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Abstract

Machine translation technology is not perfect. To be successfully embedded in real-world applications, it

must compensate for its imperfections by interacting intelligently with the user within a computer-assisted

translation framework. The interactive-predictive paradigm, where both a statistical translation model and

a human expert collaborate to generate the translation, has been shown to be an effective computer-assisted

translation approach. However, the exhaustive supervision of all translations and the use of non-incremental

translation models penalizes the productivity of conventional interactive-predictive systems.

We propose a cost-sensitive active learning framework for computer-assisted translation whose goal is to

make the translation process as painless as possible. In contrast to conventional active learning scenarios, the

proposed active learning framework is designed to minimize not only how many translations the user must

supervise but also how difficult each translation is to supervise. To do that, we address the two potential

drawbacks of the interactive-predictive translation paradigm. On the one hand, user effort is focused to

those translations whose user supervision is considered more “informative”, thus, maximizing the utility of

each user interaction. On the other hand, we use a dynamic machine translation model that is continually

updated with user feedback after deployment. We empirically validated each of the technical components

in simulation and quantify the user effort saved. We conclude that both selective translation supervision

and translation model updating lead to important user-effort reductions, and consequently to improved

translation productivity.

Keywords: computer-assisted translation, interactive machine translation, active learning, online learning

1. Introduction1

Machine translation (MT) is a fundamental technology that is emerging as a core component of natural2

language processing systems. A good example of multilingualism with high translation needs can be found3

in the European Union (EU) political institutions. According to (EC, 2009), the EU employs 1, 750 full-time4

∗Corresponding author. Phone: (34) 96 387 70 69, Fax: (34) 96 387 72 39.
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Figure 1: Diagram of an interactive-predictive MT system. To translate a source sentence x, the user interacts with the system

accepting or correcting the proposed translations y. User feedback k is used by the system to improve its suggestions.

translators. Additionally, to cope with demand fluctuations, the EU uses external translation providers which5

generate approximately one fourth of its translation output. As a result, in 2008 the EU translation services6

translated more than 1, 800, 000 pages and spent about one billion Euros on translation and interpreting.7

Besides being an expensive and time-consuming task, the problem with translation by human experts8

is that the demand for high-quality translation has been steadily increasing, to the point where there are9

just not enough qualified translators available today to satisfy it. This poses a high pressure on translation10

agencies that must decide how to invest their limited resources (budget, manpower, time, etc.) to generate11

translations of the maximum quality in the most efficient way.12

To address this challenge, many translation agencies have focused their interest on MT technology.13

However, current state-of-the-art MT systems are still far from generating error-free translations (NIST,14

2006; Lopez, 2008). Indeed, they usually require human experts to post-edit their automatic translations.15

This serial process prevents MT systems from taking advantage of the knowledge of the human experts, and16

the users cannot take advantage of the adaptive ability of MT systems.17

An alternative way to utilize the existing MT technologies is to use them in collaboration with human18

translators within a computer-assisted translation (CAT) framework (Isabelle and Church, 1998). An im-19

portant contribution to CAT technology was carried out during the TransType project (Foster et al., 1998;20

Langlais et al., 2000; Foster, 2002; Langlais and Lapalme, 2002). They proposed the interactive-predictive21

machine translation (IMT) framework where data-driven MT technologies are embedded within the transla-22

tion environment. Following these ideas, Barrachina et al. (2009) proposed an innovative embedding where23

a fully-fledged statistical MT (SMT) system is used to produce complete translations, or portions thereof,24

which can be accepted or amended by a human expert, see Figure 1. Each corrected text segment is then25

used by the SMT system as additional information to achieve further, hopefully improved, translations.26

Despite being an efficient CAT protocol, conventional IMT technology has two potential drawbacks.27

First, the user is required to supervise all the translations. Each translation supervision involves the user28

reading and understanding the proposed target language sentence, and deciding if it is an adequate transla-29
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tion of the source sentence. Even in the case of error-free translations, this process involves a non-negligible30

cognitive load. Second, conventional IMT systems consider static SMT models. This implies that after31

being corrected the system may repeat its errors, and the user will be justifiably disappointed.32

We propose a cost-sensitive active learning (AL) (Angluin, 1988; Atlas et al., 1990; Cohn et al., 1994;33

Lewis and Gale, 1994) framework for CAT where the IMT user-machine interaction protocol (Figure 2) is34

used to efficiently supervise automatic translations. Our goal is to make the translation process as efficient35

as possible. I.e., we want to maximize the translation quality obtained per unit of user supervision effort.36

Note that this goal differs from the goal of traditional AL scenarios. While they minimize the number of37

manually-translated sentences to obtain a robust MT system, we aim at minimizing the number of corrective38

actions required to generate translations of a certain quality.39

The proposed cost-sensitive AL framework boosts the productivity of IMT technology by addressing40

its two potential drawbacks. First, we do not require the user to exhaustively supervise all translations.41

Instead, we propose a selective interaction protocol where the user only supervises a subset of “informative”42

translations (González-Rubio et al., 2010). Additionally, we test several criteria to measure this “informa-43

tiveness”. Second, we replace the batch SMT model by an incremental SMT model (Ortiz-Mart́ınez et al.,44

2010) that utilizes user feedback to continually update its parameters after deployment. The potential user45

effort reductions of our proposal are twofold. On the one hand, user effort is focused on those translations46

whose supervision is considered most “informative”. Thus, we maximize the utility of each user interaction.47

On the other hand, the SMT model is continually updated with user feedback. Thus, the SMT model is48

able to learn new translations and to adapt its outputs to match the user’s preferences which prevents the49

user from making repeatedly the same corrections.50

The remainder of this article is organized as follows. First, we briefly describe the SMT approach to51

translation, and its application in the IMT framework (Section 2). Next, we present the proposed cost-52

sensitive AL framework for CAT (Section 3). Then, we show the results of experiments to evaluate our53

proposal (Section 4). Finally, we summarize the contributions of this article in Section 5.54

2. Interactive-Predictive Machine Translation55

The statistical machine translation (SMT) approach considers translation as a decision problem, where56

it is necessary to decide upon a translation y given a source language sentence x. Statistical decision theory57

is used to select the correct translation among all the target language sentences. From the set of all possible58

target language sentences, we are interested in that with the highest probability according to the following59

equation (Brown et al., 1993)1:60

ŷ = arg max
y

Pr(y|x) (2.1)

1We use Pr(·) to denote general probability distributions and P (·) to denote model-based distributions.
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source (x): Para ver la lista de recursos

desired translation (ŷ): To view a listing of resources

interaction-0
yp

ys To view the resources list

interaction-1

yp To view

k a

ys list of resources

interaction-2

yp To view a list

k list i

ys list i ng resources

interaction-3

yp To view a listing

k o

ys o f resources

accept yp To view a listing of resources

Figure 2: IMT session to translate a Spanish sentence into English. At interaction-0, the system suggests a translation (ys).

At interaction-1, the user moves the mouse just before the first error and implicitly validates the first eight characters ”To

view ” as a correct prefix (yp). Then, the user introduces a correction by pressing the a key (k). Lastly, the system suggests

completing the translation from the user correction with “list of resources” (a new ys). At interaction 2, the user validates “To

view a list” and introduces a correction i which is completed by the systems to form a new translation “To view a listing of

resources”. Interaction 3 is similar. Finally, the user accepts the current translation which is equal to the desired translation.

where Pr(y|x) is usually modeled by a maximum entropy MT model (Och and Ney, 2002), also known as61

log-linear model. The decision rule for log-linear models is given by the expression:62

ŷ = arg max
y

Pr(y|x) ≈ arg max
y

{
M∑
m=1

λmhm(y,x)

}
(2.2)

where each hm(y,x) is a feature function that describes a particular aspect of the translation process (e.g.63

the log-probability log(P (y)) of the translation), and λm is its associated weight. Phrase-based (Koehn64

et al., 2003) and finite state (Casacuberta and Vidal, 2007) models are two successful implementations of65

the log-linear approach.66

However, despite a huge research effort, SMT systems are still not perfect. To obtain high-quality67

translations, a human expert has to supervise the automatically generated translations. This supervision is68

usually carried out as a separate post-edition step. The IMT framework (Barrachina et al., 2009) constitutes69

an alternative to this serial procedure. In an IMT system, an SMT model and a human expert collaborate70

to generate error-free translations. These translations are generated in a series of interactions between71

the SMT model and the user. At each interaction, the SMT model generates a translation of the source72
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sentence which can be partially or completely accepted and corrected by the user. Each partially corrected73

text segment, called prefix, is then used by the SMT model as additional information to generate better74

translation suggestions. Figure 2 shows an example of a typical IMT session.75

The IMT decision rule searches for an extension ys that completes a user-validated prefix yp is given by:76

ŷs = arg max
ys

Pr(ys|x,yp) (2.3)

which can be straightforwardly rewritten as:77

ŷs = arg max
ys

Pr(yp,ys|x) (2.4)

Given that ypys = y, this equation is very similar to Equation (2.1). The main difference is that the78

search now is performed over the set of suffixes ys that complete yp instead of complete sentences (y in79

Equation (2.1)). This implies that we can use the same MT models whenever the search procedures are80

adequately modified (Och et al., 2003). It should be noted that SMT models are defined at word level while81

the IMT interface depicted in Figure 2 works at character level. This is not an important issue since the82

transformations that are required in the SMT models for their use at character level are trivial.83

3. Cost-Sensitive Active Learning for Computer-Assisted Translation84

Although IMT have been successfully deployed in many practical applications, it still demands the human85

user to supervise all translations. This exhaustive supervision guarantees that the generated translations are86

error-free. However, it demands a large amount of cognitive effort by the user which penalizes translation87

productivity. A translation agency with limited resources, in terms of person-hours, may be willing to88

sacrifice some translation quality in exchange for improved productivity. Certainly, this is an unrealistic89

scenario in some cases, for example it is inconceivable not to fully-supervise the translation of a legal90

document such as a contract, but there are many other translation tasks, e.g. manuals for electronic91

devices, or twitter and blog postings, that match this productivity-focused scenario.92

The goal of this section is to present a cost-efficient CAT framework that allows the user to supervise93

and correct automatic translations as effortlessly as possible. From the existing IMT technology, we import94

its user-machine interaction process (Figure 2) to efficiently supervise individual translations. However, we95

implement a different work-flow to address its drawbacks. On the one hand, user effort will be focused to96

supervise only those translations considered most “informative”. On the other hand, the translation model97

will be continually updated with the new sentence pairs (x,y) supervised by the user.98

We implement these ideas as a cost-sensitive AL scenario designed to minimize supervision effort, Sec-99

tion 3.1. We define a new translation work-flow, Section 3.2, that focuses user-effort to only supervise the100

subset of most “informative” translations. Section 3.3 describes the different ranking functions implemented101
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to measure the “informativeness” of each translation, and finally, Section 3.4 presents the incremental SMT102

model that is continually updated from user feedback.103

3.1. Active Learning for Computer-Assisted Translation104

Training an SMT model requires translation examples of source language sentences and its corresponding105

target language translations. Example annotation is difficult for structured prediction tasks, since each106

example may have multiple, interacting labels, all of which must be correctly annotated for the example to107

be of use to the learner. This is particularly true for translation where additionally there may be multiple108

correct translations for a source sentence.109

Different alternatives to conventional supervised learning have been proposed to address these prob-110

lems. For example, semi-supervised learning methods use unlabeled data to help supervised learning111

tasks (Chapelle et al., 2006). These methods typically assume that the labeled data set is given and112

fixed. In practice, however, semi-supervised methods are allowed to pick a set of unlabeled examples to be113

annotated by an expert. In this case, rather than selecting the examples randomly, it may be attractive114

to let the learning algorithm to proactively tell us which of them to annotate. This approach is known as115

active learning (AL). The idea is to select which training examples to label and the order in which they are116

labeled to increase learning efficiency (Angluin, 1988; Atlas et al., 1990; Cohn et al., 1994; Lewis and Gale,117

1994). An active learner is considered successful if it obtains better performance than a traditional learner118

given the same number of training examples. Therefore, AL expedites annotation by reducing the number119

of labeled examples required to train an accurate model.120

In contrast to previous applications of AL to structured prediction tasks, e.g. sequence labeling (Settles121

and Craven, 2008), natural language parsing and information extraction (Thompson et al., 1999), or machine122

translation (Haffari et al., 2009), that minimize the number of labeled samples required to train an accurate123

model, our goal is to reduce the user supervision effort required to generate high-quality translations. Clearly,124

the amount of work required to supervise a translation will vary between sentences, e.g. based on the size125

and the complexity of the source sentence. Thus, it is desirable to design an AL supervision scenario that126

considers not only how many translations the user is required to supervise, but also how difficult each127

translation is to supervise.128

3.2. Translation Work-Flow and Supervision Protocol129

The proposed AL framework for CAT implies a modification of the conventional IMT work-flow depicted130

in Figure 1. The user no longer supervises the translation of all sentences but only of those selected as131

“worthy of being supervised”. Since only the most informative sentences are supervised, we maximize the132

utility of each user interaction. Final translations however may not be error-free as for conventional IMT.133

In exchange, an important reduction in human effort is potentially achievable. Moreover, we can modify134
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input : D (stream of source sentences)

M (initial SMT model)

ρ (effort level, percentage of sentences to be supervised)

auxiliar: B (block of consecutive sentences)

S ⊆ B (list of sentences to be supervised by the user)

begin1

repeat2

B = getBlockFromStream(D);3

S = sampling(B, ρ);4

foreach x ∈ B do5

ŷ = translate(M,x);6

if x ∈ S then7

y = ŷ;8

repeat9

yp = validPrefix(y);10

ŷs = genSuffix(M,x,yp);11

y = ypŷs;12

until validTranslation(y) ;13

M = update(M, (x,y));14

output(y);15

else16

output(ŷ);17

until D 6= ∅ ;18

end19

Algorithm 1: Pseudo-code of the proposed cost-sensitive AL framework for CAT. Functions translate(M,x),

validPrefix(y), genSuffix(M,x,yp), and validTranslation(y) (Section 3.2) denote the IMT user-machine inter-

action protocol, see Figure 2. Function sampling(B, ρ) implements the strategy to sample the most “informative”

sentences from B (Section 3.3), and function update(M, (x,y)) returns translation model M updated with the new

sentence pair (x,y) (Section 3.4).

the ratio of sentences to be supervised by the user thus modifying the behavior of our system between an135

automatic SMT system, and a fully-supervised IMT system. In other words, we can adapt the system’s136

behavior to the requirements of each particular translation task.137

Conventional IMT technology is build over the implicit assumption that the inbound text to be translated138
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behaves as a text stream (see Figure 1). Source sentences are translated separately and no information139

is stored (or assumed) about the preceding (or following) sentences, e.g. how many sentences remain140

untranslated. Since the IMT framework uses static SMT models and requires the user to supervise all141

translations, this is not a strong assumption. However, we have to take it into account because information142

about previously supervised translations, and particularly, about following sentences may have great impact143

on the final user effort. We handle the inbound text stream by partitioning the data into blocks of consecutive144

sentences. Within a block, all sentences are available, but once the algorithm moves to the next block, all145

sentences in previous blocks become inaccessible. We use the sentences within a block to estimate the current146

distribution of sentences in the stream, so that the estimation of the “informativeness” of supervising the147

translation of a sentence can be done as accurately as possible.148

Algorithm 1 shows the pseudo-code that implements the proposed cost-sensitive AL scenario for CAT.149

The algorithm takes as input a stream of source sentences D, a “base” SMT model M, and an effort level ρ150

denoting the percentage of sentences of each block to be supervised. First, the next block of sentences B is151

read from the data stream (line 3). From this block, we sample the set of sentences S ⊆ B that are worthy152

of being supervised by the human expert (line 4). For each sentence in B, the current SMT model generates153

an initial translation, ŷ, (line 6). If the sentence has been sampled as worth of supervision, x ∈ S, the user154

collaborates with the system to translate the sentence (lines 8–13). Then, the new sentence pair (x,y) is155

used to update the SMT model M (line 14), and the human-supervised translation is returned (line 15).156

Otherwise, we directly return the automatic translation ŷ as the final translation (line 17). Although both157

automatic and user-supervised translations are available, preliminary experiments showed that using both158

translations to update the SMT model resulted in reduced learning rates.159

Although other translation supervision methods, e.g. post-edition, can be used2, we implement the IMT160

user-machine interaction protocol (Figure 2) to supervise each individual translation. Functions between161

lines 8–13 denote this supervision procedure:162

translate(M,x): It returns the most probable automatic translation of x according to M. If M is a163

log-linear SMT model, this function implements Equation (2.2).164

validPrefix(y): It denotes the user actions (positioning and correction of the first error) performed to165

amend y. It returns the user-validated prefix yp of translation y, including the user correction k.166

genSuffix(M,x,yp): It returns the suffix ys of maximum probability that extends prefix yp. This function167

implements Equation (2.4).168

validTranslation(y): It denotes the user decision of whether translation y is a correct translation or not.169

It returns True if the user considers y to be correct and False otherwise.170

2This will imply a modification of lines 8 to 13 in Algorithm 1.
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In addition to the supervision procedure, the two elements that define the performance of Algorithm 1171

are the sampling strategy sampling(B, ρ) and the SMT model update function update(M, (x,y)). The172

sampling strategy decides which sentences of B are worthy of being supervised by the user. This is the173

main component of our framework and has a major impact on the final performance of the algorithm.174

Section 3.3 describes several strategies implemented to measure each sentence’s “informativeness”. In turn,175

the update(M, (x,y)) function updates the SMT model M with a new training pair (x,y). Section 3.4176

describes the implementation of this functionality.177

3.3. Sentence Sampling Strategies178

The goal of our AL framework for CAT is to generate high-quality translations as effortlessly as pos-179

sible. Since good translations are less costly to supervise than bad ones, the aim of a sampling strategy180

sampling(B, ρ) should be to select those sentences S ⊆ B for which knowing their correct translation allows181

to improve most the performance of the SMT model for future sentences. To do that, we first use a ranking182

function Φ(x) to score the sentences in B. Then, the percentage ρ of the highest-scoring sentences are183

selected to be supervised by the user. We identify three properties that (partially) account for the “worth”184

of a given sentence:185

Uncertainty: A sentence is as worthy as uncertain is the SMT model of how to translate it.186

Representativeness: A sentence is as worthy as it is “representative” of the sentences in B.187

Unreliability: A sentence is as worthy as the amount of unreliably modeled events that it contains.188

Next sections describe different sampling strategies designed to measure one (or more) of these comple-189

mentary properties.190

3.3.1. Random Ranking (R)191

Random ranking assigns a random score in the range [0, 1] to each sentence. It is the baseline ranking192

function used in the experimentation. Although simple, random ranking performs surprisingly well in prac-193

tice. Its success stems from the fact that it always selects sentences according to the underlying distribution.194

Using a typical AL heuristic, as training proceeds and sentences are sampled, the training set quickly di-195

verges from the real data distribution. This difficulty known as sampling bias (Dasgupta and Hsu, 2008) is196

the fundamental characteristic that separates AL from other learning methods. However, since by definition197

random ranking selects sentences according to the underlying distribution, it does not suffer from sampling198

bias. This fact makes random ranking a very strong baseline to compare with.199
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3.3.2. Uncertainty Ranking (U)200

One of the most common AL methods is uncertainty sampling (Lewis and Gale, 1994). This method201

selects those samples about which the model is least certain how to label. The intuition is clear: much can202

be learned from the correct output if the model is uncertain of how to label the sample. Formally, a typical203

uncertainty sampling strategy scores each sample x with one minus the probability of its most probable204

prediction ŷ = arg maxy P (y|x):205

Φ(x) = 1− P (ŷ|x) (3.1)

However, due to the peculiarities of SMT models, uncertainty sampling has to be re-considered. Since the206

normalization term does not influence the decision on the highest-probability translation, it is usually ignored207

in the model formulation, see Equation (2.2). As a result, instead of true probabilities these models generate208

simple scores that are not directly comparable between translations. Hence the conventional uncertainty209

technique cannot be implemented. Instead, under the assumption that the “certainty” of a model in a210

particular translation is correlated with the quality of that translation, we measure the uncertainty of a211

translation using an estimation of its quality. Specifically, we use confidence measures (Blatz et al., 2004;212

Ueffing and Ney, 2007) to estimate the quality of a translation from the confidence estimations of its213

individual words.214

Given a translation y = y1 . . . yi . . . y|y|
3 generated from a source sentence x = x1 . . . xj . . . x|x|, the215

confidence of each target language word C(yi,x) is computed as described in (Ueffing and Ney, 2005):216

C(yi,x) = max
0≤j≤|x|

P (yi|xj) (3.2)

where P (yi|xj) is a word-to-word probability model, and x0 is the empty source word. Following Ueffing217

and Ney (2005), we use an SMT model 1 (Brown et al., 1993) although other bilingual lexicon models, e.g.,218

model 2 (Brown et al., 1993), or hidden Markov model (Vogel et al., 1996), could also be used.219

The confidence-based uncertainty score is then computed as one minus the ratio of words in the most220

probable translation ŷ = y1 . . . yi . . . y|ŷ| classified as incorrect according to a word-confidence threshold τw:221

ΦU (x) = 1− |{yi | C(yi,x) > τw}|
|ŷ|

(3.3)

In the experimentation, threshold value τw was tuned to minimize classification error in a separate222

development set. Additionally, we use the incremental version of the EM algorithm (Neal and Hinton, 1999)223

to update the word-to-word probability model P (yi|xj) each time a new sentence pair is available.224

3We use the same symbol | · | to denote an absolute value |a|, the length of a sequence |x|, and the cardinality of a set |B|.

The particular meaning will be clear depending on the context.
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3.3.3. Information Density Ranking (ID)225

Uncertainty sampling bases its decisions on individual instances which makes the technique prone to sam-226

ple outliers. The least certain sentences may not be “representative” of other sentences in the distribution,227

in this case, knowing its label is unlikely to improve accuracy on the data as a whole (Roy and McCallum,228

2001). We can overcome this problem by modeling the input distribution explicitly when scoring a sentence.229

The information density framework (Settles and Craven, 2008) is a general density-weighting technique.230

The main idea is that informative instances should not only be those which are uncertain, but also those231

which are “representative” of the underlying distribution (i.e., inhabit dense regions of the input space). To232

address this, we compute the information density score:233

ΦID(x) = ΦU (x) ·

 1

|B|

|B|∑
b=1

S(x,xb)

γ

(3.4)

where the uncertainty of a given sentence x is weighted by its average similarity S(x, ·) to the rest of sentences234

in the distribution, subject to a parameter γ that controls the relative importance of the similarity term.235

Since the distribution is unknown, we use the block of sentences B = {x1, . . . ,xb, . . . ,x|B|} to approximate236

it. We use uncertainty ranking ΦU (x) to measure the “base” worth of a sentence, but we could use any237

other instance-level strategies presented in the literature (Settles and Craven, 2008; Haffari et al., 2009).238

We compute the similarity of two sentences as the geometric mean of the precision of n-grams (sequences239

of n consecutive words in a sentence) up to size four4 between them:240

S(x,xb) =


4∏

n=1

∑
w∈Wn(x)

min(#w(x),#w(xb))∑
w∈Wn(x)

#w(x)


1
4

(3.5)

where Wn(x) is the set of n-grams of size n in x, and #w(x) represents the count of n-gram w in x. This241

similarity score is closely related to the widespread translation evaluation score BLEU (Papineni et al., 2002)242

that will be further discussed in section 4.2.1.243

One potential drawback of information density is that the number of similarity calculations grows244

quadratically with the number of instances in B. However, similarities only need to be computed once245

for a given B and are independent of the base measure. Therefore, we can pre-compute and cache them for246

efficient look-up during the AL process.247

3.3.4. Coverage Augmentation Ranking (CA)248

Sparse data problems are ubiquitous in natural language processing (Zipf, 1935). This implies that some249

rare events will be missing completely from a training set, even when it is very large. Missing events result250

4Papineni et al. (2002) obtained the best correlation with human judgments using n-grams of maximum size n = 4.
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in a loss of coverage, a situation when the structure of the model is not rich enough to cover all types of251

input. As a result, words (or sequences thereof) that do not appear in the training set cannot be adequately252

translated (Turchi et al., 2009; Haddow and Koehn, 2012).253

Uncertainty sampling assumes that the model structure is fixed in advance and focus upon improving254

parameters within that structure. However, this is not appropriate for SMT where the model structure and255

the associated parameters are determined from training data. The problem is that uncertainty-based meth-256

ods fail at dealing with sentences with words not covered by the model. To efficiently reduce classification257

error in SMT, we should explicitly address unreliably trained model parameters. We do that by measuring258

the coverage augmentation ∆cov(x, T ) due to the incorporation of sentence x to the current training set T :259

∆cov(x, T ) =

4∑
n=1

∑
w∈(Wn(x)−Wn(T ))

|B|∑
b=1

#w(xb) (3.6)

The coverage augmentation for each sentence x is given by the count of n-grams in x missing in the260

training set T that appear in the rest of sentences in the block. I.e., we measure how many missing n-grams261

in B would be covered if x is added to the training set. Again, we consider n = 4 as the maximum n-gram262

length.263

This coverage augmentation score is biased towards longer sentences since longer sentences can contain264

a larger amount of unseen n-grams. This is one of the reasons for its successful application in conventional265

AL scenarios (Haffari et al., 2009) and bilingual sentence selection tasks (Gascó et al., 2012). However,266

longer sentences also imply a higher cognitive effort from the user (Koponen, 2012) which may penalize267

performance. We address this dilemma by normalizing the coverage augmentation score by an estimation of268

the user-effort E(x) required to supervise the translation. Since out-of-coverage words cannot be adequately269

translated and their translations will be corrected by the user, we assume user effort to be proportional to270

the number of out-coverage-words in the source sentence:271

E(x) ∝
∑

w∈(W1(x)−W1(T ))

#w(x) (3.7)

Finally, the coverage augmentation score measures the potential SMT model improvement per unit of272

user effort5:273

ΦCA(x) =
∆cov(x, T )

E(x)
(3.8)

To avoid selecting several sentences with the same missing n-grams, we update the set of n-grams seen in274

training each time a new sentence is selected. First, sentences in B are scored using Equation (3.8). Then,275

the highest-scoring sentence is selected and removed from B. The set of training n-grams is updated with276

the n-grams present in the selected sentence and, hence, the scores of the rest of the sentences in the block277

are also updated. This process is repeated until we select the desired ratio ρ of sentences from B.278

5We ignore the effort proportionality constant since it is equal for all sentences.
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3.4. Online Training for SMT279

After the translation supervision process, we have a new sentence pair (x,y) at our disposal. We now280

briefly describe the incremental SMT model used in the experimentation, and the online learning techniques281

implemented to update the model with new sentence pairs in constant time.282

We implement the online learning techniques proposed in (Ortiz-Mart́ınez et al., 2010). In that work, a283

state-of-the-art log-linear SMT model (Och and Ney, 2002) was presented. This model is composed of a set284

of incremental feature functions governing different aspects of the translation process, see Equation (2.2),285

including a language model, a model of source sentences length, direct P (y|x) and inverse P (x|y) phrase-286

based6 translation models (Koehn et al., 2003), models of the length of the source and target language287

phrases, and a reordering model.288

Together with this log-linear SMT model, Ortiz-Mart́ınez et al. (2010) present online learning techniques289

that, given a training pair, update the incremental features. In contrast to conventional batch learning290

techniques, the computational complexity of adding a new training pair is constant, i.e., it does not depend291

on the number of training samples. To do that, a set of sufficient statistics is maintained for each feature292

function. If the estimation of the feature function does not require the use of the EM algorithm (Dempster293

et al., 1977) then it is generally easy to incrementally update the feature given the new training sample. For294

example, to update a language model with the new translation we simply have to update the current count of295

each n-gram in y. By contrast, if the EM algorithm is required (e.g. to estimate phrase-based SMT models)296

the estimation procedure has to be modified because EM is designed to be used in batch learning scenarios.297

For such feature functions, the incremental version of the EM algorithm (Neal and Hinton, 1999) is applied.298

For example, phrase-based models are estimated from an hidden Markov (HMM) model (Vogel et al., 1996).299

Since the HMM model is determined by a hidden alignment variable, the incremental version of the EM300

algorithm is required to update the model with the new training sample (x,y). A detailed description of301

the update algorithm for each feature function was presented in (Ortiz-Mart́ınez et al., 2010).302

4. Experiments303

We carried out experiments to assess the performance of the proposed cost-sensitive AL framework for304

CAT. The idea is to simulate a real-world scenario where a translation agency is hired to translate a huge305

amount of text. The experimentation was divided into two parts. First, Section 4.3 describes a typical306

AL experimentation, such as the one in (Haffari et al., 2009), where we studied the learning curves of307

the SMT model as a function of the number of training sentence pairs. Then, Section 4.4 focuses on the308

productivity of the whole CAT system. There, we measured, for each ranking function, the quality of the309

6In contrast with word-based translation models where the fundamental translation unit is the word, phrase-based models

translate whole sequences of words. These sequences are called phrases although typically they are not linguistically motivated.
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Table 1: Main figures of the Spanish–English corpora used, k and M stand for thousands and millions of elements respectively.

corpus use sentences
tokens vocabulary out-of-coverage tokens

(Spa/Eng) (Spa/Eng) (Spa/Eng)

Europarl
training 731k 15.7M/15.2M 103k/64k –/–

development 2k 60k/58k 7k/6k 208/127

News
test 51k 1.5M/1.2M 48k/35k 13k/11k

Commentary

final translations generated by the system as a function of the supervision effort required from the user. With310

this experimentation, we can observe how the improvements of the underlying SMT model are reflected in311

the productivity of the whole cost-sensitive AL CAT system.312

4.1. Methodology and Data313

The experimentation carried out comprises the translation of a test corpus using different setups of314

the proposed cost-sensitive AL framework. Each setup was defined by the ranking function used. All315

experiments start with a “base” SMT model whose feature functions are trained on the training partition of316

the Europarl (Koehn and Monz, 2006) corpus, and its log-linear weights are tuned by minimum error-rate317

training (Och, 2003) to optimize BLEU (Papineni et al., 2002) in the development partition. Then, we run318

Algorithm 1 until all sentences of the News Commentary corpus (Callison-Burch et al., 2007) are translated319

into English. We use blocks of size |B| = 1000 (González-Rubio et al. (2012) show that similar results were320

obtained with other block sizes), and for information density, we arbitrarily set γ = 1 (i.e., uncertainty and321

density terms had equal importance). The main figures of the training, development, and test corpora are322

shown in Table 1.323

The reasons to choose the News Commentary corpus as test corpus are threefold: its size is large enough324

to test the proposed techniques in the long term, its sentences come from a different domain (news) than325

the sentences in the Europarl corpus (proceedings of the European parliament), and it contains sentences326

of different topics which allows us to test the robustness of our system against topic-changing data streams.327

Therefore, by translating the News Commentary corpus we simulate a realistic scenario where translation328

agencies must be ready to fulfill eclectic real-world translation requirements.329

Since an evaluation involving human users is too expensive, we use the reference translations of the News330

Commentary corpus to simulate the target translations which a human user would want to obtain. At each331

interaction (see Figure 2), the prefix validated by the user is computed as the longest common prefix between332

the translation suggested by the system (ys) and the reference translation (ŷ), and the user correction (k)333
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is given by the first mismatched character between ys and ŷ. The interaction continued until the longest334

common prefix is equal to the reference translation.335

4.2. Evaluation Measures336

The goal of the proposed cost-sensitive AL framework is to obtain high translation quality with as few337

user effort as possible. Therefore, the evaluation is twofold: quality of the generated translations and amount338

of supervision effort required to generate them. Additionally, we describe how we compute the statistical339

significance of the results.340

4.2.1. Measuring Translation Quality341

We evaluate translation quality using the well-established BLEU (Papineni et al., 2002) score. BLEU342

computes the geometric mean of the precision of n-grams of various lengths between a candidate translation343

and a reference translation. This geometric average is multiplied by a factor, namely the brevity penalty,344

that penalizes candidates shorter than the reference. Following the standard implementation, we consider345

n = 4 as the maximum n-gram length. BLEU is a percentage that measures to which extent the candidate346

translation contains the same information as the reference translation. Thus, a BLEU value of 100% denotes347

a perfect match between the candidate translation and the reference translation.348

4.2.2. Measuring Supervision Effort349

We estimate the user effort as the number of user actions required to supervise a translation which depend350

on the supervision method7. In the interaction protocol described in Section 3.2, the user can perform two351

different actions to interact with the system. The first action corresponds to the user looking for the next352

error and moving the pointer to the corresponding position of the translation hypothesis. The second action353

corresponds to the user replacing the first erroneous character with a keystroke.354

Bearing this in mind, we compute the keystroke and mouse-action ratio (KSMR) (Barrachina et al., 2009)355

which has been extensively used to report user effort results in the IMT literature. KSMR is calculated as356

the number of keystrokes plus the number of movements (mouse actions) divided by the total number of357

characters of the reference translation. From a user point of view the two types of actions are different, and358

may require different types of effort (Macklovitch, 2006). A weighted measure could take this into account;359

however, in these experiments, we assume each action has unit cost.360

4.2.3. Statistical Significance361

We apply statistical significance testing to establish that an observed performance difference between362

two methods is in fact significant, and has not just arisen by chance. We state a null hypothesis: “Methods363

7For example, if instead of using the IMT supervision protocol we ask the user to post-edit the translations, user actions

are edit operations, and the natural effort measure is the word error rate, also known as Levenshtein distance.
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A and B do not differ with respect to the evaluation measure of interest” and determine the probability,364

namely the p-value, that an observed difference has arisen by chance given the null hypothesis. If the p-value365

is lower than a certain significance level (usually p < 0.01, or p < 0.05) we can reject the null hypothesis. To366

do that, we use randomization tests because they free us from worrying about parametric assumptions and367

they are no less powerful than ordinary t-tests (Noreen, 1989). Specifically, we use a randomization version368

of the paired t-test based on (Chinchor, 1992):369

1. Collect the absolute difference in evaluation measure Q(·) for methods A and B370

|Q(A)−Q(B)|371

2. Shuffle N times (N = 999 in our experiments)372

3. Count the number of times (N≥) that373

|Q(A′)−Q(B′)| ≥ |Q(A)−Q(B)|374

4. The estimate of the p-value is N≥+1
N+1375

(1 is added to achieve an unbiased estimate)376

Initially, we use an evaluation measure Q(·) (e.g. BLEU) to determine the absolute difference between377

the original outcomes of methods A and B. Then, we repeatedly create shuffled versions A′ and B′ of the378

original outcomes, determine the absolute difference between their evaluation metrics, and count the number379

of times N≥ that this difference is equal or larger than the original difference. To create the shuffled versions380

of the data sets, we iterate over each data point in the original outcomes and decide based on a simulated381

coin-flip whether data points should be exchanged between A and B. The p-value is the proportion of382

iterations in which the absolute difference in evaluation metric was indeed larger for the shuffled version383

(corrected to achieve an unbiased estimate).384

4.3. Active Learning Results385

We first studied the learning rates of the different ranking functions in a typical AL experimentation.386

Here, the performance of the SMT model is studied as a function of the percentage ρ of the corpus used to387

update it. SMT model performance was measured as the translation quality (BLEU) of the initial automatic388

translations generated during the interactive supervision process (line 6 in Algorithm 1).389

Figure 3 displays the learning rates observed for each ranking function in Section 3.3: random (R),390

uncertainty (U), information density (ID) and coverage augmentation (CA). Additionally, we report the391

significance level of the observed difference for some pairwise comparisons. Similarly as done in (Becker,392

2008), we present p-values on a logarithmic scale. Note that p = 0.001 is the smallest possible p-value that393

can be computed with 999 shuffles in the randomized test; lower p-values will be displayed as a flat line.394

Results in Figure 3 show that coverage augmentation ranking consistently outperformed the random395

ranking baseline. Additionally, the observed difference was statistically significant as shown in the second396
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Figure 3: SMT model performance (BLEU) as a function of the percentage ρ of the corpus used to update it (first panel). We

display results for random ranking (R), uncertainty ranking (U), information density ranking (ID), and coverage augmentation

ranking (CA). Panels two to four display, on a logarithmic scale, the significance levels (p-values) of the performance differences

observed for various pairwise comparisons.

panel of the figure. This result shows that coverage augmentation is the ranking function that more effectively397

detected those sentences that improve most the performance of the SMT model.398

Both uncertainty ranking and information density ranking were outperformed by random ranking when399

supervising up to 50% of the corpus; after that, results for the three ranking functions were very similar and400

almost no statistical difference was observed (third panel). Additionally, uncertainty ranking and information401

density ranking obtained virtually the same results; however the slightly better results of uncertainty ranking402

were statistically significant (fourth panel). I.e., the addition of the “representativeness” in information403

density deteriorated the performance of uncertainty ranking. This counter-intuitive result can be explained404

by the intrinsic sparse nature of natural language, and particularly by the eclectic topics, e.g. economic,405

science, or politics, of the sentences in the test corpus.406

In the previous experiment, we assumed that all translations were equally costly to supervise. However,407

different sentences involve different translation costs. Therefore, we then focused on measuring user super-408

vision effort. We studied the user effort required to supervise translations as a function of the percentage409

of sentences ρ supervised. Figure 4 shows the KSMR scores obtained by each ranking function, and the410
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Figure 4: User effort (KSMR) as a function of the percentage ρ of the corpus used to update the SMT model (first panel). We

display results for random ranking (R), uncertainty ranking (U), information density ranking (ID), and coverage augmentation

ranking (CA). Panels two to four display, on a logarithmic scale, the significance levels (p-values) of the effort differences

observed for various pairwise comparisons.

significance level of some pairwise ranking function comparisons.411

Results show that sentences selected by coverage augmentation required a statistically significant larger412

amount of effort than the ones selected by random; except when supervising almost all sentences ρ > 96%413

where coverage augmentation required a lower amount of effort (second panel in Figure 4). This indicates414

that even when all sentences are supervised ρ = 100% the order in which they are supervised (depending415

on the ranking function) affects the efficiency of the supervision process.416

Regarding uncertainty and information density, both ranking functions required a statistically lower417

amount of effort than random (third panel), and similarly to the results in Figure 3, differences between418

uncertainty and information density were scarce but statistically significant (fourth panel). In this case,419

sentences selected by information density required a statistically lower amount of effort to be supervised.420

4.4. Productivity Results421

Results in the previous section show that those ranking functions that obtained better learning rates422

are also those that required more supervision effort, and vice versa. However, from a point of view of423
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Figure 5: Final translation quality (BLEU) as a function of user effort (KSMR). We display results for random ranking (R),

information density ranking (ID), coverage augmentation ranking (CA), and for a setup where the underlying SMT model is

not updated (static SMT).

a translation agency that has to invest its limited resources, the key point is how to obtain the better424

productivity. I.e., given a required translation quality, how to reduce supervision effort; or symmetrically,425

given an effort level, how to maximize translation quality.426

To answer these questions, we studied the relation between user effort and final translation quality.427

In contrast with the experimentation in Figure 3 where we study the learning rates of the SMT model by428

measuring the quality of its automatic translations, we now are interested in the performance of the complete429

cost-sensitive AL system. We did that by measuring the translation quality of the translations generated by430

Algorithm 1 (lines 15 and 17) as a function of the required supervision effort. Note that this final translations431

are a mixture of automatic and user-supervised translations. The ratio between them is fixed by ρ which432

permits to adjust system’s behavior between a fully automatic SMT system if none translation is supervised433

(ρ = 0%), or a conventional IMT system where all translations are supervised (ρ = 100%).434

Since uncertainty and information density obtain so similar performance in the previous experiments,435

Figure 5 compares the performance of only random (R), information density (ID), and coverage augmentation436

(CA) ranking functions. Additionally, we present results of the proposed cost-sensitive AL framework437

using a static SMT model. The objective was to test the influence of SMT model updating on translation438

productivity.439
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Results show a huge leap in productivity when the SMT model was updated with user feedback. This440

continuous model updating allowed to obtain twice the translation quality with the same level of supervision441

effort. Regarding the different ranking functions, both information density and coverage augmentation442

performed similarly yielding slight improvements in productivity with respect to random, particularly for443

high levels of effort. For example, if a translation quality of 60% BLEU is acceptable, then the human444

translator would need to modify only a 20% of the characters of the automatically generated translations.445

5. Conclusions and Future Work446

We have presented a cost-sensitive AL framework for CAT designed to boost translation productivity.447

The two cornerstones of our approach are the selective supervision protocol and the continual SMT model448

updating with user-supervised translations. Regarding selective supervision, we propose to focus user effort449

on a subset of sentences that are considered “worth of being supervised” according to a ranking function.450

The percentage of sentences to be supervised is defined by a tunable parameter which allows to adapt the451

system to meet task requirements in terms of translation quality, or resources availability. Whenever a new452

user-supervised translation pair is available, we use it to update a log-linear model. Different online learning453

techniques are implemented to incrementally update the model.454

We evaluated the proposed cost-sensitive AL framework in a simulated translation of real data. Results455

showed that the use of user-supervised translations reduced to one half the effort required to translate the456

data. Additionally, the use of an adequate ranking function further improved translation productivity.457

The experimental simulation carried out is effective for evaluation, but, to assess the obtained results,458

we plan to conduct a complete study involving real human users. Productivity could be measured by the459

actual time it takes a user to translate a test document. This evaluation additionally requires addressing460

issues of user interface design and user variability, but it is ultimately the most direct evaluation procedure.461

An additional direction for further research is to study why random ranking performs so well. We have462

provided some insights of which are the reasons for this, but we hope that a further study will reveal new463

hints that may guide us towards the definition of sampling strategies that outperform random sampling.464

Moreover, the study of productivity-focused ranking functions is a wide research field that should also be465

explored466
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