
Escola Tècnica Superior d’Enginyeria Informàtica
Universitat Politècnica de València

Translation Rescoring through
Recurrent Neural Network Language

Models

Proyecto Final de Carrera

Ingeniería Informática

Autor: Álvaro Peris Abril

Director: Francisco Casacuberta Nolla

Codirector: Daniel Ortíz Martinez

September 3, 2014



Abstract

This work is framed into the Statistical Machine Translation field,
more specifically into the language modeling challenge. In this area,
have classically predominated the n-gram approach, but, in the latest
years, different approaches have arisen in order to tackle this problem.
One of this approaches is the use of artificial recurrent neural networks,
which are supposed to outperform the n-gram language models.

The aim of this work is to test empirically these new language
models. For doing that, the translation rescoring of three tasks of
different complexity has been performed: in first place, the transla-
tion problem has been solved by means of the classic n-gram language
models. Next, the different translation hypotheses have been rescored
through the language models based on neural networks and the results
have been compared.

This comparison shows that the translations produced by the neu-
ral network language models have a better quality in all the experi-
ments: the perplexity of the language models has been lowered and the
BLEU score of the translations outputted by the system has yielded
higher values with the neural network language model than with the
classical n-gram language model.

Keywords: Recurrent Neural Networks, Statistical Machine Transla-
tion, n-gram Language Model, BLEU.

2



Contents

List of Tables 5

List of Figures 6

1. Introduction 7
1.1. Natural Language Processing . . . . . . . . . . . . . . . . . . 7
1.2. Machine Translation . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1. Rule-Based Systems . . . . . . . . . . . . . . . . . . . 8
1.2.2. Corpus-Based Systems . . . . . . . . . . . . . . . . . . 9

1.3. Statistical Machine Translation . . . . . . . . . . . . . . . . . 10

2. Statistical Models for Machine Translation 15
2.1. Language Models . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1. n-gram Models . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2. Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3. Neural Network Language Models . . . . . . . . . . . . 20

2.2. Translation Models . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1. Single-Word Alignment Models . . . . . . . . . . . . . 28
2.2.2. Multi-Word Alignment Models . . . . . . . . . . . . . . 31

2.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.1. Perplexity . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.2. BLEU . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.3. Other evaluation measures . . . . . . . . . . . . . . . . 35

2.4. Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1. Expectation-Maximization algorithm . . . . . . . . . . 36
2.4.2. Backpropagation Through Time . . . . . . . . . . . . . 38
2.4.3. Downhill Simplex . . . . . . . . . . . . . . . . . . . . . 42

3. Experiments 43
3.1. Experimentation Framework . . . . . . . . . . . . . . . . . . . 43

3.1.1. Software . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3



3.1.2. Developed Experiment . . . . . . . . . . . . . . . . . . 48
3.2. Tourist task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3. Xerox task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4. Europarl task . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4. Conclusions and Future Work 66
4.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1. Integration with Thot . . . . . . . . . . . . . . . . . . 67
4.2.2. Parallelization of the Recurrent Neural Network Toolkit 67
4.2.3. Bidirectional Recurrent Neural Networks . . . . . . . . 68

5. Bibliography 69

4



List of Tables

3.1. Tourist corpora statistics . . . . . . . . . . . . . . . . . . . . . 52
3.2. Tourist task perplexities . . . . . . . . . . . . . . . . . . . . . 53
3.3. Tourist task BLEU scores . . . . . . . . . . . . . . . . . . . . 54
3.4. Xerox corpora statistics . . . . . . . . . . . . . . . . . . . . . 56
3.5. Xerox task perplexities . . . . . . . . . . . . . . . . . . . . . . 57
3.6. Xerox task BLEU scores . . . . . . . . . . . . . . . . . . . . . 59
3.7. Europarl corpora statistics . . . . . . . . . . . . . . . . . . . . 62
3.8. Europarl task perplexities . . . . . . . . . . . . . . . . . . . . 63
3.9. Europarl task BLEU scores . . . . . . . . . . . . . . . . . . . 64

5



List of Figures

1.1. Architecture of the translation process based on the Bayes rule. 13

2.1. General recurrent neural network architecture . . . . . . . . . 23
2.2. Elman recurrent neural network architecture . . . . . . . . . . 24
2.3. Recurrent neural network language model scheme. . . . . . . . 25
2.4. Alignments between an English and a Spanish sentence. . . . . 29
2.5. Recurrent neural network unfolded in time. . . . . . . . . . . . 39

3.1. Word graph example. . . . . . . . . . . . . . . . . . . . . . . . 46
3.2. Schema of the performed experimentation. . . . . . . . . . . . 48
3.3. Tourist task BLEU with larger contexts . . . . . . . . . . . . . 55
3.4. Perplexity of the Xerox task variating the smoothing technique. 58
3.5. BLEU of the Xerox task variating the smoothing technique. . 60
3.6. Xerox task BLEU with larger contexts . . . . . . . . . . . . . 61
3.7. Europarl task BLEU scores . . . . . . . . . . . . . . . . . . . 65

6



Chapter 1

Introduction

1.1. Natural Language Processing
Natural Language Processing (NLP) is a knowledge field of Artificial In-

telligence and Computational Linguistics, concerned with the formulation
and investigation of efficient methods for generating and understanding in-
teractions between computers and human natural languages, both oral or
written. A natural language is a language written or speeched by humans
for general communication purposes with each other.

NLP is a very wide knowledge field, where there are two main focuses,
namely language processing and language generation. The first focus involves
language analysis with the goal of generating a meaningful representation
for computers. The latter, refers to the computerized language production
from a representation. There is a wide range of applications referred to
Natural Language Processing, such as automatic summarization, discourse
analysis, machine translation, morphological segmentation, natural language
generation and understanding, speech recognition, topic segmentation and
recognition, information retrieval, dialog systems, question answering, etc.

1.2. Machine Translation
The field of Machine Translation (MT) researches the use of software

with the aim of translating text or speech from a source natural language
to another target natural language. This research area arose in 1949, from
Warren Weaver’s idea of apply some of the Information Theory ideas from
Claude Shannon. During the 1950s and 1960s, there was a general optimism
regarding the machine translation [Hut95]. Main researches were polarized

7



1.2. Machine Translation Chapter 1

between the empirical (which use statistical methods) and the theoretical
approaches. There was spent much effort to improve the hardware of that
time and to achieve effective programming methods, able to deal with the
problem. However, the results were not satisfactory. The ALPAC (Auto-
matic Language Processing Advisory Committee) report, released in 1966,
concluded that the machine translation was not worth and there was no sign
of a feasible future. From here, the research decreased, though some ap-
proaches for tackling the MT problem were developed. But 10 years later
than the ALPAC report, the Machine Translations prospects improved, and
the research and translation systems acquired importance once again. Until
the late 1980s, the main approach was the Rule-Based approach (see next
section). Nevertheless, since 1989, the hegemony of theses systems has been
broken by the irruption of the so-called corpus-based systems.

During these more than 60 years of research, different main strategies
have been applied to tackle this problem. These strategies can be categorized
under different criteria [OM11]:

According to the input type: speech or text.

According the type of the application which uses the translations: ap-
plications that translate the input into a database query; applications
that generate an approximated translation for its later correction by the
user, in a post-edition translation stage; applications that perform an
user-interactive translation; and fully automated translation systems.

According to the translation technology. There are two main strategies:
Rule-Based Systems and Corpus-Based Systems. Furthermore, there
are approaches that combine both strategies and compose the so-called
Hybrid Machine Translation approach.

1.2.1. Rule-Based Systems
Rule-Based Machine Translation (RBMT) was one of the firsts approaches

used in machine translation (the first RBMT system was developed in the
early 1970s), therefore, it is a relatively mature area. This paradigm is based
on the extraction of linguistic information from dictionaries and grammars,
and on the creation of translation rules by human translators, in order to
generate the translations.

These systems are usually split in three stages: analysis step, transference
step and generation step. First, the analysis step extracts information from

8



Chapter 1 1.2. Machine Translation

the source text. The transference step is an optional stage, where the result
of the analysis is transformed into an abstract representation. Finally, the
generation step produces the target text.

RBMT systems have the following advantages:

No bilingual texts are required: it is possible to develop translation
systems for languages with no texts in common or with no digitalized
data.

Rules are domain independent: most of the rules are written in a do-
main independent way, thus they work in every domain.

There is no quality top: each error, even it is very unusual, can be
treated and corrected with an specific rule. In Statistical Machine
Translation, this is not possible.

Total control: rules are handwritten, thereby the system is easily de-
buggable, in order to watch exactly systems errors.

The main disadvantage of these systems is their cost: the development of
the rules is expensive and it needs expert knowledge from human linguistics,
both in source language and in target language. Moreover, some linguistic
information must be manually set and it is hard to deal with rule interaction
in big systems, with ambiguity and idiomatic expressions.

1.2.2. Corpus-Based Systems
Corpus-Based systems use sets of translation examples (also known as

corpora or parallel texts) from one language to another. These translation
examples are used to deduce the translation of the source text. We can
establish the following classification of the corpus-based systems:

Example-Based Machine Translation (EBMT): this approach
uses a set of translation examples as its knowledge base and it works by
means of analogies. The translation process is divided into two steps,
namely, comparison and recombination steps. First, the comparison
step is carried out. Here, a set of hypotheses that are similar to the
source text are extracted from the whole corpus. Second, at the re-
combination step, the hypotheses are combined in order to generate
the final translation of the source text.

9



1.3. Statistical Machine Translation Chapter 1

Statistical Machine Translation (SMT): the translations are based
on statistical models and other models from Information Theory. This
approach demands the availability of a large amount of parallel text
with relevant information for the translation process. This parallel text
is used to estimate the parameters of the referred models. Once this
parameters have been estimated, they are used to infer the translation
of new source text.

Other Corpus-Based Systems: there are alternative approaches for
implementing corpus-based system, such as the finite state approach,
which applies tools from automata theory; or the context-free grammar
approach, which tackles the Machine Translation problem by means of
context-free grammars.

The main advantages of these systems regarding to Rule-Based Systems
fall on a better resource usage, since there is a big amount of natural language
in a machine-readable format and it is not necessary to manually develop
rules for generate the translations. Additionally, these systems can be used
for every pair of languages, provided that there exist parallel texts between
those languages; human linguists in the languages involved in translations,
who are costly, are not needed. Finally, Corpus-Based Systems produce more
natural translations than Rule-Based System, whose translations are often
literal or have nonsensical and obvious errors.

Nevertheless, this translations paradigm has shortcomings too:

Corpus generation can be expensive.

Results are not predictable: the SMT systems do not deal correctly
with the fluency of the produced translations.

In languages with substantially different word orders, such as English
and Japanese, SMT systems do not work properly.

1.3. Statistical Machine Translation
Statistical Machine Translation is nowadays the most studied machine

translation field. It tackles the translation problem using a statistic formal-
ization thereof. For that purpose, it uses statistical models which parameters
are estimated from parallel texts.

10



Chapter 1 1.3. Statistical Machine Translation

More formally, the goal of SMT is, given a source sentence fJ
1 ≡ f1...fj...fJ

in the source language F , to find its equivalent target sentence eI
1 ≡ e1...ei...eI

in the target language E . From all the possible sentences of E , we want to
choose that with the highest probability, according to the equation:

êÎ
1 = arg max

I,eI
1

{Pr(eI
1|fJ

1 )} (1.1)

The problem of modeling this probability distribution has been approx-
imated in many ways. First works were based on the so-called generative
models. A generative model is a full probability model of all statistical vari-
ables involved in random generation of observable data. These models apply
the Bayes decision rule in order to decompose Pr(eI

1|fJ
1 ). Considering that

Pr(fJ
1 ) is independent on eI

1, we arrive to the following equation:

êÎ
1 = arg max

I,eI
1

{Pr(eI
1) · Pr(fJ

1 |eI
1)} (1.2)

This expression is known as fundamental equation of machine translation
[BPPM93], and states that, in order to obtain the equivalent sentence in
target language from a source sentence, we must carry out an exploration of
all sentences of the target sentence, computing, for each sentence eI

1, first,
the probability Pr(eI

1); and second, the conditional probability Pr(fJ
1 |eI

1).
Finally, we will choose the sentence of highest probability, êÎ

1, which is the
most likely translation. Hence, this most likely translation must maximize
the product of these two factors: 1. the chance that someone would say eI

1
in first place and 2. once eI

1 has been said, the chance that someone would
translate it into fJ

1 . This way of proceeding fits into the noisy channel model.

The noisy channel model is a framework which aims to find a target word
given a word which letters have been mixed somehow. Formally, the noisy
channel model define the spelling problem as follows: given an alphabet F ,
a dictionary E∗ consisting of strings in F∗, and a string fJ

1 /∈ E∗ ∧ fJ
1 ∈ F∗,

we want to find the string eI
1 ∈ E∗ that it is the most likely to have been

generated fJ
1 [BM00]. Writing this to probabilities, the goal is to compute

arg maxeI
1
Pr(eI

1|fJ
1 ). Applying the Bayes’ rule, this expression can be rewrit-

ten as: arg maxeI
1
Pr(fJ

1 |eI
1) · Pr(eI

1). If we consider a translation as a mixture
of letters of a source sentence, it is obvious that the translation problem can
be tackled with the noisy channel means.

Thus, Pr(eI
1) represents the probability of generate the target sentence,

and Pr(fJ
1 |eI

1) represents the probability of generate the target sentence eI
1

11



1.3. Statistical Machine Translation Chapter 1

given the source sentence fJ
1 . Since the real probability distributions Pr(eI

1)
and Pr(fJ

1 |eI
1) are unknown, they must be estimated through parametric

statistical models. These models have a set of parameters Θ, linked to either a
known probability density function or a probability mass function, expressed
by Pr(·|Θ). Given a set of training samples, X = {e1, e2, ..., eN}, we define
the log-likelihood function as:

L(Θ, e) = log p(e1, e2, ..., eN |Θ) =
N∑

i=1
log p(ei|Θ) (1.3)

Typically, the estimation of those parameters is carried out by means
of the maximum-likelihood estimation method, which estimates the set of
parameters Θ finding the value of Θ which maximizes L(Θ,X ). This value
is called maximum-likelihood (ML) estimator of Θ:

Θ̂ = arg max
Θ

L(Θ,X ) (1.4)

Generally, both probability distributions which are involved in equa-
tion 1.2, are modeled separately. Thereby, Pr(eI

1) is modeled by the so-
called language model and Pr(fJ

1 |eI
1) by the translation model, both with

their corresponding set of parameters, ΘLM and ΘT M . Following the previ-
ous reasoning and applying the maximum-likelihood estimation method, we
define the training set as sentence pairs X = {(f1|e1), (f2|e2), ..., (fN |eN)},
and we get to the following expressions for the different ML estimators:

Θ̂LM = arg max
ΘLM

{
N∑

n=1
log p(en|ΘLM)

}
(1.5)

Θ̂T M = arg max
ΘT M

{
N∑

n=1
log p(fn|en; ΘT M)

}
(1.6)

12



Chapter 1 1.3. Statistical Machine Translation

Thus, there are three main computational challenges of SMT [BPPM93]:

1. Estimating the Language Model probability: Pr(eI
1).

2. Estimating the Translation Model probability: Pr(fJ
1 |eI

1).

3. Finding and effective and efficient search search method for the string
which maximizes the product, i.e, computing efficiently arg maxI,eI

1

To build a translation system, based on the Bayes rule, it is necessary
to assemble these models, adding a pre/postprocess stages for the sentences,
which will increase the performance of the system. Figure 1.1 shows this
scheme ([OM11]).

Source sentence

Preprocess

Global search
Language model

Translation model

Postprocess

Target sentence

Pr(eI1)

Pr(fJ
1 |eI1)

êÎ1 = argmaxI,eI1
{Pr(eI1) · Pr(fJ

1 |eI1)}

eI1

fJ
1

Figure 1.1: Architecture of the translation process based on the Bayes rule.

13



1.3. Statistical Machine Translation Chapter 1

Up to here, we have introduced the Machine Translation knowledge field.
We have reviewed the main paradigms historically developed to solve the
problem presented by MT, classifying them according the technology that
use. We have deepened into the Statistical Machine Translation approach:
its goals and main reasoning ideas of SMT have been stated, and three main
challenges have emerged, namely, the language modeling, the translation
modeling and the search problem.

In the next chapter we will present statistical models and algorithms
which will try to tackle these challenges. In addition, we will define some
evaluation techniques for the machine translation output.

14



Chapter 2

Statistical Models for Machine
Translation

As seen above, two of the challenges presented by equation 1.2 refer to
build good statistical approaches, which should be able to model properly
both probability distributions of the equation, language model and transla-
tion model. In the following sections, the models used in literature to deal
with this problems will be defined and explained. In addition, some metrics
to measure the goodness of the statistical models will be referred.

2.1. Language Models
First, we will focus on the language model problem: we want to estimate

the probability distribution Pr(eI
1). Classically, in SMT have predominated

the so-called n-gram language models, but in recent times, other language
models have appeared, such as neural-network-based language models, which
are supposed to outperform the classic n-gram models [Mik12]. Statistical
language models are formulated as a probability distribution p(eI

1) for strings
eI

1. This probability distribution measures the well-formedness of a string eI
1.

2.1.1. n-gram Models

Basically, an n-gram consists in an n-word substring. If we consider n = 2,
the model is called bigram. If we consider n = 3, trigram. First, we will in-
troduce the concept of n-grams with bigrams, and we will extend it later to
higher order n-grams.

15



2.1. Language Models Chapter 2

Let the sentence eI
1 be composed of the words e1e2...eI . We can denote,

without loss of generality, Pr(eI
1) as:

Pr(eI
1) = p(e1) · p(e2|e1) · p(e3|e1e2) · ... · p(eI |e1...eI−1) =

I∏
i=1

p(ei|e1...ei−1)

(2.1)
In bigram models, since n = 2, the probability of a word depends solely

on the preceding word:

Pr(e) =
I∏

i=1
p(ei|e1...ei−1) ≈

I∏
i=1

p(ei|ei−1) (2.2)

To estimate the probability p(ei|ei−1), that is, the probability of ei given
the previous word ei−1 we count the number of occurrences of the bigram
ei−1ei in the training text and normalize. This matches with a ML estimator:

p(ei|ei−1) = c(ei−1ei)∑
ei
c(ei−1ei)

(2.3)

Where c(ei) corresponds to the number of occurrences of the word ei in
the source text. In other words, we just divide the number of times we see
the string eiei−1 by the number of times we see the word ei−1.

The extension to n-gram is natural: instead of computing the probability
of the word based only on the preceding word, that probability is computed
according the last n− 1 words:

p(eI
1) =

I−1∏
i=1

p(ei|ei−n+1...ei−2ei−1) (2.4)

The n-gram probability estimation is an extension of bigram estimation
(equation 2.3). Let us use the following notation: ei−1

i−n+1 represents the seg-
ment of source sentence which starts at the (i− n+ 1)’th word and finishes
at the (i− 1)’th word. Thus, n-gram probabilities estimation is given by the
expression:

p(ei|ei−1
i−n+1) = c(ei−1

i−n+1)∑
ei
c(ei

i−n+1) (2.5)

Words ei−1
i−n+1 are called history of the n-gram and the value of n is called

order of the n-gram. Usually, the order of n-grams fluctuate between 2 and
5.

16



Chapter 2 2.1. Language Models

2.1.2. Smoothing
As seen above, n-gram language models count occurrences of words, but

what happens when, in test phase, they see new n-grams that they have
never seen before?

N -gram models by themselves cannot assign non-zero probabilities to
sentences that have not been seen during the training stage. Thus, if they
find a sentence eI

1 such that p(eI
1) = 0, the whole system would fail. In order

to prevent this failure, we use the so-called smoothing. This term describes
techniques for adjusting the maximum likelihood estimate of probabilities to
produce more accurate and softer probabilities. These techniques tend to
produce more uniform distribution, increasing low probabilities (zero or al-
most equal to zero) and decreasing high probabilities (one or almost equal to
one). Besides preventing zero probabilities, smoothing methods also improve
the performance of the model significantly. In [CG98] is performed a study
of the main smoothing techniques developed. In the following sections, we
will briefly explain some smoothing techniques related with this work and
used to carry out our experiments.

To introduce the smoothing techniques, we will begin with an extremely
simple technique: the so-called additive smoothing, which pretends that each
n-gram happens δ times more than it actually does:

p(ei|ei−1
i−n+1) = δ + c(ei−1

i−n+1)∑
ei
δ + c(ei

i−n+1) = δ + c(ei−1
i−n+1)

δ · |V |+∑
ei
c(ei

i−n+1) (2.6)

Where V is the vocabulary, the set of all words considered. This is a very
simple method, but it has a poor performance in general. From here, many
other smoothing techniques have been developed. In the next section, we
will take a brief look to these methods.

Good-Turing Estimate

The Good-Turing Estimate fixes the basis of many smoothing techniques.
It proposes that, for any n-gram that occurs r times, the estimate pretends
that it occurs r∗ times, where:

r∗ = (r + 1) · nr+1

nr

being nr the number of n-grams that occur exactly r times in the training
data. We must convert this count into a probability, hence we have to nor-
malize: let α be an n-gram that occurs r times, and N = ∑∞

r=0 nrr
∗, the

17



2.1. Language Models Chapter 2

Good-Turing estimate states that:

pGT (α) = r∗

N

In practice, this smoothing method is not used for n-gram smoothing,
but, as told above, it is used as central tool in other techniques.

Jelinek-Mercer Smoothing

In general, it is useful to interpolate higher order n-grams with lower
order n-grams, because when there is insufficient information for the higher
order n-gram, the information provided by the lower order n-gram is mostly
helpful. Jelinek-Mercer described a general class of interpolated models and
in [BPP+92] is given a recursive way of executing this interpolation:

pinterp(ei|ei−1
i−n+1) = λei−1

i−n+1
· pML(ei|ei−1

i−n+1) + (1− λei−1
i−n+1

) · pinterp(ei|ei−1
i−n+2)
(2.7)

That means that the nth-order smoothed model (pinterp(ei|ei−1
i−n+1)), is de-

fined recursively as the linear interpolation between the nth-order maximum
likelihood order model (pML(ei|ei−1

i−n+1)) and the (n − 1)th-order smoothed
model (pinterp(ei|ei−1

i−n+2)). As base case of the recursion, it is used the
smoothed 1st-order model to be the maximum likelihood distribution or the
smoothed 0th-order model to be the uniform distribution punif (ei) = 1

|V | .

To estimate the value of λei−1
i−n+1

that maximizes the probability of the
data, it is performed an efficient search, based on different information ex-
tracted from the data used to train the language model. In our experiments,
we used the Downhill Simplex method (see Section 2.4.3) in order to lower
the perplexity of the language model of the different tasks (see Section 3.1.2).

Witten-Bell Smoothing

Witten-Bell smoothing is an instance of Jelinek-Mercer smoothing. Start-
ing with a definition similar to equation 2.7:

pW B(ei|ei−1
i−n+1) = λei−1

i−n+1
·pML(ei|ei−1

i−n+1)+(1−λei−1
i−n+1

)·pW B(ei|ei−1
i−n+2) (2.8)

The idea behind Witten-Bell smoothing is to use the higher order model if
the corresponding n-gram occurs in the training data. If not, we will back off
to the lower order model. For that purpose, we will set the term (1−λei−1

i−n+1
)

18



Chapter 2 2.1. Language Models

to the probability that a word not observed after the history ei−1
i−n+1 in the

training data occurs after that history. To model that, we must redefine the
way these interpolation parameters λei−1

i−n+1
are estimated. Here, we define

N1+(ei−1
i−n+1•) as the number of unique words that follow the history ei−1

i−n+1.
The parameters λei−1

i−n+1
are estimated according:

1− λei−1
i−n+1

= N1+(ei−1
i−n+1•)

N1+(ei−1
i−n+1•) +∑

ei
c(ei

i−n+1)
(2.9)

Substituting on Equation 2.8 we arrive to the Witten-Bell smoothing
equation:

pW B(ei|ei−1
i−n+1) = c(ei

i−n+1) +N1+(ei−1
i−n+1•) · pW B(ei|ei−1

i−n+2)∑
ei
c(ei

i−n+1) +N1+(ei−1
i−n+1•)

(2.10)

Proceeding in this way, we will accomplish our goal: we will use the
higher order model with probability λei−1

i−n+1
and the lower order model with

probability (1− λei−1
i−n+1

).

Kneser-Ney smoothing

Kneser-Ney Smoothing is an extension of the so-called Absolute Discount-
ing method. The Absolute Discounting method is similar to the Jelinek-
Mercer smoothing, involves the interpolation of higher-order and lower-order
models; but instead of interpolating them with a factor λei−1

i−n+1
, in Absolute

Discounting, the higher-order distribution is created by reserving a probabil-
ity mass from each nonzero count, that is, we subtract to each count a fixed
discount D < 1.

The extension introduced in the Kneser-Ney smoothing is the combina-
tion of the lower-order model with the higher-order model. So far, lower-order
distributions were smoothed versions of the lower-order maximum likelihood
distributions. But this is an important factor in the combined model in the
case when few or no counts are present in the higher-order distribution. Thus,
if there are not many counts in the training data, we are going to waste an
important part of the power of the higher order-model, using the lower-order
models. The idea of Kneser-Ney smoothing is to optimize the lower-order
distributions in order to have a good performance in this situation.

Kneser and Ney proposed the following smoothing equation:

19



2.1. Language Models Chapter 2

pKN(ei|ei−1
i−n+1) =


max{c(ei

i−n+1)−D,0}∑
ei

c(ei
i−n+1) if c(ei

i−n+1) > 0

γ(ei−1
i−n+1) · pKN(ei|ei−1

i−n+2), if c(ei
i−n+1) = 0

(2.11)

where γ(ei−1
i−n+1) is chosen to make the sum of the probability for all possi-

ble event equal to 1. Therefore, they interpolate the lower-order distribution
with all words, not only with the words with zero counts in the higher order
distribution.

2.1.3. Neural Network Language Models
So far, we have studied the n-gram language model which computes con-

ditional probabilities for the next word based on a big number of contexts,
i.e. combinations of the last n− 1 words. Those models were able to tackle
the non-seen sample problem using an smaller context size and generaliz-
ing the acquaintance obtained from the samples seen in the training phase
to new test samples. However, there are two main issues that decrease the
performance of n-gram models [BDVC03]:

1. Restricting context to few words: typically, the order of an n-gram
model is set to 3. Sometimes it can be increased until 5. That means it
usually takes into account 2 words, 4 at most. That is a small number
if we deal with complex sentences from large corpora, where we have
more information avaliable which is not exploited by the n-grams.

2. Not considering similarity between words: since n-gram models
are merely based on word counts, they cannot extract semantic and
grammatical information from vocabulary. For example, we have seen
on the training phase the sentence "A car is crossing the road"
and then in the test phase we see the sentence "The truck was driving
on the highway". Then it is clear that we should be able to tag the
test sentence as likely, because the words involved in both sentences
have similar grammatical and semantic roles:
"A"↔"The", "car"↔"truck", "road"↔"highway", etc. But if we use
n-gram models, we are unable to extract that information.

For the purpose of tackling these problems, many approaches have been
developed. A family of them belongs to the so-called connectionist approach
to the MT and is based on the use of Artificial Neural Networks in order to

20



Chapter 2 2.1. Language Models

generate a language model [BDVC03].

As seen above, the goal of a language model is to learn the joint proba-
bility of a sequence of words in a language. That implies to model the joint
distribution of many discrete random variables and generalize this model.
The use of continuous variables (like multi-layer neural networks) helps to
perform an easier generalization, because the function to learn is expected
to have some local smoothness properties.

More formally, let us define the training set as a sequence e1...eI of words
ei ∈ V , where V ⊆ E∗ is a finite vocabulary set from the target language.
Our goal is to learn a model:

f(ei, ..., ei−n+1) = P̂ (ei|ei−1
1 ) (2.12)

which produces a low perplexity. Because we are working with distribution
probabilities, we must add the following constraint to our model: for any
choice of ei−1

1 we must ensure that ∑|V |j=1 f(j, ei−1, ..., ei−n+1) = 1 with f > 0.

We can decompose this model (f(ei, ..., ei−n+1) = P̂ (ei|ei−1
1 )) in two parts:

1. A mapping for each word index of the vocabulary to a real distributed
feature vector, i.e. a function C : N→ Rm from any element i from V
to a real vector C(i) ∈ Rm, where m is the size of the feature vector.
This mapping C is represented by a |V |×m matrix of free parameters.

2. A probability function over words, expressed by means of the previous
mapping C: we define a function g : N× Rm

1 × ...× Rm
n−1 → RI which

maps, for the next word ei, expressed by its index in the vocabulary
vector, and an input sequence of feature vectors for words in context
(C(ei−n+1), ..., C(ei−1)), to a conditional probability distribution over
words in V . The output of g is a vector whose jth element estimates
the probability P̂ (ei = j|ei−1

1 ).

The model function f : N1 × ... × Nn → RI is a composition of these
two functions: it receives an element from V , ei, represented by its index
in the vocabulary, j = ei, and the context of this word, ei−1, ..., ei−n+1, and
outputs the vector computed by g , where the ith element is the conditional
probability for the input word and its context:

f(ei, ei−1, ..., ei−n+1) = g(j, C(ei−1), ..., C(ei−n+1)) (2.13)

Each one of these two functions has associated a set of parameters:

21



2.1. Language Models Chapter 2

1. Parameters of mapping C: feature vectors of the words. They are
represented by a matrix C, of size |C| = |V | × m , where each row
i corresponds to the feature vector C(i) for the word i. It should be
noted that this matrix is shared by all the words in the context.

2. Parameters of function g: this function is implemented by means
of a neural network with parameters ω.

We can include those sets into an overall parameter set ΘLM = (C, ω).
These parameters are estimated according the maximum likelihood estima-
tor (see equation 1.5) for the training corpus, adding a regularization term
R(ΘLM):

Θ̂LM = arg max
ΘLM

{
1
I

∑
i

log f(ei, ei−1, ..., ei−n+1; ΘLM) +R(ΘLM)
}

(2.14)

Feed-Forward Networks

The neural network language models gained attention after the publica-
tion of [BDVC03], although previous work on this area was done earlier. In
this publication, the neural network used was a feed-forward neural network.
Although these neural networks are able to address the n-gram problems
of similarity between words and smoothing, they are still not free from the
limitation history: their predictions for the next word are only based on the
previous state of the hidden layer. With these neural networks, the problem
is not solved and it is necesary to use other type of neural network.

Recurrent Neural Network Language Model

Because of the problem of representing the history, Thomas Mikolov pro-
posed to use a recurrent neural network instead of a feed-forward network for
modeling the previous function g [Mik12].

In general, a recurrent neural network is a class of artificial neural network
where the connections between units form a directed cycle. This creates an
internal state of the network which allows it to model temporal behaviours.
From here, subindex i will refer to the current state of the network, while
subindex (i − 1) will refer to the previous network state and so on. The
network is composed by a set Y = {yi,1, ..., yi,dY

} of dY units and a set
W = {wi,1, ..., wi,dW

} of dW inputs [Cas14]. These connections are weighted
by the sets of weights ωW (for the weights between input and output units)

22



Chapter 2 2.1. Language Models

and ωY (for the weights between the output units of the previous state and
the current output units). ωW contains, for each input unit, connections to
each output unit, hence, |ωW | = dX × dY . On its part, ωY contains, for each
output unit, the connections to all the output unit of the previous state,
thereby, |ωY | = dy × dY . The system gets as input samples wi ∈ RdW and
it outputs yi ∈ RdY , (i = i0, i0 + 1, i0 + 2, ...). Figure 2.1 shows the general
architecture of a recurrent neural network.

wi,1 wi,2
yi−1,1 yi−1,2 yi−1,3

Y1 Y2 Y3

yi,1 yi,2 yi,3

ωW

ωY

Figure 2.1: General recurrent neural network architecture. Here, dY = 3 and
dW = 2.

The approach presented by Mikolov makes use of the so-called Elman Net-
works. This is a neural network architecture which belongs to the group of
augmented neural networks. This group of neural networks are distinguished
by being the composition of a recurrent neural network with a feed-forward
neural network. In Elman networks, the feed-forward neural network has
only one layer, thus the network consists of a set W = {wi,1, ..., wi,dW

} of in-
put units, a set S = {si,1, ..., si,dH

} hidden units and a set Y = {yi,1, ..., yi,dY
}

of output units. As before, the connections are weighted by sets of weights.
Since here is one more layer, we have one more set. Thus, the three sets are:
the set of weights between the input layer and the hidden layer, ωW , of size
dW×dH ; the set of weights between the current hidden layer and the previous
steps hidden layer, ωS, of size dH × dH × T , where T is the number of times

23



2.1. Language Models Chapter 2

that the hidden layer state is stored; and finally, the set ωY , |ωY | = dH × dY ,
of weights between the hidden layer and the output layer. Figure 2.2 shows
the general architecture of an Elman network.

wi,1 wi,2
si−1,1 si−1,2 si−1,3

si,3si,2si,1

yi,1 yi,2

ωW

ωY

ωS

Figure 2.2: Elman recurrent neural network architecture, with dW = 2, dS

= 3 and dY = 2.

The notation used in the next sections is as follows: matrices are repre-
sented by uppercase letters, while a vector of the matrix is represented by
the lowercase letter of the matrix, together with its index.

When we tackle the language modeling problem, we have a vocabulary
V and a sequence of words eI

1 = e1, ..., eI . These words enter to the net-
work in a sequential way, from 1 to I and are all included in the vocabulary
(eI

1(i) ∈ V, ∀i : 1 ≤ i ≤ I). We can encode all the words of the sequence
eI

1 from 1 to |V | with a binary vector of size |V |, where all the elements are
equal to 0 except the index that represents the word ei, which is equal to
1. Hence, the whole sequence of words is encoded through a 2-dimensional
matrix of size I × |V | where the row i of the matrix contains a vector w(i)
which represents the current word ei. This vector is the input layer to the
network, thereby, |w(i)| ≡ |V |, ∀i : 1 ≤ i ≤ I, i.e. the input layer has the
size of the vocabulary.

24



Chapter 2 2.1. Language Models

Each layer of the network has associated its corresponding weight matri-
ces, namely U (between input and hidden layer), W (between previous-step
hidden layer and current hidden layer) and V (between hidden and output
layer). For a schematic overview of the network, see Figure 2.3.

w (i)
s (i)

y (i)

s (i - 1)

W

U V

Figure 2.3: Recurrent neural network language model scheme.

Let us define the vector s as the output values in the hidden layer.
Thereby s(i) are the hidden layer values of the current step and s(i − 1)
are the hidden layer values of the previous step. The output layer is repre-
sented by the vector y(i) and it expresses the value of P̂ (ei + 1|ei, s(i− 1)),
that, as shown in equation 2.12 is the probability that we are looking for.

According to Elman networks, we compute the output values of the hid-
den layer, for 1 ≤ h ≤ dH as:

sh(i) = f

 |V |∑
j

wj(i) · uhj +
dH∑
l

sl(i− 1) · whl

 (2.15)

where dH is the number of units of the hidden layer and f is the sigmoid
activation function: f(z) = 1

1+e−z .

25



2.1. Language Models Chapter 2

The output values of the output layer, for 1 ≤ o ≤ dY are computed as:

yo(i) = g

 dH∑
h

sh(i) · voh

 (2.16)

where dH is the number of hidden units, and g is the softmax activation
function: g(zm) = ezm∑

k
ezk

. Note that that softmax function ensures a valid
probability distribution (all its elements are between 0 and 1 and their sum
is 1), necessary for the output of the system.

The last two equations can also be expressed by means of these matrix
and vector products:

s(i) = f(U ·w(i) + W · s(i− 1)) (2.17)

y(i) = g(V · s(i)) (2.18)
The training algorithm used for this network is backpropagation through

time. For more details about training, see Section 2.4.2.

Factorization of the output layer
Training the network can be costly. Each step of the training process has a

computational time complexity of O(dH×dH +dH×|V |), where dH is the size
of the hidden layer and |V | is the size of the vocabulary. It should be noted
that dH << |V |, therefore the main bottleneck is the factor dH × |V |. The
reduction of this huge factor has been tackled through various approaches.
One of them, which leads to a good performance without a big impact on the
network’s accuracy, is the factorization of the output layer. This technique
is based on the Goodman’s idea of using C classes for improve the training
speed of its maximum entropy models [Goo01] . It assigns each word, ei, of
the vocabulary set to one of the C classes. Considering Equation 2.4, the
probability for a word can be rewritten as:

P (ei|ei−n+1...ei−1) = P (class(ei)|ei−n+1...ei−1)× P (e|ei−n+1...ei−1, class(e))
(2.19)

The idea behind this equation is that, the prediction of a word can be
computed as the prediction of its class given the previous words histoy and
the probabililty of the own word, given its class and history. Thus, there are
two models: one which computes the class of a word and other which, given
this class, predicts the word.

26



Chapter 2 2.1. Language Models

In the neural network language model it is possible to proceed in the same
way [MKB+11]: instead of compute the outputs of all the vocabulary, first
is computed the class distribution and later, the distributions of the words
which belong to a certain class. Complexity factor |V | is reduced to C + |V ′|
where |C| is constant and |V ′| < |V |. |C| represents the number of classes
and |V ′| represents the number of words that belong to the particular class.

The language model developed by Mikolov includes this improvement:
before the training process starts, the learning algorithm assigns to each word
ei from the vocabulary a single class ci. Then, it is computed the probability
distribution over the classes, C and next, it is computed the probability
distribution for the words which belong to each class. The probability of a
word is computed as Goodman proposed:

P (ei+1|s(i)) = P (ci|s(i)) · P (ei|ci, s(i)) (2.20)

where, as before, s(i) is the state of the output layer in the moment i,
ei is an index of the predicted word and ci is its class. During the training
phase, the hidden layer is the responsible of compute both words and class
probabilities.

Interpolation with other language models
Another significant improvement can be done to the output result of the

recurrent neural network language model [MKD+11a]: perform the interpo-
lation of the neural network language model with other language models,
such as n-gram language models. One of the simplest interpolation methods,
linear interpolation, has yielded important improvements. The linear inter-
polation states that, given two language modelsM1,M2 and an interpolation
weight λ, 0 ≤ λ ≤ 1, the interpolation between both models is computed as:

PM1,2(e) = λ · PM1(e) + (1− λ) · PM2(e) (2.21)

As it is shown in Chapter 3, this technique yields very good results.

27



2.2. Translation Models Chapter 2

2.2. Translation Models
Once we have formulated some language models, it is time to focus on

the translation model. If we take a look back to the fundamental equation of
machine translation (equation 1.2), we are now interested on the probability
Pr(fJ

1 |eI
1). This probability must be large for strings eI

1 that are good trans-
lations of fJ

1 , even if they are not correctly formed according to the target
language E ; correctness is checked by the language model, therefore we do
not have to concern about it now.

2.2.1. Single-Word Alignment Models
The first approaches in modern SMT were the single-word aligment mod-

els. They are based on the concept of alignment. According to [BPPM93],
an alignment between two strings, fJ

1 in source language F and eI
1 in target

language E , is a correspondence that indicates, for each word of the string
fJ

1 , the word from the eI
1 string from which it arose:

a ⊆ 1...J × 0...I

Where aj = i if the jth source position (fj) is aligned with the ith target
position (ei). In addition, an artificial position is generated and placed in
index 0 for convention, and means that the word from fJ

1 which is aligned
with this null position, is aligned with no word from sentence eI

1. These
alignments can be represented graphically by connections between words, as
it is shown in Figure 2.4.

Let A(fJ
1 , e

I
1) be the set of all possible alignments between two sentences

fJ
1 and eI

1 and let Pr(fJ
1 , a

J
1 |eI

1) be the probability of, given the alignment
hidden variable aJ

1 , translate the sentence fJ
1 into eI

1.We can rewrite the
probability we were interested in by means of this probability:

Pr(fJ
1 |eI

1) =
∑

aJ
1∈A(fJ

1 ,eI
1)
Pr(fJ

1 , a
J
1 |eI

1) (2.22)

Since |e| = I and |f | = J , there are I · J possible connections between
the strings, hence there are 2IJ alignments in A(fJ

1 , e
I
1).

28



Chapter 2 2.2. Translation Models

Mary1 no2 daba3 una4 bofetada5 a6 la7 bruja8 verde9

Mary1 did2 not3 slap4 the5 green6 witch7

Figure 2.4: Alignments between an English and a Spanish sentence. Note
that f6 (a), has no correspondence with any word in English. Hence, it is
aligned with position 0.

IBM Models

In 1993, researchers from IBM’s Thomas J. Watson Research Center de-
veloped the so-called IBM models [BPPM93]. There are five models, based
on the above concept of alignment between words. They are all based on the
following derivation of equation 2.23:

Pr(fJ
1 , a

J
1 |eI

1) = Pr(J |eJ
1 )

J∏
j=1

Pr(aj|f j−1
1 , aj−1

1 , eI
1) ·Pr(fj|f j−1

1 , aj
1, e

I
1) (2.23)

This equation states that, regardless of the form of Pr(fJ
1 , a

J
1 |eI

1), it can
always be decomposed in a product of terms in this way. It establishes a
sequential way of processing it. When we generate a string fJ

1 we:

1. Choose the length of fJ
1 , given our knowledge of eI

1 (Pr(J |eJ
1 )).

2. Choose where to connect the jth position of f , (aj), given our knowl-
edge of the built-so-far sentence and alignments from f (f j−1

1 , aj−1
1 ) and

the source string (eI
1).

3. Finally, we choose the identity of the jth word in the target string
(fj) given our knowledge of the source string eI

1, the built-so-far target
sentence f j−1

1 and the current alignments, include the one generated in
the last step (aj

1).

It is clear that we must iterate over points 2 and 3. As we step over the
target string, we make decisions which build the target string up, based on

29



2.2. Translation Models Chapter 2

the previous knowledge from the string. In all five models, the points 1 and 3
are common. Probability Pr(fj|f j−1

1 , aj
1, e

I
1) is approximated by a statistical

dictionary of words p(fj|eaj
). Models variate their assumptions over step 2,

specifically over probability Pr(aj|f j−1
1 , aj−1

1 , eI
1). Shortly, these differences

are:

Model 1: the distribution Pr(aj|f j−1
1 , aj−1

1 , eI
1) is meant to be uniform.

Model 2: the distribution Pr(aj|f j−1
1 , aj−1

1 , eI
1) is estimated by a zero-

order model p(aj|i, J, I) which defines dependencies between absolute
word positions of target and source sentences.

Model 3: a fertility model p(φ|e) is included. It represents, for each
target word e, the probability that e generates φ source words. The
choice of φ depends only on e. The distribution Pr(aj|f j−1

1 , aj−1
1 , eI

1) is
approximated by a zero-order model, called distortion model p(i|aj, J, I),
which models the dependencies between absolute word positions of
source and target sentences.

Model 4 and 5: they use a first-order a distortion model with depen-
dencies between relative word positions of source and target sentences.

IBM models are estimated by means of the Expectation-Maximization algo-
rithm (EM). For more information about this algorithm, see Section 2.4.1.

Already in 1993, IBM’s researchers realized themselves that their models
have some shortcomings: they defined their models as deficient. Deficiency
is the property of a model of not concentrating all of its probability on the
events of interest, but wasting its probability on the so-called generalized
strings (strings with alignment positions with many words and positions with
none). Models 3 and 4 are deficient theoretically while models 1, 2 and 5
are deficient on spirit. Deficiency can be seen as the price paid for having
computationally tractable models.

The greater disadvantage of these models is that they, by ignoring align-
ments larger than one word, miss the contextual information. For tackling
this problem, a new family of models were developed: the multi-word align-
ment models, which are able to capture contextual information. These models
are studied in the following section (Section 2.2.2).

30



Chapter 2 2.2. Translation Models

2.2.2. Multi-Word Alignment Models
As said in the previous section, the single-Word alignment models, by

ignoring multi-word alignments, are not able of capture contextual informa-
tion. In order to solve this problem, a new group of techniques emerged: the
so-called multi-word alignment models. These models set alignments between
groups of words from source and target sentences, instead of just single word
alignments.

The basic idea behind multi-word alignment models is the concept of
phrase. A phrase is defined as a set of one or more consecutive words of the
source or the target sentences. Given the source and target sentences fJ

1 , eI
1,

we use the following notation to denote an unspecified phrase: f̃ and ẽ.

Phrase-Based Models

Phrase based models make use of the so-called statistical dictionaries of
phrase pairs [ZON02]. These dictionaries are sets of bilingual phrases. A
bilingual phrase is a pair of m source words and n target words. If they are
extracted from a bilingual corpus, the following constraints must be satisfied:

1. The words in the phrase are consecutive.

2. They are consistent with the word alignment matrix (A): the m source
words must be aligned only to the n target words and vice versa.

An additional hidden variable must be added to use bilingual phrases
in the translation model, the bisegmentation of the source and target sen-
tences. A bisegmentation of length K of a sentence pair (fJ

1 , e
I
1), denoted

by B(fJ
1 , e

I
1), represents a segmentation of the sentence pair (fJ

1 , e
I
1) into K

phrases: (f̃K
1 ; ẽK

1 )(1 ≤ K ≤ min(I, J)). A bisegmentation is a phrase-level
alignment of a sentence pair. With this, it is possible to rewrite the transla-
tion probability without loss of generality as:

Pr(fJ
1 |eI

1) =
∑
B

Pr(fJ
1 , B|eI

1) =
∑
B

Pr(B|eI
1) · Pr(fJ

1 |B, eI
1) (2.24)

In order to manage the computation of this probability, various assump-
tions can be done. In [ZON02], it is assumed that all segmentations have
the same probability α(eI

1) and they allow only monotone translations, i.e.
preserving the phrase order. This will result in an efficient search. Hence,
the probability distribution is:

31



2.3. Evaluation Chapter 2

Pr(fJ
1 |eI

1) = α(eI
1)
∑
B

K∏
k=1

p(f̃k|ẽk) (2.25)

where p(f̃k|ẽk) is the phrase translation probability. It is estimated through
relative frequencies:

p(f̃ |ẽ) = N(f̃ , ẽ)
N(ẽ) (2.26)

where N(ẽ) is the count of the phrase ẽ, and N(f̃ , ẽ) is the count of
the event that f̃ has been seen as a translation of ẽ in the training corpus.
If during the test phase appears an unknown word, this is translated by itself.

It should be noted that the monotony constraint can lead to many trans-
lation errors in languages with different phrase order, for example, English-
German. If monotonic alignments are not assumed, previous Equation 2.25
can be rewritten as [OM11]:

Pr(fJ
1 |eI

1) =
∑
ãK

1

K∏
k=1

p(ãk|ãk−1
1 ) · p(f̃k|ẽãk

) (2.27)

The search problem is tackled via the maximum approximation:

êI
1 = arg max

eI
1

Pr(eI
1) · α(eI

1) ·
∑
B

Pr(f̃K
1 , B|ẽK

1 ) ≈

≈ arg max
eI

1,B

Pr(eI
1) · α(eI

1) max
K,B
·Pr(f̃K

1 , B|ẽK
1 )

(2.28)

If only monotonic translations are allowed, this search can be efficiently
computed through dynamic programming techniques. Otherwise, other tech-
niques must be used, such as using a reordering graph and pruning [ZON02].

2.3. Evaluation
Up to now, we have some models to produce automatic translations. We

are now interested in measure the quality of these translations. We are
evaluating the output of the machine translation system, instead of its per-
formance or usability. The output metrics can be categorized into two main
categories: human evaluation and automatic evaluation. Human evaluation
follows adequacy and fluency criteria. The adequacy criterion represents

32



Chapter 2 2.3. Evaluation

how much of the meaning expressed in the source sentence is expressed in
the target sentence and the fluency criterion measures how well-formed is a
sentence, if it contains correct spellings, if it is an acceptable sentence in the
target language, etc. These two criteria have an analogy with the aim of
the translation models and language models, respectively; in the sense that
a good language model will produce fluent outputs and a good translation
model will produce adequate sentences. The human evaluation is very accu-
rate and produces high quality metrics, but on the other hand, it is expensive
and slow. It requires the establishment by human linguists of assessments
of adequacy and fluency criteria. Then, human judges evaluate fluency and
adequacy of the system translations [Fed08].

But MT researchers must receive a daily response from their systems.
With human translation that is not possible, therefore, exist automatic MT
metrics. They try to follow a similarity with human evaluation. They are
inexpensive and fast, but the quality of these measures is lower than the
human checking. Automatic metrics must be objective, informative, efficient
and cheap. These methods compare the output of the system with high-
quality human translations, called references. In the next sections, we are
reviewing some of the main automatic metrics for SMT.

2.3.1. Perplexity
In the first place, we want to evaluate the quality of a language model,

that means, how similar our estimation of the model distribution given
by ΘLM is with respect of the real probability distribution (but unknown)
Pr(eI

1). For that purpose, we can obtain an empirical estimation of the cross
entropy of those distributions: let X = {e1, e2, ..., eN} be the set of test sam-
ples and ΘLM is the set of language model parameters, the cross entropy is
defined as:

H(Pr; p(·|ΘLM)) = −
N∑

i=1
Pr(ei) · log2 p(ei|ΘLM) (2.29)

The most extended metric in evaluation of statistical language models is
the Perplexity. It is computed as:

PPL(Pr; p(·|ΘLM)) = 2H(P r;p(·|ΘLM )) (2.30)

The perplexity of a language model can be interpreted as the ability of
a language model of predicting a sample. It also can be understood as the
geometric average of the branching factor of the given language with respect

33



2.3. Evaluation Chapter 2

the model. It measures either the model performance and the language
complexity. Of course, the lower the perplexity a model have, the better it
is.

2.3.2. BLEU
BLEU (BiLingual Evaluation Understudy) tries to model the correspon-

dence between the output from a MT system and the one produced by a
human. For BLEU score, the closer a machine translation is to a professional
human translation, the better it is. This metric is applied to individual sen-
tences, comparing them to their reference sentences.

BLEU score is based on the idea of modified n-gram precision [PRWZ02].
This concept relies on the n-gram precision, which counts up the number
of candidate words (unigrams) from the system translation which appear
in the reference sentence, and divides this count by the total number of
words of the translation from the system. The problem is that the system
can generate too many reasonable words. For example, if we have the sys-
tem translation “The the the the the the the.” and the reference trans-
lation is “The truck was driving on the highway.”, unigram precision
will be 7/7. Obviously, this is absolutely not correct. Because of that, modi-
fied n-gram precision was defined as an extension of this procedure: first, the
maximum number of times that a word happens in any reference translation
is counted. Next, the count of each word in the sentence from the system
is clipped by its maximum count. Clipped count operation is defined as:
Countclip = min(Count,Max_Ref_Count). Back to our example, the sys-
tem translation would obtain an unigram modified precision of 2/7, because
counts of word the in the reference translation (2) represent an upper bound
for the count of this word in system translation (7).

This concept is extended to n-gram in a similar way: all candidate n-
gram counts are computed and clipped by their corresponding value, added
and normalized by the total number of candidate n-gram. If we move our
example to bigrams, the n-gram modified precision of the system translation
is 0, since counts of the bigram the the on reference sentence is 0.

The modified n-gram precision captures two important criteria of trans-
lation scoring, above mentioned: fluency and adequacy. A translation using
the same words as in the reference sentence (unigram modified precision)
will satisfy the adequacy criterion and a translation with longer n-grams will
tend to achieve a high fluency [PRWZ02].

34



Chapter 2 2.3. Evaluation

BLEU score uses as basic computation unit a sentence and extends the
computation to the whole test corpus, so, finally, an unique modified precision
score for the entire corpus is generated by 1. computing the n-gram matches
sentence by sentence and 2. adding the clipped n-gram counts for all these
candidate sentences. Finally, this result is divided by the number of candidate
n-grams in the test corpus:

pn =
∑
C∈{Candidates}

∑
n−gram∈C Countclip(n− gram)∑

C′∈{Candidates}
∑

n−gram′∈C′ Countclip(n− gram′) (2.31)

In addition, it is obvious that a translated sentence should be neither
excessively long or short, therefore this must be reflected on the metric. Sys-
tem translations longer than references are naturally penalized by modified
n-gram precision, but for shorter translations, it is introduced the so-called
brevity penalty (BP) factor: a penalty factor which penalizes short transla-
tions in the following way:

BP =


1, if c > r

e1− r
c , if c ≤ r

(2.32)

where c is the length of the system translation and r is the length of the
corpus reference sentence.

BLEU score uses a weighted geometric mean of the n-grams for combining
them. Each n-gram has a weight wn such that ∑N

n=1wn = 1, but typically,
this weight is set to wn = 1

N
. Hence, the final BLEU score of a test corpus is

computed as:

BLEU = BP · exp
(

N∑
n=1

wn log pn

)
(2.33)

2.3.3. Other evaluation measures
There are many other criteria for the evaluation of the output of a Ma-

chine Translation system. Here are four more automatic evaluation measures:

WER (word error rate): this score is based on the Levenshtein dis-
tance, but it works at word level. WER is the minimum number of
substitution, insertion and deletions operations that need to be per-
formed to convert the system translation into the target sentence.

35



2.4. Parameter Estimation Chapter 2

PER (position-independent WER): is a metric derived from WER.
While WER requires a perfect word order, PER compares the words
in both sentences ignoring the order.

SER (sentence error rate): SER is computed as the number of times
that the sentence generated by the system corresponds exactly to one
of the reference translations.

TER (translation edit rate): TER computes the amount of edit op-
erations needed to convert a translation hypothesis of the system into
one of the reference sentences, normalized by the average length of the
references [SDS+06].

2.4. Parameter Estimation
Now that the statistical models involved in the MT translation have been

defined, it is time to estimate their sets of parameters. This task belongs to
the training problem of machine learning. Standard techniques are used to
estimate these parameters. In this section, the main techniques used in this
work will be explained.

2.4.1. Expectation-Maximization algorithm
The expectation-maximization algorithm (EM), also known as estimation-

maximization, is used to find the maximum likelihood parameters of a sta-
tistical model where it depends on unobserved hidden variables. There are
two main problems of statistical models for which EM algorithm is applied
are:

1. These models involve latent variables, unknown parameters and a lim-
ited set of known data observations, i.e. usually there are missing values
among the data.

2. Typically, finding the optimal maximum likelihood solutions implies
the derivation of the likelihood function with respect all the unknown
variables and solving the resulting equations. Usually, is not possible
to carry this out analytically, due to the intractability of the likeli-
hood function. Instead of this, likelihood function can be simplified by
assuming the existence of additional hidden parameters.

More formally, given a statistical model, EM algorithm assume that data
X is observed and generated by a distribution which has the set of parameters

36



Chapter 2 2.4. Parameter Estimation

Θ. There is a complementary set of unobserved data Y , which, together
with X compose the set of complete data Z = (X ,Y). Finally, a probability
density function is assumed for the complete data set:

p(z|Θ) = p(x,y|Θ) = p(y|x,Θ) · p(x|Θ) (2.34)

From this equation, a new expression of the log-likelihood function is
defined: L(Θ, z) = L(Θ,x,y). This function is known as complete data log-
likelihood function while the original log-likelihood function L(Θ,x) is known
as the incomplete data log-likelihood function. EM algorithm attempts to find
the maximum likelihood estimator applying the following two steps:

1. Find the expected value (E) of the complete data log-likelihood func-
tion, log p(x,y|Θ), with respect the conditional distribution of the hid-
den data and the previous estimation of the model parameters:

Q(Θ,Θt−1) = E[log p(x,y|Θ)|xΘt−1] (2.35)

Where Θt−1 are the current estimated parameters, Θ is are the new
parameters that are being optimized to increase Q.

2. Find the set of parameters Θ that maximizes the quantity value, Q,
computed at the previous step:

Q(Θ,Θt−1) = arg max
Θ

Q(Θ,Θt−1) (2.36)

This process is carried out iteratively, starting from initial parameter
values, e.g. uniform parameter values. At each iteration of the algorithm,
both steps are executed. Each iteration improves the log-likelihood of the
incomplete data L(Θ,x) or leaves it unchanged. For most models, the EM
algorithm reaches a local maximum of L(Θ,x).

37



2.4. Parameter Estimation Chapter 2

2.4.2. Backpropagation Through Time
This is the training algorithm for the recurrent neural networks that are

used in language modeling (see Section 2.1.3). Although typical Backpropa-
gation algorithm can be used too in these networks, it does not take advan-
tage of the capabilities of recurrent neural networks. With normal Backprop-
agation, the network tries to optimize its prediction of the next word based
only on the previous word and the previous state of the hidden layer, but
it does not store effectively valuable information for the future. In order to
manage this capability of recurrent neural networks, it is necessary to extend
the learning algorithm. This extension is known as Backpropagation through
time algorithm.

The idea of the algorithm is as follows: an Elman recurrent network,
with one hidden layer which is used for N time steps, can be seen as a
feedforward network with N hidden layers (see Figure 2.5). This pseudo
feedforward network can be trained by the normal gradient descent process:
errors are propagated from the current hidden layer s(i) to the previous step
hidden layer s(i− 1) and the recurrent weight matrix W is updated. Weight
matrices U, V and W are initialized with small random numbers. The train-
ing of the network for one epoch is performed following Algorithm 20 [Mik12].

38



Chapter 2 2.4. Parameter Estimation

w (i)
s (i)

y (i)

s (i - 1)

W

U V

w (i-1)

s (i - 2)

W

U

w (i-2)

s (i - 3)

W

U

Figure 2.5: Recurrent neural network seen as a feedforward neural network
unfolded 3 steps in time [Mik12].

39



2.4. Parameter Estimation Chapter 2

Algorithm 1: Pseudocode for the backpropagation through time train-
ing algorithm.

Input: X = {e1, ..., en} (training corpus),
pRNNLM(e) = { w (input layer), s (hidden layer), y (output layer)}
(neural network),
α (learning rate),
T (steps back in time to propagate)
Output: pRNNLM(e) = { w (input layer), s (hidden layer), y (output

layer), vho (weights between s and y), ujh (weights between
w and s), wlh (recurrent weights)} (trained neural network)

1 Auxiliar: i (Time counter),
2 δhj(e, i) = esj(i)(1− sj(i)),
3 d(i) (target vector to be predicted)
4 begin
5 i = 0 ; // Time counter initialization
6 s(i) = 1 ; // Initialization of the hidden units
7 foreach ei ∈ X do
8 i = i+ 1;
9 w(i)← ei ; // Present current word to the input layer

10 w(i) = s(i− 1) ; // Copy the state of the previous
hidden layer to the input layer
// Compute output values of the hidden and output

layer computation
11 sh(i) = f

(∑|E|
j wj(i) · uhj +∑dH

l sl(i− 1) · whl

)
;

12 yo(i) = g
(∑dH

h sh(i) · voh

)
;

// Compute error gradient in the output layer
13 EO(t) = d(i)− y(i);
14 vho(i+ 1) = vho(i) + sh(i) · Eo(i) · α; // Weights update

// Error gradient in the hidden layer
15 EH(i− τ − 1) = δh(EH(i− τ)T W, i− τ − 1);
16 if weight update necessary then

// Weights update
17 ujh(i+ 1) = ujh(i) +∑T

z=0 wj(i− z) · Eh(i− z) · α;
18 wlh(i+ 1) = wlh(i) +∑T

z=0 sl(i− z − 1) · Eh(i− z) · α;
19 end
20 end

40



Chapter 2 2.4. Parameter Estimation

If the update of the recurrent weight matrices is done at each training
step, it would lead to a large computational complexity of the updating pro-
cess: O(T ×W ), where T is the number of steps back in time that are taken
into account and W is the number of training words. This can be solved by
performing an offline training, updating the matrices after processing all the
training samples. With a batch training the complexity is lower, but the per-
formance of the network also worsens [Mik12]. The best solution is to choose
a compromise: the weight update will be performed in mini-batches, after
processing 10-20 training samples). This can effectively remove the term T
in the previous expression.

Each training step has a computational complexity O(dH×dH +dH×|V |),
where dH is the size of the hidden layer and |V | is the size of the training
vocabulary. Thus, the complexity of the complete training of the model is
proportional to O(I ×W × (dH × dH + dH × |V |)), where I is the number
of epochs performed before reaching to convergence and W is the number
of sentences in the training corpus. It is possible to lower this complexity
by reducing the different factors involved in the training algorithm: training
epochs, number of training sentences, vocabulary size (see Section 2.1.3) or
size of the hidden layer. However, not all reductions are good: the reduction
of the training corpus or choosing a small hidden layer size can lead to the
degradation of the neural network and therefore, bad results. Both other
speedups do not degrade that much the network, hence it is worth to use
them [MDP+11].

41



2.4. Parameter Estimation Chapter 2

2.4.3. Downhill Simplex
Along the process of machine translation, it is necessary to optimize

some functions. The Downhill Simplex method (also known as Nelder-Mead
method) is a technique for performing this optimization. It was proposed in
1965 in [NM65] and it uses the concept of simplex.

A simplex is a polytope of N + 1 vertices in N dimensions, e.g., a triangle
in R2, a tetrahedron in R3, etc. Downhill simplex aims to minimize a func-
tion of n variables, based on the comparison of the function values at the
(n+1) vertices of a general simplex, followed by the replacement of the vertex
with the highest value by another point. The simplex performs a sequence
of transformations for adapting itself to the local landscape and trying to
decrease the function values at its vertices. At each step, the transforma-
tion is determined by computing one or more test points, together with their
function values and by the comparison of these function values with those at
the vertices. The simplex becomes smaller gradually and the process finishes
when finally the simplex contracts on to the final minimum or the function
values fj are close enough. It is an effective and computationally compact
method.

This technique has been widely used in parameter estimation problems,
where the function values are uncertain, subject to noise or the function is
not tractable analytically. Hence, it is not necessary or possible to compute
a highly accurate solution, but by performing an improvement (instead of
a full optimization) in the function value is enough to solve the problem.
Here is where downhill simplex method works well: it produces significant
improvements at first iterations and it quickly obtains a good solution, with
a relatively small number of function evaluations.

The main disadvantage of the method is that the lack of a solid con-
vergence theory often produces a numerical breakdown of the algorithm: the
method may take a huge amount of iterations with a despicable improvement
of the function values, despite being way far from a minimum. This problem
usually happens in early iterations and it is tackled through heuristics.

42



Chapter 3

Experiments

Theoretically, neural network language models are supposed to be stronger
and more powerful than classic language models approaches, such as n-gram
models [Mik12]. The aim of this work is to test this strength with real tasks
and observe if there is a real improvement, not only reflected on the evalu-
ation of language model (perplexity), but also in the whole translation. To
perform this test, we are going to generate, for each sentence to be translated,
a set of translation hypotheses. We will score these hypotheses with different
language models and measure the quality of the translations produced by the
best hypothesis.

In the following sections we will review the software that we have used for
carrying these experiments out. In Section 3.1.1 we will give a brief outline of
the main data structures, the experimentation process followed in this work
will be explained in Section 3.1.2. In the following sections, we will offer an
overview and we will present the results obtained in the experimentation of
the three tasks studied in this work: Tourist (Section 3.2), Xerox (Section 3.3)
and Europarl (Section 3.4).

3.1. Experimentation Framework

3.1.1. Software

We used three different toolkits: Thot, SRILM and RNNLM. In this
section, we will shortly describe the features of each one of them.

43



3.1. Experimentation Framework Chapter 3

Thot

Thot [OMC14] is an open source toolkit developed by Daniel Ortiz Martínez,
member of the PRHLT research group from the Polytechnic University of
Valencia. The project is currently supported by the European Union and
also has received support from the Spanish Government. Thot is still un-
der construction, but it already has implemented a state-of-art phrase-based
translation system and tools to estimate all the statistical models involved in
the machine translation process. Moreover, it is able to update incrementally
and in real time its models, after receiving a new sample.

Thot implements the following remarkable features:

Phrase-based statistical machine translation decoder (see Section 2.2.2).

Computer-aided translation (post-editing and interactive machine trans-
lation).

Incremental estimation of all of the models involved in the translation
process.

Robust generation of alignments at phrase-level (see Section 2.2.2).

Single word alignment model estimation using the incremental EM al-
gorithm (see Sections 2.2.1 and 2.4.1)

Client-server implementation of the translation functionality.

Scalable implementation of the different estimation algorithms using
MapReduce.

Word Graphs and N-best lists
Since we are are on a rescoring task, we will need the list of the N -best

translations for a given source sentence. These N -best translations will be
evaluated, rescored and resorted by means of different language model ap-
proaches. At the end of this process, we may obtain as best translation a
different sentence for each language model. This list of best translations is
called N-best list and they are obtained from a data structure called word
graph.

A word graph is a weighted directed acyclic graph, where each node repre-
sents a partial translation hypothesis and each edge is labelled by a word (or
phrase) of the target sentence and it is weighted according the probabilities

44



Chapter 3 3.1. Experimentation Framework

supplied by the SMT model involved in the translation process. The word
graph has a set of initial nodes, which represent all the different beginnings
of all the possible translation of the source sentence; and a set of final nodes,
which represent all the different endings of the translation. A complete trans-
lation is a path from an initial node to a final node and it has associated a
probability computed as the product of all the probabilities of its path edges.

For instance, Figure 3.1 shows a little example for an artificial word graph
generated from the Spanish source sentence "El hombre corre". As we can
see, there are 2 initial nodes, which represent the words "The" and "A". That
means that all possible translations must begin either by "The" or "A". The
set of all possible translations is the set of all diferent paths in the graph from
nodes 1 or 2, to final nodes 6, 7 or 8. Each edge has below its probability,
therefore each path has its own probability:

1. A kid jogs: 0.2 · 0.1 · 0.2 = 0, 004

2. A kid runs: 0.2 · 0.1 · 0.7 = 0, 014

3. A man runs: 0.2 · 0.7 · 0.7 = 0, 098

4. A man walks: 0.2 · 0.7 · 0.1 = 0, 014

5. The man runs: 0.8 · 0.7 · 0.7 = 0, 392

6. The man walks: 0.8 · 0.7 · 0.1 = 0, 056

7. The male walks: 0.8 · 0.2 · 0.1 = 0, 016

Therefore, for this example, the most likely translation is The man runs.

The probabilities of the edges of the word graph are the weighted sum
of the estimated scores (estimated log-probabilities) by the different statis-
tical models that compound the MT system. Obviously, if these weights
are changed, the probabilities of the word graph will change too, and other
candidates will rise up to become the most likely translations. If we take
the best translation of each sentence from the N -best list, we will obtain the
translations of the input corpus provided by our system, and we will be able
to score it with a metric, for example, with BLEU. We can execute a weight
adjustment by means of the downhill simplex method, where the function
to minimize is (1 − BLEU) and its parameters are the weights of the word
graph. For each iteration of the downhill simplex algorithm, a N -best list
is generated and merged with the N -best list of the last iteration. As the

45



3.1. Experimentation Framework Chapter 3

downhill simplex finishes, we will obtain an extended N -best list for each
word graph.

A

The

kid

man

man

male
walks

walks

runs

runs

jogs

0.2

0.8

0.1

0.7

0.7

0.2

0.2

0.7

0.8

0.7

0.1

1

2

3

4

5

6

7

8

Figure 3.1: Word graph example for the source sentence "El hombre corre"
using English as target language. From this word graph, we can determine
that the best translation is: The man runs.

We have set the value of N to 200 so, in each iteration of the downhill sim-
plex, the 200-best translations are computed and merged with the previous
ones. We think that, even though this is not the optimal procedure, because
potentially there are possible translations of the word graph not included in
the N -best list, the majority of the probability mass of the word graph will
be captured by the N -best list, hence the difference will be non-significant.

46



Chapter 3 3.1. Experimentation Framework

SRILM

SRILM [Sto02] is a toolkit which has been under development since 1995
by the SRI Speech Technology and Research Laboratory. This software has
become a classical tool for language modeling. It has been applied in a wide
variety of applications besides machine translation, such as speech recogni-
tion, tagging and segmentation, handwriting recognition or integrated devel-
opment environments (IDEs) and language bindings. It implements many
features, but for this work, we had basically used this tool for count and
estimate n-gram language models and their interpolation with the recurrent
neural network language model.

RNNLM Toolkit

This toolkit [MKD+11b], implements the above described language model
based on recurrent neural networks (see Section 2.1.3). The software allows
the creation, training, evaluation and usage of such models. It implements
the training algorithm Backpropagation throught time (see Section 2.4.2). It
also can be used together with SRILM to combine both language models.

47



3.1. Experimentation Framework Chapter 3

3.1.2. Developed Experiment
We carried out 3 different tasks of increasing complexity: Tourist, Xerox

and Europarl. Each one of this tasks has 3 separate corpora, namely train-
ing, development and test. For each one of the tasks, we followed a common
procedure of machine learning: first, we trained our models with the train-
ing corpus. Next we adjusted their parameters for the development set and,
finally, with this parameters, we tested their performance on the test corpus.
Figure 3.2 shows a diagram of the executed experimentation.

TRAIN
CORPUS

WORD
GRAPH

DEVELOP.
CORPUS

N-BEST
LIST

THOT
TRANS.
MODEL

THOT
LANGUAGE

MODEL

THOT
RESCORED
CORPUS

RNNLM
LANGUAGE

MODEL

RNNLM

RESCORED
CORPUS

RNNLM
RESCORED
CORPUS

SRILM
LANGUAGE

MODEL

THOT

THOT THOT

THOT

THOT

THOT

THOT

RNNLM RNNLM

RNNLM + SRILMSRILM

+ SRILM

Figure 3.2: Schema for the performed experimentation. The labels on the
edges indicate the toolkit used to generate the target element.

In this work, Thot has been used as baseline system. Since we are inter-
ested in the language model, we used the translation model provided by Thot
for generating the word graphs and N -best lists for the development corpus.
The rescoring of such sentences is performed by means of the recurrent neu-
ral network language model and its interpolation with the n-gram language
model provided by SRILM. We use as main quality measure the BLEU score
and all the weight adjustment task of the rescoring process is driven by this
measure. Algorithm 2 shows the followed experimentation steps, for each
task. This algorithm makes use of some auxiliary functions:

48



Chapter 3 3.1. Experimentation Framework

T (C): training of an n-gram language model for corpus C.

TBPTT(C): training of a recurrent neural network language model with
BPTT algorithm for corpus C.

Tt(p(e), w, C): training of a translation model for corpus C using the
language model p(e) with weights w.

word_graph((fi, ei), p(e), p(f |e)): obtains the word graph for the pair
of sentences (fi, ei), according the language model p(e) and the trans-
lation model p(f |e).

N− best_list(wg): obtains from the word graph wg its corresponding
N -best list, as it is explained in Section 3.1.1.

dhs(f, p): applies for the function f and parameters p the downhill
simplex optimization method, returning the optimal set of parameters.

Reconstruct(NBL, w): from the set NBL of N -best lists and the set of
weights w, obtains the highest ranked sentence for each N -best list.
Finally, all the best sentences are collected and form a new rescored
corpus of size |NBL|.

BLEU(C, Cref ): computes the BLEU score for the corpora C and Cref .

PPL(p(e), C): computes the perplexity for the language model p(e) and
the corpus C.

49



3.1. Experimentation Framework Chapter 3

Algorithm 2: Pseudocode for the experimentation process.
Input: X = {(f1, e1), ..., (fn, en)} (training corpus),
D = {(f ′1, e

′
1), ..., (f ′n′ , e

′

n′
)} (development corpus),

T = {(f ′′1 , e
′′
1), ..., (f ′′n′′ , e

′′

n′′
)} (test corpus)

Output: BLEUn(D), BLEURNNLM(D), BLEUinter(D),
BLEUn(T ), BLEURNNLM(T ), BLEUinter(T )

1 Auxiliar: pn(e) (n-gram language model),
2 pRNNLM(e) (RNN language model),
3 pinter(e)(interpolation of language models),
4 p(f |e) (translation model),
5 wm (parameters of model m),
6 λ (interpolation weight)
7 begin
8 pn(e) := T (X );
9 pRNNLM(e) := TBPTT(X );

10 pinter(e) := λ · pRNNLM(e) + (1− λ) · pn(e) ;
11 wn := dhs(PPL(pn(e),D), wpn) ;
12 p(f |e) := Tt(pn(e), wn,X );
13 foreach corpus ∈ {D, T } do
14 foreach (fi, ei) ∈ corpus do
15 wgi := word_graph ((fi, ei), pn(e), p(f |e));
16 nbli := N-best_list(wgi);
17 foreach lm ∈ {n, RNNLM, inter} do
18 NBL := ∅;
19 foreach nbli do
20 forall the sentence ∈ nbli do
21 p(e) := plm(sentence); // Sentence rescoring
22 NBL := NBL ∪ p(e) ;
23 if corpus = D then
24 while (dhs((1− BLEUplm(D′,D)), wplm) 6= convergence)

do
25 D′ := Reconstruct(NBL, wplm);
26 wplm := dhs((1− BLEUplm(D′,D)), wplm);
27 BLEUlm(D) := BLEUplm(D′,D)
28 else
29 T ′ := Reconstruct(NBL, wplm);
30 BLEUlm(T ) := BLEUlm(T ′, T )
31 end

50



Chapter 3 3.1. Experimentation Framework

For each task, we are going to present three main results: perplexity of
the different estimated models, BLEU score for the development corpus and
BLEU score for the test corpus. We performed a sampling between different
size of the context which each language model handles. We collected results
from 2-word contexts up to 5-word contexts.

The n-gram models provided by Thot implement the Jelinek-Mercer smooth-
ing technique (see 2.7). According to [CG98], the smoothing technique which
offers a best performance is Kneser-Ney smoothing technique (see 2.11),
hence, by default we used this technique in our experiments. However, in
[CG98] is shown that Witten-Bell smoothing technique has a good perfor-
mance if the training corpus is larger, therefore we tested it too. Kneser-Ney
smoothing performed better than the Witten-Bell smoothing in two of the
three tasks, nevertheless, in the Xerox task, Witten-Bell smoothing obtained
better results (see Section 3.3.2). The results shown in the following sections
make use of the Kneser-Ney smoothing technique, unless otherwise stated.

To obtain the best network architecture, we tested many combinations
of the network hyperparameters for each task, setting the backpropagation
through time steps to 3. We computed perplexity for each one of the net-
works and we performed the interpolation between the neural network lan-
guage model and a trigram language model. We selected as best network
architecture that with a minimum perplexity. Then, we varied the backprop-
agation through time steps, from 2 up to 5.

The default interpolation performed in the experiments was between lan-
guage models with the same order, i.e. we interpolated bigrams with re-
current neural networks trained with 2 steps back in time, trigrams with
networks with 3 steps back in time, etc. Interpolations of higher order mod-
els were performed too: we enlarged the steps back in time with which the
network was trained and we interpolated these new networks with the n-gram
language model that achieved the best result for each task. The interpolation
weight λ is task-dependent: for each task, we executed a scanning of this pa-
rameter, the perplexity of the resulting model for the λ value was evaluated
and we selected the λ value which offered the lowest perplexity.

51



3.2. Tourist task Chapter 3

3.2. Tourist task

3.2.1. Overview
This was a toy task which contained sentences typically said by a tourist

at the reception of a hotel. It is a very simple and small corpus used to
build the rescoring system and test it easily. In this experiment, we used
Spanish as source language, and we want to translate it to English. Training,
development and test partitions were carried out by extracting randomly
sentences from the corpus. Table 3.1 shows the different partitions size.

Spanish English

Training
Sentences 9 900

Running words 96 172 98 304
Vocabulary 690 517

Development Sentences 100
Running words 959 988

Test Sentences 2 996
Running words 35 023 35 590

Table 3.1: Tourist corpora statistics: number of sentences, words and vocab-
ulary size for each one of the three corpora: training, development and test,
for both languages.

3.2.2. Results
We found that the best network architecture for this task had 50 hidden

layer units and we set the number of classes to 200. We tested different
number of classes, but the network accuracy did not improve, even using
no classes. Since there were no improvements and the training and usage
complexity was higher, we decided to set the classes parameter to 200.

Perplexity

Since this was a toy task, the perplexity was very low. Table 3.2 shows
the perplexity values obtained by the difrerent language models, with differ-
ent context sizes. As told above, the models involved in the interpolation
had the same order. It is also reported the perplexity variation and varia-
tion percentage regarding the n-gram language model, which represents our
baseline system. This variation is simply computed as:

52



Chapter 3 3.2. Tourist task

V ar(PPL1, PPL22) = PPL2 − PPL1 (3.1)

The variation percentage is computed as:

%V ar(PPL1, PPL2) = 100 · PPL2 − PPL1

PPL1
(3.2)

In all cases, we set as PPL1 the value of the n-gram language model and as
PPL2 the value of the recurrent neural network language model.

Language model Order Perplexity Variation % Variation

N -gram

2 5.2 - -
3 3.5 - -
4 3.5 - -
5 3.5 - -
2 2.72 -2.48 -47.7

Recurrent 3 2.73 -0.77 -22
neural network 4 2.72 -0.78 -22.3

5 2.36 -1.14 -33.6
2 3.00 -2.2 -42.3

Interpolation 3 2.80 -0.7 -20
of models 4 2.76 -0.74 -21.1

5 2.07 -1.43 -40.9

Table 3.2: Tourist task perplexities for the development and test corpora,
variations and variation percentages regarding the n-gram baseline system
with the same context size.

As we can see, even though the perplexity was very low, the neural net-
works language models were able to reduce it from a 22% up to a 47%. The
interpolation between models had a similar performance than the solely use
of neural networks. The interpolation factor was set to λ = 0.7. Such models
reached a perplexity reduction greater than 40%.

BLEU

The BLEU scores of this task were extremely high: they were all over 86.
Anyway, the recurrent neural network language model was able to overcome
those results. It reached a top BLEU score for the development corpus of
91.68 and for the test corpus of 91.04. The neural network model improved

53



3.2. Tourist task Chapter 3

the score of the n-gram language model in almost all scenarios - there is
only one case where the BLEU remained constant. The results are shown
in Table 3.3, where it is reported the BLEU score for each context size, the
variations of the recurrent neural network language models regarding their
corresponding n-gram language model and the variation percentage. These
values are computed in a similar way than before, using now the BLEU score:

V ar(BLEU1, BLEU2) = BLEU2 −BLEU1 (3.3)

%V ar(BLEU1, BLEU2) = 100 · BLEU2 −BLEU1

BLEU1
(3.4)

As before, we set as BLEU1 the one provided by the n-gram language
model and as BLEU2 that provided by the neural network language model
or the interpolation between models.

Development Test
Language model Order BLEU Var. %Var. BLEU Var. %Var.

N -gram

2 89.64 - - 86.98 - -
3 90.11 - - 88.27 - -
4 91.01 - - 89.39 - -
5 91.01 - - 89.36 - -
2 91.19 1.55 1.73 91.04 4.06 4.67

Recurrent 3 91.23 1.12 1.24 89.57 1.3 1.47
neural network 4 91.01 0 0 89.85 0.46 0.38

5 91.36 0.35 - 90.79 0.46 0.51
2 90.25 0.61 0.68 90.20 3.22 3.70

Interpolation 3 91.11 1.00 1.11 89.40 1.13 1.28
of models 4 91.34 0.33 0.36 90.61 1.22 1.36

5 91.68 0.67 0.73 90.28 0.92 1.03

Table 3.3: Tourist task BLEU scores for each language model and both cor-
pora. It is also reported the variations of the neural-network-based language
models with regard their corresponding n-gram language model, with the
same context size.

Once we confirmed that the n-gram model interpolation with the RNNLM
outperformed the baseline system, we decided to enlarge the size of the con-
text computed by the neural network. For doing that, we rescored once
again the best set of sentences (provided in this case by the 5-gram language
model), variating the backpropagation through time steps. The results are

54



Chapter 3 3.2. Tourist task

shown in Figure 3.3. The best scores were provided by a context of 7 words.
From here, if the context size is increased, the BLEU score is slightly reduced.

 89

 89.5

 90

 90.5

 91

 91.5

 92

 92.5

 5  6  7  8  9  10  20

B
LE

U

BPTT steps

BLEU of development corpus from Tourist task

Interpolated model
5−gram baseline model

 89

 89.5

 90

 90.5

 91

 91.5

 92

 92.5

 5  6  7  8  9  10  20

B
LE

U

BPTT steps

BLEU of test corpus from Tourist task

Interpolated model
5−gram baseline model

Figure 3.3: BLEU of the Tourist task, for development and test corpora,
with larger contexts of the recurrent neural network language models. The
interpolation was performed between the 5-gram language model and the
neural network trained with the shown backpropagation through time steps.

55



3.3. Xerox task Chapter 3

3.3. Xerox task

3.3.1. Overview
This task consisted in the translation of sentences extracted from the

user manuals of Xerox printers. The partitions were created in a similar
way to the partitions of the tourist task. We translated from English to
Spanish. Although it still consisted in a small task, it was much larger than
the previous one. Table 3.4 shows the information related to the partitions.

Spanish English

Training
Sentences 55 675

Running words 746 955 661 639
Vocabulary 17 148 14 510

Development Sentences 1 012
Running words 15 952 14 279

Test Sentences 1 125
Running words 10 084 8 348

Table 3.4: Xerox corpora statistics: number of sentences, words and vocab-
ulary size for each one of the three corpora, training, development and test,
and for both languages.

3.3.2. Results
We found that the best network architecture had 400 hidden layer units

and 200 classes. Here the class clustering of the words was not indispens-
able: it was possible to train the network with no classes, although it was a
really slow process and, as before, there was no significant improvement with
respect to the use of classes.

Perplexity

Table 3.5 shows the perplexity of the different language models for this
task, with different context sizes. As before, it is reported the variation of
the perplexity with regard to the n-gram baseline system and the variation
percentage, computed according Equations 3.1 and 3.2. As we can see,
there was a big difference between the use of bigrams and higher order n-
gram models. Anyway, the improvement of higher order n-grams reached
a maximum with trigrams and neither 4-grams nor 5-grams were capable

56



Chapter 3 3.3. Xerox task

to reduce this perplexity. Meanwhile, recurrent neural network language
models by themselves could only enhance the perplexity of contexts of size
2. If they gazed at more words, their perplexities were worse than the n-
gram models ones. The greater perplexity reduction was reached by the
interpolation between models: we found that the best result was obtained
with an interpolation factor λ = 0.3175. With this technique, the perplexity
of the task was reduced between a 21% and a 52%.

Language model Order Perplexity Variation % Variation

N -gram

2 46.9 - -
3 21.7 - -
4 21.7 - -
5 21.7 - -
2 38.59 -8.31 -17.71

Recurrent 3 36.08 14.38 +66.26
neural network 4 34.75 13.05 +60.01

5 32.01 10.31 +47.51

Interpolation of models

2 33.32 -13.58 -28.96
3 16.96 -4.74 -21.84
4 12.15 -9.55 -42.40
5 10.41 -11.29 -52.03

Table 3.5: Xerox task perplexities for the development and test corpora and
the variation percentages with respect the n-gram baseline system with the
same context size.

It is remarkable that the best perplexity scores were obtained using the
Witten-Bell smoothing technique on the n-grams which are interpolated with
the network. The differences in the perplexities of the models with both
different smoothing techniques are shown in Figure 3.4 and they were around
the 15% of the perplexity value.

57



3.3. Xerox task Chapter 3

 67

 68

 69

 70

 71

 72

 73

 74

 2  3  4  5

B
LE

U

n−gram order / BPTT steps

BLEU of Xerox task

BLEU  with Witten−Bell smoothing
BLEU with Kneser−Ney smoothing

BLEU of the baseline system (n−grams)

Figure 3.4: Perplexity of the development corpus from Xerox task using
different smoothing techniques on n-gram language models which are in-
terpolated with the recurrent neural network language model: Witten-Bell
smoothing and Kneser-Ney smoothing.

BLEU

BLEU scores provided by the baseline system were not surpassed by the
recurrent neural network model, excepting the 2-words context, where the
improvement of the network model was 0.46 points in the development cor-
pus and bigger than 1 point in the test corpus. The rest of experimentations
produced poor results for the network system: the best values were obtained
using a context of 5 words. Here, BLEU score of the test corpus was im-
proved by 0.3 points. Considering that we came from a model with lower
perplexity, it is positive that the network was able to overcome this gap and
it performed an acceptable rescoring result.

Now, we will focus on the interpolation between models: this system had
a lower perplexity than the n-gram model, thus it is reasonable to expect
some improvement. With models of order 2 and 3, the network enhanced the
n-gram scores, for both corpora, development and test. The gain of these

58



Chapter 3 3.3. Xerox task

models was around 0.6 points, except for the case of trigrams, where this
value fell to 0.1. If we move to higher order models, the enhancement of the
models was much higher: for the models of order 4 and 5 improvements of
2.61 and 2.89 points respectively were reached for the development set. By its
side, there was also an important enhancement of the test set score: 0.92 in
case of 4-order models and 1.54 for 5-order models. The results, BLEU score
and the enhancement with respect the n-gram system for both development
and test corpora, are shown in Table 3.6 and they are computed following
again Equations 3.3 and 3.4.

Development Test
Language model Order BLEU Var. %Var. BLEU Var. %Var.

N -gram

2 67.24 - 53.11 - -
3 70.13 - - 55.91 - -
4 69.92 - - 56.72 - -
5 70.42 - - 56.34 - -
2 67.70 0.46 0.68 54.13 1.02 1.92

Recurrent 3 69.30 -0.83 -1.18 55.50 -0.41 -0.73
neural network 4 69.62 -0.3 -0.43 56.38 -0.34 -0.60

5 70.20 -0.22 -0.31 56.64 0.3 0.53
2 67.84 0.6 0.89 53.74 0.63 1.19

Interpolation 3 70.68 0.55 0.78 56.01 0.1 0.17
of models 4 72.53 2.61 3.73 57.64 0.92 1.62

5 73.31 2.89 4.10 57.88 1.54 2.73

Table 3.6: Xerox task BLEU scores for each language model and both cor-
pora. It is also reported the variations of the neural-network-based language
models with respect their corresponding n-gram language model, with the
same context size.

As well as in the perplexity evaluation, the differences between the n-gram
smoothing technique were tested. Using the BLEU metric, the Witten-Bell
smoothing performed also better than the Kneser-Ney smoothing. The re-
sults for the development set of the different smoothing techniques are shown
in Figure 3.5. It can be seen that, although there were no big differences in
low order models, as we increase the order of the model, these differences
were larger too, with a difference greater than 2 BLEU points in the case of
a context of size 5.

59



3.3. Xerox task Chapter 3

 67

 68

 69

 70

 71

 72

 73

 74

 2  3  4  5

B
LE

U

n−gram order / BPTT steps

BLEU of Xerox task

BLEU  with Witten−Bell smoothing
BLEU with Kneser−Ney smoothing

BLEU of the baseline system (n−grams)

Figure 3.5: BLEU of the development set from the Xerox task using different
smoothing techniques on the n-gram language models which are interpolated
with the recurrent neural network language model: Witten-Bell smoothing
and Kneser-Ney smoothing.

As before, we increased the context size of the RNN models. We used the
experiment with the best result (models interpolation, n-gram order equal to
5), and, from here, we increased the context size. The results are shown in
Figure 3.6. These results were similar to those obtained in the previous task:
the score of the task rose slightly as we use greater context, but for a short
time: from 6 steps back in time until 9, the results lightly outperformed the
lower context results. From here, there was produced a little degradation of
the score, as the context size was increased.

60



Chapter 3 3.3. Xerox task

 70

 70.5

 71

 71.5

 72

 72.5

 73

 73.5

 74

 5  6  7  8  9  10  20

B
LE

U

BPTT steps

BLEU of development corpus from Xerox task

Interpolated model
5−gram baseline model

 56

 56.5

 57

 57.5

 58

 58.5

 5  6  7  8  9  10  20

B
LE

U

BPTT steps

BLEU of test corpus from Xerox task

Interpolated model
5−gram baseline model

Figure 3.6: BLEU of the Xerox task, for the development and test corpora,
with larger contexts of the recurrent neural network language models. The
interpolation was performed between the 5-gram language model and the
neural network trained with the corresponding backpropagation through time
steps. 61



3.4. Europarl task Chapter 3

3.4. Europarl task

3.4.1. Overview
This parallel corpus was extracted from the proceedings of the European

Parliament. This was a real task, significantly greater than both previous
tasks. It is remarkable that the corpus used in the experiments was a bounded
version of the complete one: the sentences were truncated to a size of 40
words. Despite this, the corpus was still large and complex. As in the
previous task, we translated from English to Spanish. The development and
test sets consisted in a collection of news articles related to the Parliament
from the years 2012 and 2013, respectively. The statistics of this corpus can
be seen in Table 3.7

Spanish English

Training
Sentences 1 547 596

Running words 34.0M 33.1M
Vocabulary 146 292 96 745

Development Sentences 3 003
Running words 78 814 72 954

Test Sentences 3 000
Running words 70 383 64 808

Table 3.7: Europarl corpora statistics: number of sentences, words and vo-
cabulary size for each one of the three corpora, training, development and
test, and for both languages.

3.4.2. Results
The best network architecture found consisted in 400 hidden units and

400 classes. With a task of these dimensions, it was necessary to use the
classes improvement in order to speed up the training process. Even so, this
training process was slow: the average training time of the network drew
near the 120 hours.

Perplexity

As it can be expected, the perplexity of the task was much greater than
the previous ones. We found that the recurrent neural networks by them-
selves could not lower the n-gram perplexity. Except for the case of order

62



Chapter 3 3.4. Europarl task

2, the rest of neural networks produced larger perplexity values than the n-
gram language models of respective order. These differences were not large
(±10%), but they did not produce any a priori sign of improvement of the
translations.

Nevertheless, with the interpolation between n-gram models and the neu-
ral networks, larger enhancements were reached: the perplexity fell more
than a 30% in all cases. We found that the λ value which resulted in a
lower perplexity is λ = 0.7. The different perplexities of this task, for both
development and test corpora, the perplexity variation and the variation
percentage of the neural network language models with regard the n-gram
baseline system, computed again according Equations 3.1 and 3.2, are shown
in Table 3.8.

Language model Order Perplexity Variation % Variation

N -gram

2 296.4 - -
3 253.3 - -
4 243.8 - -
5 243.8 - -
2 265.10 -31.3 -10.56

Recurrent 3 265.93 +12.63 +4.99
neural network 4 265.54 +21.74 +8.92

5 262.32 +18.72 +7.60
2 185.83 -110.57 -37.30

Interpolation 3 174.86 -78.44 -30.97
of models 4 170.49 -73.71 -30.01

5 168.61 -75.19 -33.49

Table 3.8: Europarl task perplexities for the development and test corpora
and the variation percentages with respect the n-gram baseline system with
the same context size.

BLEU

Despite that the perplexity of the recurrent neural network language mod-
els was higher than the n-gram perplexity, the first approach yielded better
results than the latter, both in development and test experiments: there were
improvements from 0.72 up to 1.74 BLEU points. The enhancements of the
interpolation between models were even larger: they rise up to 1.82 points
in the development experiment and 1.67 in the test experiment. Since the

63



3.4. Europarl task Chapter 3

BLEU scores were lower than in the previous experiments but the improve-
ments provided by the recurrent neural network language model were similar
(between 1 and 2 points), in this experiment the improvement percentages
were greater: they rose up to 8.25% for the development corpus and up to
8.99% for the test set. The results of the experimentation are shown in Ta-
ble 3.9. It is reported the BLEU score obtained by the different language
models and the BLEU variation of the neural network language models with
respect the n-gram laguage models and the percentage that this variation
represents with respect the n-gram language model. As in previous sections,
these results are computed following Equations 3.3 and 3.4.

Development Test
Language model Order BLEU Var. %Var. BLEU Var. %Var.

N -gram

2 18.62 - - 15.59 - -
3 22.14 - - 18.75 - -
4 22.27 - - 18.83 - -
5 22.07 - - 18.57 - -
2 19.53 0.91 4.88 16.35 0.76 4.87

Recurrent 3 22.86 0.72 3.25 19.53 0.78 4.16
neural network 4 23.69 1.42 6.37 20.08 1.25 6.64

5 23.81 1.74 7.88 20.11 1.54 8.29
2 19.42 0.80 4.29 16.36 0.77 4.94

Interpolation 3 23.26 1.12 5.06 19.93 1.18 6.29
of models 4 23.97 1.70 7.63 20.35 1.52 8.07

5 23.89 1.82 8.25 20.24 1.67 8.99

Table 3.9: Europarl task BLEU scores for each language model and both
corpora. It is also reported the variations of the neural-network-based lan-
guage models with respect their corresponding n-gram language model, with
the same context size.

As we increased the size of the context, we could see no further improve-
ments. As Figure 3.7 shows, for the development set, there was a minimum
rise of the BLEU for 8 steps back in time. The result for the test set, with
8 steps back in time, was lower than the result of a context of 4 steps. The
best test result was obtained with 7 steps, but in this case, the performance
for the development set fell from the best result. In conclusion, we could
determine that the best context size for this task is 4 steps back in time. It
should be mentioned that, as before, these results were computed based on
the best previous result, i.e. using the recurrent netural network language
model interpolated with a 4-gram language model.

64



Chapter 3 3.4. Europarl task

 21.5

 22

 22.5

 23

 23.5

 24

 24.5

 25

 4  6  7  8  9  10  20

B
LE

U

BPTT steps

BLEU of development corpus from Europarl task

Interpolated model
5−gram baseline model

 18

 18.5

 19

 19.5

 20

 20.5

 21

 4  6  7  8  9  10  20

B
LE

U

BPTT steps

BLEU of test corpus from Europarl task

Interpolated model
5−gram baseline model

Figure 3.7: Europarl task BLEU scores for each language model and both
corpora. It is also reported the variations of the neural-network-based lan-
guage models with regard their corresponding n-gram language model, with
the same context size.

65



Chapter 4

Conclusions and Future Work

4.1. Conclusions

We carried out a rescoring experimentation with satisfactory results: us-
ing the recurrent neural network language model solely, occurred a significant
improvement in two of the three tasks, Tourist and Europarl. These models
overcome the n-gram language models and offer, in these two tasks an av-
erage improvement of the BLEU score of 1.18 points. In the medium sized
task, Xerox, this model lowered its performance, being unable to generally
reduce the perplexity and increase the BLEU of the task.

The results of the interpolation between this model and n-gram language
models were even better: BLEU and per plexity were enhanced in all cases,
yielding the maximum improvements reached in this experimentation. Ex-
cepting the first task, where the BLEU score is extremely high (using both
n-gram and recurrent neural network models) and the improvements were
not excessively large, the enhancements of the interpolation between models
were greater than 2.5 points in the case of the Xerox task and greater than
1.5 in the Europarl task.

We also tested the enlargement of the size of the context of the neural
network language models. The results were similar to the shown in [Mik12],
where the perplexity is compared. Although in this work the main metric
used is BLEU, we can appreciate a relationship between both results. Our
best results were achieved using contexts of 4-5 words. The system could
enhance a little its performance using contexts of 7-8 words, but, from there,
no further improvements were obtained. It can be concluded that context of
4-5 words should be enough to obtain good results.

66



Chapter 4 4.2. Future work

It is remarkable that the improvements, since we used contexts of the
same size for our experiments, are mostly due to the capability of the network
to capture similarity between words. However, the neural network language
model is able to manage larger contexts. We could have taken advantage of
that if the N -best lists used in the rescoring process, were generated using
higher order models. It is likely that this could lead to even better results.
In spite of that, the theoretical advantages of the neural network language
models were confirmed empirically with these experiments; giving to the fu-
ture researches done in this field more guarantees.

4.2. Future work

4.2.1. Integration with Thot

The experiments carried out, showed that the neural network language
models improved the quality of the translations provided by Thot. Hence,
the next natural step would be to integrate this language model into the Thot
decoder. In this work, we performed the integration via N -best lists rescor-
ing. In the future, the neural network language model should be coupled into
the Thot decoder, offering its features in translation runtime. In addition, it
should preserve the Thot feature of estimating its models incrementally. It
is planned to develop the integration in a near future.

4.2.2. Parallelization of the Recurrent Neural Network
Toolkit

The training of the recurrent neural network is very costly, for instance,
the training of the network used in the Europarl task with 8 steps back in
time lasted for almost 160 hours. As it is pointed in [Mik12], it is neces-
sary to parallelize the implementation of the neural network toolkit. Bengio
et al. proposed a parallel implementation for their feedforward neural net-
work model [BDVC03], hence the future work would consist in extending
this parallel training to the recurrent neural network architecture and the
backpropagation through time learning algorithm.

67



4.2. Future work Chapter 4

4.2.3. Bidirectional Recurrent Neural Networks
The bidirectional recurrent neural networks are an extension of recurrent

neural networks, which try to take advantage of all available input data,
both past and future information [SP97]. For achieving this goal, the state
neurons of the recurrent neural network are split in two parts: one which is
responsible of the positive time direction and another which is responsible of
the negative time direction. The training algorithms of these networks are
the same as the regular RNN, with minor modifications. Thus, the idea of
this approach is to predict the next word based on previous words and the
next words to come.

The utility of this bidirectional recurrent neural networks has been proved
in the handwritten text recognition taks [GLF+09], where this approach over-
comes the performance of classical approaches, such as Hidden Markov Mod-
els. It seems reasonable to think that this result could be extended to the
machine translation task: if the predictions of the language model are based
both in past and future history, it is likely that these predictions become
more accurate than the ones which are based only on the past history.

68



Chapter 5

Bibliography

[BDVC03] Y. Bengio, R. Ducharme, P. Vincent, and C.Jauvin. A neu-
ral probabilistic language model. Machine Learning Research,
3:1137–1155, February 2003.

[BM00] E. Brill and R. C. Moore. An improved error model for noisy
channel spelling correction. In Proceedings of the 38th Annual
Meeting of the Association for Computational Linguistics, Hong
Kong, 2000.

[BPP+92] P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, J. C. Lai, and
R. L. Mercer. An estimate of an upper bound for the entropy
of english. Comput. Linguist., 18(1):31–40, March 1992.

[BPPM93] P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L.
Mercer. The mathematics of statistical machine translation:
Parameter estimation. Computational Linguistics, 19(2):263–
311, 1993.

[Cas14] F. Casacuberta. Advances in neural networks:
Recurrent neural networks. University lecture:
http://users.dsic.upv.es/~fcn/Students/ann/t3ann2p.pdf,
2014.

[CG98] F. Chen and J. Goodman. An empirical study of smoothing
techniques for language modeling. Technical Report TR-10-98,
Computer Science Group, Harvard U., Cambridge, MA, 1998.

[Fed08] M. Federico. Statistical machine translation.
part iv: Mt evaluation. University lecture:

69



Chapter 5

http://medialab.di.unipi.it/web/SMT/SMT-0508-part-4-
pp.pdf, 2008.

[GLF+09] A. Graves, M. Liwicki, S. Fern’andez, R. Bertolami, H. Bunke,
and J. Schmidhuber. A novel connectionist system for uncon-
strained handwriting recognition. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 31(5):855–868, May
2009.

[Goo01] J. Goodman. Classes for fast maximum entropy training. In
Proceedings ICASSP, pages 561–564, 2001.

[Hut95] W.J. Hutchins. Concise history of the language sciences: from
the Sumerians to the cognitivists, chapter Machine Translation:
A brief history, pages 431–445. Oxford: Pergamon Press, 1995.

[Kni99] K. Knight. A Statistical MT Tutorial Workbook. Unpublished,
1999.

[MDP+11] T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Èernocký.
Strategies for training large scale neural network language mod-
els. In Proceedings of the Automatic Speech Recognition and
Understanding: Language Modeling and ASR Systems, pages
196–201, Waikoloa, HI, 2011.

[Mik12] T. Mikolov. Statistical Language Models based on Neural Net-
works. PhD thesis, Brno University of Technology, 2012.

[MKB+11] T. Mikolov, S. Kombrink, L. Burget, J. Èernocký, and S. Khu-
danpur. Extensions of recurrent neural network language model.
In Proceedings of the 2011 IEEE International Conference on
Acoustics, Speech, and Signal Processing, pages 5528–5531,
Prague, Czech Republic, 2011.

[MKD+11a] T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and J. Èer-
nocký. Empirical evaluation and combination of advanced lan-
guage modeling techniques. In Proceedings of the 12th Annual
Conference of the International Speech Communication Associ-
ation, pages 612–615, Florence, Italy, 2011.

[MKD+11b] T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and J. Èer-
nocký. Rnnlm - recurrent neural network language modeling
toolkit. In Automatic Speech Recognition and Understanding:
Demo Session, Waikoloa, HI, 2011.

70



Chapter 5

[NM65] J. A. Nelder and R. Mead. A simplex method for function
minimization. The Computer Journal, 7(4):308–313, January
1965.

[OM11] D. Ortiz-Martínez. Advances in Fully-Automatic and Interac-
tive Phrase-Based Statistical Machine Translation. PhD thesis,
Universidad Politécnica de Valencia, 2011.

[OMC14] D. Ortiz-Martínez and F. Casacuberta. The new thot toolkit for
fully automatic and interactive statistical machine translation.
In 14th Annual Meeting of the European Association for Compu-
tational Linguistics: System Demonstrations, Gothenburg, Swe-
den, April 2014.

[PRWZ02] K. Papieni, S. Roukos, T. Ward, and W. Zhu. Bleu: a method
for automatic evaluation of machine translation. In Proceedings
of the 40th Annual Meeting of the Association for Computa-
tional Linguistics, pages 311–318, Philadelphia, PE, July 2002.

[SDS+06] M. Snover, B. Derr, R. Schwartz, L. Micciulla, and J. Makhoul.
A study of translation edit rate with targeted human annota-
tion. In Conferences of the Association for Machine Translation
in the Americas, pages 223–231, Cambridge, MA, 2006.

[SP97] M. Schuster and K. K. Paliwal. Bidirectional recurrent
neural networks. IEEE Transactions on Signal Processing,
45(11):2673–2681, November 1997.

[Sto02] Andreas Stolcke. Srilm - an extensible language modeling
toolkit. pages 901–904, 2002.

[ZON02] R. Zens, F. J. Och, and H. Ney. Phrase-based statistical machine
translation. In Advances in artificial intelligence. 25. Annual
German Conference on AI, volume 2479 of LNCS, pages 18–32.
Springer Verlag, September 2002.

71


	List of Tables
	List of Figures
	Introduction
	Natural Language Processing
	Machine Translation
	Rule-Based Systems
	Corpus-Based Systems

	Statistical Machine Translation

	Statistical Models for Machine Translation 
	Language Models
	n-gram Models
	Smoothing
	Neural Network Language Models

	Translation Models
	Single-Word Alignment Models
	Multi-Word Alignment Models

	Evaluation
	Perplexity
	BLEU
	Other evaluation measures

	Parameter Estimation
	Expectation-Maximization algorithm
	Backpropagation Through Time
	Downhill Simplex


	Experiments
	Experimentation Framework
	Software
	Developed Experiment

	Tourist task
	Overview
	Results

	Xerox task
	Overview
	Results

	Europarl task
	Overview
	Results


	Conclusions and Future Work
	Conclusions
	Future work
	Integration with Thot
	Parallelization of the Recurrent Neural Network Toolkit
	Bidirectional Recurrent Neural Networks


	Bibliography

