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Gonzálezc, F. J. Mart́ınez-Zald́ıvarc, A. M. Climentb

aDepartment of Information Systems and Computing, Universitat Politècnica de València, Camino
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Abstract

In this paper we studied the implementation and performance of adaptive step methods

for large systems of ordinary differential equations systems in Graphics Processing Units,

focusing on the simulation of thre–dimensional electric cardiac activity. The Rush-

Larsen method was applied in all of the implemented solvers to improve efficiency. We

compared the adaptive methods with the fixed step methods, and we found that the

fixed step methods can be faster while the adaptive step methods are better in terms of

accuracy and robustness.

Keywords: Adaptive ODE solvers, Embedded Runge–Kutta methods, GPU

computing, Cardiac electrophysiology, Rush-Larsen method

1. Introduction

Mathematical models of cardiac electrical activity are important tools for evaluating

heart conditions and pathological mechanisms [1, 2, 3]. Electrophysiological models of

cardiac tissues describe how ion channels control the transmembrane potential of each

cell and how this cellular action potential propagates across the heart. The electrical

activity of the heart is usually simulated by modeling the ionic currents of each cardiac

cell and the interactions with its neighboring cells. Depending on the model chosen,
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each cell is modeled with 15-40 ordinary time-dependent differential equations (ODEs).

Therefore, a realistic atrial simulation may require thousands or even millions of cells;

hence, the final number of coupled ODEs to be solved could be tens or hundreds of

millions. The required computing time is significant: an accurate simulation of a few

seconds of cardiac activity requires hours or even days of computations in standard

computers.

In the last few years, Graphics Processing Units (GPU) have been used as computing

platforms to carry out these simulations. These devices, which were initially designed to

perform the calculations needed to display graphic content on a computer screen, have

evolved to become very powerful and cheap tools for performing heavy computations.

Many studies have been devoted to describing electric cardiac simulations using GPUs

[4, 5, 6, 7, 8].

These GPU simulations were performed using fixed time step methods. These meth-

ods are usually preferred for electric cardiac simulations because fixed time step methods

are simple to implement and are easy to couple with other simultaneous simulations.

More sophisticated methods are based on variable, adaptive step size. In these formula-

tions, the step size is adjusted to the desired accuracy, and the time step can become very

large or very small depending on the changes in the solution. This procedure increases

the accuracy during critical steps and reduces the simulation time during non-critical

steps [9]. Adaptive step formulations are regularly used in most science fields, and most

black box ODE solvers for CPUs rely on adaptive step methods. We are not aware of any

publicly available variable step ODE solvers for GPUs. There exist also adaptive spatio-

temporal methods [10, 11, 12]. These methods deal with the characteristic wavefronts

that appear in cardiac simulations by adapting the spatial discretization in regions with

steep gradients, and adapting accordingly the time step only in these regions. These

methods can be built on top of an underlying fixed step strategy (like in [10]) or on top

of an adaptive step strategy [12]. Spatio-temporal methods are very promising, although

at present there are no GPU implementations available.

An important feature of electric cardiac models is that some of the equations have a

special form that can be used to improve the performance of the ODE solvers. Rush and

Larsen proposed a method in [13] that can be implemented for most cell models. The

Rush–Larsen method has been very successful in this field, and several studies [14, 15]
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have shown that combining this technique with a standard explicit method substantially

increases the stability of the method.

The main purpose of this paper is to discuss the implementation and performance of

fixed step and adaptive step ODE solvers in GPUs that are adapted for electric cardiac

simulation. To completely explore the advantages and disadvantages of the different

implementations, we have performed several comparisons related to the electric cardiac

simulation problem: multicore CPU solvers vs. GPU solvers, GPU solvers with and

without the Rush-Larsen technique, and GPU fixed step solvers vs. GPU adaptive

solvers. The methods have been implemented using the CUDA programming environ-

ment [16] from NVIDIA Corporation; we will assume some familiarity of the reader with

this environment to avoid lengthy descriptions.

As mentioned above, there is no known adaptive ODE software written for GPUs.

One of the main goals of this paper is fill this gap by providing a detailed description of

our GPU implementations, so that any scientist can reproduce our solvers, for cardiac

simulation or for the solution of any other large ODE system.

All of the solvers have been implemented over the Courtemanche atrial model [17]

(although the cell model can be changed without great effort). We have selected a

relatively large spherical structure with 163842 cells as our main test case.

The organization of this paper is as follows: first, we describe the Courtemanche atrial

cell model, and the basic numerical methods considered. Then, we describe our imple-

mentations, with special emphasis on the GPU programming of the adaptive solvers.

Finally, we describe and discuss the results from several methods in terms of accuracy

and execution time.

2. Mathematical Cell Model

The Courtemanche model for the time evolution of a single cell can (like other cardiac

models) be written in terms of the transmembrane voltage V , of the vector of ionic

concentrations X = xi, i = 1, .., 5 and the vector of gating variables W = wi, i = 1, ..., 15

as follows:
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dV

dt
= I (t, V,X,W) , (1)

dxj

dt
= gj(V,X,W), j = 1, ..., 5, (2)

dwi

dt
= ai(V )wi + bi(V ), i = 1, ..., 15, (3)

with the initial conditions V0,X0,W0. For a single cell, the equation governing the

transmembrane voltage can be written as:

dV

dt
= I (t, V,X,W) =

Istim − Iion
Cm

, (4)

where Cm is the membrane capacity, Istim is an applied stimulus and Iion is the ionic

current, which is computed as:

Iion =
12
∑

i=1

ICi (t, V,X,W) . (5)

where ICi is the total transmembrane current carried by ion i. Several of these currents

are controlled by the gating variables [w1, w2, ..., w15] = W. These variables control

the opening and closing of the ion channel i through the associated ODE (3). All the

expressions are described in [17],and a small description of the variables and equations

is given in Appendix A. The whole model has 21 variables (the transmembrane voltage,

15 gating variables and 5 ionic concentrations) and 21 differential equations.

If a system with multiple cells (NumCells, numbered from 0 to NumCells − 1) is

considered, then equation (1) is modified to include the effect of the neighboring cells:

∂V

∂t
=

Istim − Iion
Cm

+∇ · (D∇V ) , (6)

where D describes the diffusion of the voltage through the medium. After discretiza-

tion of the spatial derivatives for an isotropic medium, equation (1) for the k-th cell is

described by the following ODE:

dVk

dt
=

Istim,k − Iion,k
Cm,k

−D
∑

j

Vk − Vj

d2i,k
, (7)

where di,k is the distance between the neighboring cells i and j and the sum is

performed over the cells neighboring the k-th cell. We denote the data vector for the
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k-th cell as yk = [Vk;Xk;Wk], and the vector of the transmembrane voltages for all

cells as V . Then we wrote the system function fk for the k-th cell as:

fk(t,Y) = fk (t,V,Xk,Wk) =



















Istim,k−Iion,k

Cm,k
−D

∑

j

Vk−Vj

d2
i,k

,

ai(Vk)wi,k + bi(Vk), i = 1, ..., 15,

gj(Vk,Xk,Wk), j = 1, ..., 5.

(8)

Stacking together the data of all cells Y = [y0;y1; ...;yNumCells−1] and the system

functions of all cells F = [f0; f1; ...; fNumCells−1] , the whole system can be written as

an initial value problem,
dY

dt
= F (t,Y). (9)

The evaluation of the system function F is crucial in all of the algorithms that

are described below. In many cases, the evaluation of the system function must be

carried out cell by cell. To emphasize this point, we will switch to the notation fk, k =

0, 1, ..., NumCells−1 when this happens. Therefore, note that the evaluation of F (t,Y)

is the same operation as the evaluation of fk(t,Y), k = 0, 1, ..., NumCells− 1.

3. Numerical Methods

In this section we detail all of the implemented numerical methods, giving as much

details as possible so that the reader can reproduce our results. We proceed in order of

increasing complexity, because the optimizations that were devised for low complexity

methods were applied to more complex methods.

3.1. The Forward Euler method

The Forward Euler (FE) method is the simplest method for solving initial value ODE

systems such as (9). After selection of a time step h, and given the initial solution Y0

at time t = t0, an approximate solution is obtained at time t = t0 + h · NumSteps is

obtained through the simple loop in Algorithm 1.

Algorithm 1 Forward Euler

for j = 1 → NumSteps do

Yj+1 = Yj + h · F
(

tj ,Y
j
)

end for
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This method has well known stability and accuracy limits, and, if CPU implemen-

tations are considered, there are better methods. However, in the present situation we

are trying to solve a cardiac modeling problem in a GPU. This method is appropriate

for parallel GPU implementations and achieves reasonable accuracy and speed when

combined with the Rush-Larsen technique (described below). Moreover, the accuracy

usually requested for cardiac modeling is quite gross (a 1% or even 5% error is considered

acceptable [18]), which makes this method competitive in this particular area.

3.2. Rush-Larsen method

The Rush-Larsen (RL) method, proposed in [13], was devised specifically for cell

models, and has been well studied [14, 15, 18, 19]. This method takes advantage of the

special form of the equations governing the gating variables, which can be written as:

∂wi

∂t
= ai(V )wi + bi(V ) (10)

for a general gating variable wi. If the transmembrane constant V is constant over a

time interval h (and, equivalently, the expressions ai(V ) and bi(V ) are constant over

that interval) then the value of the dependent variable after the step can be determined

exactly. If the value of wi at the beginning of the interval is w0
i , the value after taking

a step of length h is:

w1
i = eai(V )h

(

w0
i +

bi(V )

ai(V )

)

−
bi(V )

ai(V )
. (11)

Rush and Larsen proposed to split the ODE system, solving the equations for the gating

variables through eq(11) and using forward Euler for the rest of the equations. We call

this combination the RLFE method. For notation convenience, we split the full data

vector Y into gating and non-gating variables, denoted respectively as Yg and Yng,

and split accordingly the system function F into its gating and non-gating parts Fg and

Fng. Then, the RLFE can be written as shown in Algorithm 2:

Algorithm 2 Forward Euler Rush Larsen

for j = 1 → NumSteps do

Yj+1
ng = Yj

ng + h · Fng

(

tj ,Y
j
)

Apply (11) to Yj
g with step h to obtain Yj+1

g

end for
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The success of this method depends on the fact that many cell models (including the

Courtemanche model) are stiff due to the gating equations, and become non-stiff when

the RL method is applied to the equations governing the gating variables. This allows

much larger time steps.

3.3. Other fixed-step methods

We implemented and tested other fixed step methods, such as the explicit midpoint

method. This is a second order explicit method:

Ŷ = Yj + h
2F
(

tj ,Y
j
)

Yj+1 = Yj + hF
(

tj +
h
2 , Ŷ

) (12)

As mentioned above, the time steps that can be used are much larger if the gating

equations are handled with the RL technique. However, the RL technique applied to the

full time step h is an O(h) method. To obtain an accuracy closer to that of the selected

method, we used the RL technique in the same internal steps that the method employed

(this is analogous to the technique proposed in [14]). For example, we combined the

explicit midpoint method with the RL technique in the following 4 steps:

1. Compute Ŷng = Yj
ng + h

2Fng

(

tj ,Y
j
)

.

2. Apply RL with time step h
2 to advance from Yj

g to Ŷg.

3. Compute Yj+1
ng = Yj

ng + hFng

(

tj +
h
2 , Ŷ

)

.

4. Apply RL with time step h
2 to advance from Ŷg to Yj+1

g .

This technique can be applied to other Runge-Kutta methods, but this operation is

not appropriate for all Runge-Kutta methods. For example, the trapezoidal method is

another second order method, described by the following steps:

Ŷ = Yj + hF
(

tj ,Y
j
)

,

Yj+1 = Yj + h
2F
(

tj+1, Ŷ
)

+ h
2F
(

tj ,Y
j
)

.
(13)

In this method, the system function F is evaluated only at the beginning and at the

end of the time interval. Therefore, the combination of this method with RL can be

accomplished by applying RL to the complete time step h, (which would keep the accu-

racy of the gating variables as first order) or by performing an extra function evaluation
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in the middle of the interval (which would slow the whole method). Other methods,

(such as the classical 4th order Runge-Kutta method) have similar drawbacks.

Higher order methods require more memory to hold the intermediate results in a

step, which can be a crucial issue for very large models.

3.4. Adaptive time step methods

The problem with using a fixed step in algorithms such as FE or RLFE is that the

error in each step depends on the step h, and decreases with h. If a given accuracy

per step is desired while using a fixed step formulation, then a small step must be used

throughout the whole simulation. The key to obtaining a good general accuracy without

using tiny steps is to correctly estimate the error made after computing each step of the

computed solution.

There are several ways to estimate this error. In this paper, we have used the

Embedded Runge-Kutta methods [9, 20]. These are associated pairs of methods of

different accuracies, where the low-order method has an accuracy of order P , (when

applied over the variable Yold, taking a step h gives the approximate solution Ylow),

and the high-order method has an accuracy of order P + 1 (when applied over the

variable Yold, taking a step h gives the approximate solution Yhigh). Many such pairs

exist.

The procedure (slightly simplified) to compute the new time step using Embedded

Runge Kutta pairs is described here. Let ǫ be the maximum error that we are ready

to admit in each step. Usually, this error is established by setting two parameters,

relative tolerance (rt) and absolute tolerance (at), so that the admissible error must be

smaller than ǫ = at + rt
∣

∣Yold
∣

∣. If both methods are used to take a single step, then

the difference between the solutions obtained by the two methods
(

‖Yhigh −Ylow‖
)

can be used to estimate the error made by the lower order method. If the error is not

acceptable
(

‖Yhigh −Ylow‖ > ǫ
)

, then the step is rejected and a new step is computed,

as shown in [9]. For some constant c the error fulfills
(

‖Yhigh −Ylow‖
)

≈ c · hp+1 so

that the new step ĥ can be chosen to satisfy:

(

ĥ

h

)P+1

‖Yhigh −Ylow‖ ≈ frac · ǫ, (14)
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where frac is a real number smaller than 1, usually taken as 0.9 for safety. Therefore,

the new time step ĥ is computed as:

ĥ = h

(

frac · ǫ

‖Yhigh −Ylow‖

)
1

P+1

. (15)

If the error is acceptable
(

‖Yhigh −Ylow‖ ≤ ǫ
)

a new time step length (possibly

longer than the one taken), is calculated using (15), and a new time step is taken. For

an ODE system, the procedure described above to compute the time step length is

applied to the largest error computed for all the dependent variables.

More detailed descriptions can be found in [9, 20]. All high quality CPU codes for

solving ODE systems use adaptive time step, because the codes provide accuracy and

efficiency with this mechanism [21].

It is generally acknowledged in the numerical ODE solving literature that low order

methods are more efficient than high order methods when the tolerances required for

the solution are not too tight [22, 23]. However, cardiac simulations usually require

accuracies of approximately 1 to 5% (quite gross for ODE solution standards). Therefore,

we chose to use low order methods. We implemented three adaptive explicit methods:

1. The lowest order Runge-Kutta pair, a 2-1 order method formed by the trapezoidal

method and the forward Euler method. [9]

2. The Bogacki-Shampine pair, a 3-2 order method with three stages implemented in

the ode23 MATLAB ODE solver [22, 23].

3. The well–known Runge-Kutta-Fehlberg a 5-4 order method with 6 stages [9, 20].

The error estimate
(

‖Yhigh −Ylow‖
)

is asymptotically correct for the lower order

method. However, it is common to select the high order method as solution. This is

known as local extrapolation and we have applied this approach. The basic adaptive

step size algorithm is shown in Algorithm 3.

The line swap
(

Yhigh,Yold
)

can be implemented by copying the contents of each

vector on the other but it is much more convenient to exchange the pointers if both

vectors are accessed through pointers.
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Algorithm 3 Generic Embedded Runge-Kutta adaptive step algorithm

Input tsimul, tend, h,Y
old

while tsimul ≤ tend do

Compute Yhigh and Ylow from state Yold using time step h
Estimate maximum error maxerr = ‖Yhigh −Ylow‖
if maxerr < ǫ then

tsimul = tsimul + h
Compute new h using (15)
swap

(

Yhigh,Yold
)

else

Compute new h using (15)
end if

end while

4. Implementations

4.1. CPU implementation of ODE solvers

The programming of ODE solvers is a relatively simple matter in any programming

language. There are hundreds of available implementations that have been described in

many papers and books (see [9] for details). A subroutine that computes the system

function F is needed. This routine must evaluate the function systems fk for all cells.

We are interested in high performance architectures, such as multicore CPUs and

GPUs, and we want to highlight how this parallelism is introduced, to obtain efficient

implementations. Any method for initial value problems has a time-advancing loop

similar to Algorithm 1. It is clear that the iterations of such loop cannot be parallelized,

because the result of each iteration depends on the previous iteration. Instead, we can

obtain parallelism by evaluating the system function F for many cells at the same time.

Simply rewriting the loop in Algorithm 1 as

for j = 1 → NumSteps do

for k = 0 → NumCells− 1 do

y
j+1
k = y

j
k + h · fk

(

tj ,y
j
k

)

end for

end for

clarifies that the k loop can be parallelized, because the system function fk can be

evaluated for multiple cells at the same time. In a shared memory computer with

multiple cores, using a simple OpenMP pragma [24] is enough to parallelize the k loop.
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4.2. Forward Euler: GPU implementation

Here, we describe some details of the CUDA implementations of the fixed step explicit

Euler method. Most of these implementation details were also used for the adaptive

versions described below. All of our GPU implementations have been written using

single precision.

A CUDA program is constructed by pieces of code, called kernels [16]. Each kernel

is invoked from the main program, to assign a task to the GPU. When a kernel is

sent to the GPU, many instances of the kernel are executed in parallel in the GPU.

Each of these instances is executed by a thread, and each thread runs in one of the

many microprocessors or cores of the GPU. These threads are organized into blocks of

threads, which can be visualized as “teams” of threads that are executed together. In

the call to the kernel, the programmer must specify as parameter of the kernel how many

blocks (NumBlocks) and how many threads per block (NumThreadsperBlock) must

be used to execute this kernel.

All of our CUDA solvers have been structured so that, like in the CPU version, the

parallelism is obtained by simultaneously performing the computations for many cells.

The computations for a given cell are carried out by a single CUDA thread. If the

number of threads is larger than the number of cells, then each thread will take care of a

single cell. If the number of cells is larger than the number of threads, which is usually

the case, then several cells are assigned to each thread as follows: Suppose that there are

NumCells cells andNumThreads threads (NumThreads = NumBlocks ·NumThreadsperBlock),

with NumCells > NumThreads. Each thread is identified by an integer number T id,

0 ≤ T id < NumThreads. Then, in a given step, thread T id will start processing cell

T id. When finished with cell T id, thread T id will process cell NumThreads+T id, then

cell 2 ·NumThreads+ T id and so on, until all the cells have been processed.

The structure of the main loop (executed on the CPU) would be like the structure

in Algorithm 4, and each kernel (that is executed on the GPU) would resemble those in

Algorithm 5.

All the data needed for the computations and the results are kept in the global mem-

ory of the GPU so that all of the threads can access the necessary data. An important

feature of this problem is that the subroutine that evaluates the system function fk for

each cell is quite complex and uses many variables; for efficiency, these variables must
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Algorithm 4 Main Loop for Forward Euler

for j = 1 → NumSteps do

kernel FE <<< NumThreadsperBlock,NumBlocks >>> (t,Yin,Yout)
swap

(

Yin,Yout
)

end for

Algorithm 5 kernel FE

kernel FE(t,Yin,Yout)
k = T id
while k < NumCells do

yout
k = yin

k + h · fk
(

t,yin
k

)

k = k +NumThreads
end while

be stored in “registers”. Generally speaking, CUDA kernels should optimally utilize

“shared memory”, which is a fast memory that is available to all the threads in a block

[16]. However, the amount of available shared memory depends on the number of used

registers. Because every thread needs many registers, there is a strong limit on the

available shared memory. Because of this limitation, we did not use shared memory

in our kernels. Instead, we focused on achieving good patterns of memory access and

limiting the number of registers used by our code.

If a given computation requires that a previous computation has finished with all

of the cells, then the two computations must be written in different kernels because

(as long as a single stream is used, which is our case) it is a safe way to obtain global

synchronization of all of the threads.

The data structure also has a big influence on the performance. A simpler way to

organize the data would be to create a data structure for each cell that contains the 21

variables for each cell, and then create an array of this new data type, with NumCells

elements. Using a C-like syntax, the data structure can be written as:

struct celldata











































float V ;

float w1;

float w2;
...

float x5;











































; struct celldata bigdata [NumCells] ; (16)

This is an “Array of Structures” data layout and is the way the data has been organized
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in the CPU version.

However, memory access in GPUs is more efficient if all of the threads access the

data in a regular form, called “coalesced access” [16]. To obtain this type of access, it

is more efficient to use a “Structure of Arrays” data layout [25].

struct celldata











































float V [NumCells] ;

float w1 [NumCells]

float w2 [NumCells] ;
...

float x5 [NumCells] ;











































(17)

The access to memory is further improved if the size of the arrays in the struc-

ture is a multiple of 32. Therefore, the first multiple of 32 greater than NumCells is

selected(NumCelAux) and the data structure is then

struct celldata











































float V [NumCelAux] ;

float w1 [NumCelAux]

float w2 [NumCelAux] ;
...

float x5 [NumCelAux] ;











































(18)

The extra cells are not used, which is a slight waste of memory, very small com-

pared with the overall size of the system. Using the NVIDIA CUDA profiler [26], we

confirmed that the only unaligned memory accesses are those related to the voltages of

the neighboring cells, and the effect of this unaligned memory access is small.

The results (the cell voltages at the different times) must be sent back from the

GPU to the CPU. These transfers are slow, and data transfer in every step would be

inefficient. Instead, the results are sent every Nsave steps, where Nsave is a predefined

parameter with a value that can be adjusted depending on the problem.

It would be conceptually simple to obtain a multi-GPU version by splitting the cells

among the available GPUs, and programming the communications between the GPUs.

Finally, we remark that the choice of the step length for the fixed step algorithm can

only be safely made through a trial and error procedure, or by using previous experience.
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4.3. Implementations of RLFE method

The CPU and GPU implementations of the RLFE method are similar to the CPU

and GPU FE implementations. The only difference is that there must be a routine,

called advance gating, which advances the value of the gating variables over a time

step h, using formula (11). The routine that computes the system functions for each

cell now only evaluates the system function for the transmembrane voltage V and for

the ionic concentrations X. The main loop would look like Algorithm 4, and the kernel

now look like Algorithm 6.

Algorithm 6 kernel RLFE

kernel RLFE(t,Yin,Yout)
k = T id
while k < NumCells do

yout
k,ng = yin

k,ng + h · fk,ng
(

t,yin
k

)

yout
k,g = advance gating(yin

k , h)
k = k +NumThreads

end while

All of the implementation details described above for the FE method apply to the

RLFE method.

4.4. Implementations of higher order methods

The implementation for the CPU of the fixed step methods does not present any

problem and is a simple programming exercise. The implementation for GPUs is not

much more complex, but we have provided the main guidelines for the sake of repro-

ducibility and completeness.

In any Runge-Kutta ODE method with an order ≥ 2 the system functions must be

evaluated two or more times. Such evaluations are called stages. Usually, each function

evaluation depends on the results of the previous stages. In our case, the computation

of a stage must not start until the computation of the previous stage has finished for

all cells. This creates a synchronization point after each stage. We have chosen to use

different kernels for each stage, which guarantees the desired synchronization when a

single stream is used.

Therefore, Algorithm 7 illustrates the main loop in the explicit midpoint method.
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Algorithm 7 Main loop for MidPoint method

for j = 1 → NumSteps do

kernel midpoint1 <<< NumThreadsperBlock,NumBlocks >>> (t,Yin, Ŷ)
kernel midpoint2 <<< NumThreadsperBlock,NumBlocks >>> (t, Ŷ,Yout)
swap

(

Yin,Yout
)

end for

If RL is not used, the kernel kernel midpoint1 and the kernel kernel midpoint2

would be similar to Algorithm 5; if RL is used, each one of these kernels would resemble

Algorithm 6.

4.5. Implementations of adaptive methods

Again, the CPU implementation of adaptive methods has been thoroughly described

elsewhere [9, 22]. We have described here only our GPU implementation. Adaptive

solvers based on embedded Runge-Kutta methods rely necessarily on multiple stage

methods, so that the GPU implementation would be similar to Algorithm 7, meaning

that there should be a kernel for each stage. The only important details that still must

be discussed are 1) the computation of the error between the two approximations, and

2) the decision about the validity of the step taken, with the computation of the new

time step.

We structured these computations into two kernels. The first kernel (kernel error)

computes the maximum error for each block of threads, and stores this error in the array

ErrGlobal, which has a position for each block. The second kernel(kernel reduction)

uses the errors in ErrGlobal to compute the maximum overall error, decides whether

the step taken can be accepted and computes the new time step.

The computation of the maximum error between both approximations means that

the errors of all of the variables must be compared to obtain a single real number result.

In parallel computing this is called a reduction, and the final stages of the reduction

must be carried out by a few (or only one) thread, or by the CPU. We followed the

guidelines about CUDA reduction by Mark Harris [27].

We describe first the kernel kernel error. We assume that the low order approxi-

mation Ylow and the high order approximation Yhigh have been previously computed.

In Algorithm 8, NumBlocks is the number of blocks with which this kernel is exe-

cuted; BlockDim1 is the number of threads in the block, in the kernel kernel error;
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LocalTid is the integer identifying the present thread in this block (so, 0 ≤ LocalT id <

BlockDim1); BlockId is the integer identifying the block and Tid is the integer identi-

fying the thread among all of the threads (0 ≤ T id < numThreads).

Algorithm 8 kernel error

kernel error(Ylow,Yhigh,ErrGlobal)
shared float error[BlockDim1]
k = T id
error[LocalT id] = 0.0
while k < NumCells do ⊲ compute error of all cells in the Block

err = ‖ylow
k − y

high
k ‖

error[LocalT id] = max(error[T id], err)
k = k +NumThreads

end while

s=BlockDim1
2

while s > 0 do ⊲ compute max error in the Block
if LocalT id < s then

error[LocalT id] = max(error[LocalT id], error[LocalT id+ s])
end if

syncthreads()
s=s/2

end while

if LocalT id == 0 then

ErrGlobal[BlockId] = error[0]
end if

First, the array error is declared, with as many positions as threads in each block

(BlockDim1). Next, in the first while loop, each thread computes the maximum error

for all its cells and stores the maximum error in the local position error[LocalTid].

Then, the maximum value in the array error, which will be the maximum error for this

block of threads, is computed, using a technique described in [27].

Finally, the maximum error for this block is stored in the array ErrGlobal. When

all the blocks have executed this kernel, the array ErrGlobal, which has NumBlocks

positions, must keep the maximum errors of all of the blocks.

Here, we discuss the kernel kernel reduction, described in Algorithm 9. This kernel

is called with a single block and with number of threads BlockDim2 equal to the number

of blocks with which the kernel kernel reduction was called, that is, BlockDim2 =

NumBlocks.

First, the same technique used in kernel error is used again to compute the overall
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maximum error. When that loop finishes, the maximum error for all of the variables is

stored in error[0]. This is the desired error estimate used to check the validity of the

step and to compute the time step.

It is unnecessary to use more than one thread to perform this computation, so that

it is made by the thread 0. Alternatively, this single thread calculation could be carried

out by the CPU. The CPU would make this computation faster, but some data traffic

between the GPU and the CPU would be necessary. In our simulations, we ensured that

the time spent in this kernel was less than 1% of the whole execution time.

Algorithm 9 kernel reduction

kernel reduction(ErrGlobal, int StepOk, int CorrectSteps,float timestep)
shared float error[blockDim2]
error[LocalT id] = ErrGlobal[LocalT id;
s=BlockDim2

2
while s > 0; do

if LocalT id < s then

error[LocalT id] = max(error[LocalT id], error[LocalT id+ s])
end if

syncthreads()
s=s/2;

end while

if LocalT id == 0 then

if error[0] > ǫ then
StepOk=0
Compute new timestep using error[0] and formula (15)

else

StepOk=1
Compute new timestep using error[0] and formula (15)
CorrectSteps=CorrectSteps+1

end if

end if

The conclusion of the main loop is carried out in the CPU. Because the time steps

are variable, we do not know in advance how many time steps are necessary to reach

the final time. This can be implemented in different forms. We have chosen to use the

integer parameter StepOk to inform the CPU whether the taken step has been successful.

If the step is successful, then the CPU interchanges the pointers associated to the “old”

and “new” solutions. The computed time step is sent to the CPU, so that the main loop

can compute the present simulation time, and verify whether the algorithm has reached

the desired final time. This is shown in Algorithm 10.
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Algorithm 10 Main loop for a generic k-stage Adaptive Runge-Kutta method

while tsimul ≤ tend do

kernel stage1 <<< NumThreadsperBlock,NumBlocks >>> (t,Yin, ...)
kernel stage2 <<< NumThreadsperBlock,NumBlocks >>> (...)
...
kernel stagek <<< NumThreadsperBlock,NumBlocks >>> (...,Ylow,Yhigh)
kernel error <<< NumThreadsperBlock,NumBlocks >>> (t,Ylow,Yhigh)
kernel reduction <<< NumBlocks, 1 >>> (StepOk,CorrectSteps, h)
Copy StepOk to host
if StepOk==1 then

swap
(

Yin,Yhigh
)

Copy h to host
tsimul = tsimul + h

end if

end while

5. Results

We have tested our solvers over a variety of one, two and three dimensional cases, with

up to 500000 cells. Because the conclusions that can be drawn from these experiments are

similar for all of them, we have presented the numerical results only for a representative

case.

We have chosen a three-dimensional spherical case with 163842 cells as main test.

With this number of cells, the total dimension of the ODE system is 21 · 163842 =

3440682. The period simulated is 300 ms, and two stimulations take place over selected

cells in this period, one starting at 1 ms and other at 250 ms. To test the accuracy of

the methods, we have randomly selected 100 cells, solved the case with each method and

recorded the time evolution of the voltage for these 100 cells. The obtained trajectories

are compared with a reference solution, which was computed using the double preci-

sion Runge-Kutta Cash-Karp subroutines described in [20], modified to include the RL

technique. The relative tolerance used was 10−6 and the absolute tolerance was 10−3.

Figure 1 depicts the transmembrane voltage evolution of several of these cells. The

stimulations propagate through the structure, reaching the cells at different times.

The CPU tests were performed in a computer with two Intel Xeon X5680 hexacore

processors at 3.33 GHz, while the GPU tests were performed in a machine with an Intel

Core i-7 quadcore equipped with a NVIDIA Geforce GTX 580 GPU.
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5.1. Accuracy evaluation

In this section, we discuss the accuracy evaluation of the different methods for this

problem. In [18, 19, 28] the accuracy of different methods was studied for single cell

models. We considered that the multiple cell problem has special features and must be

tackled differently.

A previous remark is that the results have been obtained with single precision, with

eight digits at most. This means that a relative tolerance of 10−6 is very close to the

accuracy limit.

The standard procedure for this type of problem is to compare the results of different

methods against a reference solution that is obtained with the most accurate method

available. All of our solutions are composed of the trajectories of our selected 100 cells,

and the error estimates given are computed as the maximum error for all the 100 cells.

The standard method to measure error in this type of simulations is the relative

root-mean square (RRMS ). If our reference solution for a given cell k is yref
k and our

new calculated solution is yk, then the RRMS is computed as:

RRMS =

√

√

√

√

√

∑end

i=1

(

yref
k,i − yk,i

)2

∑end

i=1 y
2
k,i

=
‖yref

k − yk‖2
‖yk‖2

, (19)

where yref
k,i and yk,i are the reference and new solution, both computed at the same time

instant ti Because we want to compute the RRMS for adaptive and fixed step solutions,

we need to interpolate the solutions into the same time steps. We chose a step of 0.05

and interpolate all the solutions (using cubic splines) to obtain approximate values at

time instants multiple of 0.05. Then, the RRMS was computed using the obtained

interpolated solutions.

However, we could determine that the RRMS estimator is not too appropriate for

this problem. The reason can be seen examining Figure 2. For all the time points

considered, the RRMS uses the difference of the solution computed with the reference

solution.

In Figure 2(a) we can see the trajectories of a cell computed with different methods.

We can see that the trajectories are not identical, but are quite close, and the error

should not be too large. The difference between the trajectories has caused that the

cells have been stimulated in slightly different moments; the trajectories are very similar
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but for a small time (horizontal) displacement. However, in Figure 2(b), we see that in

the zones where the solution has strong changes, this time displacement causes that the

RRMS estimator includes large local errors.

These large local errors are smoothed by the RRMS estimator; however, this is

because the RRMS estimator is not sensitive enough, and in some cases gives relatively

large errors for quite good approximations.

Figure 2(b) shows that the computation only of “vertical” errors is not enough for

this problem; Therefore, we have devised a simple procedure (which surely has been

used elsewhere) that tries to estimate more accurately the real maximum error. For all

the points in the considered solution, we have interpolated twice the new solution onto

the reference solution; first, we use standard linear interpolation and we can compute a

“vertical error”, and second, we use inverse linear interpolation to obtain a “horizontal”

error (See Figure 3).

We take as the local interpolated absolute error for this point as the minimum of

the two distances, between each point and its two points interpolated onto the reference

solution. Then, the interpolated absolute error, or I Abs Error for this trajectory is the

largest of the errors for all the points of the trajectory; the interpolated relative error or

I Rel Error for this trajectory is the I Abs Error divided by the largest absolute value

of the voltage for this trajectory. Accuracy results are given in subsection 5.2.3 in terms

of these two error estimates and of RRMS.

5.2. Comparisons

5.2.1. Methods with and without Rush-Larsen technique

We have tested several methods with and without the Rush-Larsen technique to

evaluate its effect. In [18, 19], it was already reported that RL allows much faster

solution for one cell models. Our results just confirm that fact. The fixed step forward

Euler method implemented without RL could use in our case a maximum time step of

5 · 10−5 seconds (for larger time steps the problem becomes unstable and fails), while

the implementation with Rush-Larsen technique attained a maximum step of 6 · 10−4

seconds. Because the computational cost of an iteration of FE and an iteration of RLFE

are similar, the overall simulation time using RLFE is usually 10 times faster than using

FE.
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Adaptive methods not implemented with RL usually fail to obtain a solution in our

test problem due to stagnation (the time step becomes tiny, taking too long to advance).

This has happened with our GPU adaptive solvers and also with black-box explicit CPU

solvers such as CVODE [29, 30] or the Intel ODE library [31]. It would be interesting to

combine the RL technique with these state-of-the-art solvers. However, this is not easy

to do because the RL technique requires explicitly the time step to be taken, while the

programming interfaces of these solvers do not offer direct access to the time step.

It is interesting also that the stability limit for RLFE (that requires one system

function evaluation per step) is approximately the same for higher order fixed step

methods, such as explicit midpoint with RL or trapezoidal method with RL, which

require two system function evaluations per step. This causes that the faster RLFE

version executes in half the time required to execute the faster versions of these second

order methods.

5.2.2. CPU vs. GPU

We have selected the RLFE method, implemented as described above, and compared

it with a version optimized to execute in a modern CPU with 12 cores. We used the

twelve cores available using OpenMP, as outlined in 4.1. The data structure was like the

one shown in (16), which is more appropriate for memory access in CPUs, and finally,

the Intel Compiler icc was used to compile the code, applying the optimization flags

-fast -openmp.

Even with all these optimizations, the CPU solvers could not compete with the GPU

solvers. The fastest version (with single precision, 24 threads and time step 5 · 10−4

seconds) needed 107.4 seconds to complete the case, 10 times slower than its GPU

counterpart with the same time step (see Table 4). The reason for this difference is

clearly that the evaluation of the system functions for all cells is an “embarrassingly

parallel” problem, completely adequate for the manycore GPU architecture.

The performance of adaptive step solvers in CPU is similarly low compared with

adaptive solvers in GPU.

5.2.3. Adaptive vs fixed step in GPU

The tables 1, 2, 3, 4, and 5 show the results in terms of execution time and accuracy,

using the RRMS estimate and the estimates discussed in section 5.1. The results are
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summarized graphically in Figure 4, as a scatter plot of computing time vs. relative

accuracy (computed with the I Rel Error estimator), using a log scale for the y-axis.

All of the methods have been implemented with the Rush-Larsen technique, adapted in

the higher order methods as discussed in 3.3.

Adaptive methods have been tested with different sets of tolerances. The tolerances

used are quite gross, but these are the most efficient for the required accuracies. The

Bogacki-Shampine method stagnates if at is smaller than 0.001, while the trapezoidal

Euler method suffers the same problem for absolute tolerances smaller than 0.01. The

latest pair of tolerances tested is a pure absolute error test, with a really gross at value.

However, with this absolute error tolerance, the adaptive methods were quite fast in all

cases, and the final accuracy was not as bad as might be expected.

The largest time step that could be used for the fixed step explicit Euler Rush-Larsen

method was 0.06. The same limit was found for the fixed steps implementations of the

trapezoidal method and of the explicit midpoint method.

The results show that simpler methods are faster, but the accuracies obtained are

significantly worse. The Runge-Kutta-Fehlberg method requires too much time and,

moreover, the accuracy is not impressive (this may be due to the application of the RL

technique in the internal points). For this problem, the pairs Bogacki-Shampine and

Trapezoidal-Euler perform better. However, the fixed step versions perform quite well.

If the minimum accuracy required is a 5%, that is, a relative error less than 5 · 10−2,

then Bogacki-Shampine or Trapezoidal-Euler with at = 1, rt = 0 could be chosen. Also

fixed step RLFE with a time step 0.025 (or even a bit larger) and the explicit midpoint

with time step 0.06 would give enough accuracy.

It can also be noticed that, for solutions with a small relative error (solutions with

good accuracy) the relative interpolated error estimator I Rel Error is more sensitive

than the RRMS estimator. However, the RRMS estimator is more sensitive for low

accuracy solutions (see for example the results in table 4 for time step 0.05 or 0.06).

6. Discussion

The results presented show that the fastest results are obtained with fixed time step.

The advantage for fixed time step is related to the features of cardiac tissue simulation.

When re-entrant phenomena are simulated, there will be cells undergoing strong changes
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of potential, and this will happen during the whole simulation. These abrupt changes

force a reduction of the time step. The degree of this limitation depends on the accuracy

needed, large fixed steps need around half the computing time than the fastest adaptive

methods. The error obtained with these large steps is greater than the 5% limit suggested

in [18], although this error probably is still acceptable, taking into account the accuracy

of the biological models considered.

A different treatment may be required when long simulations must be carried out,

without previous information about the solution or about the optimal time step. The

user of a fixed step code must define the time step, which should be used through the

whole simulation. A time step too large may result in the method becoming unstable

(and, typically, failure by overflow) or, maybe worse, in the code giving a qualitatively

wrong solution. In absence of a reference solution, this is a real possibility. The error

estimation built in adaptive solvers detects automatically strong changes, and adapts the

time step accordingly. Therefore, this mechanism gives an extra degree of confidence in

the computed solution, and reduces to a minimum the chances of the method becoming

unstable.

A rule of thumb for use of fixed or adaptive methods, in electrocardiac simulations,

might be formulated as follows: if the user has good information about the appropriate

fixed time step, knowing that it is accurate enough, or if experimentation with the code

is relatively ”cheap”, allowing the determination of the best fixed time step, then the

user should select fixed step methods. If the user needs to perform long simulations

of a new problem (new discretization, changes in parameters, ...) then adaptive step

methods are more appropriate.

Another important practical matter is the coupling of other equations with the ODE

system. In our case, simulation of electric cardiac activity should ultimately be coupled

with other equations governing fluid flow, heart deformation and other phenomena.

When fixed step methods are used for the different methods, the coupling is quite trivial

to handle. If adaptive ODE solving is used, different phenomena may be computed at

different times, which is more troublesome. However, this problem can be handled easily

through free interpolants [22, 23]. These are interpolation formulae, devised for some

ODE integration methods, that do not require further computations (hence the word

free) and allow to compute approximate solutions at any time point, with an accuracy
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close to that of the associated ODE integration method.

All the solvers have been implemented over the Courtemanche atrial model [17]. The

solvers and algorithms have been written to be as general as possible, encapsulating the

ODE system in a system function. The only feature that makes some of the algorithms

specific for electrocardiac simulation is the need of two different system functions, one

for the gating variables and a different one for the rest of the variables. In particular,

it should be an easy matter to use different cell models. It was shown in [18, 19]

that different cell models can have very different stability properties. Therefore, the

performance of the resulting codes would depend on the stability properties of the chosen

model.

7. Conclusions

In this paper we have addressed the solution of large ODE systems in GPUs through

adaptive step methods, setting the focus on the simulation of electric cardiac activity.

Next, we summarize the main contributions of this work:

1. We have designed and described in this paper the programming of adaptive step

size methods for ODEs in GPUs. The proposed technique can be easily adapted

to any embedded Runge-Kutta pair (even to implicit methods, if a suitable solver

for linear systems is available) and to any standard ODE system. While adaptive

methods are routinely used in CPU simulations (in packages such as MATLAB or

Octave all the ODE methods implemented are adaptive), it is surprising that (to

our knowledge) there is no publicly available adaptive ODE software for GPUs.

We believe that this paper may be of help for scientists willing to implement their

own adaptive ODE solvers for GPUs, for cardiac simulations or for any other large

ODE system.

2. We have combined several explicit Runge-Kutta methods with the RL technique,

using a simple technique similar to the used in [14]. Although the properties of

methods obtained (stability, accuracy order) have not been analyzed rigorously,

for two of the methods implemented (Bogacki-Shampine and Trapezoidal-Euler)

the combination has worked quite well.
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3. We have performed several comparisons to establish the best options for simulation

of electric heart activity. Some of the results just confirm results from other re-

searchers: namely, the large advantage of GPUs with respect to CPUs in this type

of problem (ten times faster in our test case), and the need of the RL technique

to obtain good performance.

The special features of tissue simulation (reentry phenomena and low accuracy re-

quirements) limit the performance of adaptive step methods, compared with fixed step

methods. If the accuracy is not a concern, and the best step size is known, RLFE

methods are faster. Some previous experimentation with the same case is needed to

obtain the best step size. However, if the maximum tolerated error is around or less

than 5%, it may be more cautious to use a smaller time step, or to resort to low or-

der adaptive methods, such as Bogacki-Shampine or Trapezoidal-Euler. These methods,

combined with crude tolerances, give a good balance between accuracy, computing time,

and robustness.

We plan to extend this work along different lines, starting by the development of

multi-GPU versions, which is already under way. We plan to study as well the combi-

nation of implicit Runge-Kutta methods with the RL technique (which will depend on

the availability of an appropriate linear solver), which might be useful for extremely stiff

cases.
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Appendices

A. Courtemanche single atrial cell model

The main variable for this model is the transmembrane voltage V , governed by Eq.

(4).

The ionic concentrations considered are the intracellular sodium, potassium, and

calcium concentrations: [Na+]i , [K
+]i ,

[

Ca2+
]

i
and the calcium uptake and release by

the sarcoplasmic reticulum (SR) :
[

Ca2+
]

up
,
[

Ca2+
]

rel
.

There are 16 ionic currents in the model, 12 of these are used in Eq. (4); some of

these are controlled by gating variables:

1. Fast sodium current IC1 = INa; controlled by gating variables h,m, j.

2. Transient outward potassium current IC2 = Ito; controlled by gating variables

oa, oi.

3. Ultrarapid delayed rectifier potassium current IC3 = IKur; controlled by gating

variables ua, ui.

4. Rapid delayed outward rectifier potassium current IC4 = IKr; controlled by gating

variable xr.

5. Slow delayed outward rectifier potassium current IC5 = IKs; controlled by gating

variables xs.

6. L-type calcium current IC6 = ICa,L; controlled by gating variables d, f, fCa.

7. Fast potassium current IC7 = IK1.

8. Ca2+ pump current IC8 = Ip,Ca.

9. Na+ −K+ pump current IC9 = INa,K .
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10. Na+ − Ca2+ pump current IC10 = INa,Ca.

11. Calcium background current IC11 = Ib,Ca.

12. Sodium background current IC12 = Ib,Na.

13. Calcium release from the junctional sarcoplasmic reticulum (JSR), Irel; controlled

by gating variables u, v, w.

14. Transfer current between network sarcoplasmic reticulum (NSR) and JSR, Itr.

15. Ca2+ uptake current by the NSR Iup.

16. Ca2+ leak current by the NSR Iup,leak.

The detailed expressions for all of them can be found in [17]; as an example, the

expression for the first one, INa is:

INa = gNa ·m
3 · h · j · (V − ENa), (20)

where ENa is the equilibrium potential for Sodium, and gNa is a constant.

The model incorporates an extra potassium current, the acetylcholine (ACh) potas-

sium current [32], not included in the original model. This current produces a shortening

in the action potential which favors the occurrence of arrhythmic behavior.

All the differential equations for the gating variables can be written as Eq.(3); the

concrete expressions for ai(V ), bi(V ) for each gating variable can be found in [17]. Again,

as an example we show the computation of ai(V ), bi(V ) for the gating variable h. First,

the auxiliary variables αh, βh are computed:

αh =







0.135 · exp
(

−V+80
6.8

)

0, if V ≥ −40

βh =







3.56exp · (0.079V ) + 3.1× 105exp(0.35V )
{

0.13
[

1 + exp
(

−V+10.66
11.1

)]}

−1
, if V ≥ −40

(21)

then, ai(V ) = −(αh + βh) and bi(V ) = αh. Clearly, some of the numerical difficulties

with the gating variables are caused by the exponential functions in eq.(21) and in the

similar expressions for other gating variables.

The differential equations for the ionic concentrations are:

d [Na+]i
dt

=
−3INa,K − 3INa,Ca − Ib,Na − INa

FVi

(22)
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Table 1: Runge-Kutta-Fehlberg(RL)

tolerances computing successful I Rel Error I Abs Error RRMS
time (secs) steps

at=10−2, rt=10−4 45.9 4480 9 · 10−3 0.7869 3.2 · 10−2

at=10−1,rt= 10−2 36.83 3565 1.79 · 10−2 1.54 7.2 · 10−2

at=10−1,rt= 10−1 36.6 3448 1.99 · 10−2 1.71 7.5 · 10−2

at=1,rt=0 33.5 3226 2.5 · 10−2 2.21 9.0 · 10−2

Table 2: Bogacki-Shampine(RL)

tolerances computing successful I Rel Error I Abs Error RRMS
time (secs) steps

at=10−2, rt=10−4 37.7 6423 3.2 · 10−4 0.028 1.2 · 10−3

at=10−1,rt= 10−2 25.2 4276 1.2 · 10−2 1.088 5.5 · 10−2

at=10−1,rt= 10−1 24.1 4054 1.58 · 10−2 1.35 6.7 · 10−2

at=1,rt=0 23.0 3932 1.8 · 10−2 1.55 7.4 · 10−2

d [K+]i
dt

=
2INa,K − IK1 − Ito − IKur − IKr − IKs − Ib,K

FVi

(23)

d
[

Ca2+
]

i

dt
=

B1

B2
(24)

where

B1 =
2INa,Ca − Ip,Ca − ICa,L − Ib,Ca

2FVi

+
Vup (Iup,leak − Iup) + IrelVrel

Vi

(25)

B2 = 1 +
[Trpn]max Km,Trpn

([Ca2+]i +Km,Trpn)
2 +

[Cmdn]max Km,Cmdn

([Ca2+]i +Km,Cmdn)
2 (26)

d
[

Ca2+
]

up

dt
= Iup − Iup,leak − Itr

Vrel

Vup

(27)

d
[

Ca2+
]

rel

dt
= (Itr − Irel)

[

1 +
[Csqn]max Km,Csqn

([Ca2+]rel +Km,Csqn)
2

]

−1

(28)

where FVi, Vrel, Vup, Vi, [Trpn]max , Km,Trpn, [Cmdn]max, Km,Cmdn, [Csqn]max, and

Km,Csqn are all constants of the model.

In equation (7) Cm, i was chosen as 100 pF and D was chosen as 0.06mm2/ms,

adjusted to obtain a realistic conduction velocity describing an isotropic medium.
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Figure 1: Transmembrane voltage evolution of four cells.

Table 3: Trapezoidal-Euler(RL)

tolerances computing successful I Rel Error I Abs Error RRMS
time (secs) steps

at=10−2, rt=10−4 fail
at=10−1,rt= 10−2 33.29 11614 4.4 · 10−4 0.3752 1.0 · 10−2

at=10−1,rt= 10−1 31.1 10545 7 · 10−3 0.6616 2.1 · 10−2

at=1,rt=0 18.59 6433 2.4 · 10−2 2.0 7.7 · 10−2

Table 4: Forward Euler (RL)

time step computing steps I Rel Error I Abs Error RRMS
(milliseconds) time (secs)

0.01 53.6 30000 4 · 10−3 0.37 3.05 · 10−2

0.025 21.7 12000 2.5 · 10−2 2.22 9.8 · 10−2

0.05 11.2 6000 6.2 · 10−2 5.38 1.6 · 10−1

0.06 9.4 5000 7.7 · 10−2 6.65 1.8 · 10−1
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Figure 2: Deficiency of the RRMS estimator.

Table 5: Explicit Midpoint (RL)

time step computing steps I Rel Error I Abs Error RRMS
(milliseconds) time (secs)

0.01 105.8 30000 5.5 · 10−3 0.47 2.4 · 10−2

0.025 42.6 12000 1.4 · 10−3 0.12 1.3 · 10−2

0.05 21.7 6000 1.5 · 10−2 1.28 6.1 · 10−2

0.06 18.1 5000 2.0 · 10−2 1.784 7.7 · 10−2
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Figure 3: Error computation based on vertical and horizontal interpolation.
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