niewski <brut.alllPgmail.com>
Apache License 2_8 (http:/swuw_apache.org-s/licenses LICENSE-2_83>

Uzage: apktool [-gi——quiet OR -vi—verhosel COMMAND L[...1
COMMANDs are:

dlecodel [OPTS]1 <file.apk> [{dir>]
Decode <file_apk? to <dir>.

OPTS:

m

——no-sprc
Do not decode sources.
——no-Tes
Do not decode resources.
——dehugy
Decode in debug mode. Check project page for more info.
—force
Force delete destination directory.
—t <tagr», —frame—tag {tagr
Try to use framework files tagged hy <tag>.
—keep—hroken—res
Use if there was an error and some resources were dropped, e.g.:
"Invalid config flags detected. Dropping resources”. but you
wvant to decode them anyway. even with errors. You will have to
fix them manually hefore building.
hluild]l [OPTS]1 [Lapp_path>] [{out_file>1]
Build an apk from already decoded application located in <app_path>.

It will automatically detect, whether files was changed and perform
needed steps only.

If you omit <app_path> then current directory will he used.
If you omit <out_file> then <{app_path>sdist/<name_of_original.apk>
will be used.

OPTS:

—f,. —force—-all
£kip changes detection and build all files.
—d, —debuy
Build in debug mode. Check project page for more info.

if linstall-framework {framework.apk?> [{tag>]
Install framework file to your system.

h]

Figure 6: APK-tool menu

23

3.1.3 APK Multi-tool

Decompiling tool which allows us to decompile the Android apps.
APK Multi-tool [8] offers a wide range of options supported for simple
tasks, like, removing a mobile device apk, optimizing images, sign an apk. It also supports more
complex tasks, for example, compile part of the apk. Once decompiled the apk packet, you can
modify the code of the application, although is not recommended because it is in a pseudo-code, it's

quite difficult to understand if we don't have the suitable knowledge.

APK Multi-tool is only available for windows, is installed on your computer and the
analysis is done from the it, you can access through the command line, and offers a menu from
which you can use all functionalities. This tool can not be configured, is a closed tool, and we can
only use the options offered. The analysis of that this tool is static, since its function is centred on

apk packages, running on the computer and not on the mobile device.

Developed initially by Daneshm90, the code is not available.

Features:

* Check apk dependencies.

* Allows to modifying system apks.

* Apk optimization (Zipalign, OptiPNG)
* Provide log the events.

* Quick apk signature.

* Error detection, checks if errors have occurred while performing a task.

24

* Apks multi installation support.

A\WINDOWS\system32\cm

Figure 7: APK-Multi tool menu
At the figure 7 we can see the APK-Multi tool menu, here we can find all the offered
features, as we can see it's very easy to access to the orders, just we have to insert the code, here we

have too a short explanation of each command.

25

3.14 Mercury

Mercury[1,2,4,5,6] is a framework, written in Python and available only for

Linux, that allows you to explore the Android platform, to find vulnerabilities and

role of a without Android app privileges and interact with other apps and with the system. It gives

exploits to share with its developer community. This tool allows you to assume thesS

the user an interface where it can explore the environment of the mobile device, you can access the

different components of the installed applications.

Mercury Installation is only available for Linux, is simple, we just have to get off the
installation package, correct occasional dependence on Python, and have installed the ADB
(Android Debug Bridge), once installed, we just need to execute a command on the command

console and we're in Mercury console.

Mercury comes with a number of predefined modules, which are the main base of resources
available to the tool, but you can add more modules written for us to meet the needs of the user, we

can automate tasks by writing a script that uses the orders already defined in Mercury.

Mercury follows a client-server model, the client is formed by the console that is which
sends the orders and showing the results on the screen, and the server that runs on the mobile

device, so that all the results get real-time, so that we have a tool that performs dynamic analysis.

Mercury was born of an initiative MWRLabs a security company, the tool is freely available,

we we can download and use freely. The source code is accessible via a GitHub project.
Allows you to add modules and create scripts to add new features.

Mercury allows you to:

* Interact with the 4 IPC endpoints-activities, broadcast receivers, content providers and

services

* Use a proper shell that allows you to play with the underlying Linux OS from the point of

view of an unprivileged application.

* Find information on installed packages with optional search filters to allow for better

control
* Built-in commands that can check application attack vectors on installed applications .
* Transfer files between the Android device and your computer

* Create new modules [6] to exploit your latest finding on Android, and playing with those

26

that others have found.

mercury> Llist
.activity.forintent Find activities that can handle the given intent
.activity.info Gets information about exported activities.
.activity.start Start an Activity
.broadcast.info Get information about broadcast receivers
.broadcast.send Send broadcast using an intent
.package.attacksurface Get attack surface of package
.package.debuggable Find debuggable packages
.package.info Get information about installed packages
.package.launchintent Get launch intent of package
.package.list List Packages
.package.manifest Get AndroidManifest.xml of package
.package.shareduid Look for packages with shared UIDs
.provider.columns List columns in content provider
.provider.delete Delete from a content provider
.provider.download Download a file from a content provider that
supports files
.provider.finduri Find referenced content URIs in a package
.provider.info Get information about exported content providers
.provider.insert Insert into a Content Provider
.provider.query Query a content provider
.read Read from a content provider that supports files
.update Update a record in a content provider
app.service.info Get information about exported services
app.service.start Start Service
app.service.stop Stop Service

auxiliary.webcontentresolver

Figure 8: Mercury Menu
At the figure § we can see the output of the Mercury command Is, here we can find a piece of the

commands that we can find in Mercury.

Nowadays the Mercury protect is discontinued, the last version is the 2.2, MWR labs has decided to
change Mercury for Drozer, at the figure 9, we can see the logo from the new MRW-Labs tool.

_

Figure 9: Drozen logo

27

3.1.5 ASEF-Android Security Evaluation Framework ﬁ

Android Security Evaluation Framework (ASEF)[20], performs an analysis while
applications are running on your mobile device, alerting us to the problems that may arise. It can
can warn us about installed apps that can expose vulnerable components, and can help us find and
remove suspicious apps to their subsequent verification and removed if necessary. ASEF works this
way, you choose a set of apps already installed or from a apk folder, will be migrated to a virtual

device (AVD), where they pass a series of tests.

During the test cycles, the applications are installed on the AVD and are launched. ASEF
causes certain behaviours by sending random or pre-set gestures and then uninstall the application
automatically. It can capture logs, network traffic, kernel logs, memory dumps, running processes
and other parameters at all stages of the life cycle of the app, later all these logs will be used by the
ASEF parser. That attempt to determine for example the aggressive use of bandwidth, the
interactions with any server that uses the API Google Safe Browsing, a permission assignments and
known security failures. ASEF can be easily integrate with other open source tools to capture
sensitive information such as SIM card numbers, phone numbers and other.

ASEF is only compatible with Linux and MacOS, can not be installed on another operating
system, is installed on the computer and works with apks folders. We can install it by downloading
a package, we need to fix some python dependencies, installing certain modules, Getopt :: Std;
URI :: Find; URI :: Encode, once done already and we can access ASEF.

ASEF is an open source[21] tool for analysing the security of Android devices. Users can
perform basic analysis using the scenarios that come in a default installation, or if you want to
extract more information you can create or modify other scenarios that already brings the tool, you
can even find other patterns of analysis. ASEF provides automated testing by providing a plug and
play, making it possible to stay updated with the latest developments in the field of apps.

As we can see at the figure 10, ASEF works like a black box, we can introduce a folder with
the apks packages, that we want to analyse and ASEF takes care of everything, it self makes
analysis to detect malware, aggressive adware, we don't have to introduce a command or make a

choice.

28

A S EF as a Black Box

Malware
E // sive Adware
W /Mgm

‘l’;t- —— ASEF F——Bandwidth
el
Vulnerabilities

Figure 10: ASEF diagram
3.2 Static tools

Here we have all the tools that not interact with any device, they just are used to
static analysis, these tools perform tests of apk packets, analysing for example, the manifest, the

permissions manifest, or analysing the flow of the application for seek hidden features.

3.21 ComDroid

ComDroid[16] is an online tool that offers a static analysis of our app, we just need to have
the apk package and upload it to the ComDroid web and after a brief analysis will show, that it
allows us to see the apk vulnerabilities, the IPC communications will be emphasized, and other
typical faults by errors of the programmer. Relies on a database of patterns vulnerabilities. Android
supports communication between applications through the use of Intents. Unfortunately, these can
make your application vulnerable to others. The content of Intents can be intercepted, modified,
stolen, or replaced, compromising user privacy. Also, a malicious application can inject false or

malicious Intens, which can access private user data or violating security policies of the application.

Comdroid bases its operation in search of patterns in our code, running on a remote
machine, we assume that decompiles the apk package and analyses, therefore performs a static

analysis.

This tool does not require any installation, just we access their website, we just upload our

apk package and application and takes care of analysing our code, after this, shows us our

29

application vulnerabilities. Hence this application does not support any configuration.

ComDroid has been developed by the University of Berkeley and is freely accessible, we
have no access to the code, but we do know is that ComDroid is based on the JarJarBinks program
code.

Unauthorized Intent Receipt
* Broadcast Theft
* Activity Hijacking

* Service Hijacking
Intent Spoofing

* Malicious Broadcast Injection
* Malicious Activity Launch

e Malicious Service Launch

3.2.2 StowAway

StowAway[17] is a static package analysis tool, that analyses our apk manifest, just have to
upload our app to their website, and takes place a static analysis, returning a report on the
permissions requested by the application. It also has a complete map of existing permissions on the

Android API[22].

Certain services of the Android APIs are protected with permissions. To access the API calls,
you need to include these permissions in the application manifest. But this can be dangerous,
because if an app asks for more permissions than they actually need, this is an over-privileged
application. It is important to consider when installing an application on your device, which
permits asks. Common users typically do not consider which permissions an application asks, this
can be a door to future theft information, and an increased vulnerability of our device. StowAway
use automated tools to detect application permissions that analyses, returning a detailed report of

the analysed application permissions.

This tool not need any installation, is a service via the Internet, we need only connect to the
StowAway website and upload the package you want it to be analysed ,only accepts apk packets and
after a few minutes we present a report of the analysis.

The tools doesn’t accept any configuration because it is a web service, the type of analysis
that performs this static type tool is because only analyses the apk package manifest also from the
website assures us that do not stay back our app. This tool is free of charge, is a free service access,

code itself 1s not accessible.

30

At the figure 11 we have an analysis example output:

STOWAWAY

A static analysis tool and permission map for identifying permission use in Android applications

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, David Wagner (LC Berkeley)
Contact android at escs berkeley.edu

Overprivilege
Stowawiay thinks your application has the following extra permissions:

android permission RECEIVE_SMS
android permission. CALL_PHOMNE

android permission USE_CREDENTIALS
android permission MANAGE_ACCOUNTS
android permission WRITE_SETTINGS
android permission READ _FROFILE

Required Permissions
Stowawiay thinks your application legitimately needs some permissions.
Here, we list the permission-protected AP calls, Content Providers, and Intents used by your application.

android accounts AccounthManager addAccountExplicitly: [android permission AUTHENTICATE_ACCOUNTS]
android accounts AccounttManager getAccounts: [android permission GET_ACCOUNTS]

android accounts Accounthanager getAccountsByType: [android permission GET _ACCOUNTS]

android app Activighlanager.getRunningTasks: [android permission GET_TASKS)

android app Motificationtanager notify: [android permission VIERATE or NOMNE]

android content ContentResaolver aetSuncAutomaticallv fandroid permission READ SYNC SETTINGS]

Figure 11: Analysis example

3.2.3 Intent Fuzzer

Intent Fuzzer[23] is a tool that can be used on any device using the Google Android
operating system (OS). Intent Fuzzer is exactly what is seems, which is a fuzzer. It often finds bugs
that cause the system to crash or performance issues on the device. The tool can either fuzz a single
component or all components. It works well on Broadcast receivers, and average on Services. For
Activities, only single Activities can be fuzzed, not all them. Instrumentations can also be started

using this interface, and content providers are listed, but are not an Intent based IPC mechanism.

This tool is only compatible with Android systems, that is mobile phones and tablets, but
you can use it in the Android simulator. IntentFuzzer package is installed like any apk, analysis is
dynamic, as it runs on the mobile device and in real time, since the test is performed while the
device is running other tasks, so that the analysis can be influenced by the set of tasks that are

running while the analysis.

IntentFuzzer supports some configuration, we can choose what kind of Intents are launched,

31

we can launch activities, broadcasts, providers, services or instrumentations, having chosen a

category, we can choose specifically that activity, service etc, we want to launch the Intent.

Intent Fuzzer is freely available but the source code is not provided, but this is also easily

accessible using the right tools.

At the figure 12 we have the Intent Fuzzer application's overview, at the left side we have
the initial menu, here we can choose the type and the component, we can choose to launch a series

of malformed intents or a single intent, at the right side we have the output of a single intent.

Iﬂltl'lt_F_l_.lEEl‘

Broadcasts Services

com.android.phone.ProcessO O

v

Mull Fuzz Single w Null Fuzz Single | Null Fuzz All

Figure 12:: Intent fuzzer overview

3.24 Intent Sniffer

Intent Sniffer is a tool that can be used on any device using the Google Android operating
system (OS). On the Android OS, an Intent is description of an action to be performed, such as
startService() to start a service. The Intent Sniffer tool performs monitoring of runtime routed
broadcasts Intents. It does not see explicit broadcast Intents, but defaults to (mostly) unprivileged
broadcasts. There is an option to see recent tasks Intents, as activity's Intents are visible when

started and we can capture it and analyse aftherwards. The tool can also dynamically update.

32

Intent Sniffer is installed like any app, can be installed on any Android mobile device you
have, does not need more to run. Supports certain level of configuration, you can choose what type

of Inten can show on screen, performing a filter.

It makes a dynamic analysis, as this takes place while the other activities are running, so it
may be that this is influenced by the environment in which the device is running so the analysis can

be different even with the same mobile device.

ISEC Partners distributes freely this program, we should simply go to their website and

download the apk package and install it, the code is not distributed, but is easily accessible.

At the figure 13, we have the output of an analysis, here we have selected to sniff the
activities and the broadcasts and below of the refresh button we have the output of the sniffed

activities and broadcasts.

& 55541C51
e

/Intent Sniffer

‘ v ‘Recent Activities ‘ v ;Broadcasts

Show details

Refresh

lIntent { act=android.intent.action.
iNETWORK_SET_TIMEZONE flg=0x20000010 (has
lextras) } extras {time-zone - (Asia/Calcutta)

I} from known action and data

lIntent { act=android.net.conn.
!INET_COND[TION_ACTION flg=0x10000010 (has
lextras) } extras {reason - (simLoaded)
‘networklnfo - (NetworkInfo: type: mobile[UMTS],
Istate: CONNECTED/CONNECTED, reason:
isimLoaded, extra: internet, roaming: false, failover:
false, isAvailable: true)

lextralnfo - (internet)

linetCondition - (0)

} from known action and data

Figure 13: Overview

33

3.3 Tools summary

Here we have the tools summary table(table 2), here we have the main characteristics of the
previous tools, we will comment some of them. On the left column we have the main features that
we have considered the most important. The OS it's important because we don't have the same
features in Windows, more restrictive than Linux, we prefer the last one because we can modify
more parameter, in the offered tools we have more working on Linux than in Windows, and finally

our computer will work better in Linux than in windows, when we perform the analysis. The

available code is a good characteristic, because if we have it, we can adapt the tool to our
necessities. The free access to the tool is important, because a free tool is always more accessible
than a privative tool, we are not going to buy a tool just to test it, simply we proceed to the next.
The support is an important point to consider, because if we have a problem we can have de help of
the tool forum or the mailing list. The automating tasks it's important, to be able to find
vulnerabilities automatically, that feature is important if we have a large number of devices to

analyse. The need of a device it may be necessary but no essential, but its better if we have a real

environment to make the tests, although is valuable if we can make the tests in an emulator, because

the different versions of Android are more accessible.

34

Characteristics Intent Fuzzer |Intent Manifest Mercury APK-tool APK Androguard | Comdroid
Sniffer Explorer Multitool
0S Android Android Android Linux Linux Windows Html Html
Emulator v v v v
compatible
Code available
v/ Github | v Github | & Github | v Github v v
code.google code.google

Free

v v v v v v v v
Support v v v v
Where is installed Mobile Mobile Mobile Pc Pc Pc Pc N/A
Type Static Static Static Dynamic Static Dynamic Dynamic Static
Interact with

v v v
device
Written in Java Java Java Python Python ? Python ?
Find vulnerabilities

v v
SQL Injection v
Needs a device

v v v v v
Compile, v v Va
de-compile
Automating tasks

& v scripts

Table 2: Tool's summary

3.4 Why we choose Mercury

In this paragraph we will explain the election of the best tools for us, with that tool we will

make the later analysis that we will explain in next chapters. We chose Mercury tool, because it is

the most complete that, we have found from all we have been discussing, one of the most important

features and that finally we decided on Mercury, is because Mercury is the only tool that allows us

to work in real time with mobile devices such as tablets, mobile phones, etc. Therefore it's to work

with the physical devices and obtain more realistic measures, with devices which are used in real

life. Another feature which has made us decide for the option of Mercury is that this tool is in

constant development (or it was in development, while we were carrying out that experience) since

Mercury is part of a project, about security on mobile devices with the Android operating system.

Also of note that Mercury has a whole community behind which supports the tool, through forums

and emails. But Mercury is still in development, and some of their features are not completely

finished, for example the intents orders are not completed and we can't launch them with all of

35

parameter types.

3.5 Summary

In this chapter we have explained the differences between a dynamic and static tool. We
have took a look to several tools that can help us to discover new vulnerabilities and find the know
ones, how to test potential malicious apps, see the real permissions that a app requires and much
more. We have explained the most important features of each tool that we have analysed and we
have put all together in a comparing table, and at last we have justified the choice of Mercury as the
tool to develop of that Master Thesis.

At the present day we can't find many tools that help us to find, my be because Android is
still too new, and the people not greatly concerned about their mobile security, but we can find some
initiatives that are starting to develop few tools to help us to find the weakness of our devices. But
these tools do not cover all areas that, we are looking for, so if we want to make a complete analysis
we will need to combine some of them, because if we only focus on one tool we will not cover all
the areas. The characteristics we look for in these tools are, that it will be based on Linux, because
Android is a Linux based system. That we can use a device or an emulator, because it's so important
for us that we can work with on a real environment, to find real vulnerabilities. It can be important
if we can add our requirements, adding additional modules, we will adapt the tool to our needs.
Although the cost of the tool is important, a non-payment may facilitate the diffusion and extending
more easily. It's very important for a tool to have behind a community, because we can enlist the
help of this people to fix problems or propose new features. It's very important that we can interact
with the device, because not all devices behave the same way.

At this point, we have it's clear for us that we Android is a vulnerable system, that need a
tools to discover the threats, we have the chosen tool that will help us to carry out our job, but
what's next? In the next chapter, we will explain the methodology that we follow to standardize the
vulnerabilities search, because we need an efficient an an easy way to find them and the weakness
of our mobile device, we need to define the steps to follow, for don't forget anything through all of

the phases, in this way we will not forget anything.

36

4 Methodology supported by Mercury

This chapter presents a methodology to systematise the configuration, execution and
analysis of experiments top detect vulnerabilities in Android. For this purpose of this master's thesis

our methodology has been instantiated on Mercury.

4.1 Common attack injection methodology

In this section we will explain shortly the main attacks performed in ours analysis. We have

to explain, that, for develop an analysis, we have to follow three steps:

* Search for the potentials injection points, commonly know as attack surface[40] , once that

we know the target vulnerable entries, we can start with the injection planning.
* Injection the selected attack, on the previous vulnerable entry target.

* Once the attack is running or has ended, we have to monitor the output, of the attacked
device. Sometimes, the information what we get is confusing, so we need to format, to make

easier the reading.

4.2 Attacks supported by Mercury

At this sub-chapteer we will explain the steps to preform an attack, we will see how to get
information, how we can use that information against that app, and what we can expect from that

attack, all of these steps are common for all attacks.

4.2.1 Malformed Intents

For the Intents launch, we have to locate the path of the exported activity, for example,
com.android.browser, the second is to know if that Intent accepts fields, for example, --data-uri
web www.upv.es, it's important too to know the type of these fields, because it can be, that a field is
a String or an Integer, we can know that if we are the programmer of the activity or we have the
documentation of the application, if not, it can be a hard problem, to discover that. So we have
focused on well know apps, like browser, search or similar. We have to emphasize that Mercury is a
tool that is still in development, and we don't have access to all of the features. In these fields we
have made changes, for example inserting an Integer in a String field or vice versa, we have
inserted long numbers, negative numbers, large and short values, we have launched Intents with

empty fields, etc.

37

4.2.1.1 Surface attack

First we have to get information about the target app. At the figure 14 we have the exported
modules at the package com.android.browser, we can see the exported components by the activity,
we can read that, it haves six, BrowserAcvity, ShortcutActivity, BrowserPreferencesPage,
BookmarkSearch, AddBookmarkPage and Widged.BookmarkWidegtConfigure. We can send
intents to these components to launch activities, and we can send parameters too, and test the
activity. Unfortunately, we can't know, which fields the activity waits for, if that activity is not ours,

or we don't have the documentation.

le connect f75648T67144d%9a3

.activity.infe --package com.androld.browser
er
SEerACTivVIiLY

.android.bre) artcutActivity

.android.br¢ serPreferencesPage
.androld.bre markSearch

.android.brc 2r . AddBookmarkPage
.android.browser.widget.BookmarkwidgetConfigure

mercury= |_|

Figure 14: Exported activities

4.2.1.2 Injections

We can launch explicit intents or implicit intents, as we can see at the figure 15

run app.activity.start | run app.activity.start |
—-—component | -—action android.intent.action.VIEW
com.android.browser | ——data-uri http://google.com/

com.android.browser.BrowserActivity
-—-flag ACTIVITY NEW TASK
--data-uri http://google.com/

Figure 15: Implicit and explicit

At the following point we have an example of intent launch.

* —flags ACTIVITY NEW TASK: here we introduce the parameters, we can introduce more
than one, another examples of parameters, --data-uri "tel:123", --extra string search

"searchedword"

Due to the impossibility to know which fields an activity expects, if that application is not
public or if we don't have the documentation, we have to keep to the public Intents[46], because the

optional fields are well known. Or this reason we can't test market's app, we would like to test, for

38

example the top 10 downloaded apps, but due to this reason, we coudn't.

Here we will show some of the test that we have launched with Mercury:
run app.activity.start --action android.intent.action.SEARCH --flags ACTIVITY NEW TASK
First we are going to explain the order:

* app.activity.start: That is the Mercury order to launch intents

* --action: that indicate that the following string it's the exported module to which we will

launch the intent.

The next step, is to launch a series of intents to a determined activities, modifying the

parameter, like change the type, sending large values, etc and expecting the results.

Due to the Mercury's limitations and the impossibility of know the parameters of the private
applications we had to follow to the Android's developers Intent classification page, for these
reasons we have obtained few results. We have to explain, that Mercury is a tool in continuous
development and still is not finished, for this reason, Mercury is not full developed and we don't

have access to all of the features that we need, for example we can't use all of the types in the intent
fields.

4.2.1.3 Observable output

With the malformed intents we can expect an abnormal behaviour form the target app,
maybe because the programmer of that app, doesn't check the fields. We can see an abort of the
target app. In resume we have to wait the answer of the target app, to our malformed intents

injection. At the figure 16 we can see an example of bad response to a malformed intent.

A sorry

The application
GetDataFromTheWeb -
klianApps (process

org.klian.android.GetDataFrom
TheWeb) has stopped
unexpectedly. Please try again.

Figure 16: Force close

39

4.2.2 Broadcasts

Here due to the lack of information about the exported broadcasts launchers and the
broadcasts listeners, we have to adjust to the well know broadcasts, like the system broadcasts. In
that case we have to know the Intent and the fields that accepts and the type, (if any), once that we
have that data, we just have to launch broadcasts changing the content of the fields and introducing
wrong data in these fields, changing the type of them, wrong values, once we have launch the
broadcasts, we have to wait to the mobile device behaviour, some times we have an output, because
any application is waiting for that broadcast other times we don't have any response, because no

application is listening for that broadcast.

4.2.2.1 Attack surface

We have to adjust to the system broadcasts(we have made a classification from them at
annex), because we can't know the broadcasts that an app waits for, unless we have the
documentation of the app, and the fields (if any) that an app waits for, so for the cause we have
adjusted to the system defined broadcasts. So we have adjusted to the Android developers broadcast
table. At the figure 17 we can see that the sieve app, it doesn't have a broadcast. This is a way to

know, which applications have broadcasts, but we can't know how do they work.

dz> run app.package.attacksurface com.mwr.example.sieve
Attack Surface:

3 activities exported

0 broadcast receivers exported

2 content providers exported
2 services exported

is debuagagable

Figure 17: Providers search

4.2.2.2 Injections

We have launched a series of system broadcasts, It's so difficult to know what is the
influence of a broadcast in an app, may be it's not affected, or may be the application stops their
work, but is so difficult to know that, if we don't have the app documentation. For this purpose we
have programmed a simple app, that reply only to a broadcast that we have registered, the response
of our app, is just a message shown at the device screen. At the following line we have an example

of one broadcast launch.

mercury> run app.broadcast.send --action com.upv.intento --extra string parameter "string to

display"

40

4.2.2.3 Observable output

Due to the nature of the broadcasts, it's very complicated to know, if any app is waiting for
that broadcast, and if our launched broadcast affects nay app, at the figure /8 here we have an
example of a broadcasts launch response. May be an app waits for a specific broadcasts to
disconnect himself from the internet, to consume less battery, but it's very difficult to know if an

app has changed his behaviour duo to a broadcast.

MainActivity

Broadcast Intent

Intent Detected.

Figure 18: Broadcast response

41

4.2.3 SQL Injection

For that type of attack first we have to know if we have vulnerable content providers, this is
an easy task, Mercury can do al the work, one we know the vulnerable content providers only
remains to launch the SQL injection, if they are vulnerable we can ask to the table about the
information, we can know the orders that made the table and the type of the fields. Test the content
providers is easy just typing the SQL query, but we can also, insert into the table, and we can test
the consistency of the table introducing wrong types into the table, unfortunately we can't test all the

features due to Mercury development.

4.2.3.1 Attack surface

To test a Content provider must first explore whether there are and how they are configured,
Mercury offers us an interesting tool, Webcontentresolver, this starts a service on port 8080 in our

own machine, which offers a complete listing of all Content Providers of our device.

® - o Mercury WebContentResolver - Mozilla Firefox

Firefox v |i_| Mercury WebContentResolver dlﬂﬂ |

localhost v @/ B~ webcontentresolver Mercury @ <5 @ v

Mercury WebContentResolver

Package Authorities Read permission Write permissiol
com.android.bluetooth com.android.bluetecth.opp null null
[btopp android.permission ACCESS BLUETOOTH SHARE android.permission ACCESS BLUETQOTH &
com.android.browser W com.android.browser.permission.READ HISTORY BOOKMARKS com.android.browser.permission.WRITE HIf
/bookmarks/search suggest guery android.permission.GLOBAL SEARCH null
com.android.browser com.android.browser.home com.android.browser.permission.READ HISTORY BOOKMARKS null
com.android.browser com.android.browser.snapshots null null
com.android.calendar com_.android.calendar.CalendarRecentSuggestionsProvider null null
com.android.deskclock com.android.deskclock null null
com.android.email com.android.email. attachmentprovider com.android.email.permission.READ ATTACHMENT null
com.android.email 4“:::g:g:;i:::::n::i‘:igfr com.android.email.permission. ACCESS PROVIDER com.android.email.permission ACCESS PRC
com.android.exchange com.android.exchange.directory. provider android.permission.READ CONTACTS null
com.android.gallery3d com.google.android.gallery3d.provider null null
com.android.gallery3d com.google.android.gallery3d.GooglePhotoProvider null null
com.android.htmlviewer com.android.htmifileprovider null null
com.android.mms com.android.mms.SuggestionsProvider android.permission.READ SMS null
/search suggest query android.permission.GLOBAL SEARCH null
/search suggest shortcut android.permission.GLOBAL SEARCH null
com.android.mms mms temp file null null
com.android.mms com.andreid.cm.mms null null
com.android.phone cc android.permission.READ CONTACTS android.permission WRITE CONTACTS
com.android.providers.applications applications null null
com.android.providers.calendar com.android.calendar android.permission.READ CALENDAR android.permission WRITE CALENDAR
com.android.providers.contacts Ez:ﬂt.aac:Zrold.contacts android.permission.READ CONTACTS android.permission . WRITE CONTACTS
/search suggest query android.permission.GLOBAL SEARCH null
/search suggest shortcut android.permission.GLOBAL SEARCH null
[contacts/.* /jphoto android. permission.GLOBAL SEARCH null

com.android.providers.contacts call_log android.permission.READ CONTACTS android.permission WRITE CONTACTS
com.android.providers.contacts com.android.veicemail com.android.voicemail.permission.ADD VOICEMAIL com.android.voicemail.permission.ADD VOI
com.android.providers.contacts com.android.social android.permission.READ CONTACTS android.permission . WRITE CONTACTS
com.android.providers.downloads downloads null null

[my downloads
/all_downloads

android.permission. INTERNET
android.permission. ACCESS ALL DOWNLOADS

android.permission. INTERNET
android.permission . ACCESS ALL DOWNLO,

[download android.permission. INTERNET android.permission INTERNET
com.android.providers.drm drm null null
com.android.providers.media media null null
com.android.providers.settings settings null android.permission WRITE SETTINGS
com.android.providers.telephon telephony null null
com.android.providers.telephon sms android.permission.READ SMS android.permission WRITE SMS
com.android.providers.telephon ms android.permission.READ SMS android.permission.WRITE SMS
com.android.nroviders. telenhony mms-sms android.nermissinon.RFAD SMS android.permission \WRITE_SMS =

Figure 19: Web content resolver

42

At the figure 19, we can see a the Webcontentresolver list of content providers installed in
our device, we can see their authority and their permissions (R / W,) we are looking for content
providers, having either or both permits R/ W to null, allowing us to interrogate the database and
write on it. For this same information can also use the order, scanner.provider. injection, and
Mercury will return a list of Content providers vulnerable to SQL injection, here an example of a

Samsung mobile:

Archivo Editar Ver Buscar Terminal Ayuda

Figure 20: vulnerable contents provider
At the figure 20 we have the output of the vulnerable content providers command, that

command searches in all the providers the vulnerable ones, looking for the read and write

permissions set to null.

43

4.2.3.2 Injections

Once we have Content providers vulnerable, we can test them, here an example:

run app.provider.query content://telephony/carriers/preferapn --vertical

and in the table 3 we have the results of the previous order:

id 71
name Yoigo
Numeric 21404
mcc 214
mnc 04

apn internet
user null
User null
server null
password null
proxy 010.008.000.036
port 8080
mmsproxy null
mmsport null
mmsc null
authtype -1

type Default, supl
current 1
Protocol Ip
roaming_protocol IP
carrier_enabled 1
bearer 0

Table 3: Results

Here we can find a table with multiple fields, id (this field is common on all tables), name,

numeric, user and much more, we can find that the last sim card was from Yoigo.

We can know too, internal information of the table, as the SQL statements that created it, the type of

fields:

44

mercury> run app.provider.query content://telephony/carriers/preferapn --projection "* from

sqlite_master--" --vertical
type table
name android_metadata
tbl_name android metadata
rootpage 3
sql CREATE TABLE android metadata (locale TEXT)
type table
name carriers
thl name carriers
rootpage 4

sql CREATE TABLE carriers(_id INTEGER PRIMARY KEY,name TEXT numeric TEXT mcc
TEXT,mnc TEXT,apn TEXT,user TEXT server TEXT,password TEXT proxy TEXT port
TEXT mmsproxy TEXT, mmsport TEXT, mmsc TEXT authtype INTEGER, type TEXT, current
INTEGER, protocol TEXT,roaming protocol TEXT carrier enabled BOOLEAN,bearer INTEGER)

So far, we have obtained information from the contents of the table, we extracted additional
information from the table, what's left? trying to insert data into the table, let's see. We will insert

information into the content provider //com.cyanogenmod.cmparts.provider.Settings/settings

mercury> run app.provider.insert content://com.cyanogenmod.cmparts.provider.Settings/settings

--integer _id I --string key nth --integer value 10

In the above order, we have to indicate the full address of the content provider, we also have
to indicate the names of the fields, their type and value, then we execute the order and if Mercury
responds with done, it means that the insertion was successful.

mercury> run app.provider.query content.://com.cyanogenmod.cmparts.provider.Settings/settings
| id | key | value |
|1 |nth|10 |

In the above command we can see that the information is properly inserted.
After these experiments, we can see that we can access sensitive information, this app is

capable without having any special permission to access all content providers that are not properly

45

configured, we must to remember that Mercury only requires the Intnernet permission.

4.2.3.3 Observable output

Here we can observe the access to the data base, we can see the content of the tables that store the

information of the app, may be that information it can be sensitive, for example we can access to a

password organizer, or to our emails. At the figure 21 we can see an example of output from a SQL

injection.

dz> run app.provider.guery

content://com.mwr.example.sieve.DBContentProvider/Passwords/ —-projection "*
FROM SQLITE MASTER WHERE type='table';--"

| type | name | tbl name | rootpage

| table | android metadata | android metadata | 3

| table | Passwords | Passwords | 4

| table | EKey | Key I 5

Figure 21: SQL output example

sql

CREATE
CEREATE
CREATE

TABLE
TABLE
TABLE

46

424 Command Execution

In this attack we only can launch a shell or a single command, here we can test all the
command that Busybox offers, so we can test the access to the file-system directory, try to copy
files and modify them with the vi or vim program, offered by Busybox. We can test the access to

secure folders like /etc, /mnt, access to the SD card (if any).

4.2.4.1 Attack surface

We have to explain first that, if we want to launch commands like in a normal Linux OS,
first we have to install the Busybox, because we will launch the orders that Busybox allows us, we
don't need anything more, we don't need to find nothing, but with Mercury we can install BussyBox

without the permission of the user, just we have to put a simple order like that:
Mercury> run tools.setup.busybox

And the user will never know that we have installed a new application on her mobile device, so yes

it's possible to install an app with the knowledge of the user, a disturbing fact

4.2.4.2 Injections

We can open a shell through Mercury and we can navigate across the file-system, as we can see on
the below figure we can reach the mnt/ file, for example we can copy all the content of that folder to

a local path. We have an example at the figure 22, here we can see the output of a /s order.

Figure 22: Launching a shell

47

4.2.4.3 Observable output

As a result of an vi command, we can see the content of the files, here we have an example

from the boot.txt as we can see at the figure 23.

AICNIVo Ecaitar ver obuscar lerminat Ayuada

Figure 23: Content of the file boot.txt

The most striking is the ease with which we can access the system and start throwing orders
as if we were in a normal system, we don't have to forget that we are in a mobile device, and we are

subject to Busybox availability.

4.3 Summary

In that chapter we have explained the sequence of steps to find vulnerabilities in an Android
mobile device, we have explained in a simply way, the main vulnerabilities, the attack types that we
will use in following steps, we have seen the configuration of the experiments. We have explained
how to make the attacks, we have seen some examples and a few screen captures from the
Mercury's output. In the next chapter we will explain the case of study, the target mobile devices,

we will explain more deeply the attacks.

48

5 Case study

In this chapter we are going to explain how we did the experiments that, we have been
developed, defining the targets devices, the experiment objectives, how we developed the
experiments and the measures.

In this case, we will develop or experiences on a Linux environment, specifically in Ubuntu
12.10, but it also could be done in MacOS and Windows. We will use the Mercury version 2.2.1.

To prepare the experiment, first we have to prepare the working environment. We must first
have a device that can launch the experiments, we can ask whether working in a real or emulated,
for the first option we should have available any phone, better if is a real device, we will get better
results. We can help with the emulator, if we install the Android Software Development Kit
(Android SDK), with this tool we can create virtual devices with any version of Android. With the
emulator gives us great versatility in being able to choose which version to realize. We can choose
the emulator, it's a safe environment if we use unsafe or malicious apps and if anything goes wrong
we can return to safe. But we have few cons, sometimes is very slow and is not an example of
device that we can find in the real world. On the other hand, we can choose a real device, is faster
and easy to monitor, we have a real usage example and we have full control if the device is rooted,
but it can be damaged if we test malicious apps. We will choose the real device, because we have at

our grasp, several devices, so we will use them.

We should install Mercury, in our computer, is simple, we just get off their latest version and
follow some easy steps, additionally, for Mercury's correctly work we need to install Python. In
addition we have to install the agent (the client) in our target mobile device, is as easy as install a
normal app, we can do it thought the ADB. Before connect Mercury to the agent, we have to start it.
Once installed all the need, simply we have to type in a terminal mercury console connect.

We have a couple of models of connection between the client(Mercury app, con the mobile
device) and the server(Mercury on the computer), we can connect via USB or via WIFI, we have

decided for the first option, via USB, is much faster and requires less infrastructure to run.

49

5.1 Target Devices

For our tests we have used several devices, in the table 4, we can see them, including mobile

phones and tablets. We have tested two HTC WildFire A3333, one Samsung Galaxy S and two

Archos 70 internet tablet,

Brand Model Operative System Version

HTC WildFire A3333 Android - HTC Sense |2.1 Model A
HTC WildFire A3333 Cyanogen Mod 7.2 Model B
Samsung Galaxy S Cyanogen Mod 9.2 Model C
Archos 70 Internet Tablet | Android 2.2.1 2483 Model D
Archos 70 Internet Tablet | Android 2.2.1 24.8.1 Model E

Table 4: target devices

5.2 Work load

Here we are going to explain the work load, the installed apps, services, and the overall info about

the target mobile.

Archos versions 2.4.8.1 and 2.4.8.3, installed apps:

o Adobe reader, Aldiko, Angry birds, AppsLibs, calculadora, Biisqueda de google, cdmara,
CineShowTime, ColorNote, Deezer, eBuddy, FindYourWay, Fring, Galeria,
HubkapMobile, Musica, navegador, Quiclpedia, Relog, Skype, Touteur,

ViewPagelndicator, Youtube, contactos.
HTC house Rom:

© Adobe reader, Aldiko, BusyBox, calculadora, camara, carHome, descargas, DevTools,
DroidSheep, DSPManager, email, filemanager, gameria, ManifestExplorer, sms,
MercuryAgent, Musica, navegador, noticias, playStore, radioFM, torch, videos,

superuser, TestGCM, contactos.
HTC Cyanogen V7:

o @aleria, contactos, SMS, Mensajes, Musica, mercuryAgent, radioFM, videos, torch,
BusyBox, noticias, DSPManager, playStore, MovieStudio, taskManager, Shark,
filemanager, TestGCM, ViewPagelndicator

Samsung Cyanogen V9:

o Ajustes, Boox, Busqueda, calculadora, calendario, camara, contactos, correo, descargas,

50

DevTools, drone, DSPmanager, Eventivities, Findme, galeria, Gmail, geoEvents,
Hikinapp, mercuryAgent, Mensajes, MovieStudio, Musica, navigation, PepeRoutes,
PersonalFinance, PlayStore, Principal, Relog, Shark, taskManager, Shamir, Shark,

superuser, valenparty, Youtube.

5.3 Experiments configuration
Here we are going to explain our experiments in numbers:

Experiments done:

Fault N° of injections Positive results
Malformed intents 75 54
Broadcasts 50 43
SQL Injections 45 30
Command 30 23
5.3.1 Relevant parameters

Here we will explain the most relevant parameters that we have introduced in our injections

e Malformed intents:

= Integers: Empty fields, out of range (like one million), negative, malformed

numbers, numbers with letters, numbers with punctuation marks.

= Strings: Empty fields, strings with numbers, strings with capital letters, strings with

spaces, strings with punctuation marks, long strings,

* Broadcasts: we have introduced, wrong uris, wrong paths, we have inserted in the optional

fields unexpected parameters, like empty fields, malformed strings and integers.

* SQL Injections: we have inserted malformed parameters, like wrong integers, malformed

strings, very similar to the malformed entry.

e Command: Here is impossible to insert parameters.

51

5.4 Results

In this chapter we are going to introduce the results that we have found in our experiments.
Results are obtained from performing 200 experiments, and from these, in 150 we found
vulnerabilities. As we will present, the most vulnerable devices are those which have installed a
cooked Roms like Cyanogen [42]. If we install a modified rom, we have more possibilities adapt
our mobile device to ours requirement, but the more possibilities we have to modify, the more
vulnerable our mobile will be. The most surprising vulnerability was found in Archos devices, we
found that the OS answer to the CALL an DIAL Intents, when the Archos devices are tablets
without dial options, they are not phones. Following the advices of Android developers, we have
explained some advices to avoid some of the vulnerabilities exposed in the previous chapters. But

we have to emphasize that no all of the vulnerabilities are avoidable.

Most software security vulnerabilities fall into one of a small set of categories:

Invalidated input.

* access-control problems.

* Secure Storage and Encryption.
* Insecure File Operations.

* DoS.

* Bypass.

But, we will classify then in four categories, malformed intent, broadcasts, SQL Injection

and command execution.

52

5.41 Malformed Intents

Here we will introduce the fails that we have observed when we launched the malformed

intents. At the fable 5, we have the access-control and invalidated input vulnerabilities.

Device models DELETE(1) WEB_SEARCH (2) SEARCH(3)
Model A
Model B v v v
Model C 4 4 4
Model D
Model E

Table 5: Malformed Intents

Delete: an activity action, we can delete de given data from its container. Input required.
Web_search: an activity action, action required to perform a web search. Input required.
Search: an activity action, perform a search. Input required.

(1) We were able to crash, the delete feature when we didn't insert any string in the target field.

(2) We stop the execution of the de Google Search when we launch the system call

WEB_SEARCH.

(3) We were able to stop, the search function, when we didn't insert anything to search, because we

suppose, that field is necessary.

Here we face to a system problem, because we were able to access to a some system
features, like Delete, Web search, search, is supposedly we could not be able to access to that

functionalities so we have an access-control problems, but we can access to them, may be the

system doest not check the id of the process that launch that calls, or these features are not market

like only-system-access. We have too, an invalidated input problem, because that features doesn’t

check the fields that the intent call pass, we can have a string in a field that supposedly it must be an

integer. It can be very difficult to know the source of these problems.

We can exploit these vulnerabilities, leaving empty the required fields or inserting the wrong
type, we can stop that feature or may be, depending on the Android OS, we can reboot the system,

reaching a DOS (denial of service), so that vulnerabilities can be very harmful for the user, because

it's impossible to see why that is happening, is transparent.

53

5.4.2

Broadcasts

In the table 6, we have the access to System Broadcasts, in the first row we have the tested

broadcasts that supposedly are only accessible by the OS. Here mainly, we have the access-control

the DOS and the ByPass vulnerabilities.

Device | DREAMING | DREAMING EXTERNAL PACKAGE | PACKAGE | MANAGE POWER MY *)
models| STARTED | STOPPED |APPLICATIONS o oo | yporoes [NETWORK| o o | PACKAGE
Q) Q) AVAILABLE(D) | |\ xon @ USAGE | (niviary REPLACED
2)
2 2
@) 2 @))
Model 4
A
Model v v v v v v
B
Model (4 (4 (4 (4 v v (4 v
C
Model v v v v v v
D(*%)
Model v v v v v v

Table 6: Access control problems

DREAMING_STARTED: Broadcast Action, Sent after the system starts dreaming.
DREAMING_STOPPED: Broadcast Action, Sent after the system stops dreaming.

EXTERNAL APPLICATIONS AVAILABLE: Broadcast Action:,Resources for a set of
packages (which were previously unavailable) are currently available since the media on which they

exist is available.

PACKAGE_FIRST LAUNCH: Broadcast Action, Sent to the installer package of an application
when that application is first launched (that is the first time it is moved out of the stopped state).

The data contains the name of the package.

PACKAGE_VERIFIED: Broadcast Action, Sent to the system package verifier when a package is
verified. The data contains the package URI.

MANAGE _NETWORK USAGE: Activity Action, Show settings for managing network data
usage of a specific application. Applications should define an activity that offers options to control

data usage.

54

POWER_USAGE_SUMMARY: Activity Action, Show power usage information to the user.

MY_PACKAGE REPLACED: Broadcast Action, A new version of your application has been
installed over an existing one. This is only sent to the application that was replaced. It does not

contain any additional data; to receive it, just use an intent filter for this action.

(*) Access control vulnerability access to non specific functionality of the application DIAL

(**)We found too, that the Archos models answer to the CALL and DIAL broadcast, when these

models don't have the phone options.

(1) Deny of service when we launch the broadcast EXTERNAL APPLICATIONS AVAILABLE
we stop the apps Trebuchet[47] and Google Play.

(2) With these attacks, we didn’t get any remarkable response, just we were able to launch that OS

broadcasts.

Here we have the broadcasts that, supposedly are accessible only by the OS, we can see a
ByPass vulnerability, so we found that many of these broadcasts that are accessible by any app, this
discovery is disturbing, because this an Operative System fail, is not a vulnerability inserted by a
programmer mistake or oversight, is an error from the own system, so the problem is worst than we
thought. We can exploit, mainly that vulnerability, sending a series of broadcasts hoping to change
the behaviour of the applications, that, are currently running in the system, some of them, will not
take care of these broadcasts, but others will be listening and waiting for that broadcast, and will
change their performance. Unfortunately we can't make anything against that problem, the origin of

this is in the own system we hope, that problem will be solved in coming versions of Android.

55

5.4.3

SQL Injection

At the table 7, we have the content providers unauthorized access vulnerabilities and Secure

Storage and Encryption vulnerabilities, at the first row we have the content providers that we were

able to access, extract and modify information.

Models| Apn Settings phone com.google. control com.google. | com.android. com.android.
provider | provider | contacts settings/ device android.maps. cm.mms cm.
1)) 1) partner secret codes LayerInfo mms/templates

1) M Provider Q) M2
1

Model 4 4 4

A

Model 4 4 4 4 4 v 4 4

B

Model 4 4 4 v 4 v 4 v

C

Model 4 4 4

D

Model 4 v v

E

Table 7: Secure storage and encryption

Apn provider: Is the name of the gateway between the 3G, etc. mobile network and another

computer network.

Settings provider: Here we can find the configuration of the 3G network, we can find, the name of

the providers and several settings, (frequency, channel, etc.).

Phone contacts: The stored contacts on our mobile device.

com.google.settings/partner: Here we can find information about the settings from google

applications, like the mail or similar.

Control device secret codes: Here we can find the factory secret codes, to access, for example,

Wireless LAN tests, System dump mode, Immediate backup of all media files, etc.

56

com.google.android.maps.LayerInfoProvider: We have all the information about the given layer

from Google Maps.
com.android.cm.mms: The mms, (multi-media messages), stored in our mobile phone.
com.android.cm.mms/templates: The mms templates stored in our mobile phone.

(1) We were able to access to the content of the tables, and to the SQL instructions to build the
table.

(2) We were able to read and write on the content provider.

Here we have the content providers (similar to a table, from a database) that, are vulnerable
to the access to their own data, we have to clear up that, an application can access to their own
content providers or the content providers from others applications that have authorized it, but here
we have that we are able to access, nearly to all of the content providers that have some mistakes on
their configuration, if we don't want to make that mistake, we have to configure correctly the
content provider permissions, in particular, write and read, if we don't make anything, these
permissions will be set at null, and that is our gate to access to the contents. We can read and/or
write, depending on the condition of the previous permissions. This is a big fail, mainly, from the
programmers, sometimes they forget to set that parameters, with that mistake we are able to access
to the data of others applications, may be, the mail, the sms, or the configuration of the wireless
network, and of course, we can write too, we can insert new information on the content providers,
we can test the integrity of the tables, because we can insert incorrect data, and monitor the
behaviour of the applications when that access to that corrupt data, and perhaps, we can stop the

application or restart the mobile device, or left the table in a weak state.

57

5.4.4

Command execution

In the table 8 we have the access to file-system and bypass vulnerabilities, we were able to

access to the whole SDcard file-system and to the device file-system and we were able to open a

console on the target device.

Models Total access to the SDcard | Access to the device file system Code Execution (¥)
file system

Model A v 4 v

Model B 4 v v

Model C 4 v 4

Model D 4 v 4

Model E v 4 4

Table §8: Insecure file operations

(*) Code execution through the BusyBox app[71].

Through the busy box application we can access, almost, to the mail features of a Unix
systems, like the most orders that we can find in a Linux command console. What will can do, if we
can deploy all of these commands in an Android device (we don't have to forget, that is based on
Linux), for example we can list the file-system directories or we can access to the SD-Card (if any)
and we can copy that contents to our computer or send it thought Internet. We can extract the whole
path to the file that we want to extract and with the Mercury order of copy files and we can

download wherever we want.

First we have to say that, we are able to launch commands or launch because we have
installed the Busy box app, that offers us all, almost, all features of a Unix system. We have to
focus, that the system allows us to commands like in a computer, we know that Android runs over a
Linux systems, but we are not in a computer, we are in a mobile device, we supposedly we could
not access to some features, like list a system folder or see and modify systems files, we just a

modify one of these files and turn the mobile device into an expensive brick.

58

5.4.5

Curious data
We have found some curious data in our experiments, we will show them here:

In the Archos Internet tablets we found that the system allows us to launch a system
broadcasts, like android.intent.action. DREAMING STOPPED,
android.intent.action. PACKAGE FIRST LAUNCH,

android.intent.action. CKAGE FULLY REMOVED and

android.intent.action. PACKAGE VERIFIED,

In the Archos Internet tablets, we found that the system allows us to launch
ndroid.intent.action. NEW_OUTGOING CALL, despite of that tables not have the function

of call, we can't make a phone call at all.

In the Samsung mobile, we have the same case as above, the system allows us to launch a
system broadcasts, like android.intent.action. DREAMING STOPPED,
android.intent.action. PACKAGE FIRST LAUNCH,

android.intent.action. CKAGE FULLY REMOVED and

android.intent.action. PACKAGE VERIFIED

In Samsung launching the broadcast
android.intent.action. EXTERNAL APPLICATIONS AVAILABLE, we sopped the apps,
Trebuchet and Google Play.

In Samsung mobile, we stopped the Google search launching the
android.intent.action. WEB_SEARCH, without estra and with,
android.intent.action WEB_SEARCH --flags ACTIVITY NEW TASK --extra string search

"wordtosearch"”

In Samsung mobile, we can reboot the mobile inserting the manufacturer code in the dial, as

follows *#*#947322243*#*#

59

* In Samsung mobile if we introduce the manufacturer code *#*#4636*#*# in the dial, we

can know the user and password from the connected wireless network as we can see at the
figure 24.

= Ajustes

ID: 8 SSID: "UPVNET2G" BSSID: null PRIO: 100
KeyMgmt: WPA_EAP |IEEE8021X Protocols:
WPA RSN

AuthAlgorithms:

PairwiseCiphers: TKIP CCMP

GroupCiphers: WEP40 WEP104 TKIP CCMP
PSK:

eap: PEAP

phase2: auth=MSCHAPY2

identity: @upvnet.upv.es
anonymous_identity: @upvnet.upv.es
password: WiE —_
client_cert:

private_key:

ca_cert:

IP assignment: DHCP

Proxy settings: NONE

LinkAddresses: [10.236.45.160/22,] Routes:
[0.0.0.0/0 -> 10.236.44.1,] DnsAddresses:
[158.42.250.195,158.42.250.65,]

ID: 7 SSID: "punxos” BSSID: null PRIO: 94
KeyMgmt: WPA_PSK Protocols: WPA RSN
AuthAlgorithms:

PairwiseCiphers: TKIP CCMP

GroupCiphers: WEP40 WEP104 TKIP CCMP
PSK: =

eap:

phase2:

Figure 24: User network

information

* In both HTC mobiles we found the same response to the launch of the
system.broadcastsandroid.intent.action. DREAMING STOPPED,
android.intent.action. PACKAGE FIRST LAUNCH,
android.intent.action. CKAGE FULLY REMOVED and
android.intent.action. PACKAGE VERIFIED, the system alows us to launche them.

* Inboth HTC, have ben able to insert data in the content provider
media/external/images/media/, this is a table that contains images, when we insert a new
row in the table, that query needs a photo, so we didn't insert a real photo in the query, but
the system inserted an empty photo, with a size of 0 Kb.

60

6 Tips and tricks

In this chapter we will explain some tips a tricks[41] to make safer our application, just

following these advices we will improve the security of our mobile device.

Android has some security features included into the operating system, that significantly
reduces the risks of that phone information will be compromised. To help with this task, you can
build your app with default system file permissions and avoid difficult decisions about security, but

it's better if we adapt the security to our requirements.

Here we present the most relevant core advices:

With the Sandbox from our Android application, we are able to avoid the code execution

from outside of our app, from others apps.

* An application framework with robust implementations of common security functionality

such as cryptography, permissions, and secure IPC.

* Technologies like ASLR, NX, ProPolice, safe_iop, OpenBSD dlmalloc, OpenBSD calloc,
and Linux mmap_min_addr to reduce the risks associated with the most common memory

CITorS.

* We can use an encrypted file-system, with that we will able to protect our, if our mobile

device or stolen.
* We can use a system of permissions to restrict the access to system features.
* Application-defined permissions to control application data on a per-app basis.

Notwithstanding, it is very important to build a robust app, that we be familiar with the
Android security best practices. If we follow these practices we will reduce the likelihood of
inadvertently introducing security issues that could make could make easier to steal information

from our mobile.

6.1 Storing data

One of the most important concern for Android is, if the data that we save on the mobile is
accessible to other apps that shares the device. We have three ways to store our information on the

device.

61

6.1.1 Using internal storage

By default, files that we create on internal storage are accessible only to your app. This

protection is implemented by Android and is sufficient for most applications.

We should generally avoid wusing the MODE WORLD WRITEABLE or
MODE_WORLD READABLE modes for IPC files because they do not provide the ability to limit
data access to particular applications, nor do they provide any control on data format. If we want to
share your data with other app processes, we might instead consider using a content provider, which
offers read and write permissions to other apps and can make dynamic permission grants on a

case-by-case basis.

To provide additional protection for sensitive data, we might choose to encrypt local files
using a key that is not directly accessible to the application. Bur we have some problems to solve
before encrypt our data, for example, choose the correct data, where to store the key, which
algorithm we will use, we have many problems to solve as we can see in [37] before choose the

proper way.

6.1.2 Using external storage

Files created on external storage, such as SD Cards, are readable and writeable by
everybody. Because external storage can be removed by the user and also modified by any

application, we should not store sensitive information using external storage.

As with data from any untrusted source, we should perform input validation when handling
data from external storage. If your app does retrieve executable files from external storage, the files
must be signed and cryptographically verified prior to dynamic loading, in order to prevent possible

infection by a potential virus.

6.1.3 Using content providers

Content providers offer a structured storage mechanism that can be limited to your own
application or exported to allow access by other applications. If we do not intend to provide other
applications with access to our ContentProvider, mark them as android:exported=false in the
application manifest. Otherwise, set the android:exported attribute "true" to allow other apps to
access the stored data. But that last option it's not recommended to share information with other

apps, unless we can trust on these apps.

When creating a ContentProvider that will be exported for use by other applications, we can

specify a single permission for reading and writing, or distinct permissions for reading and writing

62

within the manifest. We recommend that you limit your permissions to those required to accomplish
the task at hand. We have to keep in mind that it’s usually easier to add permissions later to expose

new functionality than it is to take them away and break existing users.

If we are using a content provider for sharing data between only your own apps, it is
preferable to use the android:protectionLevel attribute set to "signature" protection. Signature
permissions do not require user confirmation, so they provide a better user experience and more
controlled access to the content provider data when the apps accessing the data are signed with the

same key.

Content providers can also provide more granular access by declaring the
android:grantUriPermissions attribute and using the FLAG_GRANT READ URI PERMISSION
and FLAG GRANT WRITE URI PERMISSION flags in the Intent object that activates the
component. The scope of these permissions can be further limited by the <grant-uri-permission

element>.

When accessing a content provider, use parametrized query methods such as query(),
update(), and delete() to avoid potential SQL injection from untrusted sources. Note that using
parametrized methods is not sufficient if the selection argument is built by concatenating user data

prior to submitting it to the method.

Do not have a false sense of security about the write permission. Consider that the write
permission allows SQL statements which make it possible for some data to be confirmed using
creative WHERE clauses and parsing the results. For example, an attacker might probe for presence
of a specific phone number in a call-log by modifying a row only if that phone number already
exists. If the content provider data has predictable structure, the write permission may be equivalent

to providing both reading and writing.

6.2 Using Permissions

Because Android sandboxes applications from each other, applications must explicitly share
resources and data. They do this by declaring the permissions they need for additional capabilities

not provided by the basic sandbox, including access to device features such as the camera.

6.2.1 Requesting Permissions

We recommend minimizing the number of permissions that your app requests not having
access to sensitive permissions reduces the risk of inadvertently misusing those permissions, can

improve user adoption, and makes your app less for attackers. Generally, if a permission is not

63

required for your app to function, do not request it.

In addition to requesting permissions, your application can use the <permissions> to protect
IPC that is security sensitive and will be exposed to other applications, such as a ContentProvider.
In general, we recommend using access controls other than user confirmed permissions where

possible because permissions can be confusing for users.

Do not leak permission-protected data. This occurs when your app exposes data over IPC
that is only available because it has a specific permission, but does not require that permission of
any clients of it’s IPC interface. More details on the potential impacts, and frequency of this type of
problem is provided in this research paper published at USENIX: http://www.cs.be
rkeley.edu/~afelt/felt usenixsec2011.pdf

6.2.2 Creating Permissions

Generally, we should strive to define as few permissions as possible while satisfying your
security requirements. Creating a new permission is relatively uncommon for most applications,
because the system-defined permissions cover many situations. Where appropriate, perform access

checks using existing permissions.

If we must create a new permission, consider whether you can accomplish your task with a
"signature" protection level. Signature permissions are transparent to the user and only allow access

by applications signed by the same developer as application performing the permission check.

If we create a permission with the "dangerous" protection level, there are a number of

complexities that you need to consider:

The permission must have a string that concisely expresses to a user the security decision

they will be required to make.
* The permission string must be localized to many different languages.

* Users may choose not to install an application because a permission is confusing or

perceived as risky.

* Applications may request the permission when the creator of the permission has not been

installed.

Each of these poses a significant non-technical challenge for you as the developer while also

confusing your users, which is why we discourage the use of the "dangerous" permission level.

64

6.3 Summary

As conclusion we can say that if we invest a little more time, in the facets that are related
with the security and best practices we will increase the safety of our application. Also the final user
must have attention when install app from non-GooglePlay apps because we don't know the origin
of these apps, we can be installing applications do not do what they really say. As well we have to
have care with the GooglePlay apps, above all we have to keep in mid the apps permissions,
because most of then are over-privilege closer to the 30%[43], in may cases we can found apps (like
a torch[44]), that demanded an access to the GPS, check the identity and phone status, access to
the camera, network connections access, USB access, awesome for a torch, that only access to the

flash.

As we can see at the previous tables, the most insecure mobiles it's the model C, the
Samsung Galaxy S with Cyanogen Mod 9.2, why? The principal difference between that mobile
with the others, it's the installed rom, in one hand we have the official manufacturers Roms and in
the other hand, we have the unofficial roms, that are made by amateurs programmers, took from an
official rom or a rom made by another amateur, and they start changing and modifying the
behaviour of the system, opening new ways to improve the system, like having more options to
customize our mobiles, add new functions offering new ways to modify for example the parameters
of the CPU, but, who can ensure that this rom it doesn’t have a service monitoring our device or a
trojan? Opposite of that, we have the official roms, made by the mobile manufactures, in these roms
we have few possibilities to customize the system or some times we can not un-install the
pre-installed manufacturer apps. We don't have any chance to modify the behaviour of the system.
May be we have a safer rom, but nobody can claim that, our manufactures has included a tracker or

similar.

65

7 Conclusion and further work

Based on what we've seen in this master's thesis, we know the potential risks that exist in our
mobile devices, we know that a malicious application can not require many special permits. We
know, what we can do with only a couple of permissions, extract information from our SD card and

send it to their servers, for example.

But how can we prevent the attacks against Android by these malicious apps? In fact there is
not a perfect formula to protect us from these attacks, we can affirm that is better if we don't install
any third-party apps, 1is better if we install apps that have passes the filter of Google Play market,

although some of these apps are malicious, nothing is certain.

Unfortunately, the current anti-virus that we have available for Android systems do not
solve these problems, they can not do anything against this kind of attacks. We believe that what we
really need is to improve the current Android sandbox. The security of the applications made for
Android, should come from the programmers themselves, a major improvement would be that
development tools incorporate options for detecting potential security flaws, implementing
mechanisms to protect against SQL injection, directory traversal vulnerabilities and maybe, improve
the control access to the SD card, defining the limits, which can read and can not read, for example
limit the app access to the SD card, giving permission, to read and write, to the own folder of the

application.

Mercury has shown us how easy, it can be for an application to access to the sensitive data
from your mobile device, with only, and we have to empathise that, the Internet permission, so what
it can be happening when we install an app that requires the permission of “access to accounts”, the
access to SD Card and the Internet, who can claim, that, our information is not being sent to a

third-party company? therefore, or mobile is far away from begin secure.

Currently, the development and distribution of software for Android is much faster than the
security improvements, unless we begin to focus on our security applications, or in improving the
security model of the system itself, soon, we may be facing one scenario where most applications

are malicious, and perhaps it can be the end of Android.

66

8 ITACA Research Day

We have displayed our work in the ITACA Research Day, with the reference, J. Mozos, D.
de Andrés, J. Friginal, J.-C. Ruiz, "A study of vulnerabilities on Android systems: supporting tools
and best practices", Jornada de investigacion del IUI ITACA, Valencia, Spain, June 28, 2013.

Due to the size of the image, we prefer to take up one page, to make easier it's reading, we can see it

at figure 25.

67

UNIVERSIDAD
POLITECNICA
DE VALENCIA

a0€Cn

A study of vulnerabilities on Android systems:
supporting tools and best practices

Javier Mozos', David de Andrés’, Jesus Friginal® and Juan-Carlos Ruiz'

Instituto ITACA, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain
2L AAS-CNRS, 7 Avenue du colonel Roche. 31400 Toulouse, France

Abstract

SRS

W T al B 1245 P00

Over the past two decades, we have witnessed significant technology advances in mabile devices,
from the PDAs of the late 1990s and early 2000s to the ubiquitous and multifunctional smartphones
of today. These devices are, nowadays, an essential part of our everyday life, providing a myriad of

useful applications (apps) for both work and leisure. However, this has also increased the
attractiveness of these kind of platforms as a target for attackers, as mobile devices store lots of
sensitive information, enable the access to company's private network or e-banking services, etc. In
order to prevent the malicious exploitation of existing vulnerabilities, it is necessary to i) develop
suitable tools to identify them, so they can be removed from existing apps, and i) define a set of
best practices to avoid introducing new vulnerabilities during development. This work studies
existing tools and provides a first insight of lessons learned to define a set of best practices

Top mobile vulnerabilities and exploits of 2012
Twitter SMS Spoofing: attackers could post messages or alter the account settings of
a Twitter user
Dirty US50: hackers may remotely reset and wipe phones running versions earlier
than Android 4.1.x
Android S5L/TLS Woes: 8 percent of Android apps could be vulnerable to man-in-
the-middle attacks due to poor SSL/TLS implementations
Android NFC Vulnerabiliies: attackers may take over a device using another device
placed within a few centimeters of the phone under attack
Mobile Man-in-the-Middle Aftacks Using Exchange: attackers may access contact
entries, and impersonate a corporate email server and erase all of the data on the
device through push commands
Sodal and Sharing Authentication Flaws: Authentication keys in Facebook, LinkedIn,
and Dropbax were stored in unencrypted plain text files
Zitmo: Zitmo masquerades as a banking activation application and eavesdrops on
SMS messages in search of the mobile transaction authentication numbers banks
send via text to their users S

Figure 1. Mobde mabyare infecson rate - June 2012
Android-based security tools

Existing tools, like Mercury, Android Guard and ASEF, automate the analysis of apps.

» Static analysis focuses on scanning the internal resources of an app marching the

results of the scan with pre-defined pattemns assimilated to well-known vulnerabilities.
These resources include i) the source code, where commen programming errors could
be checked, ii) the manifest, where undesired permissions may be granted to the app,
and iii) internal resources used by the app, ke local databases, images, multimedia
files, etc.
Dynamic analysis executes the app on a real device or simulator to determine its
behaviour in presence of accdental faults or attacks. Accidental faults include comprise
any non-malicious phenomena that can affect the device, like battery exhaustion,
whereas attacks include malicious attempts to exploit existing vulnerabilties, like
incorrect input validation (launching Intents with out of range parameters) or non-
authorised access to stored data (via SQL injection),

[

Figure 2. Mercury
The heavy metal hat polsoned the drold

Figure 3 Android Guard Figure 4. ASEF
Reverse engineering, malware and Androld Secunly Evauation Framework
goodware analysis of Androld spps

Additional comments

This work has been performed as part of Mr. Mozos' M.S. thesis. This work is partially supported by the Spanish project ARENES (TIN2012-38308-C02-01), the ANR
French project AMORES (ANR-11-INSE-010), the Intel Doctoral Student Henour Programme 2012.

[1] M. Cinque, D. Cotroneo and A. Testa, "A logging framework for the ondine failure analysis of Android smart phones”, 1s Europaan Workshop on AppRoaches to MObiquiTous Resiiende, Sibiu, Romania, 2012,

[2] AK. Maji, FA. Arshad, S. Bagchi, and 1.5, Rellermeyer, “An empirical study of the of inter

| Applications

Device-based mobile application vulnerability identification

Tdentify application permissions: Which access privileges is the app granted

Map application functionality: How apps access network connections, data storage,
user inputs and permissions

Monitar connections: Monitor requests and responses through all interfaces

Review data handling: Where is the sensitive information located and how it is
pratected

Decompile application: Look for patterns, symptoms, and common programming
errors leading to vulnerabilities

Figure 5. Mercury defdned [i
Lesson learned to build more robust apps

= Using internal storage: Avoid MODE_WORLD_WRITEABLE/READABLE. Encrypt files
with a key not directly accessible to the app.

= Using external storage: Do not put sensitive data there. Check inputs for incoming
data and files should be signed and verified previous loading.

= Using Content Providers: Define read/write permissions and do not share data with
athers apps unless trusted. Use parameterised query methods to prevent SQL
injection.

= Reguesting permissions: Limit requested permissions to the minimum. Do not leak
permission-protected data.

» Creating permissions: Create new permission only when necessary or use
signatures instead.

Boston, USA, 2012.

[3] Mercury, [Online] Available: hitp://labs mwrinfosecurity.com/tools/ 201203/ 16/mercury/
[4] AndroGuard, [Online] Available: htto://code. qoogle.com/p/androguard/

[5] ASEF, [Online] Available: http://code.qoogle. comjp/asef/

Figure 25: Itaca poster

C ication in Android", Conference on Dependabie Systems and Networks,

68

9 References

[1] MWR Labs main page: http://labs.mwrinfosecurity.com (April —2013) created: (unknown)

author: unknown

[2]MWR Labs Twitter: https://twitter.com/droidhg (April — 2013) created: (unknown) author:

unknown

[3]Apk-tool :https://code.google.com/p/android-apktool/ (April — 2013) created: (unknown)

author: unknown

[4] Tools Yard:
http://toolsyard.thehackernews.com/2012/09/mercury-v11-android-vulnerability.html# (April —
2013) created: (March 2012) author: Mohit Kumar

[5] Infoseckenya, Mercury modules: http://infoseckenya.blogspot.com.es/2012_07_01_archive.html

(April —2013) created (July 2012) author Sam Kihahu

[6][GitHub: https://github.com/mwrlabs/mercury/wiki (April - 2013)

[7]1Simon Roses Femerling Blog, Exploring malware:

http://www.simonroses.com/2011/07/exploring-android-malware/ (April — 2013) created: (July

2011) created: (unknown) author: Simon Roses Femerling

[8]RootWiki, APK multi:-tool http://rootzwiki.com/topic/31506-linuxutilitytool-apk-multi-tool/
(March -2013) created: (August 2012) author: Raziel23x

[9][Google Code: http://code.google.com/p/android-apktool/ (March -2013) created: (unknown)

author: unknown author: APK-tool community.

[10]AndroGuard BlogSopt: http://androguard.blogspot.com.es/2012/03/androguard-mercury.html
(May -2013) created: (March 2012) author: Anthony Desnos

[11]Analizando malware en Android:
http://www.expresionbinaria.com/analizando-malware-en-android-con-androguard/ (May -2013)

created: (unknown) author: unknown

[12]Google Code: http://code.google.com/p/androguard/#Description (May -2013) created: (March
2012) author: unknown

[13]Analizando malware en Android con Androguard

: http://solucionavirus.blogspot.com.es/2013/02/analizando-malware-en-android-con.html (May
-2013) created: (February 2013) author: unknown

69

http://solucionavirus.blogspot.com.es/2013/02/analizando-malware-en-android-con.html
http://code.google.com/p/androguard/#Description
http://www.expresionbinaria.com/analizando-malware-en-android-con-androguard/
http://androguard.blogspot.com.es/2012/03/androguard-mercury.html
http://code.google.com/p/android-apktool/
http://rootzwiki.com/topic/31506-linuxutilitytool-apk-multi-tool/
http://www.simonroses.com/2011/07/exploring-android-malware/
https://github.com/mwrlabs/mercury/wiki
http://infoseckenya.blogspot.com.es/2012_07_01_archive.html
http://toolsyard.thehackernews.com/2012/09/mercury-v11-android-vulnerability.html
https://code.google.com/p/android-apktool/
https://twitter.com/droidhg
http://labs.mwrinfosecurity.com/

[14]CyberPunk Blog: http:/nOwhere.net/androguard-1-9/ (May -2013) created: (December 2012)

author: unknown

[15]Google Code: http://code.google.com/p/androguard/wiki/Usage?
ts=1337957819&updated=Usage#Androrisk (May -2013) created: (unknown) author: unknown

[16]Comdroid: http://www.comdroid.org/ (May -2013) created: (unknown) author: unknown

[17]Stowaway: http://www.android-permissions.org/ (May -2013) created: (unknown) author:

unknown

[18]CCC congress http://events.ccc.de/congress/2012/Fahrplan/events/5123.en.html (May -2013)

created: (December - 2012) author: CCC community.

[19]Gogle Code: http://code.google.com/p/smali/ (May -2013) created: (unknown) author:

unknown

[20]Tools Yard web:
http://toolsyard.thehackernews.com/2012/08/asef-android-security-evaluation.html (May -2013)

created: (unknown) author: unknown

[21]Google Code: http://code.google.com/p/asef/ (May -2013) created: (unknown) author: ASEF

community

[22]Android permissions: http://www.android-permissions .org/permissionmap.html (May -2013)

created: (unknown) author: ASEF unknown

[23]iSecpartners: www.isecpartners.com/storage/tools/mobile-security/IntentFuzzer.zip (May

-2013) created: (unknown) author: iSECpartners

[24]Wikipedia: http://es.wikipedia.org/wiki/USSD (May -2013) created: (unknown) author:

Wikipedia community

[25]Paper:

https://engineering.purdue.edu/dcsl/publications/papers/2012/IntercomponentCommunication DSN
2012.pdf (May -2013) created: (unknown) authors: Amiya K. Maji, Fahad A. Arshad, Saurabh

Bagchi

[26] MyComputerPro, ;Por qué Android es mas vulnerable al malware?

: http://www.muycomputerpro.com/2013/05/18/por-que-android-es-mas-vulnerable-al-malware/
(July-2013) created (May - 2013) author: Maria Gillarte

[27] Most used Android versions:
http://www.engadget.com/2013/03/05/android-4-usage-finally-overtakes-gingerbread/ (July-2013)

70

http://www.engadget.com/2013/03/05/android-4-usage-finally-overtakes-gingerbread/
http://www.muycomputerpro.com/2013/05/18/por-que-android-es-mas-vulnerable-al-malware/
https://engineering.purdue.edu/dcsl/publications/papers/2012/IntercomponentCommunication_DSN2012.pdf
https://engineering.purdue.edu/dcsl/publications/papers/2012/IntercomponentCommunication_DSN2012.pdf
http://es.wikipedia.org/wiki/USSD
http://www.isecpartners.com/storage/tools/mobile-security/IntentFuzzer.zip
http://code.google.com/p/asef/
http://toolsyard.thehackernews.com/2012/08/asef-android-security-evaluation.html
http://code.google.com/p/smali/
http://events.ccc.de/congress/2012/Fahrplan/events/5123.en.html
http://www.android-permissions.org/
http://www.comdroid.org/
http://code.google.com/p/androguard/wiki/Usage?ts=1337957819&updated=Usage#Androrisk
http://code.google.com/p/androguard/wiki/Usage?ts=1337957819&updated=Usage#Androrisk
http://n0where.net/androguard-1-9/

created (Mar 2013) author: Jon Fingas

[28] International Workshop on State in Java program analysis:

http://www.monperrus.net/martin/bibtexbrowser.php?key=Bartel2012&bib=monperrus.bib

(July-2013) created (January - 2013) authors: Alexandre Bartel, Jacques Klein and Yves Le Traon.
[29]Automatically Securing Permission-Based Software by

Reducing the Attack Surface: An Application to
Android :http://hal.archives-ouvertes.fr/docs/00/70/00/74/PDF/article_ASE12.pdf (July-2013)

created (May 2012) authors: Alexandre Bartel, Jacques Klein and Yves Le Traon.
[30] Improving Privacy on Android Smartphones Through In-Vivo Bytecode Instrumentation:

http://hal.inria.fr/hal-00700319/ created (May 2012) authors: Alexandre Bartel, Jacques Klein,

Martin Monperrus, Kevin Allix and Yves Le Traon.

[31]An Empirical Study of the Robustness of Inter-component Communication in Android:
https://engineering.purdue.edu/dcsl/publications/papers/2012/IntercomponentCommunication DSN
2012.pdf created (unknown) authors: Amiya K. Maji, Fahad A. Arshad and Saurabh Bagchi.

[32] Google Android: A Comprehensive Security Assessment: http://dl.acm.org/citation.cfm?
1d=1804131 (June-2013) created (March - 2010) authors: Asaf Shabtai, Yuval Fledel, Uri

Kanonov, Yuval Elovici, Shlomi Dolev and Chanan Glezer.

[33]Los antivirus para Android no valen para nada:
http://www.computerworld.es/movilidad/los-antivirus-para-android-no-valen-para-nada (June —

2013) created (2013) author: ComputerWolrd

[34] Santoku distribution: https://santoku-linux.com/ (June — 2013) created (unknown) author:

unknown

[36]packpub CISSP:Vulnerability and Penetration Testing for Access Control :
http://www.packtpub.com/article/cissp-vulnerability-and-penetration-testing-for-access-control

(June — 2013) created (November - 2009) author: M.L. Srinivasan.

[37]VeraCode, Insecure Cryptographic Storage: http://www.veracode.com/security/insecure-crypto

(June — 2013) created (March - 2012) author: Fergal Glynn

[38]Wikipedia, Denial-of-service attack : https://en.wikipedia.org/wiki/Denial-of-service attack

(June — 2013) created (unknown) author: Wikipedia commnunity

[39]Cisco, Communication Encryption Bypass Vulnerability:
http://tools.cisco.com/security/center/content/CiscoSecurityNotice/CVE-2013-1209 (June — 2013)

71

http://tools.cisco.com/security/center/content/CiscoSecurityNotice/CVE-2013-1209
https://en.wikipedia.org/wiki/Denial-of-service_attack
http://www.veracode.com/security/insecure-crypto
http://www.packtpub.com/article/cissp-vulnerability-and-penetration-testing-for-access-control
https://santoku-linux.com/
http://www.computerworld.es/movilidad/los-antivirus-para-android-no-valen-para-nada
http://dl.acm.org/citation.cfm?id=1804131
http://dl.acm.org/citation.cfm?id=1804131
https://engineering.purdue.edu/dcsl/publications/papers/2012/IntercomponentCommunication_DSN2012.pdf
https://engineering.purdue.edu/dcsl/publications/papers/2012/IntercomponentCommunication_DSN2012.pdf
http://hal.inria.fr/hal-00700319/
http://hal.archives-ouvertes.fr/docs/00/70/00/74/PDF/article_ASE12.pdf
http://www.monperrus.net/martin/bibtexbrowser.php?key=Bartel2012&bib=monperrus.bib

Cisco

[40] OWASP, Attack Surface:
https://www.owasp.org/index.php/Attack_Surface Analysis_Cheat Sheet (June — 2013) last
modified (July - 2013) authors: Jim Bird and Jim Manico.

[41] Security tips: http://developer.android.com/training/articles/security-tips.html (June - 2013)

created (unknown) author: unknown

[42]Cyanogen Mod web: http://www.cyanogenmod.org/ (July - 2013) created (unknown) authors:
Steve Kondik, Abhisek Devkota, Koushik Dutta, Benji Hertel, Keyan Mobli, Jef Oliver, Ricardo

Cerqueira and Chris Soyars.

[43]Over privileged apps: http://blog.fortify.com/blog/2011/12/16/ (July-2013) created (December
- 2011) author: Yoneil

[44]Google Play, Over-privilege app: https://play.google.com/store/apps/details?

id=com.surpax.ledflashlight.panel&feature=search _result#?

t=W251bGwsMSwyLDEsImNvbS5zdXJwY XgubGVkZmxhc2hsaWdodC5wY WS5IbCJd
(July-2013) created (unknown) author: Surpax technology

[45]how to hack the Android sandbox with a game:http://www.youtube.com/watch?
v=WwS60Lcw6wQ (July-2013) created (March - 2013) author: Joau Manuel

[46] Android developers, Standard Intents:

http://developer.android.com/reference/android/content/Intent. htmI#EXTRA CC (July-2013)

created (unknown) author: Android community.

[47]Trebuchet launcher:
http://www.xatakandroid.com/productividad-herramientas/trebuchet-el-launcher-oficial-de-cyanoge

nmod-9-ya-se-encuentra-disponible (July-2013) created (December - 2011) author: Juan carlos.

72

http://www.xatakandroid.com/productividad-herramientas/trebuchet-el-launcher-oficial-de-cyanogenmod-9-ya-se-encuentra-disponible
http://www.xatakandroid.com/productividad-herramientas/trebuchet-el-launcher-oficial-de-cyanogenmod-9-ya-se-encuentra-disponible
http://developer.android.com/reference/android/content/Intent.html#EXTRA_CC
http://www.youtube.com/watch?v=WwS6oLcw6wQ
http://www.youtube.com/watch?v=WwS6oLcw6wQ
https://play.google.com/store/apps/details?id=com.surpax.ledflashlight.panel&feature=search_result#?t=W251bGwsMSwyLDEsImNvbS5zdXJwYXgubGVkZmxhc2hsaWdodC5wYW5lbCJd
https://play.google.com/store/apps/details?id=com.surpax.ledflashlight.panel&feature=search_result#?t=W251bGwsMSwyLDEsImNvbS5zdXJwYXgubGVkZmxhc2hsaWdodC5wYW5lbCJd
https://play.google.com/store/apps/details?id=com.surpax.ledflashlight.panel&feature=search_result#?t=W251bGwsMSwyLDEsImNvbS5zdXJwYXgubGVkZmxhc2hsaWdodC5wYW5lbCJd
http://blog.fortify.com/blog/2011/12/16/
http://www.cyanogenmod.org/
http://developer.android.com/training/articles/security-tips.html
https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet

10 Annex

10.1 Automating the experiments: Masquerade

In this section we are going to explain how we automated a part of the experiments, we

couldn’t automate all, by Mercury's limitations and complexity.

10.1.1 Masquerade

Masquerade is what his name says, a mask on Mercury, we don't have to know how
Mercury works, we can access to almost all features with a simple menu. We will take a look to all

the sections at the figure 26.

ATLMIVO EUILdl VETI Duscadr I1ermindt Ayuadd

Choose an opcion:

Figure 26: Masquerade menu

73

10.1.1.1 Activities

With the option /) Activities, we can find al the exported activities in our device, with the
package name, at the figure 27 we can see an output example, we can redirect the output to an txt

file:

AlFCNIVvo eaitar ver ouscar Ierminal Ayuda

Press any key to continue...

Figure 27: Activities output

74

10.1.1.2 Broadcasts

In this option we can, find all the exported broadcasts from the installed activities, we can

redirect the output to an txt file. At the figure 28 we can see an example of the output.

ATCNIVO EQILGr VET BUsCdl 1Ermindt Ayudd

Press any key to continue...

Figure 28: Broadcasts output

75

10.1.1.3 Package Menu

Here we have a sub-menu, because we van make several options with the packages, at the

image 29 we can see the options:

AICNIVO Eaitar ver buscar lerminalt Ayuda

Choose an opcion:

Figure 29: Package sub-menu

e Option 1): just a list of installed packages

* Option 2): we obtain information about the installed packages, with the UID, with the whole

path, and the permissions that requires that package.
* Option 3): we obtain only the packages that shares their UIDs.
* Option 4): we obtain only the packages that are debuggeable.

As the other menus we can always redirect the output to an txt file.

76

10.1.1.4 Providers

Here we can search for all the providers installed in our mobile device as we can see at the

figure 30, an example of the output, we can find:

ATCNIVO EagiLdl VEI BbusCar I1ermingt Ayuda

Press any key to continue...

Figure 30: Providers output

* The package name and path, com.tmobile.thememaneger.com.

* The owner authority, com.tmobile.thememaneger.packageresources.
* The read and write permissions.

* The multiprocess flag.

* The grant uri permissions flag.

77

10.1.1.5 Services

With that option we can find all the exported services in our mobile device, at the figure 31
we can see an example of the output of this command, the services running in a real mobile device.

We can see the package, the activity that starts the service and the permissions.

AICNIVO caltar ver busCar Ierminal Ayuaa

Figure 31: Services output

78

10.1.1.6 Exploits menu

Here we can launch the pre-installed exploits in Mercury, we have two options, read the

APN content provider and read the settings content providers, as we can see at the figure 32.

ATCNIVD EdILdl VET DBustCdl 1Ermindt Ayudd

Choose an opcion:

Figure 32: Exploits menu

10.1.1.7 Information menu
In the figure 33 we can see that menu, here can find the general information from the device,

* Print date/time from the device, we get the time in seconds

* Get verbose device information, we get the device, linux version, the /system/build.prop

information.

* List all the package permissions, we get all the permissions from the installed packages in

our device.

ArCNIVvo Lcaitar ver opuscar lerminal Ayuada

Choose an opcion:

Figure 33: Information sub- menu

79

10.1.1.8 Scanner menu

Here we have the scanner sub-menu, here we can find the general searches, and the tests

from know bugs or vulnerabilities. At the figure 34 we can see the menu.

AlCNIVOo Editar ver puscar lerminat Ayuaa

Choose an opcion:

Figure 34: Scanner sub-menu

80

10.1.1.9 Generate general info

At the figure 35 we can see the txt file generated by the option general report here we

have overall resume, with the most relevant orders of Mercury.

| '] generalReport.kxt x

=General Report =========

======= Activitities =========
S .h..
D - ..he

av..ymetalthatpoi..so
.nedthedroidtheheavy.

. ,metalthatpoisonedthedro+.
..idtheheavymetalthatpoisonedt:.
.hedroidtheheavymetalthatpoisone..
..dthedr,..,oldtheheavyme,..,taltha.
.tpoisone..dthedroidthehea..vymetalt.
,hatpoisonedthedroidtheheavymetalthat.
.poisonedthedroidtheheavymetalthatpois.
.onedthedroidtheheavymetalthatpoisoned:
.thedroidtheheavymetalthatpoisonedthed.

selecting b9c5d523b7701768 (samsung GT-I19000 4.0.4)

Package: adm.hikingapp
adm.hikingapp.Dashboard

Package: android
com.android.internal.app.ChooserActivity
com.android.internal.app.RingtonePickeraActivity
android.accounts.ChooseAccountActivity
android.accounts.ChooseTypeAndAccountActivity
android.accounts.GrantCredentialsPermissionActivity
com.android.server.ShutdownActivity

Package: com.adm.findme
com.adm.findme.MalnActivity

Package: com.android.backupconfirm
com.android.backupconfirm.BackupRestoreConfirmation

Figure 35: general info example

We have decided to redirect directly the output to an txt file, because is a lot of information

to show it on the screen, and it's better to read it in a file or print it.

81

10.1.1.10 SQL Injection

Here we can find the option to find the vulnerable content providers vulnerable to the SQL
injections, once we have the vulnerable contents we can launch selects to look for the information

that they contain. In the figure 36 we can find an example of total SQL analysis from a Samsung

[sglvul.txt x

selecting b9c5d523b7701768 (samsung GT-I19000 4.0.4)

| _id | theme_package | theme _id | is_applied | author | is_drm | system | name | style name
| wallpaper_name | wallpaper_uri | lock _wallpaper_name
| lock_wallpaper_uri | ringtone_name | ringtone_name_key | ringtone_uri | notif_ringtone_name |
notif_ringtone_name_key | notif_ringtone uri | thumbnail uri |

preview uri | has_host_density |
has_theme_package_scope |

| 1 | | | 1 | Google | @ | 1 | System | System

| Default | android.resource://android/drawable/default_wallpaper | null

| null | null | null | null | null

null | null | null | android.resource://

com. tmobile.thememanager /drawable/default_theme_ preview | 1
1 |

content://media/external/video/media

selecting b9c5d523b7701768 (samsung GT-19000 4.0.4)

| id | _data | _display_name | size |
mime_type | date_added | date_modified | title | duration | artist |

album | resolution | description | isprivate | tags | category | language |
mini_thumb_data | latitude | longitude | datetaken | mini_thumb_magic | bucket_id |

bucket_display_name | bookmark | width | height |
| 454 | /mnt/sdcard/Screencast/video_jul_05_2013_0.mp4 | video_jul_05_2013_0.mp4 | 606532 |

video/mp4 | 1373036770 | 1373036769 | video_jul_@5_2013_0 | 20048 | <unknown= |
Screencast | null | null | null | null | null | null |

null | null | null | 1373036769000 | null | 37883566 |
Screencast | null | null | null |

content://com.android.cm.mms/templates

Selecting b9c5d523b7701768 (samsung GT-I90@0 4.0.4)

Figure 36: SOL vulnerabilities

82

11

Intents classification

Here we have made a classification of the known Intents and broadcasts, depending on the

input, output, only accessible by the system.

All actions are preceded by android.intent.action, information extracted from Android

Developers

B= Broadcast Action A= Activity Action

No data input or output

With Input data

Only accessible by the system (2)

No data entry with

Without input data,

A3) extra data with output data in,
with extra data

ALL _APPS A ATTACH_DATA (1) BATTERY LOW B CALL (4) A CHOOSER (6) A
ANSWER A DELETE A (8) BATTERY _CHANGED B DOCK_EVENTB |CREATE SHORTCUT

(10) (7 A
APP_ERROR A WEB _SEARCH A BATTERY_OKAY B HEADSET PLUG |PROVIDER

B (14) CHANGED B (29)
ASSIST A EDIT A BOOT COMPLETED B

BUG _REPORT A

GET_CONTENT A (13)

CONFIGURATION CHANGED
B

CALL BUTTON A

INSERT A (15)

DREAMING STARTED B

CAMERA_BUTTON (5) A

INSERT OR_EDIT A
(16)

DREAMING STOPPED B

SEARCH_LONG_PRESS
A

INSTALL_PACKAGE A
(17)

NEW_OUTGOING_CALL B (18)

SENDTO A (33)

PASTE A (26)

PACKAGE ADDED B (19)

SET WALLPAPER A

PICK A (27)

PACKAGE CHANGED B (20)

SYNC A

PICK_ACTIVITY A (28)

PACKAGE DATA CLEARED B
(21)

FACTORY_TEST A RUN A (30) PACKAGE_FIRST LAUNCH B

VOICE_ COMMAND A |SEARCH A (31) PACKAGE_FULLY REMOVED
B (22)

MAIN A SEND A (32) PACKAGE NEEDS_
VERIFICATION B

MANAGE_NETWORK
_USAGE A

ATTACH DATA

PACKAGE REMOVED B (23)

POWER_USAGE_
SUMMARY A

SEND MULTIPLE A (34)

PACKAGE_REPLACED B (24)

GTALK CONNECTED B

SYSTEM_TUTORIAL A
(33)

PACKAGE_RESTARTED B (25)

83

http://developer.android.com/reference/android/content/Intent.html#EXTRA_CC
http://developer.android.com/reference/android/content/Intent.html#EXTRA_CC

GTALK ACTION_UNINSTALL P|PACKAGE VERIFIED B
DISCONNECTED ACKAGE A (37)

INPUT METHOD VIEW A ACTION_POWER
CHANGED B CONNECTED B
MANAGE PACKAGE ACTION_POWER
STORAGE B DISCONNECTED B
MEDIA BAD REMOVAL REBOOT B

B

MEDIA BUTTON B

SCREEN_OFF B

MEDIA_CHECKING B

SCREEN_ON B

MEDIA EJECT B

ACTION_SHUTDOWN B

MEDIA MOUNTED B

TIMEZONE CHANGED B (36)

MEDIA NOFS B

TIME TICK B

MEDIA_REMOVED B

UID REMOVED B

MEDIA SCANNER FINI

USER _PRESENT B

SHED B

MEDIA_SCANNER _ EXTERNAL_APPLICATIONS
SCAN FILE B AVAILABLE B (11)
MEDIA_SCANNER _ EXTERNAL_APPLICATIONS
STARTED B UNAVAILABLE B (12)

MEDIA SHARED B

MY_PACKAGE_REPLACED B

MEDIA _
UNMOUNTABLE B

DEVICE_STORAGE_OK B (9)

MEDIA UNMOUNTED B

DEVICE STORAGE LOW B

QUICK CLOCK

LOCALE CHANGED B

TIME SETB

USER BACKGROUND

USER_FOREGROUND

(1) getData() is URI of data to be attached

(2) This is a protected intent that can only be sent by the system

(3) Sin datos de entrada

(4) If nothing, an empty dialer is started; else getData() is URI of a phone number to be dialed or a

tel: URI of an explicit phone number

(5) Includes a single extra field, EXTRA KEY EVENT, containing the key event that caused the

broadcast

84

(6) No data should be specified. get*Extra must have a EXTRA INTENT field containing the
Intent being executed, and can optionally have a EXTRA TITLE field containing the title text to

display in the chooser.
Output: Depends on the protocol of EXTRA INTENT.

(7) Output: An Intent representing the shortcut. The intent must contain three extras:
SHORTCUT INTENT (value: Intent), =~ SHORTCUT NAME (value: String), and
SHORTCUT ICON (value: Bitmap) or SHORTCUT ICON RESOURCE (value:

ShortcutlconResource).
(8) getData() is URI of data to be deleted.

(9) If nothing, an empty dialer is started; else getData() is URI of a phone number to be dialed or a

tel: URI of an explicit phone number.

(10)EXTRA DOCK STATE - the current dock state, indicating which dock the device is
physically in.

(11)EXTRA CHANGED PACKAGE LIST is the set of packages whose resources(were
previously unavailable) are currently available. EXTRA CHANGED UID_LIST is the set of

uids of the packages whose resources(were previously unavailable) are currently available.

(12)EXTRA CHANGED PACKAGE LIST is the set of packages whose resources are no longer
available. EXTRA CHANGED UID LIST is the set of packages whose resources are no longer

available.

(13) Input: getType() is the desired MIME type to retrieve. Note that no URI is supplied in the
intent, as there are no constraints on where the returned data originally comes from. You may

also include the CATEGORY_ OPENABLE if you can only accept data that can be opened as a
stream. You may use EXTRA LOCAL ONLY to limit content selection to local data.

Output: The URI of the item that was picked. This must be a content: URI so that any receiver

can access it.
(14) The intent will have the following extra values:
 state - 0 for unplugged, 1 for plugged.
* name - Headset type, human readable string
* microphone - 1 if headset has a microphone, 0 otherwise

(15)Input: getData() is URI of the directory (vnd.android.cursor.dir/*) in which to place the data.

85

Output: URI of the new data that was created.

(16) Input: getType() is the desired MIME type of the item to create or edit. The extras can contain
type specific data to pass through to the editing/creating activity.

Output: The URI of the item that was picked. This must be a content: URI so that any

receiver can access it.

(17) Input: The data must be a content: or file: URI at which the application can be retrieved. As of

JELLY BEAN MRI, you can also use "package:EXTRA INSTALLER PACKAGE NAME,

EXTRA NOT UNKNOWN_SOURCE, EXTRA ALLOW REPLACE, and
EXTRA RETURN_ RESULT.

Output: [f EXTRA RETURN_RESULT, returns whether the install succeeded.
(18)The Intent will have the following extra value:
* EXTRA PHONE NUMBER - the phone number originally intended to be dialed.
(19) May include the following extras:
* EXTRA _UID containing the integer uid assigned to the new package.

* EXTRA REPLACING is set to true if this is following an
ACTION PACKAGE REMOVED broadcast for the same package.

(20) The data contains the name of the package.
* EXTRA UID containing the integer uid assigned to the package.

« EXTRA CHANGED COMPONENT NAME LIST containing the class name of the

changed components.

e EXTRA DONT KILL APP containing boolean field to override the default action of

restarting the application.
(21) The data contains the name of the package.
 EXTRA UID containing the integer uid assigned to the package.

(22) Broadcast Action: An existing application package has been completely removed from the
device. The data contains the name of the package. This is like
ACTION_PACKAGE REMOVED, but only set when EXTRA DATA REMOVED is true and
EXTRA REPLACING is false of that broadcast.

 EXTRA UID containing the integer uid previously assigned to the package.

86

(23)Broadcast Action: An existing application package has been removed from the device. The data
contains the name of the package. The package that is being installed does not receive this

Intent.
* EXTRA UID containing the integer uid previously assigned to the package.

« EXTRA DATA REMOVED is set to true if the entire application -- data and code -- is

being removed.

* EXTRA REPLACING is set to true if this will be followed by an
ACTION PACKAGE ADDED broadcast for the same package.

(24) May include the following extras:

* EXTRA UID containing the integer uid assigned to the new package.
(25) The data contains the name of the package.

* EXTRA UID containing the integer uid assigned to the package.

(26) Input: getData() is URI containing a directory of data (vnd.android.cursor.dir/*) from which to

pick an item.
Output: The URI of the item that was picked.

(27)Input: getData() is URI containing a directory of data (vnd.android.cursor.dir/*) from which to

pick an item.
Output: The URI of the item that was picked.

(28) Input: get*Extra field EXTRA INTENT is an Intent used with querylntentActivities(Intent,

int) to determine the set of activities from which to pick.
Output: Class name of the activity that was selected.
(29) The intent will have the following extra values:

e count - The number of items in the data set. This is the same as the number of items in the

cursor returned by querying the data URI.
(30) Input: ? (Note: this is currently specific to the test harness.)

(31) Input: getStringExtra(SearchManager.QUERY) is the text to search for. If empty, simply enter

your search results Activity with the search Ul activated.

(32)Input: getType() is the MIME type of the data being sent. get*Extra can have either a
EXTRA TEXT or EXTRA STREAM field, containing the data to be sent. If using

87

EXTRA TEXT, the MIME type should be "text/plain"; otherwise it should be the MIME type of
the datain =~ EXTRA STREAM. Use */* if the MIME type is unknown (this will only allow
senders that can handle generic data streams). If using EXTRA TEXT, you can also optionally
supply EXTRA HTML TEXT for clients to retrieve your text with HTML formatting.

(33) Input: getData() is URI describing the target.

(34) Input: getType() is the MIME type of the data being sent. get* ArrayListExtra can have either a

EXTRA TEXT or EXTRA STREAM field, containing the data to be sent. If using

EXTRA TEXT, you can also optionally supply EXTRA HTML TEXT for clients to retrieve your
text with HTML formatting.

(35) Input: getStringExtra(SearchManager.QUERY) is the text to search for. If empty, simply enter

your search results Activity with the search Ul activated.
(36) The intent will have the following extra values:
* time-zone - The java.util. TimeZone.getID() value identifying the new time zone.

(37)Input: The data must be a package: URI whose scheme specific part is the package name of the
current installed package to be uninstalled. You can optionally supply

EXTRA RETURN RESULT.
Output: [f EXTRA RETURN_ RESULT, returns whether the install succeeded.
(38)Input: getData() is URI from which to retrieve data.

(39)Input: getStringExtra(SearchManager.QUERY) is the text to search for. If it is a url starts with
http or https, the site will be opened. If it is plain text, Google search will be applied.

88

	1 Introduction
	2 Android in a nutshell
	2.1 Android layers
	2.2 Application Components
	2.3 Communication between components
	2.4 Android, a vulnerable system
	2.5 Summary

	3 Classification of security tools for Android
	3.1 Dynamic tools
	3.1.1 Androguard
	3.1.2 APK-tool
	3.1.3 APK Multi-tool
	3.1.4 Mercury
	3.1.5 ASEF-Android Security Evaluation Framework

	3.2 Static tools
	3.2.1 ComDroid
	3.2.2 StowAway
	3.2.3 Intent Fuzzer
	3.2.4 Intent Sniffer

	3.3 Tools summary
	3.4 Why we choose Mercury
	3.5 Summary

	4 Methodology supported by Mercury
	4.1 Common attack injection methodology
	4.2 Attacks supported by Mercury
	4.2.1 Malformed Intents
	4.2.1.1 Surface attack
	4.2.1.2 Injections
	4.2.1.3 Observable output

	4.2.2 Broadcasts
	4.2.2.1 Attack surface
	4.2.2.2 Injections
	4.2.2.3 Observable output

	4.2.3 SQL Injection
	4.2.3.1 Attack surface
	4.2.3.2 Injections
	4.2.3.3 Observable output

	4.2.4 Command Execution
	4.2.4.1 Attack surface
	4.2.4.2 Injections
	4.2.4.3 Observable output

	4.3 Summary

	5 Case study
	5.1 Target Devices
	5.2 Work load
	5.3 Experiments configuration
	5.3.1 Relevant parameters

	5.4 ﻿Results
	5.4.1 Malformed Intents
	5.4.2 Broadcasts
	5.4.3 SQL Injection
	5.4.4 Command execution
	5.4.5 Curious data

	6 Tips and tricks
	6.1 Storing data
	6.1.1 Using internal storage
	6.1.2 Using external storage
	6.1.3 Using content providers

	6.2 Using Permissions
	6.2.1 Requesting Permissions
	6.2.2 Creating Permissions

	6.3 Summary

	7 Conclusion and further work
	8 ITACA Research Day
	9 References
	10 Annex
	10.1 Automating the experiments: Masquerade
	10.1.1 Masquerade
	10.1.1.1 Activities
	10.1.1.2 Broadcasts
	10.1.1.3 Package Menu
	10.1.1.4 Providers
	10.1.1.5 Services
	10.1.1.6 Exploits menu
	10.1.1.7 Information menu
	10.1.1.8 Scanner menu
	10.1.1.9 Generate general info
	10.1.1.10 SQL Injection

	11 Intents classification

