Document downloaded from:
http://hdl.handle.net/10251/39954
This paper must be cited as:
Bivià-Ausina, C. (2012). Generic linear sections of complex hypersurfaces and monomial ideals. Topology and its Applications. 159(2):414-419. doi:10.1016/j.topol.2011.09.015.

The final publication is available at
http://dx.doi.org/10.1016/j.topol.2011.09.015

Copyright
Elsevier

GENERIC LINEAR SECTIONS OF COMPLEX HYPERSURFACES AND MONOMIAL IDEALS

CARLES BIVIÀ-AUSINA

Abstract

Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be an analytic function germ. Under the hypothesis that f is Newton non-degenerate, we compute the μ^{*}-sequence of f in terms of the Newton polyhedron of f. This sequence was defined by Teissier in order to characterize the Whitney equisingularity of deformations of complex hypersurfaces.

1. Introduction

Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be an analytic function germ with an isolated singularity at the origin and let us denote by $\mu(f)$ the Milnor number of f. Teissier proved in [21, p. 299] that, given an integer $i \in\{0,1, \ldots, n\}$, the Milnor number of the restriction of f to a generic plane in \mathbb{C}^{n} of dimension i only depends on f and i. Then, Teissier defined in [21] the analytic invariant

$$
\begin{equation*}
\mu^{*}(f)=\left(\mu^{(n)}(f), \mu^{(n-1)}(f), \ldots, \mu^{(1)}(f), \mu^{(0)}(f)\right) \tag{1}
\end{equation*}
$$

where $\mu^{(i)}(f)$ denotes the Milnor number of the restriction of f to a generic plane of dimension i passing through the origin in \mathbb{C}^{n}, for $i=0,1, \ldots, n$. The vector given in (1) is also known as the μ^{*}-sequence of f. We observe that $\mu^{(n)}(f)=\mu(f), \mu^{(1)}(f)=\operatorname{ord}(f)-1$ and $\mu^{(0)}(f)=1$, where $\operatorname{ord}(f)$ denotes the order or multiplicity of f at the origin, that is, the maximum of those $r \geqslant 1$ such that $f \in m^{r}$.

It was initially conjectured by Teissier [21] that the topological triviality of a given analytic deformation $f_{t}:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ forces the sequence $\mu^{*}\left(f_{t}\right)$ to be constant. But Briançon and Speder [5] found an example of a topologically trivial deformation $f_{t}:\left(\mathbb{C}^{3}, 0\right) \rightarrow(\mathbb{C}, 0)$ such that $\mu^{(2)}\left(f_{t}\right)$ is not constant. By the results of Teissier [21] and Briançon-Speder [6], the constancy of $\mu^{*}\left(f_{t}\right)$ is equivalent to the Whitney equisingularity of the deformation.

Let us denote by \mathcal{O}_{n} the ring of analytic function germs $\left(\mathbb{C}^{n}, 0\right) \rightarrow \mathbb{C}$ and by m_{n}, or simply by m if no confusion arises, the maximal ideal of \mathcal{O}_{n}. Let $J(f)$ be the Jacobian ideal of f, that is $J(f)$ is the ideal of \mathcal{O}_{n} generated by $\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}$. If I_{1}, \ldots, I_{n} are ideals of finite colength of \mathcal{O}_{n}, then we denote by $e\left(I_{1}, \ldots, I_{n}\right)$ the mixed multiplicity of I_{1}, \ldots, I_{n} in the sense of Teissier and Risler (we refer to [11, §17], [18], [20] or [21, p. 302] for definitions and

[^0]basic results about mixed multiplicities of ideals). Teissier showed in [21] that
\[

$$
\begin{equation*}
\mu^{(i)}(f)=e(\underbrace{m_{n}, \ldots, m_{n}}_{n-i}, \underbrace{J(f), \ldots, J(f)}_{i}), \tag{2}
\end{equation*}
$$

\]

for all $i=0,1, \ldots, n$. Therefore, the μ^{*}-sequence admits also an algebraic approach.
Kouchnirenko obtained in [12, Théorème I] a formula for the Milnor number of any function f with an isolated singularity at the origin in terms of the Newton polyhedron $\Gamma_{+}(f)$ of f, when f is Newton non-degenerate. As pointed out by Mima [16] (see also [17]), the main difficulty encountered in the attempt of computing $\mu^{*}(f)$ using Kouchnirenko's result is that the restriction of a Newton non-degenerate function f to a generic i-plane in \mathbb{C}^{n} passing through the origin is not Newton non-degenerate in general, for $i \geqslant 2$. Let $f:\left(\mathbb{C}^{3}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ be a Newton non-degenerate function with an isolated singularity at the origin and let $g:\left(\mathbb{C}^{2}, 0\right) \rightarrow(\mathbb{C}, 0)$ be the function given by $g(x, y)=f(x, y, a x+b y)$, for generic $a, b \in \mathbb{C}$. Then Mima proved in [16] a formula expressed in terms of Newton numbers for the difference $\mu^{(2)}-\nu^{(2)}$, where $\nu^{(2)}$ is the Newton number of $\Gamma_{+}(g)$ and $\mu^{(2)}=\mu^{(2)}(f)$ (see [16] for details).

The main result of this paper shows an expression for the whole sequence $\mu^{*}(f)$ in terms of $\Gamma_{+}(f)$ under the condition that f is Newton non-degenerate. This result is based on the formula proven by the author in [3] for the Milnor number of an isolated complete intersection singularity $\left(f_{1}, \ldots, f_{p}\right):\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ via the Newton polyhedra of the component functions f_{i}. We also deduce some consequences that lead to find examples of deformations $f_{t}:\left(\mathbb{C}^{3}, 0\right) \rightarrow(\mathbb{C}, 0)$ with constant Milnor number such that $\mu^{(2)}\left(f_{t}\right)$ is not constant. These examples may contribute to the better understanding of classification problems in metric singularity theory (see $[2, \S 4]$) and questions like the Zariski's multiplicity conjecture (see [8]).

2. Main Result

If I is an ideal of \mathcal{O}_{n} of finite colength then we denote by $e(I)$ the Samuel multiplicity of I (see [7, p. 278] or $[11, \S 11]$) and by \bar{I} the integral closure of I. We recall that if I is generated by n elements, say g_{1}, \ldots, g_{n}, then $e(I)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{n} / I$ and in turn this number is equal to the geometric degree of the map $\left(g_{1}, \ldots, g_{n}\right):\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ (see [15, p. 258]). As mentioned in the introduction, the mixed multiplicity of n ideals I_{1}, \ldots, I_{n} of finite colength in \mathcal{O}_{n} is denoted by $e\left(I_{1}, \ldots, I_{n}\right)$.
Let us suppose that the residue field $k=R / m$ is infinite. Let I_{1}, \ldots, I_{n} be ideals of R and let $a_{i 1}, \ldots, a_{i s_{i}}$ be a generating system of I_{i}, where $s_{i} \geqslant 1$, for $i=1, \ldots, n$. We say that a property holds for sufficiently general elements of $I_{1} \oplus \cdots \oplus I_{n}$ if there exists a non-empty Zariski-open set U in k^{s}, where $s=s_{1}+\cdots+s_{n}$, such that the said property holds for all elements $\left(g_{1}, \ldots, g_{n}\right) \in I_{1} \oplus \cdots \oplus I_{n}$ for which $g_{i}=\sum_{j} u_{i j} a_{i j}, i=1, \ldots, n$, with $\left(u_{11}, \ldots, u_{1 s_{1}}, \ldots, u_{n 1}, \ldots, u_{n s_{n}}\right)$ belonging to U.
We recall that $e\left(I_{1}, \ldots, I_{n}\right)=e\left(g_{1}, \ldots, g_{n}\right)$, where $\left(g_{1}, \ldots, g_{n}\right)$ is a sufficiently general element of $I_{1} \oplus \cdots \oplus I_{n}$, by virtue of a result of Rees (see [11, §17] or [18]).

Let I_{1}, \ldots, I_{r} be ideals of \mathcal{O}_{n} of finite colength, for some $r \leqslant n$. Let $\left(i_{1}, \ldots, i_{r}\right) \in \mathbb{Z}_{\geqslant 0}^{r}$ such that $i_{1}+\cdots+i_{r}=n$. Then $e_{i_{1}, \ldots, i_{r}}\left(I_{1}, \ldots, I_{r}\right)$ will denote the mixed multiplicity $e\left(I_{1}, \ldots, I_{1}, \ldots, I_{r}, \ldots, I_{r}\right)$ where I_{j} is repeated i_{j} times, for all $j=1, \ldots, r$. If I, J are two ideals of finite colength of \mathcal{O}_{n}, then we denote by $e_{i}(I, J)$ the mixed multiplicity $e_{n-i, i}(I, J)$, for all $i \in\{0,1, \ldots, n\}$. Then we can restate relation (2) by $\mu^{(i)}(f)=e_{i}\left(m_{n}, J(f)\right)$, for all $i=0,1, \ldots, n$.

Let us fix coordinates x_{1}, \ldots, x_{n} in \mathbb{C}^{n} and let $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{+}^{n}$. We denote the monomial $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ by x^{k}. If $h \in \mathcal{O}_{n}$ and $h=\sum_{k} a_{k} x^{k}$ is the Taylor expansion of h around the origin, then we denote by $\operatorname{supp}(h)$ the support of h, that is, $\operatorname{supp}(h)=\left\{k: a_{k} \neq 0\right\}$. If $h=0$, then we set $\operatorname{supp}(h)=\emptyset$. The Newton polyhedron of h, denoted by $\Gamma_{+}(h)$, is the convex hull of the set $\left\{k+v: k \in \operatorname{supp}(h), v \in \mathbb{R}_{+}^{n}\right\}$.

Given a subset $\mathrm{I} \subseteq\{1, \ldots, n\}$, we set $\mathbb{R}_{\mathrm{I}}^{n}=\left\{x \in \mathbb{R}^{n}: x_{i}=0\right.$, for all $\left.i \notin \mathrm{I}\right\}$. We denote by h^{I} the series obtained as the sum of all terms $a_{k} x^{k}$ with $k \in \mathbb{R}_{\mathrm{I}}^{n}$; if no such terms exist, then we set $h^{\mathrm{I}}=0$. We denote by $\mathcal{O}_{n, \mathrm{I}}$, or by \mathcal{O}_{I}, the subring of \mathcal{O}_{n} formed by the functions $h \in \mathcal{O}_{n}$ depending only on the variables x_{i} such that $i \in \mathrm{I}$. If J is an ideal of \mathcal{O}_{n}, then we denote by J^{I} the ideal of $\mathcal{O}_{n, \mathrm{I}}$ generated by all the elements h^{I}, where h varies in J.

Let J be an ideal of \mathcal{O}_{n} and let g_{1}, \ldots, g_{s} be a generating system of J. Then the Newton polyhedron of J, that we denote by $\Gamma_{+}(J)$, is defined as the convex hull of $\Gamma_{+}\left(g_{1}\right) \cup \cdots \cup \Gamma_{+}\left(g_{s}\right)$. It is easy to check that this definition does not depend on the given generating system of J. Moreover, we denote by $\Gamma(J)$ the union of the compact faces of $\Gamma_{+}(J)$. Let $\mathcal{P}(J)$ denote the vector space of all polynomial functions $h \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ such that $\operatorname{supp}(h) \subseteq \Gamma(J)$. We remark that $\mathcal{P}(J)$ is a finite-dimensional complex vector space.

If V is a finite-dimensional complex vector space, then we say that a given property is generic in V when there exists a Zariski-open set $U \subseteq V$ such that any element $u \in U$ satisfies the said property.

Let $F:\left(\mathbb{C} \times \mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be an analytic map. Let us denote by f_{t} the map $\left(\mathbb{C}^{n}, 0\right) \rightarrow$ $(\mathbb{C}, 0)$ such that $f_{t}(x)=F(t, x)$. Let us suppose that f_{t} has an isolated singularity at the origin, for all small enough t. We say that F is a μ^{*}-constant deformation when $\mu^{*}\left(f_{t}\right)$ does not depend on t, for all small enough t. Maybe the following result is well-known for the specialists, however we include a proof of it.

Lemma 2.1. Under the above setup, let us assume that the function f_{t} has an isolated singularity at the origin and that $\Gamma_{+}\left(f_{t}\right)$ does not depend on t, for all small enough t. If f_{0} is Newton non-degenerate, then F is μ^{*}-constant.

Proof. By [22, Theorem 3] it is known that F is μ^{*}-constant if and only if

$$
\begin{equation*}
\frac{\partial F}{\partial t} \in \overline{m_{n}\left\langle\frac{\partial F}{\partial x_{1}}, \ldots, \frac{\partial F}{\partial x_{n}}\right\rangle} \tag{3}
\end{equation*}
$$

where the bar denotes integral closure in \mathcal{O}_{n+1} and in this case m_{n} denotes the ideal of \mathcal{O}_{n+1} generated by x_{1}, \ldots, x_{n}.

Let us denote by Γ_{+}the common Newton polyhedron of the functions f_{t} and let I denote the ideal of \mathcal{O}_{n+1} generated by $x_{1} \frac{\partial F}{\partial x_{1}}, \ldots, x_{n} \frac{\partial F}{\partial x_{n}}$. We observe that $\Gamma_{+}(F)=\Gamma_{+}(I)=\mathbb{R}_{+} \times \Gamma_{+}$, since the functions f_{t} have the same Newton polyhedron. We remark that, in order to construct the Newton polyhedron $\Gamma_{+}(I)$, we represent the exponent of a monomial $t^{\alpha} x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$ of \mathcal{O}_{n+1} by $\left(\alpha, k_{1}, \ldots, k_{n}\right)$. Therefore the set of compact faces of $\Gamma_{+}(I)$ is equal to the set of compact faces of $\{0\} \times \Gamma_{+} \subseteq \mathbb{R}_{+} \times \mathbb{R}_{+}^{n}$. Then the Newton non-degeneracy of F only depends on the monomials of the support of F belonging to the compact faces of $\{0\} \times \Gamma_{+} \subseteq \mathbb{R} \times \mathbb{R}^{n}$. In particular, if Δ is a compact face of Γ_{+}and $i \in\{1, \ldots, n\}$, then

$$
\left(x_{i} \frac{\partial F}{\partial x_{i}}\right)_{\{0\} \times \Delta}=\left(x_{i} \frac{\partial f}{\partial x_{i}}\right)_{\Delta} .
$$

Thus the function F is Newton non-degenerate and consequently \bar{I} is equal to the monomial ideal generated by all monomials in \mathcal{O}_{n+1} whose support belongs to $\Gamma_{+}(F)$ (see [25], or [19] for a more general result). Since $\Gamma_{+}\left(f_{t}\right)=\Gamma_{+}$, for all t, the support of $\frac{\partial F}{\partial t}$ is contained in $\Gamma_{+}(F)$. In particular, we have $\frac{\partial F}{\partial t} \in \bar{I}$ and hence relation (3) holds.

If J is a monomial ideal of \mathcal{O}_{n}, the we denote by $\mathcal{O}(J)$ the set of all analytic function germs $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ with an isolated singularity at the origin such that $\Gamma_{+}(f)=\Gamma_{+}(J)$.

Definition 2.2. Let J be an ideal of finite colength of \mathcal{O}_{n}. Let $i \in\{1, \ldots, n-1\}$, then we define

$$
\begin{equation*}
a_{i}(J, m)=\sum_{j=i}^{n-1}\binom{j-1}{i-1} e_{j}(J, m) . \tag{4}
\end{equation*}
$$

We also set $a_{0}(J, m)=e(J)$. We observe that $a_{n-1}(J, m)=e_{n-1}(J, m)=\operatorname{ord}(J)$ (see Lemma 3.1) and that $a_{1}(J, m)=e_{1}(J, m)+\cdots+e_{n-1}(J, m)$.

For $i=1, \ldots, n$, we define the i-th Newton number of J, that we denote by $\nu^{(i)}(J)$, as

$$
\nu^{(i)}(J)=\sum_{s=n-i+1}^{n}(-1)^{n-s}\left(\sum_{\substack{\mathrm{I} \subseteq\{1, \ldots, n\} \\|\mathrm{I}|=s}} a_{n-i}\left(J^{\mathrm{I}}, m^{\mathrm{I}}\right)\right)+(-1)^{i} .
$$

Then we define

$$
\nu^{*}(J)=\left(\nu^{(n)}(J), \nu^{(n-1)}(J), \ldots, \nu^{(1)}(J), \nu^{(0)}(J)\right)
$$

where we set $\nu^{(0)}(J)=1$.
Theorem 2.3. Let J be a monomial ideal of finite colength, let $f \in \mathcal{O}(J)$ and let $i \in$ $\{0,1, \ldots, n\}$. Then

$$
\begin{equation*}
\mu^{(i)}(f) \geqslant \nu^{(i)}(J) \tag{5}
\end{equation*}
$$

and equality holds if f is Newton non-degenerate.
Proof. It is well known that $e(J)=n!\mathrm{V}_{n}\left(\mathbb{R}^{n} \backslash \Gamma_{+}(J)\right)$, where V_{n} denotes the n-dimensional volume (see for instance [23]). Then the case $i=n$ arises directly from this equality and the main theorem of Kouchnirenko in [12].

Let us fix an index $i \in\{1, \ldots, n-1\}$. If $g:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ is an isolated complete intersection singularity, then we denote the Milnor number of g (in the sense of Hamm [10] and Lê [13]) by $\mu(g)$. By the definition of $\mu^{*}(f)$ and the definition of Milnor number of an isolated complete intersection singularity [13] we have

$$
\begin{equation*}
\mu^{(n-i)}(f)=\mu\left(f, \ell_{1}, \ldots, \ell_{i}\right), \tag{6}
\end{equation*}
$$

where ℓ_{j} denotes a generic \mathbb{C}-linear form, for all $j=1, \ldots, i$. We observe that $\Gamma_{+}\left(\ell_{i}\right)=\Gamma_{+}(m)$ and therefore, by [3, Theorem 3.9] we conclude the inequality

$$
\begin{equation*}
\mu^{(n-i)}(f) \geqslant \nu \tag{7}
\end{equation*}
$$

where ν stands for the number

$$
\nu=\sum_{s=i+1}^{n}(-1)^{n-s}(\sum_{\substack{I \subseteq\{1, \ldots, n\} \\|I|=s}} \sum_{\substack{r_{1}+\ldots+r_{i+1}=s \\ r_{1}, \ldots, r_{i+1} \geqslant 1}} e_{r_{1}, \ldots, r_{i+1}}(J^{\mathrm{I}}, \underbrace{m^{\mathrm{I}}, \ldots, m^{\mathrm{I}}}_{i}))+(-1)^{n-i}
$$

We observe that

$$
\begin{aligned}
& \sum_{\substack{r_{1}+\ldots+r_{i+1}=n \\
r_{1}, \ldots, r_{i+1} \geqslant 1}} e_{r_{1}, \ldots, r_{i+1}}(J, \underbrace{m, \ldots, m}_{i})=\sum_{r=1}^{n-i}(\sum_{\substack{r_{2}+\ldots+r_{i+1}=n-r \\
r_{2}, \ldots, r_{i+1} \geqslant 1}} e_{r, r_{2}, \ldots, r_{i+1}}(J, \underbrace{m, \ldots, m}_{i})) \\
= & \sum_{r=1}^{n-i}\left(e_{n-r}(J, m) \cdot \#\left\{\left(r_{2}, \ldots, r_{i+1}\right) \in \mathbb{Z}_{\geqslant 1}^{i}: r_{2}+\cdots+r_{i+1}=n-r\right\}\right) \\
= & \sum_{r=1}^{n-i}\binom{n-r-1}{i-1} e_{n-r}(J, m)=\sum_{j=i}^{n-1}\binom{j-1}{i-1} e_{j}(J, m)=a_{i}(J, m) .
\end{aligned}
$$

Given a subset $\mathrm{I} \subseteq\{1, \ldots, n\},|\mathrm{I}|=s$, a similar computation leads to the equality

$$
\sum_{\substack{r_{1}+\ldots+r_{i+1}=s \\ r_{1}, \ldots, r_{i+1} \geqslant 1}} e_{r_{1}, \ldots, r_{i+1}}(J^{\mathrm{I}}, \underbrace{m^{\mathrm{I}}, \ldots, m^{\mathrm{I}}}_{i})=a_{i}\left(J^{\mathrm{I}}, m^{\mathrm{I}}\right) .
$$

Hence

$$
\nu=\sum_{s=i+1}^{n}(-1)^{n-s}\left(\sum_{\substack{I \subseteq\{1, \ldots, n\} \\|I|=s}} a_{i}\left(J^{\mathrm{I}}, m^{\mathrm{I}}\right)\right)+(-1)^{n-i}=\nu^{(n-i)}(J)
$$

and the inequality (5) is proven. By [3, Theorem 3.9], equality holds in (7) if the map $\left(f, \ell_{1}, \ldots, \ell_{i}\right)$ is Newton non-degenerate in the sense of [3, Definition 3.8]. Concerning the property of Newton non-degeneracy of maps, in this proof we will only use the genericity of this condition (see [3, Lemma 6.11]).

For $i=1, \ldots, n-1$, we denote by \mathcal{P}_{i} the product vector space $\mathcal{P}(J) \times \mathcal{P}(m) \times \cdots \times \mathcal{P}(m)$, where $\mathcal{P}(m)$ is repeated i times. Then we denote by A_{i} the set of Newton non-degenerate maps of \mathcal{P}_{i} and by A_{i}^{\prime} the projection of A_{i} onto $\mathcal{P}(J)$.

The Newton non-degeneracy condition of a map belonging to \mathcal{P}_{i} is a generic condition, by [3, Lemma 6.11], for all $i=1, \ldots, n-1$. Then, there exists a Zariski open set U of $\mathcal{P}(J)$ such
that $U \subseteq A_{1}^{\prime} \cap \cdots \cap A_{n-1}^{\prime}$ and h has an isolated singularity at the origin, for all $h \in U$. Let us consider an analytic deformation $P:\left(\mathbb{C} \times \mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ such that, if $p_{t}:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ denotes the map given by $p_{t}(x)=P(t, x)$, then
(1) $p_{t} \in U$, for all $t \neq 0$;
(2) $p_{0}=p(f)$,
where $p(f)$ is the principal part of f. That is, if $f=\sum_{k} a_{k} x^{k}$ is the Taylor expansion of f around the origin, then $p(f)$ is the sum of all terms $a_{k} x^{k}$ such that $k \in \Gamma(J)$.

Let us assume that f is Newton non-degenerate. Therefore P is a μ^{*}-constant deformation, by Lemma 2.1. If $t \neq 0$, the polynomial p_{t} belongs to $A_{1}^{\prime} \cap \cdots \cap A_{n-1}^{\prime}$, which implies that $\mu^{*}\left(p_{t}\right)=\nu^{*}(J)$, by [3, Theorem 3.9] applied to (7). Hence $\mu^{*}\left(p_{0}\right)=\mu^{*}(p(f))=\nu^{*}(J)$.

Let $f^{\prime}=f-p(f)$. By the definition of $p(f)$, the support of f^{\prime} is contained in $\Gamma_{+}(J)$ and $\operatorname{supp}\left(f^{\prime}\right) \cap \Gamma(J)=\emptyset$. Let us consider the homotopy $F:\left(\mathbb{C} \times \mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ given by $F_{t}=p(f)+t f^{\prime}$. This deformation is μ^{*}-constant, by Lemma 2.1. Then

$$
\mu^{*}(f)=\mu^{*}(p(f))
$$

and the result follows.

3. Some particular cases and examples

If J is an ideal of a local ring (R, m) of dimension n, then we denote by $\operatorname{ord}(J)$ the order of J, that is, the maximum of those $r \geqslant 0$ such that $J \subseteq m^{r}$. In particular, if J is an ideal of \mathcal{O}_{n} and $\mathrm{I} \subseteq\{1, \ldots, n\}, \mathrm{I} \neq \emptyset$, then $\operatorname{ord}\left(J^{\mathrm{I}}\right)$ denotes the order of J^{I} as an ideal of $\mathcal{O}_{n, \mathrm{I}}$.
Lemma 3.1. Let (R, m) be a regular local ring of dimension n such that the residue field R / m is infinite. Let J be an ideal of R of finite colength. Then

$$
e_{n-1}(J, m)=\operatorname{ord}(J)
$$

Proof. By [18] we have $e_{n-1}(J, m)=e\left(f, \ell_{1}, \ldots, \ell_{n-1}\right)$, where $\left(f, \ell_{1}, \ldots, \ell_{n-1}\right)$ is a sufficiently general element of $J \oplus m \oplus \cdots \oplus m$ (see also [11, §17]). Therefore

$$
e_{n-1}(J, m)=e\left(f, \ell_{1}, \ldots, \ell_{n-1}\right)=\ell\left(R^{\prime} /\langle\bar{f}\rangle\right),
$$

where R^{\prime} denotes the quotient ring $R /\left\langle\ell_{1}, \ldots, \ell_{n-1}\right\rangle$ and \bar{f} is denotes the image of f in R^{\prime}. But $\ell\left(R^{\prime} /\langle\bar{f}\rangle\right)=\operatorname{ord}(f)$, since R^{\prime} is regular and 1-dimensional.

As an immediate application of Theorem 2.3 and Lemma 3.1 we obtain the following result.
Corollary 3.2. Let J be a monomial ideal of \mathcal{O}_{n} of finite colength and let $f \in \mathcal{O}(J)$. Then

$$
\begin{gather*}
\mu^{(2)}(f) \geqslant e_{n-2}(J, m)+(n-2) \operatorname{ord}(J)-\left(\sum_{\substack{\mathrm{I} \subseteq\{1, \ldots, n\} \\
|\mathrm{I}|=n-1}} \operatorname{ord}\left(J^{\mathrm{I}}\right)\right)+1 \tag{8}\\
\mu^{(n-1)}(f) \geqslant \sum_{s=2}^{n}(-1)^{n-s}\left(\sum_{\substack{\mathrm{I} \subseteq\{1, \ldots, n\} \\
|\mathrm{I}|=s}}\left(e_{1}\left(J^{\mathrm{I}}, m^{\mathrm{I}}\right)+\cdots+e_{s-1}\left(J^{\mathrm{I}}, m^{\mathrm{I}}\right)\right)\right)+(-1)^{n-1} \tag{9}
\end{gather*}
$$

and equality holds in the above inequalities if f is Newton non-degenerate.
We remark that $\mu^{(n-1)}(f)$ has an important geometrical content in general via polar curves (see [24, p. 270]) and the notion of Euler obstruction (see [14, p. 486]).

In the case $n=3$, the right hand side of relations (8) and (9) coincide with $\nu^{(2)}(J)$ and in this case we have

$$
\begin{equation*}
\nu^{(2)}(J)=-\operatorname{ord}\left(J^{\{1,2\}}\right)-\operatorname{ord}\left(J^{\{1,3\}}\right)-\operatorname{ord}\left(J^{\{2,3\}}\right)+\operatorname{ord}(J)+e(m, J, J)+1 . \tag{10}
\end{equation*}
$$

The above expression leads to the following result, which helps in the task of finding examples of μ-constant deformations $f_{t}:\left(\mathbb{C}^{3}, 0\right) \rightarrow(\mathbb{C}, 0)$ that are not $\mu^{(2)}$-constant.

Corollary 3.3. Let J_{0} and J_{1} be monomial ideals of finite colength of \mathcal{O}_{3} such that

$$
\operatorname{ord}\left(J_{0}\right)-\sum_{1 \leqslant i<j \leqslant 3} \operatorname{ord}\left(J_{0}^{\{i, j\}}\right)=\operatorname{ord}\left(J_{1}\right)-\sum_{1 \leqslant i<j \leqslant 3} \operatorname{ord}\left(J_{1}^{\{i, j\}}\right) .
$$

Let us consider an analytic deformation $f_{t}:\left(\mathbb{C}^{3}, 0\right) \rightarrow(\mathbb{C}, 0)$ such that
(1) f_{t} is Newton non-degenerate, for all t;
(2) $\Gamma_{+}\left(f_{0}\right)=\Gamma_{+}\left(J_{0}\right)$;
(3) $\Gamma_{+}\left(f_{t}\right)=\Gamma_{+}\left(J_{1}\right)$, for all $t \neq 0$.

Then the deformation f_{t} is not $\mu^{(2)}$-constant if and only if $e\left(m, J_{0}, J_{0}\right)>e\left(m, J_{1}, J_{1}\right)$.
Proof. It is an immediate consequence of relation (10) and Corollary 3.2.
Example 3.4. Let $f_{t}:\left(\mathbb{C}^{3}, 0\right) \rightarrow(\mathbb{C}, 0)$ be the analytic family of functions given by

$$
\begin{equation*}
f_{t}(x, y, z)=x^{15}+y^{8}+z^{5}+x y^{7}+t y^{6} z . \tag{11}
\end{equation*}
$$

Let us consider the ideals of \mathcal{O}_{3} given by $J_{0}=\left\langle x^{15}, y^{8}, z^{5}, x y^{7}\right\rangle$ and $J_{1}=J_{0}+\left\langle y^{6} z\right\rangle$. We have $\Gamma_{+}\left(f_{0}\right)=\Gamma_{+}\left(J_{0}\right)$ and $\Gamma_{+}\left(f_{t}\right)=\Gamma_{+}\left(J_{1}\right)$, for all $t \neq 0$. The family f_{t} given in (11) is a modification of the Briançon-Speder example [5], that is, we have added the term y^{8} to this example in order to have that the ideals J_{0} and J_{1} have finite colength in \mathcal{O}_{3}.

It is clear that $\operatorname{ord}\left(J_{0}\right)=\operatorname{ord}\left(J_{1}\right)=5$ and

$$
\begin{aligned}
& \operatorname{ord}\left(J_{0}^{\{1,2\}}\right)=\operatorname{ord}\left(J_{1}^{\{1,2\}}\right)=8 \\
& \operatorname{ord}\left(J_{0}^{\{1,3\}}\right)=\operatorname{ord}\left(J_{1}^{\{1,3\}}\right)=5 \\
& \operatorname{ord}\left(J_{0}^{\{2,3\}}\right)=\operatorname{ord}\left(J_{1}^{\{2,3\}}\right)=5 .
\end{aligned}
$$

The numbers $e\left(m, J_{0}, J_{0}\right)$ and $e\left(m, J_{1}, J_{1}\right)$ can be computed effectively using the procedure described in [4, p. 405] and the aid of Singular [9]. Thus we obtain that

$$
e\left(m, J_{0}, J_{0}\right)=40 \quad e\left(m, J_{1}, J_{1}\right)=38 .
$$

Therefore, relation (10) gives

$$
\nu^{(2)}\left(J_{0}\right)=28 \quad \nu^{(2)}\left(J_{1}\right)=26 .
$$

and then $\mu^{(2)}\left(f_{0}\right)=28$ and $\mu^{(2)}\left(f_{t}\right)=26$, since f_{t} is Newton non-degenerate, for all t.

Example 3.5. [1, §4] Let us consider the analytic family $f_{t}:\left(\mathbb{C}^{3}, 0\right) \rightarrow(\mathbb{C}, 0)$ given by

$$
f_{t}(x, y, z)=x^{6}+y^{5}+z^{12}+x y^{3} z+t x^{3} y^{2}
$$

This family is μ-constant but not $\mu^{(2)}$-constant. As indicated in [1], we have $\mu\left(f_{t}\right)=166$, for all t, and

$$
\mu^{(2)}\left(f_{0}\right)=18 \quad \mu^{(2)}\left(f_{t}\right)=17, \text { for all } t \neq 0
$$

Let us consider the monomial ideals of \mathcal{O}_{3} given by

$$
J_{0}=\left\langle x^{6}, y^{5}, z^{12}, x y^{3} z\right\rangle \quad J_{1}=J_{0}+\left\langle x^{3} y^{2}\right\rangle
$$

We observe that $\Gamma_{+}\left(f_{0}\right)=\Gamma_{+}\left(J_{0}\right), \Gamma_{+}\left(f_{1}\right)=\Gamma_{+}\left(J_{1}\right)$ and $\nu\left(J_{0}\right)=\nu\left(J_{1}\right)=166$. Moreover $e\left(m, J_{0}, J_{0}\right)=28$ and $e\left(m, J_{1}, J_{1}\right)=27$, which imply that $\nu^{(2)}\left(J_{0}\right)=18$ and $\nu^{(2)}\left(J_{1}\right)=17$, by (10).

Example 3.6. Let us consider the monomial ideals J_{0} and J_{1} of \mathcal{O}_{3} given by

$$
J_{0}=\left\langle x^{5}, y^{7}, z^{15}, x^{2} y^{2} z\right\rangle \quad J_{1}=J_{0}+\left\langle x y^{4}\right\rangle
$$

We observe that $\nu\left(J_{0}\right)=\nu\left(J_{1}\right)=206$ and

$$
e\left(m, J_{0}, J_{0}\right)=29 \quad e\left(m, J_{1}, J_{1}\right)=27 .
$$

Therefore $\nu^{(2)}\left(J_{0}\right)=18$ and $\nu^{(2)}\left(J_{1}\right)=16$, by (10). This means that any deformation $f_{t}:\left(\mathbb{C}^{3}, 0\right) \rightarrow(\mathbb{C}, 0)$ such that $\Gamma_{+}\left(f_{0}\right)=\Gamma_{+}\left(J_{0}\right), \Gamma_{+}\left(f_{t}\right)=\Gamma_{+}\left(J_{1}\right)$, for all $t \neq 0$, and f_{t} is Newton non-degenerate, for all t, verifies that f_{t} is μ-constant but not $\mu^{(2)}$-constant.

Acknowledgement. The author wishes to express his gratitude to Prof. M.A.S. Ruas and Prof. Melle-Hernández for their helpful comments.

References

[1] Artal-Bartolo, E., Fernández de Bobadilla, J., Luengo I. and Melle-Hernández, A. Milnor number of weighted-Lê-Yomdin singularities, Int. Math. Res. Notices 22 (2010), 4301-4318.
[2] Birbrair, L., Fernandes, A. Neumann, W. Separating sets, metric tangent cone and applications for complex algebraic germs, Selecta Math. 16, No. 3 (2010), 377-391.
[3] Bivià-Ausina, C. Mixed Newton numbers and isolated complete intersection singularities, Proc. London Math. Soc. 94, No. 3 (2007), 749-771.
[4] Bivià-Ausina, C. Joint reductions of monomial ideals and multiplicity of complex analytic maps, Math. Res. Lett. 15, No. 2 (2008), 389-407.
[5] Briançon, J. and Speder, J.P. La trivialité topologique n'implique pas les conditions de Whitney, C. R. Acad. Sc. Paris 280 (1975), 365-367.
[6] Briançon, J. and Speder, J.P. Les conditions de Whitney impliquent μ^{*} constant, Ann. Inst. Fourier (Grenoble) 26, No. 2 (1976), 153-163.
[7] Eisenbud, D. Commutative algebra with a view toward algebraic geometry. Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 2004.
[8] Eyral, Ch. Zariski's multiplicity question-a survey, New Zealand J. Math. 36 (2007), 253-276.
[9] Greuel, G.-M., Pfister, G. and Schönemann, H. Singular 3-1-0 - A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2009).
[10] Hamm, H. A. Lokale topologische Eigenschaften komplexer Räume, Math. Ann. 191 (1971), 235-252.
[11] Huneke, C. and Swanson, I. Integral Closure of Ideals, Rings, and Modules, London Math. Soc. Lecture Note Series 336 (2006), Cambridge University Press.
[12] Kouchnirenko, A. G. Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31.
[13] Lê Dũng Tráng, Computation of Milnor number of isolated singularity of complete intersection, Funct. Anal. Appl. 8 (1974), 127-131.
[14] Lê Dũng Tráng and Teissier, B. Varietes Polaires Locales et Classes de Chern des Varietes Singulieres, Ann. of Math. 114, No. 3 (1981), 457-491.
[15] Łojasiewicz, S. Introduction to Complex Analytic Geometry, Birkhäuser Verlag, 1991.
[16] Mima, S. On the Milnor number of a generic hyperplane section, J. Math. Soc. Japan 41 (1989), 709-724.
[17] Oka, M. Principal zeta-function of non-degenerate complete intersection singularity, J. Fac. Sci. Univ. Tokyo 37 (1990), 11-32.
[18] Rees, D. Generalizations of reductions and mixed multiplicities, London Math. Soc. (2) 29 (1984), 397-414.
[19] Saia, M.J. The integral closure of ideals and the Newton filtration, J. Algebraic Geom. 5 (1996), 1-11.
[20] Swanson, I. Mixed multiplicities, joint reductions and quasi-unmixed local rings, J. London Math. Soc. (2) 48, No. 1 (1993), 1-14.
[21] Teissier, B. Cycles évanescents, sections planes et conditions of Whitney, Singularités à Cargèse, Astérisque, no. 7-8 (1973), 285-362.
[22] Teissier, B. Introduction to equisingularity problems, Algebraic geometry, Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974, 593-632.
[23] Teissier, B. Monomial ideals, binomial ideals, polynomial ideals, Math. Sci. Res. Inst. Publ. 51 (2004), 211-246.
[24] Teissier, B. Variétés Polaires I. Invariants polaires des singularités d'hypersurfaces, Invent. Math. 40 (1977), 267-292.
[25] Yoshinaga, E. Topologically principal part of analytic functions, Trans. Amer. Math. Soc. 314, 2 (1989), 803-814.

Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain

E-mail address: carbivia@mat.upv.es

[^0]: 2010 Mathematics Subject Classification. Primary 32S05; Secondary 32S30.
 Key words and phrases. Milnor number, topological triviality, Whitney conditions, integral closure of ideals, mixed multiplicities of ideals, Newton polyhedra.

 Work supported by DGICYT Grant MTM2009-08933.

