Document downloaded from:

http://hdl.handle.net/10251/39737

This paper must be cited as:

Cuesta Amat, G.; Soler Hernández, A.; Alonso Molina, JL.; Ruvira, M.; Lucena, T.; Arahal, D.; Goodfellow, M. (2013). Pseudonocardia hispaniensis sp. nov., a novel actinomycete isolated from industrial wastewater activated sludge. Antonie van Leeuwenhoek. 103(1):135-142. doi:10.1007/s10482-012-9792-1.

The final publication is available at

http://dx.doi.org/10.1007/s10482-012-9792-1

Copyright Springer Verlag (Germany)

1	Pseudonocardia hispaniensis sp. nov., a novel actinomycete isolated from industrial wastewater		
2	activated sludge		
3			
4	G. Cuesta ¹ , A. Soler ¹ , J.L. Alonso ² , M.A. Ruvira ³ , T. Lucena ³ , D.R. Arahal ³ and M. Goodfellow ⁴		
5			
6	¹ Área de Microbiología, Departamento de Biotecnología, E.T.S.I. Agronómica y Medio Natural,		
7	Universitat Politècnica de València, 46022 Valencia, Spain.		
8	² Instituto Universitario de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València,		
9	46022 Valencia, Spain.		
10	³ Colección Española de Cultivos Tipo (CECT) and Departamento de Microbiología y Ecología, Campus		
11	de Burjassot-Paterna, Universidad de Valencia, Valencia, Spain.		
12	⁴ School of Biology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK		
13			
14	Running title: Pseudonocardia hispaniensis sp. nov.		
15			
16	Key words: Pseudonocardia hispaniensis sp. nov., systematics, polyphasic taxonomy, activated sludge		
17			
18			
19	The GenBank/EMBL/DDBJ accession number for the 16S rRNA sequence of Pseudonocardia		
20	hispaniensis PA3 ^T is FR695486		
21			
22			
23	Corresponding author: G. Cuesta, Área de Microbiología, Departamento de Biotecnología, E.T.S.I.		
24	Agronómica y Medio Natural, Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia,		
25	Spain. Tel: +34963877423; Fax: +34963877429; email: goncueam@btc.upv.es		
26			
27			

Abstract

30	A novel actinomycete, designated PA3 ^T , was isolated from an oil refinery wastewater treatment plant,
31	located in Palos de la Frontera, Huelva, Spain, and characterized taxonomically by using a polyphasic
32	approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate formed a
33	distinct subclade in the Pseudonocardia tree together with Pseudonocardia asaccharolytica DSM
34	44247 ^T . The chemotaxonomic properties of the isolate, for example, the presence of MK-8 (H ₄) as the
35	predominant menaquinone and iso- $C_{16:0}$ as the major fatty acid are consistent with its classification in the
36	genus Pseudonocardia. DNA:DNA pairing experiments between the isolate and the type strain of P.
37	asaccharolytica DSM 44247 ^T showed that they belonged to separate genomic species. The two strains
38	were readily distinguished using a combination of phenotypic properties. Consequently, it is proposed
39	that isolate PA3 ^T represents a novel species for which the name <i>Pseudonocardia hispaniensis</i> sp. nov. is
40	proposed. The type strain is $PA3^{T} (= CCM 8391^{T} = CECT 8030^{T})$.
41	
42	Introduction
43	
44	The genus Pseudonocardia was proposed by Henssen (1957) for mycolateless nocardioform
44 45	The genus <i>Pseudonocardia</i> was proposed by Henssen (1957) for mycolateless nocardioform actinomycetes which contained <i>meso</i> -diaminopimelic acid and arabino-galactan polymers (wall
45	actinomycetes which contained meso-diaminopimelic acid and arabino-galactan polymers (wall
45 46	actinomycetes which contained <i>meso</i> -diaminopimelic acid and arabino-galactan polymers (wall chemotype IV after Lechevalier and Lechevalier 1970), menaquinones with eight isoprene units as the
45 46 47	actinomycetes which contained <i>meso</i> -diaminopimelic acid and arabino-galactan polymers (wall chemotype IV after Lechevalier and Lechevalier 1970), menaquinones with eight isoprene units as the predominant isoprenologue and a high DNA G+C composition. The description of the genus has been
45 46 47 48	actinomycetes which contained <i>meso</i> -diaminopimelic acid and arabino-galactan polymers (wall chemotype IV after Lechevalier and Lechevalier 1970), menaquinones with eight isoprene units as the predominant isoprenologue and a high DNA G+C composition. The description of the genus has been emended repeatedly as new species have been described which show variations in chemotaxonomic and
45 46 47 48 49	actinomycetes which contained <i>meso</i> -diaminopimelic acid and arabino-galactan polymers (wall chemotype IV after Lechevalier and Lechevalier 1970), menaquinones with eight isoprene units as the predominant isoprenologue and a high DNA G+C composition. The description of the genus has been emended repeatedly as new species have been described which show variations in chemotaxonomic and morphological properties (Warwick et al. 1994; Huang et al. 2002; Park et al. 2008). Members of the
45 46 47 48 49 50	actinomycetes which contained <i>meso</i> -diaminopimelic acid and arabino-galactan polymers (wall chemotype IV after Lechevalier and Lechevalier 1970), menaquinones with eight isoprene units as the predominant isoprenologue and a high DNA G+C composition. The description of the genus has been emended repeatedly as new species have been described which show variations in chemotaxonomic and morphological properties (Warwick et al. 1994; Huang et al. 2002; Park et al. 2008). Members of the genus form substrate and aerial mycelia, spore chains by acropetal budding or fragmentation, contain
45 46 47 48 49 50 51	actinomycetes which contained <i>meso</i> -diaminopimelic acid and arabino-galactan polymers (wall chemotype IV after Lechevalier and Lechevalier 1970), menaquinones with eight isoprene units as the predominant isoprenologue and a high DNA G+C composition. The description of the genus has been emended repeatedly as new species have been described which show variations in chemotaxonomic and morphological properties (Warwick et al. 1994; Huang et al. 2002; Park et al. 2008). Members of the genus form substrate and aerial mycelia, spore chains by acropetal budding or fragmentation, contain complex mixtures of iso- and anteiso-fatty acids, tetrahydrogenated menaquinones with eight isoprene
45 46 47 48 49 50 51 52	actinomycetes which contained <i>meso</i> -diaminopimelic acid and arabino-galactan polymers (wall chemotype IV after Lechevalier and Lechevalier 1970), menaquinones with eight isoprene units as the predominant isoprenologue and a high DNA G+C composition. The description of the genus has been emended repeatedly as new species have been described which show variations in chemotaxonomic and morphological properties (Warwick et al. 1994; Huang et al. 2002; Park et al. 2008). Members of the genus form substrate and aerial mycelia, spore chains by acropetal budding or fragmentation, contain complex mixtures of iso- and anteiso-fatty acids, tetrahydrogenated menaquinones with eight isoprene units (MK ₈ [H ₄]) as the predominant isoprenologue, iso-branched hexadecanoic acid as the major fatty
45 46 47 48 49 50 51 52 53	actinomycetes which contained <i>meso</i> -diaminopimelic acid and arabino-galactan polymers (wall chemotype IV after Lechevalier and Lechevalier 1970), menaquinones with eight isoprene units as the predominant isoprenologue and a high DNA G+C composition. The description of the genus has been emended repeatedly as new species have been described which show variations in chemotaxonomic and morphological properties (Warwick et al. 1994; Huang et al. 2002; Park et al. 2008). Members of the genus form substrate and aerial mycelia, spore chains by acropetal budding or fragmentation, contain complex mixtures of iso- and anteiso-fatty acids, tetrahydrogenated menaquinones with eight isoprene units (MK ₈ [H ₄]) as the predominant isoprenologue, iso-branched hexadecanoic acid as the major fatty acid, either phosphatidylethanolamine or phosphatidylcholine as diagnostic polar lipids (polar lipid
45 46 47 48 49 50 51 52 53 54	actinomycetes which contained <i>meso</i> -diaminopimelic acid and arabino-galactan polymers (wall chemotype IV after Lechevalier and Lechevalier 1970), menaquinones with eight isoprene units as the predominant isoprenologue and a high DNA G+C composition. The description of the genus has been emended repeatedly as new species have been described which show variations in chemotaxonomic and morphological properties (Warwick et al. 1994; Huang et al. 2002; Park et al. 2008). Members of the genus form substrate and aerial mycelia, spore chains by acropetal budding or fragmentation, contain complex mixtures of iso- and anteiso-fatty acids, tetrahydrogenated menaquinones with eight isoprene units (MK ₈ [H ₄]) as the predominant isoprenologue, iso-branched hexadecanoic acid as the major fatty acid, either phosphatidylethanolamine or phosphatidylcholine as diagnostic polar lipids (polar lipid patterns 2 and 3 <i>sensu</i> Lechevalier et al. 1981) and constitute a distinct, albeit heterogeneous, clade in the

59

60 (http://www.bacterio.cict.fr/p/pseudonocardia.html), most of which have been described in the last five 61 years based upon studies of single strains. Such studies have provided useful information on the 62 evolutionary radiation and distribution of the taxon in natural habitats but have given little insight into the 63 biological properties of pseudonocardia. Single strains representing new species (including several names 64 not validated to date) have been isolated from contaminated industrial sludge (Mahendra and Alvarez-65 Cohen 2005; Kämpfer et al. 2006), coastal sediment (Liu et al. 2006), indoor environment (Schäfer et al. 66 2009), plant litter (Sakiyama et al. 2010), soil (Park et al. 2008; Qin et al. 2008; Li et al. 2010; Ara et al. 67 2011) and from surface sterilized roots and stems of higher plants (Chen et al. 2009; Duangmal et al. 68 2009; Kaewkla and Franco 2010, 2011; Qin et al. 2010, 2011; Zhao et al. 2011a,b,c). 69 70 There is a need to discover the taxonomic diversity and functions of filamentous actinomycetes in 71 wastewater treatment plants in order to improve operational procedures (Nam et al. 2003; Seviour et al. 72 2008). In the present study a *Pseudonocardia*-like strain was isolated as part of a survey of actinobacterial 73 diversity in activated sludge plants in the south of Spain. A polyphasic taxonomic study of the isolate 74 showed that it represented a new species of the genus Pseudonocardia for which the name 75 Pseudonocardia hispaniensis sp. nov. is proposed. 76 77 Materials and methods 78 79 Organisms, maintenance and cultural conditions 80 Strain PA3^T was isolated from a modified Czapek agar (sucrose, 2%, w/v; yeast extract, 0.2%, w/v, 81 82 FeSO₄, 0.001%; KCl, 0.001%; K₂HPO₄, 0.1%; MgSO₄· 7H₂O, 0.05%; NaNO₃, 0.2%; agar 1.5%, w/v; 83 distilled water, 1 litre) plate supplemented with nalidixic acid (20 mg l^{-1}) following inoculation with a 84 sample taken from a wastewater treatment plant in Palos de la Frontera, Huelva, Spain. The isolate, which 85 grew as a small colony covered with white aerial hyphae, was purified on yeast extract-malt extract agar 86 (ISP medium 2; Shirling and Gottlieb 1966). The isolate and the type strain of *Pseudonocardia*

The genus currently encompasses 40 recognised species

87 *asaccharolytica* (DSM 44247^T) were maintained on ISP 2 agar slants at 4°C and as suspensions of hyphal

88	fragments and spores in 20% (v/v) glycerol at -80°C. Biomass for all but one of the chemotaxonomic
89	studies was prepared by growing the isolate and <i>P. asaccharolytica</i> DSM 44247 ^T in shake flasks (at about
90	200 rpm) of GYE broth (glucose, 1%; yeast extract 1%; distilled water, 1 liter) for 14 days at 28°C.
91	Similarly, biomass for the fatty acid analyses was harvested from shake flasks of Tryptic Soy Broth
92	(Difco) (150 rpm) after 5 days at 28°C. Biomass for the chemical and molecular studies was washed in
93	distilled water and freeze dried and kept at -20°C until needed.
94	
95	16S rRNA gene sequencing analyses
96	
97	Genomic DNA was extracted from isolate PA3 ^T using a commercial DNA extraction kit (GenElute,
98	Sigma) and PCR amplification of the 16S rRNA gene achieved using the universal primers 27f and 1492r
99	(Lane 1991), 616V and 699R for a stretch of around 1000 nt close to the 5' end (Arahal et al. 2008), and
100	primers P609D and P1525R (reverse) for a segment of about 750 nt close to the 3' end (Lucena et al.
101	2010). The resultant almost complete 16S rRNA sequence (1434 nucleotides) was compared with
102	corresponding sequences of the type strains of species classified in the genus Pseudonocardia using
103	alignments retrieved from SILVA and LTP latest updates as references (Pruesse et al. 2007; Yarza et al.
104	2010); where necessary, additional sequences were retrieved from the DDBJ/EMBL/GenBank databases.
105	Alignments were corrected manually based on secondary structural information. Sequence similarities
106	were calculated in ARB based on sequences without the use of an evolutionary substitution model.
107	Phylogenetic analyses using several treeing methods (distance matrix, maximum-likelihood and
108	maximum-parsimony) and data subsets were examined using the appropriate ARB tools (Ludwig et al.
109	2004) (figure 1).
110	
111	Chemotaxonomy
112	
113	Isolate PA3 ^T was examined for chemical markers known to be of value in the classification of genera
114	belonging to the family Pseudonocardiaceae (Labeda et al. 2011). Standard chromatographic procedures
115	were used to determine the isomers of diaminopimelic acid (Staneck and Roberts 1974), predominant
110	

- 116 menaquinones (detected by Dr. Brian Tindall of the Identification Service, DSMZ, Braunschweig.
- 117 Germany), mycolic acids (Hamid et al. 1993), polar lipids (Minnikin et al. 1974), whole-cell sugars

118	(Hasegawa et al. 1983) and DNA base composition (Mesbah et al. 1984), using appropriate controls.
119	Fatty acid methyl esters were extracted and prepared according to standard protocols as described for the
120	MIDI Microbial Identification System (Sasser, 1990) at the Colección Española de Cultivos Tipo, CECT .
121	Cellular fatty acids were analyzed by GC with an Agilent 6850 chromatographic unit, with the MIDI
122	Microbial Identification System using the TSBA6 method (MIDI, 2008) and identified using the
123	Microbial Identification Sherlock software package. Polar lipids were extracted, examined by two-
124	dimensional TLC and identified using the procedures described by Minnikin et al. (1984). The G+C
125	content of the genomic DNA was determined by HPLC as described by Mesbah et al. (1989).
126	
127	DNA:DNA relatedness studies
128	
129	DNA samples extracted from isolate PA3 ^T and <i>P. asaccharolytica</i> DSM 44247 ^T using a French pressure
130	cell (Thermo Spectronic) were purified by chromatography on hydroxyapatite (Cashion et al. 1977).
131	DNA:DNA hybridization was carried out, in duplicate, after De Ley et al. (1970), with modifications by
132	Huss et al. (1993), using a model Cary 100 Bio UV/Vis spectrophotometer fitted with a Peltier-
133	thermostated 6 x 6 multicell charger and a temperature controller with an <i>in situ</i> temperature probe
134	(Varian).
135	
136	Cultural and morphological properties
137	
138	Cultural characteristics of strain PA3 ^T and <i>P. asaccharolytica</i> DSM 44247 ^T were determined on modified
139	Czapek's medium, potato dextrose agar (Difco) and standard International Streptomyces Project (ISP)
140	media 2-7 (Table 1; Shirling and Gottlieb 1966). Spore chain arrangement and spore surface
141	ornamentation were observed using growth taken from a yeast-extract – malt extract agar (ISP medium 2)
142	plate after 14 days at 28°C and examined using a JEOL JSM-5410 (JEOL Ltd., Tokyo, Japan) scanning
143	electron microscope operating at 20kv (Alonso et al. 2009). To this end, a loopful of culture was washed
144	in 0.1M sodium phosphate buffer (PBS; pH 7.2) in a 1.5 ml Eppendorf tube, the pellet fixed in additional
145	PBS buffer containing 2.5% (v/v) glutaral dehyde for 3 hours at 4° C and post-fixed with 2% (v/v) osmium
146	tetroxide in 0.1M PBS for an hour at 4°C. The fixed cells were washed in 0.1M PBS, transferred to the

147	surface of a 25 mm Poretics polycarbonate membrane (pore size $0.1 \ \mu m$; Sigma), immersed in liquid
148	nitrogen, and then coated with gold.
149	
150	
151	Phenotypic tests
152	
153	The isolate PA3 ^T and the <i>P. asaccharolytica</i> type strain were examined for a range of phenotypic
154	properties. Their ability to grow at 10, 28 37 and 45°C was determined after 14 days using ISP 2 as the
155	basal medium. Similarly, growth from pH 4-10 (at pH unit intervals adjusted with HCl or NaOH) and in
156	the presence of NaCl (3.5 and 7%, w/v) were examined after 14 days at 28°C. Enzyme activity was
157	established using API ZYM kits (bioMerieux) following the manufacturer's instructions. Growth under
158	autotrophic conditions was tested using mineral media recommended by earlier workers (Okoh et al.
159	2001; Renfuss and Urban 2005; Auffret et al. 2009). Additional biochemical and physiological properties
160	were recorded using previously described procedures (Gordon et al. 1974; Reichert et al. 1998).
161	
162	Results and discussion
163	
164	Isolate PA3 ^T formed a distinct subclade in the 16S rRNA <i>Pseudonocardia</i> tree together with <i>P</i> .
165	asaccharolytica DSM 44247 ^T , an association supported by all of the tree-making algorithms and by a
166	98% bootstrap value (Fig. 1). However, the two organisms shared a low 16S rRNA similarity of 97.3%, a
167	value which corresponded to 40 nucleotide differences. The corresponding 16S rRNA similarity values
168	with the remaining pseudonocardial type strains ranged from 94.6 to 96.7%. The DNA:DNA relatedness
169	values for the duplicated assays between strains PA3 ^T and <i>P. asaccharolytica</i> DSM 44247 ^T were 36.2 and
170	38.0%, well below the 70% cut-off point recommended for the delineation of bacterial species (Wayne et
171	al. 1987).
172	
173	Strain PA3 ^T had chemotaxonomic and morphological properties consistent with its classification in the
174	genus Pseudonocardia (Zhao et al. 2011a,b,c; Huang and Goodfellow 2012). The organism formed an
175	extensively branched substrate and aerial mycelia which underwent fragmentation into smooth surfaced
176	coccoid or rod-shaped spores (Figure 2). There is not evidence of acropetal budding, zig-zag morphology

177	or intercalary swellings. In addition, it contains $meso-A_{2pm}$, arabinose and galactose in whole-organism
178	hydrolysates (wall chemotype IV after Lechevalier and Lechevalier 1970), tetrahydrogenated
179	menaquinones with eight isoprene units (MK8 [H ₄]) as the predominant menaquinone,
180	diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol,
181	phosphatidylmethylethanolamine and phosphatidylinositol mannosides as major polar lipids
182	(phospholipid type 2 sensu Lechevalier et al. 1981) (Supplementary Fig. S1), a high DNA G+C ratio
183	(69.7 mol%), complex mixtures of iso- and anteiso – fatty acids with iso- $C_{16:0}$ as the predominant
184	component, but lacked mycolic acids. The fatty acid profile of <i>P. assacharolytica</i> DSM 44247 ^T was in
185	line with results reported by Reuchert et al. (1998) for four strains assigned to this species.
186	
187	Isolate PA3 ^T and <i>P. asaccharolytica</i> DSM 44247 ^T can be distinguished using a combination of cultural
188	and phenotypic properties (Tables 1, 2 and 3), as exemplified by the ability of the former to produce
189	leucine and valine arylamidases, to grow at 37°C, in the presence of 3%, w/v NaCl, in different pH range
190	and to form distinctive honey coloured, substrate mycelia on glycerol-asparagine and tyrosine agars. In
191	contrast, neither strain produced acid from a broad range of carbohydrates, a result in line with the
192	original description of <i>P. asaccharolytica</i> (Reichert et al. 1998). Similarly, the two organisms have
193	qualitatively similar fatty acid profiles though quantitative differences were detected in some components
194	(Table 2). When additional data acquired on isolate PA3 ^T were compared with corresponding results
195	reported Reichert and his colleagues (1998) it was evident that the two strains can grow autotrophically
196	and have a type 2 polar lipid pattern.
197	
198	The chemotaxonomic, morphological and phenotypic data, together with the 16S rRNA sequence and
199	DNA:DNA relatedness findings provide sufficient evidence to support the proposition that isolate PA3 ^T
200	represents a novel species of the genus Pseudonocardia for which the name Pseudonocardia hispaniensis
201	sp. nov. is proposed.
202	
203	Description of Pseudonocardia hispaniensis sp. nov.
204	
205	Pseudonocardia hispaniensis (his.pa.ni'en.sis. L. fem. adj. hispaniensis, of or belonging to Hispania, the
206	Latin name for Spain, the country where the type strain was isolated).

207	Aerobic, non-motile, Gram-positive, non-acid-alcohol-fast actinomycete which forms extensively
208	branched aerial and substrate mycelia that fragment into smooth surfaced coccoid or rod-like elements.
209	Grows well on ISP media 2-7 forming white aerial mycelia but does not produce diffusible pigments.
210	Grows from pH 5-10 (optimum 7-8) and at 28 and 37°C, weakly at 45°C, but not at 10°C. Catalase-
211	positive but oxidase negative. Additional cultural and phenotypic properties are shown in Tables 1 and 2.
212	Aerobic autotrophic growth was observed in mineral medium without a carbon source. The wall diamino
213	acid is meso-diaminopimelic acid, the diagnostic sugars arabinose and galactose, and the predominant
214	fatty acid and isoprenoid quinone iso- C _{16:0} and MK8 (H ₄), respectively. The polar lipid pattern contained
215	diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol,
216	phosphatidylinositol mannosides and phophatidylmethylethanolamine. The detailed fatty acid profile is
217	given in Table 1. The G+C content of the DNA was 69.7 mol%.
218	The type strain, $PA3^{T} = CCM 8391^{T} = CECT 8030^{T}$, was isolated from a sample taken from an oil
219	refinery wastewater treatment plant in Palos de la Frontera, Huelva, Spain. The species description is
220	based on a single strain and hence doubles up as a description of the type species.
221	
222	Acknowledgements
222 223	Acknowledgements We are grateful to CEPSA for providing the sample of activated sludge from which the organism was
223	We are grateful to CEPSA for providing the sample of activated sludge from which the organism was
 223 224 225 226 227 	We are grateful to CEPSA for providing the sample of activated sludge from which the organism was
223224225226	We are grateful to CEPSA for providing the sample of activated sludge from which the organism was isolated.
 223 224 225 226 227 228 	We are grateful to CEPSA for providing the sample of activated sludge from which the organism was isolated. References
 223 224 225 226 227 228 229 	We are grateful to CEPSA for providing the sample of activated sludge from which the organism was isolated. References Alonso JL, Cuesta G, Ramírez GW, Morenilla JJ, Bernácer I, Lloret RM (2009) In Manual de técnicas
 223 224 225 226 227 228 229 230 	We are grateful to CEPSA for providing the sample of activated sludge from which the organism was isolated. References Alonso JL, Cuesta G, Ramírez GW, Morenilla JJ, Bernácer I, Lloret RM (2009) In Manual de técnicas avanzadas para la identificación y control de bacterias filamentosas. Edited by Epsar-Generalitat
 223 224 225 226 227 228 229 230 231 	We are grateful to CEPSA for providing the sample of activated sludge from which the organism was isolated. References Alonso JL, Cuesta G, Ramírez GW, Morenilla JJ, Bernácer I, Lloret RM (2009) In Manual de técnicas avanzadas para la identificación y control de bacterias filamentosas. Edited by Epsar-Generalitat
 223 224 225 226 227 228 229 230 231 232 	We are grateful to CEPSA for providing the sample of activated sludge from which the organism was isolated. References Alonso JL, Cuesta G, Ramírez GW, Morenilla JJ, Bernácer I, Lloret RM (2009) In Manual de técnicas avanzadas para la identificación y control de bacterias filamentosas. Edited by Epsar-Generalitat Valenciana, España. p. 21-36.
 223 224 225 226 227 228 229 230 231 232 233 	We are grateful to CEPSA for providing the sample of activated sludge from which the organism was isolated. References Alonso JL, Cuesta G, Ramírez GW, Morenilla JJ, Bernácer I, Lloret RM (2009) In Manual de técnicas avanzadas para la identificación y control de bacterias filamentosas. Edited by Epsar-Generalitat Valenciana, España. p. 21-36. Ara I, Tsetseg B, Daram D, Suto M, Ando K (2011) <i>Pseudonocardia mongoliensis</i> sp. nov. and
 223 224 225 226 227 228 229 230 231 232 233 234 	We are grateful to CEPSA for providing the sample of activated sludge from which the organism was isolated. References Alonso JL, Cuesta G, Ramírez GW, Morenilla JJ, Bernácer I, Lloret RM (2009) In Manual de técnicas avanzadas para la identificación y control de bacterias filamentosas. Edited by Epsar-Generalitat Valenciana, España. p. 21-36. Ara I, Tsetseg B, Daram D, Suto M, Ando K (2011) <i>Pseudonocardia mongoliensis</i> sp. nov. and
 223 224 225 226 227 228 229 230 231 232 233 234 235 	 We are grateful to CEPSA for providing the sample of activated sludge from which the organism was isolated. References Alonso JL, Cuesta G, Ramírez GW, Morenilla JJ, Bernácer I, Lloret RM (2009) In Manual de técnicas avanzadas para la identificación y control de bacterias filamentosas. Edited by Epsar-Generalitat Valenciana, España. p. 21-36. Ara I, Tsetseg B, Daram D, Suto M, Ando K (2011) <i>Pseudonocardia mongoliensis</i> sp. nov. and <i>Pseudonocardia khuvsgulensis</i> sp. nov., isolated from soil. Int J Syst Evol Microbiol 61:747-756

239	Auffret M, Labbé D,	Thouand G, Greer	CW, Fayolle-Guicha	rd F (2009) I	Degradation of a mixtu	ire of
-----	---------------------	------------------	--------------------	---------------	------------------------	--------

- 240 hydrocarbons, gasoline, and diesel oil additives by *Rhodococcus aetherivorans* and *Rhodococcus*
- 241 *wratislaviensis*. Appl Environ Microbiol 75:7774-7782
- 242
- 243 Cashion P, Hodler-Franklin MA, McCully J, Franklin M (1977) A rapid method for base ratio
- determination of bacterial DNA. Anal Biochem 81: 461-466
- 245
- 246 Chen HH, Qin S, Li J, Zhang YQ, Xu LH, Jiang CL, Kim CJ, Li WJ (2009) Pseudonocardia endophytica
- 247 sp. nov., isolated from pharmaceutical plant *Lobelia clavata*. Int J Syst Evol Microbiol 59:559-563
- 248
- De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from
 renaturation rates. Eur J Biochem 12:133-142
- 251
- 252 Duangmal K, Thamchaipenet A, Matsumoto A, Takahashi Y (2009): Pseudonocardia acaciae sp. nov.,
- isolated from roots of *Acacia auriculiformis* A. Cunn. ex Benth. Int J Syst Evol Microbiol 59:1487-1491
- 255 Gordon RE, Barnett DA, Handerhan JE, Pang CH-N (1974) Nocardia coeliaca, Nocardia autotrophica,
- and the nocardin strain. Int J Syst Bacteriol 24:54-63
- 257
- 258 Hamid ME, Minnikin DE, Goodfellow M, Ridell M (1993) Thin-layer chromatographic analysis of
- 259 glycolipids and mycolic acids from Mycobacterium farcinogenes, Mycobacterium senegalense and
- related taxa. Zbl Bakt 279:354-367
- 261
- 262 Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic
- actinomycetes. J Gen Microbiol 29:319-322

- Henssen A (1957) Beiträge zur Morphologie und Systematik der thermophilen Actinomyceten. Arch
 Mikrobiol 26:373-414
- 267

- 268 Huang, Y, Goodfellow M (2012) Genus *Pseudonocardia* Hennsen 1957, 408^{VP} emend. In Bergey's
- 269 Manual of Systematic Bacteriology, 2nd Edition, Volume 5 part B (M Goodfellow, P Kämpfer, H-J Busse,
- 270 M Trujillo, KE Suzuki, W Ludwig, WB Whitman, eds), pp. Springer, New York (in press)
- 271
- Huang Y, Wang L, Lu Z, Hong L, Liu Z, Tan GYA, Goodfellow M (2002) Proposal to combine the
- 273 genera Actinobispora and Pseudonocardia in an emended genus Pseudonocardia, and description of
- 274 Pseudonocardia zijingensis sp. nov. Int J Syst Evol Microbiol 52:977-982
- 275
- 276 Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA
- 277 hybridization from renaturation rates. Syst Appl Microbiol 4:184-192
- 278
- 279 Kaewkla O, Franco CMM (2010) Pseudonocardia adelaidensis sp. nov., an endophytic actinobacterium
- 280 isolated from the surface-sterilized stem of a grey box tree (*Eucalyptus microcarpa*). Int J Syst Evol
- 281 Microbiol 60:2818-2822.
- 282
- Kaewkla O, Franco CMM (2011) *Pseudonocardia eucalypti* sp. nov., an endophytic actinobacterium with
 a unique knobby spore surface, isolated from roots of a native Australian eucalyptus tree. Int J Syst Evol
 Microbiol 61:742-746
- 286
- Kämpfer P, Kohlweyer U, Thiemer B, Andreesen JR (2006) *Pseudonocardia tetrahydrofuranoxydans* sp.
 nov. Int J Syst Evol Microbiol 56:1535-1538
- 289
- Labeda DP, Goodfellow M, Chun J, Zhi XY, Li WJ (2011) Reassessment of the systematics of the
- 291 suborder *Pseudonocardineae*: transfer of genera within the family *Actinosynnemataceae* Labeda and
- 292 Kroppenstedt 2000 emend. Zhi et al. 2009 into an emended family *Pseudonocardiaceae* Embley et al.
- 293 1989 emend. Zhi et al. 2009. Int J Syst Evol Microbiol 61: 1259-1264

- Lane DJ (1991) 16S/23S rRNA sequencing. In: Nucleic Acid Techniques in Bacterial Systematics, pp.
- 296 115-148. Edited by E. Stackebrandt and M. Goodfellow. Chichester: John Wiley and Sons
- 297

298	Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic
299	actinomycetes. Int J Syst Bacteriol 20:435-443
300	
301	Lechevalier MP, Stern AER, Lechevalier HA (1981) Phospholipids in the taxonomy of actinomycetes.
302	Zbl Bakt Suppl 11:111-116
303	
304	Li J, Zhao GZ, Huang HY, Zhu WY, Lee JC, Kim CJ, Xu LH, Zhang LX, Li, WJ (2010) Pseudonocardia
305	rhizophila sp. nov., a novel actinomycete isolated from a rhizosphere soil. Antonie van Leeuwenhoek
306	98:77-83
307	
308	Liu ZP, Wu JF, Liu ZH, Liu SJ (2006) Pseudonocardia ammonioxydans sp. nov., isolated from coastal
309	sediment. Int J Syst Evol Microbiol 56:555-558
310	
311	Lucena T, Pascual J, Garay E, Arahal DR, Macián MC, Pujalte MJ (2010) Haliea mediterranea sp. nov.,
312	a new marine gammaproteobacterium. Int J Syst Evol Microbiol 60:1844-1848
313	
314	Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G
315	& other authors (2004) ARB: a software environment for sequence data. Nucl Acids Res 32:1363-1371
316	
317	Mahendra S, Alvarez-Cohen L (2005) Pseudonocardia dioxanivorans sp. nov., a novel actinomycete that
318	grows on 1,4-dioxane. Int J Syst Evol Microbiol 55:593-598
319	
320	Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of
321	deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159-167
322	
323	MIDI (2008) Sherlock Microbial Identification System Operating Manual, version 6.1. Newark, DE:
324	MIDI Inc.

326	Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An
327	integrated procedure for the extraction of isoprenoid quinones and polar lipids. J Microbiol Methods
328	2:233-241
329	
330	Nam S-W, Chun J, Kim S, Kim W, Zakrzewska-Czerwinska J, Goodfellow M (2003) Tsukamurella
331	spumae sp. nov., a novel actinomycete associated with foaming in activated sludge plants. System Appl
332	Microbiol 26: 367-375
333	
334	Okoh A, Ajisebutu S, Babalola G, Trejo-Hernandez MR (2001) Potential of Burkholderia cepacia RQ1 in
335	the biodegradation of heavy crude oil. Int. Microbiol. 4:83-87
336	
337	Park SW, Park ST, Lee JE, Kim YM (2008) Pseudonocardia carboxydivorans sp. nov., a carbon
338	monoxide-oxidizing actinomycete, and an emended description of the genus Pseudonocardia. Int J Syst
339	Evol Microbiol 58:2475-2478
340	
341	Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a
342	comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible
343	with ARB. Nucl Acids Res 35:7188-7196
344	
345	Qin S, Su YY, Zhang YQ, Wang HB, Jiang CL, Xu LH, Li WJ (2008) Pseudonocardia ailaonensis sp.
346	nov., isolated from soil in China. Int. J. Syst. Evol. Microbiol 58:2086-2089
347	
348	Qin S, Xing K, Fei SM, Lin Q, Chen XM, Li WJ, Jiang JH (2011) Pseudonocardia sichuanensis sp. nov.,
349	a novel endophytic actinomycete isolated from the root of Jatropha curcus L. Antonie van Leeuwenhoek
350	99:395-401
351	
352	Qin S, Zhu WY, Jiang JH, Klenk HP, Li J, Zhao GZ, Xu LH, Li WJ (2010) Pseudonocardia tropica sp.
353	nov., an endophytic actinomycete isolated from the stem of Maytenus austroyunnanensis. Int J Syst Evol
354	Microbiol 60:2524-2528
355	

356	Rehfuss M, Urban J (2005) Rhodococcus phenolicus sp. nov., a novel bioprocessor isolated actinomycete		
357	with the ability to degrade chlorobenzene, dichlorobenzene and phenol as sole carbon sources. Syst Appl		
358	Microbiol 28:695-701		
359			
360	Reichert K, Lipski A, Pradella S, Stackebrandt E, Altendorf K (1998) Pseudonocardia asaccharolitica sp.		
361	nov. and Pseudonocardia sulfidoxidans sp. nov., two new dimethyl disulfide-degrading actinomycetes		
362	and emended description of the genus Pseudonocardia. Int J Syst Bacteriol 48:441-449		
363			
364	Sakiyama Y, Thao NKN, Vinh HV, Giang NM, Miyadoh S, Hop DV, Ando K (2010) Pseudonocardia		
365	babensis sp. nov., isolated from plant litter. Int J Syst Evol Microbiol 60:2336-2340		
366			
367	Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical		
368	Note 101:1-7		
369			
370	Seviour RJ, Kragelund C, Kong Y, Eales K, Nielsen JL, Nielsen PH (2008) Ecophysiology of the		
371	Actinobacteria in activated sludge systems. Antonie van Leeuwenhoek 94:21-33		
372			
373	Schäfer J, Busse HJ, Kämpfer P (2009) Pseudonocardia parietis sp. nov., from the indoor environment.		
374	Int J Syst Evol Microbiol 59:2449-2452		
375			
376	Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol		
377	16:313-340		
378			
379	Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-		
380	layer chromatography. Appl Microbiol 28:226-231		
381			
382	Warwick S, Bowen T, McVeigh HP, Embley TM (1994) A phylogenetic analysis of the family		
383	Pseudonocardiaceae and the genera Actinokineospora and Saccharothrix with 16S rRNA sequences and		
384	a proposal to combine the genera Amycolata and Pseudonocardia in an emended genus Pseudonocardia.		
385	Int J Syst Bacteriol 44:293-299		

386	
387	Wayne LG, Brenner DJ, Colwell RR and 9 other authors (1987) International Committee on Systematic
388	Bacteriology Report on the ad hoc committee on the reconciliation of approaches to bacterial systematics.
389	Int J Syst Bacteriol 37: 463-464
390	
391	Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glöckner FO, Rossello-Mora R (2010) Update
392	of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl
393	Microbiol 33:291-299
394	
395	Zhao GZ, Li J, Zhu WY, Li XP, Tian SZ, Zhao LX, Xu LH, Li WJ (2011a) Pseudonocadia bannaensis
396	sp. nov., a novel actinomycete isolated from the surface-sterilized roots of Artemisiae annua L. Antonie
397	van Leeuwenhoek 100:35-42
398	
399	Zhao GZ, Li J, Huang HY, Zhu WY, Zhao LX, Tang SK, Xu LH, Li WJ (2011b) Pseudonocardia
400	artemisiae sp. nov., isolated from surface-sterilized Artemisia annua L. Int J Syst Evol Microbiol
401	61:1061-1065
402	
403	Zhao GZ, Li J, Huang HY, Zhu WY, Park DJ, Kim CJ, Xu LH, Li WJ (2011c) Pseudonocardia
404	kunmingensis sp. nov., an actinobacterium isolated from surface-sterilized roots of Artemisia annua L. Int
405	J Syst Evol Microbiol 61:2292-2297

Table 1 Growth and cultural characteristics of strains PA3^T and *P. asaccharolytica* DSM 44247^T after 407

⁴⁰⁸ incubation at 28°C for 3 weeks

	Strain PA3 ^T		P. asaccharolytica DSM 44247 ^T			
Medium	Growth	Substrate mycelium color	Aerial mycelium color	Growth	Substrate mycelium color	Aerial mycelium color
Yeast extract-malt extract agar (ISP medium 2)	+++	Moderate yellow	White	+++	Moderate yellow	White
Oatmeal agar (ISP medium 3)	+++	White	White	++	White	White
Inorganic salts-starch agar (ISP medium 4)	+++	White	White	++	White	White
Glycerol-asparagine agar (ISP medium 5)	++	Honey	None	+	Opaque	None
Peptone-yeast extract iron agar (ISP medium 6)	+++	Yellowish- brown	White	+++	Yellowish- brown	White
Tyrosine agar (ISP medium 7)	++	Honey	None	+	Opaque	None
Modified Czapek's agar	++	White	White	+	White	White
Potato-dextrose agar	++	White	White	+	White	White

409

Key: +++, abundant; ++, moderate; +, poor growth. Diffusible pigments were not formed on any of the

410 411 412 media.

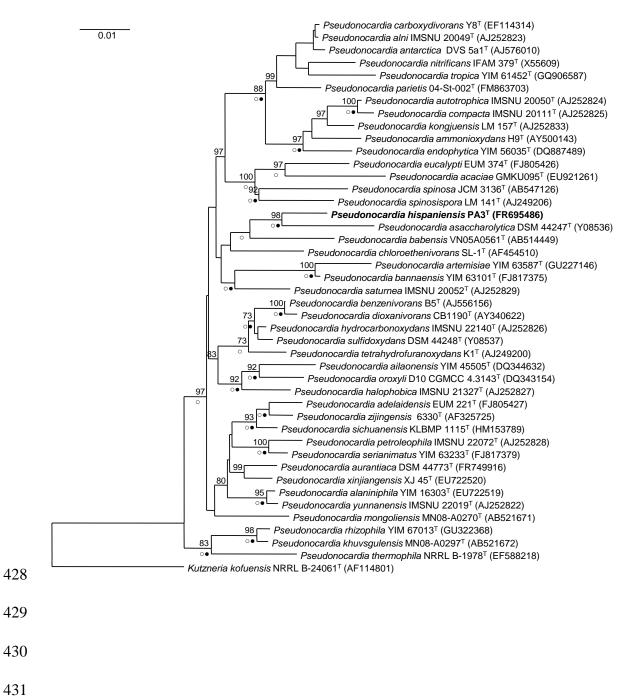
- 413 Table 2 Fatty acid composition (%) of strains PA3^T and P. asaccharolytica DSM 44247^T. -, not
- 414 detectable; tr, trace amount (<1 %).

Fatty acids	Strain PA3 ^T	<i>P. asaccharolytica</i> DSM 44247 ^T
Hydroxy fatty acid:		
C _{16:1} 2OH	1.4	-
Saturated fatty acids:		
C _{14:0}	-	1.0
C _{17:0}	-	3.1
C _{16:0}	tr	6.3
Unsaturated fatty acids:		
$C_{17:1} \omega 8c$	tr	5.8
C _{17:1} w6c	9.9	5.5
$C_{18:1} \omega 9c$	tr	2.1
Branched fatty acids:		
iso-C _{14:0}	tr	2.2
iso-C _{15:0}	12.3	14.5
iso-C _{16:0}	23.5	23.8
iso-C _{17:0}	14.7	11.5
iso-C _{18:0}	tr	-
iso-C _{16:1} H	12.1	6.2
anteiso-C _{17:0}	5.9	4.3
C _{17:0} 10-methyl	3.4	2.7
C _{18:0} 10-methyl	tr	-
Sum In Feature:		
$3 (C_{16:1} \omega 7c/ C_{16:1} \omega 6c)$	2.9	7.3
4 (C _{17:1} iso I/ anteiso B)	tr	-
9 (iso-C _{17:0} ω9c/ C _{16:0} 10-methyl)	10.3	3.6

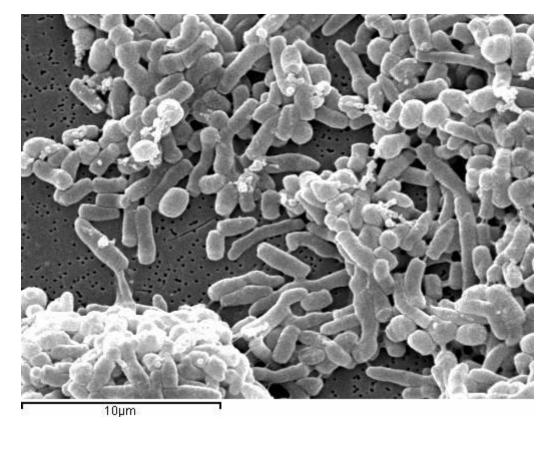
415 Key: -, not detectable.

Characteristic	Strain PA3 ^T	<i>P. asaccharolytica</i> DSM 44247 ^T
API enzyme tests:		
Acid phosphatase	-	+
Cysteine arylamidase	+	-
Esterase (C4)	-	+
Leucine arylamidase	+	-
Valine arylamidase	+	-
Degradation of tyrosine	-	+*
Nitrate reduction	-	+
Tolerance tests:		
Growth at 37°C	+	-
Growth in presence of 3% w/v NaCl	+	-
pH growth range	5-10	6-9

417 **Table 3** Phenotypic properties which distinguish strain PA3^T from the type strain of *P. asaccharolytica*

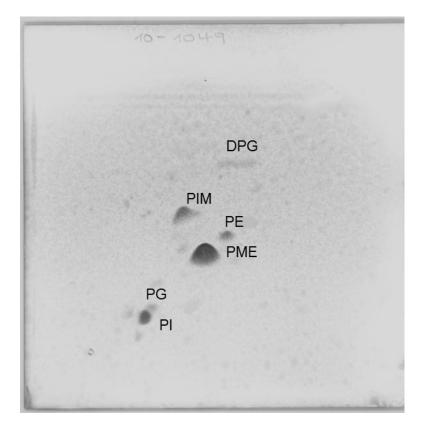

418 Key: +, positive; -, negative. *Result not congruent with that reported by Reichert et al. (1998). Neither of

419 the strains hydrolyzed urea or produced acid from adonitol, L-arabinose, *meso*-erythritol, fructose,


420 galactose, glucose, lactose, inositol, inulin, maltose, mannitol, mannose, melezitose, rhamnose,

421 saccharose, sorbitol, trehalose or xylose.

- 423 Figure 1. Neighbor-joining phylogenetic tree based on almost-complete 16S rRNA gene sequences (1422
- 424 sites used) showing the position of isolate $PA3^{T}$ in the *Pseudonocardia* genus. Bootstrap values (> 70 %)
- 425 were based on 1000 resamplings. Circles indicate the corresponding nodes recovered in trees generated
- 426 with the maximum-parsimony (open circles) or the maximum-likelihood (filled circles) methods. Bar, 1
- 427 substitution per 100 nucleotide positions.



- 101
- 432
- 433

436 Figure 2: Scanning electron micrograph of a 14-days old culture of strain PA3^T.

- 438 Supplementary Figure S1. Two-dimensional thin-layer chromatogram of polar lipids of strain PA3^T,
- 439 detected with the spray reagent molybdatophosphoric acid. Abbreviations: PME,
- 440 phosphatidylmethylethanolamine; PG, phosphatidylglycerol; DPG, diphosphatidylglycerol; PI,
- 441 phosphatidylinositol; PIM, phosphatidylinositol mannoside; PE, phosphatidylethanolamine. First
- 442 dimension, left to right; second dimension bottom to top.

