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GENERIC LINEAR SECTIONS OF COMPLEX HYPERSURFACES
AND MONOMIAL IDEALS

CARLES BIVIA-AUSINA

ABSTRACT. Let f: (C" 0) — (C,0) be an analytic function germ. Under the hypothesis
that f is Newton non-degenerate, we compute the p*-sequence of f in terms of the Newton
polyhedron of f. This sequence was defined by Teissier in order to characterize the Whitney
equisingularity of deformations of complex hypersurfaces.

1. INTRODUCTION

Let f: (C" 0) — (C,0) be an analytic function germ with an isolated singularity at the
origin and let us denote by p(f) the Milnor number of f. Teissier proved in [21, p. 299]
that, given an integer i € {0,1,...,n}, the Milnor number of the restriction of f to a generic
plane in C" of dimension i only depends on f and i. Then, Teissier defined in [21] the
analytic invariant

(1) W () = (™) 10 E)s D), 1O (),

where 1 ( f) denotes the Milnor number of the restriction of f to a generic plane of dimension
i passing through the origin in C", for i = 0, 1,...,n. The vector given in (1) is also known as
the p*-sequence of f. We observe that u™ (f) = u(f), p™M(f) = ord(f) — 1 and p©(f) = 1,
where ord(f) denotes the order or multiplicity of f at the origin, that is, the maximum of
those » > 1 such that f € m".

It was initially conjectured by Teissier [21] that the topological triviality of a given analytic
deformation f; : (C",0) — (C,0) forces the sequence p*(f;) to be constant. But Briancon
and Speder [5] found an example of a topologically trivial deformation f; : (C3,0) — (C,0)
such that p®(f,) is not constant. By the results of Teissier [21] and Briancon-Speder [6],
the constancy of p*(f;) is equivalent to the Whitney equisingularity of the deformation.

Let us denote by O,, the ring of analytic function germs (C",0) — C and by m,,, or simply
by m if no confusion arises, the maximal ideal of O,,. Let J(f) be the Jacobian ideal of f,
that is J(f) is the ideal of O, generated by g—xfl, e %. If I1,...,1I, are ideals of finite
colength of O, then we denote by e([y,...,I,) the mixed multiplicity of I1,..., I, in the
sense of Teissier and Risler (we refer to [11, §17], [18], [20] or [21, p. 302] for definitions and
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basic results about mixed multiplicities of ideals). Teissier showed in [21] that

(2) :u(i)(f):e(mnv'"7m737i](f)7"'7‘](fl)7

Vv VvV
n—i 7

for all 7 =0,1,...,n. Therefore, the p*-sequence admits also an algebraic approach.

Kouchnirenko obtained in [12, Théoreme I] a formula for the Milnor number of any function
f with an isolated singularity at the origin in terms of the Newton polyhedron I', (f) of f,
when f is Newton non-degenerate. As pointed out by Mima [16] (see also [17]), the main
difficulty encountered in the attempt of computing p*( f) using Kouchnirenko’s result is that
the restriction of a Newton non-degenerate function f to a generic ¢-plane in C" passing
through the origin is not Newton non-degenerate in general, for i > 2. Let f : (C3,0) —
(C,0) be a Newton non-degenerate function with an isolated singularity at the origin and let
g : (C?0) — (C,0) be the function given by g(z,y) = f(z,y,ax + by), for generic a,b € C.
Then Mima proved in [16] a formula expressed in terms of Newton numbers for the difference
p® — 1@ where v? is the Newton number of I'; (g) and pu® = @ (f) (see [16] for details).

The main result of this paper shows an expression for the whole sequence p*(f) in terms
of I'y (f) under the condition that f is Newton non-degenerate. This result is based on
the formula proven by the author in [3] for the Milnor number of an isolated complete
intersection singularity (fi,...,f,) @ (C*,0) — (CP,0) via the Newton polyhedra of the
component functions f;. We also deduce some consequences that lead to find examples
of deformations f, : (C3,0) — (C,0) with constant Milnor number such that u®(f,) is
not constant. These examples may contribute to the better understanding of classification
problems in metric singularity theory (see [2, §4]) and questions like the Zariski’s multiplicity
conjecture (see [8]).

2. MAIN RESULT

If I is an ideal of O,, of finite colength then we denote by e(I) the Samuel multiplicity of /
(see [7, p. 278] or [11, §11]) and by I the integral closure of I. We recall that if I is generated
by n elements, say g1, ..., gn, then e(I) = dim¢ O,,/I and in turn this number is equal to the
geometric degree of the map (g1,...,g,) : (C",0) — (C",0) (see [15, p. 258]). As mentioned
in the introduction, the mixed multiplicity of n ideals I3, ..., I, of finite colength in O, is
denoted by e(Iy, ..., I,).

Let us suppose that the residue field k& = R/m is infinite. Let Iy,..., I, be ideals of
R and let a;,...,a;s, be a generating system of [;, where s; > 1, for ¢ = 1,...,n. We
say that a property holds for sufficiently general elements of Iy & --- & I, if there exists a
non-empty Zariski-open set U in k°, where s = s; + --- 4+ s,, such that the said property
holds for all elements (¢1,...,9,) € Iy ® - -+ & I, for which g; = Zj Wijaij, 1 =1,...,n, with
(Uily - ey Ulsyy e ooy Uy - - -, Uns, ) belonging to U.

We recall that e(ly,...,1,) = e(g1,...,9,), where (g1,...,9,) is a sufficiently general
element of I} & --- @ I,,, by virtue of a result of Rees (see [11, §17] or [18]).
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Let Iy,..., I be ideals of O, of finite colength, for some r < n. Let (i1,...,i,) € Z%,
such that 4; + --- 4+ 4. = n. Then e;, ; (I1,...,1,) will denote the mixed multiplicity
e(fv,...,Ih,..., Ir,..., 1) where I; is repeated ¢; times, for all j =1,...,r. If I, J are two
ideals of finite colength of O,,, then we denote by e;(I, J) the mixed multiplicity e,,—; (1, J),
for all i € {0,1,...,n}. Then we can restate relation (2) by pu@(f) = e;(my, J(f)), for all
1=0,1,...,n.

Let us fix coordinates zy,...,z, in C* and let k = (ky,...,k,) € Z}. We denote the
monomial 5 - zF» by 2%, If h € O, and h = >, axa® is the Taylor expansion of h around
the origin, then we denote by supp(h) the support of h, that is, supp(h) = {k : a # 0}.
If h =0, then we set supp(h) = (). The Newton polyhedron of h, denoted by I'; (h), is the
convex hull of the set {k +v : k € supp(h),v € R} }.

Given a subset I C {1,...,n}, weset R} ={z € R" : x; =0, for all i ¢ I}. We denote
by h! the series obtained as the sum of all terms azx® with k& € R?; if no such terms exist,
then we set bt = 0. We denote by O,, 1, or by O, the subring of O,, formed by the functions
h € O, depending only on the variables x; such that ¢ € I. If J is an ideal of O,,, then we
denote by J* the ideal of O, 1 generated by all the elements h', where h varies in J.

Let J be an ideal of O,, and let gy, ..., gs be a generating system of J. Then the Newton
polyhedron of J, that we denote by I' (), is defined as the convex hull of I'; (g1 )U- - -UI'; (gs).
It is easy to check that this definition does not depend on the given generating system of .J.
Moreover, we denote by I'(J) the union of the compact faces of I'y (J). Let P(.J) denote the
vector space of all polynomial functions h € Clxy,...,z,]| such that supp(h) C I'(J). We
remark that P(.J) is a finite-dimensional complex vector space.

If V is a finite-dimensional complex vector space, then we say that a given property is
generic in V' when there exists a Zariski-open set U C V such that any element uv € U
satisfies the said property.

Let F': (C x C",0) — (C,0) be an analytic map. Let us denote by f; the map (C",0) —
(C,0) such that f;(z) = F(t,z). Let us suppose that f; has an isolated singularity at the
origin, for all small enough t. We say that F' is a p*-constant deformation when p*(f;) does
not depend on t, for all small enough ¢. Maybe the following result is well-known for the
specialists, however we include a proof of it.

Lemma 2.1. Under the above setup, let us assume that the function f; has an isolated
singularity at the origin and that I'y(f;) does not depend on t, for all small enough t. If fy
1s Newton non-degenerate, then F' is p*-constant.

Proof. By [22, Theorem 3] it is known that F' is p*-constant if and only if

@ OF _ oF oF
ot ="\ or T 0w /)

where the bar denotes integral closure in O, and in this case m,, denotes the ideal of O,,
generated by xq,...,x,.
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Let us denote by I, the common Newton polyhedron of the functions f; and let I denote
the ideal of O,, ;1 generated by xlg—gi, o 7$n(§7}1' We observe that I'y (F) =T, (I) = Ry xI'y,
since the functions f; have the same Newton polyhedron. We remark that, in order to con-
struct the Newton polyhedron I' (I), we represent the exponent of a monomial t*z - . . 25
of On11 by (a, ky, ..., k,). Therefore the set of compact faces of I' () is equal to the set of
compact faces of {0} x I'y € Ry x R". Then the Newton non-degeneracy of F' only depends
on the monomials of the support of F' belonging to the compact faces of {0} x 'y C R x R™.
In particular, if A is a compact face of 'y and i € {1,...,n}, then

(432) .= 30)
Z@xi {0}xA 181’7; A.

Thus the function F is Newton non-degenerate and consequently I is equal to the monomial
ideal generated by all monomials in O, whose support belongs to I'; (F) (see [25], or [19]
for a more general result). Since I'y (f;) = 'y, for all ¢, the support of %—}; is contained in

I, (F). In particular, we have % € T and hence relation (3) holds. O

If J is a monomial ideal of O,,, the we denote by O(.J) the set of all analytic function germs
f:(C™0) — (C,0) with an isolated singularity at the origin such that I'; (f) = [';.(J).

Definition 2.2. Let J be an ideal of finite colength of O,,. Let i € {1,...,n — 1}, then we
define

(@) it =5 (17 etm

j=i
We also set ag(J, m) = e(J). We observe that a,,—1(J,m) = e,—1(J,m) = ord(J) (see Lemma
3.1) and that ay(J,m) = ey (J,m) + -+ + e,—1(J, m).

For i = 1,...,n, we define the i-th Newton number of J, that we denote by v (.J), as

Then we define
v (J) = W (), D), D), pO)),
where we set v(0)(J) = 1.
Theorem 2.3. Let J be a monomial ideal of finite colength, let f € O(J) and let i €
{0,1,...,n}. Then
(5) pO(f) = v9(J)
and equality holds if f is Newton non-degenerate.
Proof. 1t is well known that e(J) = n!V,, (R" T4 (J)), where V,, denotes the n-dimensional

volume (see for instance [23]). Then the case i = n arises directly from this equality and the
main theorem of Kouchnirenko in [12].
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Let us fix an index ¢ € {1,...,n —1}. If g : (C",0) — (CP,0) is an isolated complete
intersection singularity, then we denote the Milnor number of ¢ (in the sense of Hamm [10]
and Lé [13]) by u(g). By the definition of p*(f) and the definition of Milnor number of an
isolated complete intersection singularity [13] we have

(6) pIf) = ulf b, ),

where /; denotes a generic C-linear form, for all j = 1,...,i. We observe that I, (¢;) = I"y(m)
and therefore, by [3, Theorem 3.9] we conclude the inequality

(7) p(f) = v,

where v stands for the number

=Y (X T Gt} 0

s=i+1 IC{1,...,n}ritA4rip1=s
|I|=s T1yeeTit1221

We observe that

n—i
Z Crppgia (S, m) = Z ( Z Crirgrrirs (S, ,m))

riterip1=n i r=1 >rot-+rip1=n—r

i
T1yesTip1 221 T2y Tip1 21

:Z <€nr(J7m)'#{<7"27--->7"i+1) 62211r2+---+m1=n—r})
r=1

_ Z (" et - 5 (17} )etam) = atrm),

=i
Given a subset I C {1,...,n}, |I| = s, a similar computation leads to the equality
Z 6T17---7T¢+1(‘]I7m17'"aml) :ai(zjl,ml).

ri+Frip1=s
T1yeTit1 21

Hence

v = zn: (—1)”—8( > ai(JI,mI)) + (=)t = 0 ()

s=i+1 IC{1,...,n}
|T|=s

and the inequality (5) is proven. By [3, Theorem 3.9], equality holds in (7) if the map
(f,l1,...,¢;) is Newton non-degenerate in the sense of [3, Definition 3.8]. Concerning the
property of Newton non-degeneracy of maps, in this proof we will only use the genericity of
this condition (see [3, Lemma 6.11]).

Fori=1,...,n—1, we denote by P; the product vector space P(J) x P(m) x --- x P(m),
where P(m) is repeated ¢ times. Then we denote by A; the set of Newton non-degenerate
maps of P; and by A} the projection of A; onto P(J).

The Newton non-degeneracy condition of a map belonging to P; is a generic condition, by
[3, Lemma 6.11], for all i = 1,...,n—1. Then, there exists a Zariski open set U of P(J) such
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that U C A1N---NA/_, and h has an isolated singularity at the origin, for all h € U. Let us
consider an analytic deformation P : (C x C",0) — (C,0) such that, if p, : (C*,0) — (C,0)
denotes the map given by p,(z) = P(t,z), then

(1) py € U, for all t # 0;

(2) po = p(f),
where p(f) is the principal part of f. That is, if f = Y, axz* is the Taylor expansion of f
around the origin, then p(f) is the sum of all terms azz* such that k € I'(J).

Let us assume that f is Newton non-degenerate. Therefore P is a p*-constant deformation,
by Lemma 2.1. If ¢ # 0, the polynomial p, belongs to A} N---N Al _,, which implies that
w (py) = v*(J), by [3, Theorem 3.9] applied to (7). Hence p*(po) = u*(p(f)) = v*(J).

Let f' = f — p(f). By the definition of p(f), the support of f’ is contained in I'; (J)
and supp(f’) NT(J) = (). Let us consider the homotopy F : (C x C",0) — (C,0) given by
F, = p(f) 4+ tf'. This deformation is p*-constant, by Lemma 2.1. Then

w(f) = w(p(f))

and the result follows. O

3. SOME PARTICULAR CASES AND EXAMPLES

If J is an ideal of a local ring (R, m) of dimension n, then we denote by ord(J) the order
of J, that is, the maximum of those » > 0 such that J C m". In particular, if J is an ideal
of O, and I C {1,...,n}, I # 0, then ord(J) denotes the order of J* as an ideal of O, 1.

Lemma 3.1. Let (R,m) be a reqular local ring of dimension n such that the residue field
R/m is infinite. Let J be an ideal of R of finite colength. Then
en—1(J,m) = ord(J).

Proof. By [18] we have e,_1(J,m) = e(f,l1,...,0n_1), where (f,{1,...,¢,_1) is a sufficiently
general element of J @& m @ --- & m (see also [11, §17]). Therefore

enfl(‘]? m) = e(f7 gla cee 767171) = E(R//<f>>>

where R’ denotes the quotient ring R/{{y,...,¢,_1) and f is denotes the image of f in R'.
But ¢(R'/{f)) = ord(f), since R’ is regular and 1-dimensional. O

As an immediate application of Theorem 2.3 and Lemma 3.1 we obtain the following
result.

Corollary 3.2. Let J be a monomial ideal of O, of finite colength and let f € O(J). Then

(8) 1P (f) = en_a(J,m) + (n — 2)ord(J) — ( Z ord(JI)> +1

ot
©)  pm V) > (_1)"‘5( o (e(Thmh) 4 es_l(JI,mI))) + (=1)"!
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and equality holds in the above inequalities if f is Newton non-degenerate.

We remark that x™ 1 (f) has an important geometrical content in general via polar curves
(see [24, p. 270]) and the notion of Euler obstruction (see [14, p. 486]).

In the case n = 3, the right hand side of relations (8) and (9) coincide with v (.J) and in
this case we have

(10) v (J) = —ord(J12) — ord(J13) — ord(J12) + ord(J) + e(m, J, J) + 1.

The above expression leads to the following result, which helps in the task of finding
examples of p-constant deformations f; : (C3,0) — (C,0) that are not u®-constant.

Corollary 3.3. Let Jy and Jy be monomial ideals of finite colength of O3 such that
ord(Jo) = Y ord(J§ ) =ord()) = Y ord(SH).

1<i<j<3 1<i<j<3
Let us consider an analytic deformation f; : (C3,0) — (C,0) such that

(1) fi is Newton non-degenerate, for all t;
(2) T+ (fo) = T (o);
(3) T+ (fy) = T4 (J1), for all t # 0.
Then the deformation f, is not u® -constant if and only if e(m, Jo, Jo) > e(m, J1, Jy).

Proof. 1t is an immediate consequence of relation (10) and Corollary 3.2. U

Example 3.4. Let f; : (C3,0) — (C,0) be the analytic family of functions given by
(11) film,y,2) = 2% + ¢+ 2° + 2y” + 1352

Let us consider the ideals of O3 given by Jy = (2?48, 2% 297) and J; = Jy + (y°2). We
have I'y (fo) = I's(Jo) and Ty (f;) = Ty (J1), for all ¢ # 0. The family f; given in (11) is a
modification of the Briangon-Speder example [5], that is, we have added the term y® to this
example in order to have that the ideals Jy and J; have finite colength in Os.

It is clear that ord(Jy) = ord(J;) = 5 and

ord(Jél’Q}) = ord(Jl{l’Q}) =8
ord(Jél’s}) = ord(Ji{l’s}) =5
ord(J*) = ord(J{**) = 5.

The numbers e(m, Jy, Jy) and e(m, Jy, J;) can be computed effectively using the procedure
described in [4, p. 405] and the aid of Singular [9]. Thus we obtain that

e(m, Jo, Jo) = 40 e(m, Jy, J1) = 38.
Therefore, relation (10) gives
v (J) =28 v (Jy) = 26.
and then p®(fy) = 28 and pu®(f,) = 26, since f, is Newton non-degenerate, for all ¢.
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Example 3.5. [1, §4] Let us consider the analytic family f; : (C* 0) — (C,0) given by
fi(z,y,2) = 2% +y° + 22 + 2y’z + tady”

This family is g-constant but not p(®-constant. As indicated in [1], we have u(f;) = 166,
for all ¢, and

u®(fo) = 18 u@(f,) =17, for all t £ 0.
Let us consider the monomial ideals of O3 given by
JO = <x6vy57 2127 Iy3z> Jl = J() + <I3y2>.

We observe that ' (fy) = I's(Jo), T'+(f1) = T'(J1) and v(Jy) = v(J;1) = 166. Moreover
e(m, Jo, Jo) = 28 and e(m, Ji, J;) = 27, which imply that v (J;) = 18 and v?(J;) = 17,
by (10).

Example 3.6. Let us consider the monomial ideals Jy and J; of O3 given by

Jo = <$5,y7, 2157 $2y22> Ji=Jo+ <$y4>
We observe that v(Jy) = v(J;) = 206 and
e(m, Jo,Jo) =29 e(m, Jl,Jl) = 27.

Therefore v®(Jy) = 18 and v@(J;) = 16, by (10). This means that any deformation
fi : (C3,0) — (C,0) such that Ty (fo) = T4(Jo), T4 (fr) = T (J1), for all t # 0, and f; is

Newton non-degenerate, for all ¢, verifies that f; is p-constant but not u(®-constant.

Acknowledgement. The author wishes to express his gratitude to Prof. M.A.S. Ruas and
Prof. Melle-Hernandez for their helpful comments.
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