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GENERIC LINEAR SECTIONS OF COMPLEX HYPERSURFACES

AND MONOMIAL IDEALS

CARLES BIVIÀ-AUSINA

Abstract. Let f : (Cn, 0) → (C, 0) be an analytic function germ. Under the hypothesis
that f is Newton non-degenerate, we compute the µ∗-sequence of f in terms of the Newton
polyhedron of f . This sequence was defined by Teissier in order to characterize the Whitney
equisingularity of deformations of complex hypersurfaces.

1. Introduction

Let f : (Cn, 0) → (C, 0) be an analytic function germ with an isolated singularity at the

origin and let us denote by µ(f) the Milnor number of f . Teissier proved in [21, p. 299]

that, given an integer i ∈ {0, 1, . . . , n}, the Milnor number of the restriction of f to a generic

plane in Cn of dimension i only depends on f and i. Then, Teissier defined in [21] the

analytic invariant

(1) µ∗(f) =
(
µ(n)(f), µ(n−1)(f), . . . , µ(1)(f), µ(0)(f)

)
,

where µ(i)(f) denotes the Milnor number of the restriction of f to a generic plane of dimension

i passing through the origin in Cn, for i = 0, 1, . . . , n. The vector given in (1) is also known as

the µ∗-sequence of f . We observe that µ(n)(f) = µ(f), µ(1)(f) = ord(f)− 1 and µ(0)(f) = 1,

where ord(f) denotes the order or multiplicity of f at the origin, that is, the maximum of

those r > 1 such that f ∈ mr.

It was initially conjectured by Teissier [21] that the topological triviality of a given analytic

deformation ft : (Cn, 0) → (C, 0) forces the sequence µ∗(ft) to be constant. But Briançon

and Speder [5] found an example of a topologically trivial deformation ft : (C3, 0) → (C, 0)

such that µ(2)(ft) is not constant. By the results of Teissier [21] and Briançon-Speder [6],

the constancy of µ∗(ft) is equivalent to the Whitney equisingularity of the deformation.

Let us denote by On the ring of analytic function germs (Cn, 0) → C and by mn, or simply

by m if no confusion arises, the maximal ideal of On. Let J(f) be the Jacobian ideal of f ,

that is J(f) is the ideal of On generated by ∂f
∂x1

, . . . , ∂f
∂xn

. If I1, . . . , In are ideals of finite

colength of On, then we denote by e(I1, . . . , In) the mixed multiplicity of I1, . . . , In in the

sense of Teissier and Risler (we refer to [11, §17], [18], [20] or [21, p. 302] for definitions and
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2 CARLES BIVIÀ-AUSINA

basic results about mixed multiplicities of ideals). Teissier showed in [21] that

(2) µ(i)(f) = e
(
mn, . . . , mn︸ ︷︷ ︸

n−i

, J(f), . . . , J(f)︸ ︷︷ ︸
i

)
,

for all i = 0, 1, . . . , n. Therefore, the µ∗-sequence admits also an algebraic approach.

Kouchnirenko obtained in [12, Théorème I] a formula for the Milnor number of any function

f with an isolated singularity at the origin in terms of the Newton polyhedron Γ+(f) of f ,

when f is Newton non-degenerate. As pointed out by Mima [16] (see also [17]), the main

difficulty encountered in the attempt of computing µ∗(f) using Kouchnirenko’s result is that

the restriction of a Newton non-degenerate function f to a generic i-plane in Cn passing

through the origin is not Newton non-degenerate in general, for i > 2. Let f : (C3, 0) →
(C, 0) be a Newton non-degenerate function with an isolated singularity at the origin and let

g : (C2, 0) → (C, 0) be the function given by g(x, y) = f(x, y, ax + by), for generic a, b ∈ C.

Then Mima proved in [16] a formula expressed in terms of Newton numbers for the difference

µ(2)−ν(2), where ν(2) is the Newton number of Γ+(g) and µ(2) = µ(2)(f) (see [16] for details).

The main result of this paper shows an expression for the whole sequence µ∗(f) in terms

of Γ+(f) under the condition that f is Newton non-degenerate. This result is based on

the formula proven by the author in [3] for the Milnor number of an isolated complete

intersection singularity (f1, . . . , fp) : (Cn, 0) → (Cp, 0) via the Newton polyhedra of the

component functions fi. We also deduce some consequences that lead to find examples

of deformations ft : (C3, 0) → (C, 0) with constant Milnor number such that µ(2)(ft) is

not constant. These examples may contribute to the better understanding of classification

problems in metric singularity theory (see [2, §4]) and questions like the Zariski’s multiplicity

conjecture (see [8]).

2. Main result

If I is an ideal of On of finite colength then we denote by e(I) the Samuel multiplicity of I

(see [7, p. 278] or [11, §11]) and by I the integral closure of I. We recall that if I is generated

by n elements, say g1, . . . , gn, then e(I) = dimCOn/I and in turn this number is equal to the

geometric degree of the map (g1, . . . , gn) : (Cn, 0) → (Cn, 0) (see [15, p. 258]). As mentioned

in the introduction, the mixed multiplicity of n ideals I1, . . . , In of finite colength in On is

denoted by e(I1, . . . , In).

Let us suppose that the residue field k = R/m is infinite. Let I1, . . . , In be ideals of

R and let ai1, . . . , aisi
be a generating system of Ii, where si > 1, for i = 1, . . . , n. We

say that a property holds for sufficiently general elements of I1 ⊕ · · · ⊕ In if there exists a

non-empty Zariski-open set U in ks, where s = s1 + · · · + sn, such that the said property

holds for all elements (g1, . . . , gn) ∈ I1 ⊕ · · · ⊕ In for which gi =
∑

j uijaij, i = 1, . . . , n, with

(u11, . . . , u1s1 , . . . , un1, . . . , unsn) belonging to U .

We recall that e(I1, . . . , In) = e(g1, . . . , gn), where (g1, . . . , gn) is a sufficiently general

element of I1 ⊕ · · · ⊕ In, by virtue of a result of Rees (see [11, §17] or [18]).
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Let I1, . . . , Ir be ideals of On of finite colength, for some r 6 n. Let (i1, . . . , ir) ∈ Zr
>0

such that i1 + · · · + ir = n. Then ei1,...,ir(I1, . . . , Ir) will denote the mixed multiplicity

e(I1, . . . , I1, . . . , Ir, . . . , Ir) where Ij is repeated ij times, for all j = 1, . . . , r. If I, J are two

ideals of finite colength of On, then we denote by ei(I, J) the mixed multiplicity en−i,i(I, J),

for all i ∈ {0, 1, . . . , n}. Then we can restate relation (2) by µ(i)(f) = ei(mn, J(f)), for all

i = 0, 1, . . . , n.

Let us fix coordinates x1, . . . , xn in Cn and let k = (k1, . . . , kn) ∈ Zn
+. We denote the

monomial xk1
1 · · ·xkn

n by xk. If h ∈ On and h =
∑

k akx
k is the Taylor expansion of h around

the origin, then we denote by supp(h) the support of h, that is, supp(h) = {k : ak 6= 0}.
If h = 0, then we set supp(h) = ∅. The Newton polyhedron of h, denoted by Γ+(h), is the

convex hull of the set {k + v : k ∈ supp(h), v ∈ Rn
+}.

Given a subset I ⊆ {1, . . . , n}, we set Rn
I = {x ∈ Rn : xi = 0, for all i /∈ I}. We denote

by hI the series obtained as the sum of all terms akx
k with k ∈ Rn

I ; if no such terms exist,

then we set hI = 0. We denote by On,I, or by OI, the subring of On formed by the functions

h ∈ On depending only on the variables xi such that i ∈ I. If J is an ideal of On, then we

denote by JI the ideal of On,I generated by all the elements hI, where h varies in J .

Let J be an ideal of On and let g1, . . . , gs be a generating system of J . Then the Newton

polyhedron of J , that we denote by Γ+(J), is defined as the convex hull of Γ+(g1)∪· · ·∪Γ+(gs).

It is easy to check that this definition does not depend on the given generating system of J .

Moreover, we denote by Γ(J) the union of the compact faces of Γ+(J). Let P(J) denote the

vector space of all polynomial functions h ∈ C[x1, . . . , xn] such that supp(h) ⊆ Γ(J). We

remark that P(J) is a finite-dimensional complex vector space.

If V is a finite-dimensional complex vector space, then we say that a given property is

generic in V when there exists a Zariski-open set U ⊆ V such that any element u ∈ U

satisfies the said property.

Let F : (C× Cn, 0) → (C, 0) be an analytic map. Let us denote by ft the map (Cn, 0) →
(C, 0) such that ft(x) = F (t, x). Let us suppose that ft has an isolated singularity at the

origin, for all small enough t. We say that F is a µ∗-constant deformation when µ∗(ft) does

not depend on t, for all small enough t. Maybe the following result is well-known for the

specialists, however we include a proof of it.

Lemma 2.1. Under the above setup, let us assume that the function ft has an isolated

singularity at the origin and that Γ+(ft) does not depend on t, for all small enough t. If f0

is Newton non-degenerate, then F is µ∗-constant.

Proof. By [22, Theorem 3] it is known that F is µ∗-constant if and only if

(3)
∂F

∂t
∈ mn

〈
∂F

∂x1

, . . . ,
∂F

∂xn

〉
,

where the bar denotes integral closure in On+1 and in this case mn denotes the ideal of On+1

generated by x1, . . . , xn.
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Let us denote by Γ+ the common Newton polyhedron of the functions ft and let I denote

the ideal of On+1 generated by x1
∂F
∂x1

, . . . , xn
∂F
∂xn

. We observe that Γ+(F ) = Γ+(I) = R+×Γ+,

since the functions ft have the same Newton polyhedron. We remark that, in order to con-

struct the Newton polyhedron Γ+(I), we represent the exponent of a monomial tαxk1
1 · · ·xkn

n

of On+1 by (α, k1, . . . , kn). Therefore the set of compact faces of Γ+(I) is equal to the set of

compact faces of {0}×Γ+ ⊆ R+×Rn
+. Then the Newton non-degeneracy of F only depends

on the monomials of the support of F belonging to the compact faces of {0}×Γ+ ⊆ R×Rn.

In particular, if ∆ is a compact face of Γ+ and i ∈ {1, . . . , n}, then
(

xi
∂F

∂xi

)

{0}×∆

=

(
xi

∂f

∂xi

)

∆

.

Thus the function F is Newton non-degenerate and consequently I is equal to the monomial

ideal generated by all monomials in On+1 whose support belongs to Γ+(F ) (see [25], or [19]

for a more general result). Since Γ+(ft) = Γ+, for all t, the support of ∂F
∂t

is contained in

Γ+(F ). In particular, we have ∂F
∂t
∈ I and hence relation (3) holds. ¤

If J is a monomial ideal of On, the we denote by O(J) the set of all analytic function germs

f : (Cn, 0) → (C, 0) with an isolated singularity at the origin such that Γ+(f) = Γ+(J).

Definition 2.2. Let J be an ideal of finite colength of On. Let i ∈ {1, . . . , n− 1}, then we

define

(4) ai(J,m) =
n−1∑
j=i

(
j − 1

i− 1

)
ej(J,m).

We also set a0(J,m) = e(J). We observe that an−1(J,m) = en−1(J,m) = ord(J) (see Lemma

3.1) and that a1(J,m) = e1(J,m) + · · ·+ en−1(J,m).

For i = 1, . . . , n, we define the i-th Newton number of J , that we denote by ν(i)(J), as

ν(i)(J) =
n∑

s=n−i+1

(−1)n−s

( ∑

I⊆{1,...,n}
|I|=s

an−i

(
JI,mI

))
+ (−1)i.

Then we define

ν∗(J) =
(
ν(n)(J), ν(n−1)(J), . . . , ν(1)(J), ν(0)(J)

)
,

where we set ν(0)(J) = 1.

Theorem 2.3. Let J be a monomial ideal of finite colength, let f ∈ O(J) and let i ∈
{0, 1, . . . , n}. Then

(5) µ(i)(f) > ν(i)(J)

and equality holds if f is Newton non-degenerate.

Proof. It is well known that e(J) = n!Vn

(
RnrΓ+(J)

)
, where Vn denotes the n-dimensional

volume (see for instance [23]). Then the case i = n arises directly from this equality and the

main theorem of Kouchnirenko in [12].
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Let us fix an index i ∈ {1, . . . , n − 1}. If g : (Cn, 0) → (Cp, 0) is an isolated complete

intersection singularity, then we denote the Milnor number of g (in the sense of Hamm [10]

and Lê [13]) by µ(g). By the definition of µ∗(f) and the definition of Milnor number of an

isolated complete intersection singularity [13] we have

(6) µ(n−i)(f) = µ(f, `1, . . . , `i),

where `j denotes a generic C-linear form, for all j = 1, . . . , i. We observe that Γ+(`i) = Γ+(m)

and therefore, by [3, Theorem 3.9] we conclude the inequality

(7) µ(n−i)(f) > ν,

where ν stands for the number

ν =
n∑

s=i+1

(−1)n−s

( ∑

I⊆{1,...,n}
|I|=s

∑
r1+···+ri+1=s
r1,...,ri+1>1

er1,...,ri+1
(JI,mI, . . . , mI

︸ ︷︷ ︸
i

)

)
+ (−1)n−i.

We observe that

∑
r1+···+ri+1=n
r1,...,ri+1>1

er1,...,ri+1
(J,m, . . . , m︸ ︷︷ ︸

i

) =
n−i∑
r=1

( ∑
r2+···+ri+1=n−r

r2,...,ri+1>1

er,r2,...,ri+1
(J,m, . . . , m︸ ︷︷ ︸

i

)

)

=
n−i∑
r=1

(
en−r(J,m) ·# {

(r2, . . . , ri+1) ∈ Zi
>1 : r2 + · · ·+ ri+1 = n− r

} )

=
n−i∑
r=1

(
n− r − 1

i− 1

)
en−r(J,m) =

n−1∑
j=i

(
j − 1

i− 1

)
ej(J,m) = ai(J,m).

Given a subset I ⊆ {1, . . . , n}, |I| = s, a similar computation leads to the equality
∑

r1+···+ri+1=s
r1,...,ri+1>1

er1,...,ri+1
(JI,mI, . . . , mI

︸ ︷︷ ︸
i

) = ai(J
I,mI).

Hence

ν =
n∑

s=i+1

(−1)n−s

( ∑

I⊆{1,...,n}
|I|=s

ai(J
I,mI)

)
+ (−1)n−i = ν(n−i)(J)

and the inequality (5) is proven. By [3, Theorem 3.9], equality holds in (7) if the map

(f, `1, . . . , `i) is Newton non-degenerate in the sense of [3, Definition 3.8]. Concerning the

property of Newton non-degeneracy of maps, in this proof we will only use the genericity of

this condition (see [3, Lemma 6.11]).

For i = 1, . . . , n− 1, we denote by Pi the product vector space P(J)×P(m)× · · ·×P(m),

where P(m) is repeated i times. Then we denote by Ai the set of Newton non-degenerate

maps of Pi and by A′
i the projection of Ai onto P(J).

The Newton non-degeneracy condition of a map belonging to Pi is a generic condition, by

[3, Lemma 6.11], for all i = 1, . . . , n−1. Then, there exists a Zariski open set U of P(J) such
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that U ⊆ A′
1∩· · ·∩A′

n−1 and h has an isolated singularity at the origin, for all h ∈ U . Let us

consider an analytic deformation P : (C× Cn, 0) → (C, 0) such that, if pt : (Cn, 0) → (C, 0)

denotes the map given by pt(x) = P (t, x), then

(1) pt ∈ U , for all t 6= 0;

(2) p0 = p(f),

where p(f) is the principal part of f . That is, if f =
∑

k akx
k is the Taylor expansion of f

around the origin, then p(f) is the sum of all terms akx
k such that k ∈ Γ(J).

Let us assume that f is Newton non-degenerate. Therefore P is a µ∗-constant deformation,

by Lemma 2.1. If t 6= 0, the polynomial pt belongs to A′
1 ∩ · · · ∩ A′

n−1, which implies that

µ∗(pt) = ν∗(J), by [3, Theorem 3.9] applied to (7). Hence µ∗(p0) = µ∗(p(f)) = ν∗(J).

Let f ′ = f − p(f). By the definition of p(f), the support of f ′ is contained in Γ+(J)

and supp(f ′) ∩ Γ(J) = ∅. Let us consider the homotopy F : (C × Cn, 0) → (C, 0) given by

Ft = p(f) + tf ′. This deformation is µ∗-constant, by Lemma 2.1. Then

µ∗(f) = µ∗(p(f))

and the result follows. ¤

3. Some particular cases and examples

If J is an ideal of a local ring (R, m) of dimension n, then we denote by ord(J) the order

of J , that is, the maximum of those r > 0 such that J ⊆ mr. In particular, if J is an ideal

of On and I ⊆ {1, . . . , n}, I 6= ∅, then ord(JI) denotes the order of JI as an ideal of On,I.

Lemma 3.1. Let (R, m) be a regular local ring of dimension n such that the residue field

R/m is infinite. Let J be an ideal of R of finite colength. Then

en−1(J,m) = ord(J).

Proof. By [18] we have en−1(J,m) = e(f, `1, . . . , `n−1), where (f, `1, . . . , `n−1) is a sufficiently

general element of J ⊕m⊕ · · · ⊕m (see also [11, §17]). Therefore

en−1(J,m) = e(f, `1, . . . , `n−1) = `(R′/〈f〉),
where R′ denotes the quotient ring R/〈`1, . . . , `n−1〉 and f is denotes the image of f in R′.
But `(R′/〈f〉) = ord(f), since R′ is regular and 1-dimensional. ¤

As an immediate application of Theorem 2.3 and Lemma 3.1 we obtain the following

result.

Corollary 3.2. Let J be a monomial ideal of On of finite colength and let f ∈ O(J). Then

µ(2)(f) > en−2(J,m) + (n− 2)ord(J)−
( ∑

I⊆{1,...,n}
|I|=n−1

ord(JI)

)
+ 1(8)

µ(n−1)(f) >
n∑

s=2

(−1)n−s

( ∑

I⊆{1,...,n}
|I|=s

(
e1(J

I,mI) + · · ·+ es−1(J
I,mI)

))
+ (−1)n−1(9)
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and equality holds in the above inequalities if f is Newton non-degenerate.

We remark that µ(n−1)(f) has an important geometrical content in general via polar curves

(see [24, p. 270]) and the notion of Euler obstruction (see [14, p. 486]).

In the case n = 3, the right hand side of relations (8) and (9) coincide with ν(2)(J) and in

this case we have

(10) ν(2)(J) = −ord(J{1,2})− ord(J{1,3})− ord(J{2,3}) + ord(J) + e(m, J, J) + 1.

The above expression leads to the following result, which helps in the task of finding

examples of µ-constant deformations ft : (C3, 0) → (C, 0) that are not µ(2)-constant.

Corollary 3.3. Let J0 and J1 be monomial ideals of finite colength of O3 such that

ord(J0)−
∑

16i<j63

ord(J
{i,j}
0 ) = ord(J1)−

∑
16i<j63

ord(J
{i,j}
1 ).

Let us consider an analytic deformation ft : (C3, 0) → (C, 0) such that

(1) ft is Newton non-degenerate, for all t;

(2) Γ+(f0) = Γ+(J0);

(3) Γ+(ft) = Γ+(J1), for all t 6= 0.

Then the deformation ft is not µ(2)-constant if and only if e(m, J0, J0) > e(m, J1, J1).

Proof. It is an immediate consequence of relation (10) and Corollary 3.2. ¤

Example 3.4. Let ft : (C3, 0) → (C, 0) be the analytic family of functions given by

(11) ft(x, y, z) = x15 + y8 + z5 + xy7 + ty6z.

Let us consider the ideals of O3 given by J0 = 〈x15, y8, z5, xy7〉 and J1 = J0 + 〈y6z〉. We

have Γ+(f0) = Γ+(J0) and Γ+(ft) = Γ+(J1), for all t 6= 0. The family ft given in (11) is a

modification of the Briançon-Speder example [5], that is, we have added the term y8 to this

example in order to have that the ideals J0 and J1 have finite colength in O3.

It is clear that ord(J0) = ord(J1) = 5 and

ord(J
{1,2}
0 ) = ord(J

{1,2}
1 ) = 8

ord(J
{1,3}
0 ) = ord(J

{1,3}
1 ) = 5

ord(J
{2,3}
0 ) = ord(J

{2,3}
1 ) = 5.

The numbers e(m, J0, J0) and e(m, J1, J1) can be computed effectively using the procedure

described in [4, p. 405] and the aid of Singular [9]. Thus we obtain that

e(m, J0, J0) = 40 e(m, J1, J1) = 38.

Therefore, relation (10) gives

ν(2)(J0) = 28 ν(2)(J1) = 26.

and then µ(2)(f0) = 28 and µ(2)(ft) = 26, since ft is Newton non-degenerate, for all t.
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Example 3.5. [1, §4] Let us consider the analytic family ft : (C3, 0) → (C, 0) given by

ft(x, y, z) = x6 + y5 + z12 + xy3z + tx3y2.

This family is µ-constant but not µ(2)-constant. As indicated in [1], we have µ(ft) = 166,

for all t, and

µ(2)(f0) = 18 µ(2)(ft) = 17, for all t 6= 0.

Let us consider the monomial ideals of O3 given by

J0 = 〈x6, y5, z12, xy3z〉 J1 = J0 + 〈x3y2〉.
We observe that Γ+(f0) = Γ+(J0), Γ+(f1) = Γ+(J1) and ν(J0) = ν(J1) = 166. Moreover

e(m, J0, J0) = 28 and e(m, J1, J1) = 27, which imply that ν(2)(J0) = 18 and ν(2)(J1) = 17,

by (10).

Example 3.6. Let us consider the monomial ideals J0 and J1 of O3 given by

J0 = 〈x5, y7, z15, x2y2z〉 J1 = J0 + 〈xy4〉.
We observe that ν(J0) = ν(J1) = 206 and

e(m, J0, J0) = 29 e(m, J1, J1) = 27.

Therefore ν(2)(J0) = 18 and ν(2)(J1) = 16, by (10). This means that any deformation

ft : (C3, 0) → (C, 0) such that Γ+(f0) = Γ+(J0), Γ+(ft) = Γ+(J1), for all t 6= 0, and ft is

Newton non-degenerate, for all t, verifies that ft is µ-constant but not µ(2)-constant.

Acknowledgement. The author wishes to express his gratitude to Prof. M.A.S. Ruas and

Prof. Melle-Hernández for their helpful comments.
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[4] Bivià-Ausina, C. Joint reductions of monomial ideals and multiplicity of complex analytic maps, Math.
Res. Lett. 15, No. 2 (2008), 389–407.
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