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Abstract

The ensemble Kalman filter (EnKF) is nowadays recognized as an excellent inverse

method for hydraulic conductivity characterization using transient piezometric head data.

Its implementation is well suited for a parallel computing environment. A parallel code has

been designed that uses parallelization both in the forecast step and in the analysis step.

In the forecast step, each member of the ensemble is sent to a different processor, while in

the analysis step, the computations of the covariances are distributed between the different

processors. An important aspect of the parallelization is to limit as much as possible the

communication between the processors in order to maximize execution time reduction.

Four tests are carried out to evaluate the performance of the parallelization with different

ensemble and model sizes. The results show the savings provided by the parallel EnKF,

especially for a large number of ensemble realizations.

Keywords: Parallel EnKF; Cluster; Hydraulic conductivity; Parallel computing;

1. Motivation1

The ensemble Kalman filter (EnKF) proposed by Evensen (Evensen, 2003) has proven2

to be an effective inverse method. It has been applied in many fields such as petroleum3
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engineering, oceanography, meteorology or hydrology (e.g., Aanonsen et al., 2009; Evensen,4

2003; Dowell et al., 2010; Hendricks Franssen and Kinzelbach, 2008; Li et al., 2012b). While5

it has proven to be more effective than alternative inverse methods (Hendricks Franssen and6

Kinzelbach, 2009), it still has important computational needs.7

The ensemble Kalman filter is based on the simultaneous analysis of a large number8

of realizations. The first attempts to reduce CPU time usage were aimed at reducing the9

number of realizations in the ensemble. The covariance localization is a modification of the10

initial EnKF implementation that serves to reduce the ensemble size without compromising11

much the quality of the outcome (e.g., Houtekamer and Mitchell, 1998; Anderson, 2007;12

Devegowda et al., 2010; Zhang and Oliver, 2010). Other authors have proposed to reduce13

the size of each realization, for instance, Li et al. (2012a) couple upscaling and the EnKF14

for the inverse modeling of groundwater flow.15

In any case, even for the most efficient implementation of the EnKF, the fact that it works16

on each one of an ensemble of realizations makes it amenable to parallelization and thus take17

advantage of multi-processor computers or of grid computing to reduce even further the time18

needed for the algorithm to run. Although it will be reviewed in more detail later in the19

paper, recall that the EnKF takes an ensemble of realizations, runs a forward model in each20

realization, collects state data at observation locations and uses the difference between the21

predicted and observed values to update each one of the realizations. The updating step22

requires using all the ensemble realizations to compute the Kalman gain.23

Keppenne (2000) proposed a parallel algorithm in which the forward model for each24

ensemble member is run in a different processor, then, to compute the Kalman gain, a25

domain decomposition is performed and each processor ends up with a small portion of all26

ensemble realizations, finally, for the updating, each processor is responsible of the update of27

a realization. (Keppenne and Rienecker, 2002a,b, 2003) also apply a domain decomposition28

in the updating step and each processor is responsible of updating the subdomain used29
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for the Kalman gain computation in all realizations. This approach has the advantage of30

avoiding the ensemble transpositions across processor that would be required if, after the31

computation of the Kalman gain, each processor updates a full realization.32

Recently, Tavakoli et al. (2011) have proposed a parallel EnKF algorithm applied to33

petroleum engineering using a three-level parallelization. On the first level, each ensemble34

member runs on a separate processor during the forecast step, on the second level uses a35

parallel implementation of the reservoir simulator, and, on the third level, it handles the36

matrix-vector multiplications involved in the Kalman gain computation and the updating of37

the ensemble members.38

In this paper we propose an alternative parallel EnKF algorithm and provide the com-39

puter code to run it on a parallel environment using MODFLOW (McDonald and Harbaugh,40

1988; Harbaugh et al., 2000) as the forward model. To the best of our knowledge this is the41

first application of a parallel EnKF algorithm in the field of hydrogeology.42

The paper proceeds with an overview of the EnKF, the strategy for parallelization, and43

the evaluation of the algorithm on two examples.44

2. Overview of the EnKF45

The EnKF is the evolution of the Kalman filter to better address nonlinear state transfer46

functions using a Monte-Carlo approach. The Kalman filter was proposed by Kalman et al.47

(1960) as a data assimilation filter to improve the estimation of the state of a dynamic linear48

system. Later, the extended Kalman filter (EKF) was proposed to address nonlinear systems;49

the extension is based on a linearization of the nonlinear model, using a Taylor expansion,50

for the computation of the time evolution of the covariance (McElhoe, 1966). The EKF has51

been used in many fields, including hydrology (e.g., Hantush, 1997; Leng and Yeh, 2003;52

Yeh and Huang, 2005), however, it has severe shortcomings in dealing with highly nonlinear53

functions due to the accumulative error induced by the linearization process. Besides, the54
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algorithm itself is time and storage consuming, yielding it infeasible for large-scale system.55

To overcome these problems, the EnKF was proposed, the specifics of which are introduced56

next.57

There are many uncertain factors in groundwater modeling: initial and boundary con-58

ditions, forcing terms, parameter values, ... (Hendricks Franssen and Kinzelbach, 2009).59

In this paper, we focus on the uncertainty about the parameter log-hydraulic conductivity.60

The state-transition equation is the standard three-dimensional groundwater flow equation,61

which is solved by MODFLOW, one of the most popular three-dimensional finite-difference62

groundwater flow simulators (e.g., McDonald and Harbaugh, 1988; Harbaugh et al., 2000).63

The filter has two steps. The first one is the prediction step, given by64

sfi (t) = M(sai (t−∆t) + wi(t), w(t) ∼ N(0, σ) (1)

where sfi (t) is the forecasted state of the system for a given set of parameters i, this state65

is function of the last estimate of the state of the system at t − ∆t, sai (t − ∆t) through a66

state-transition equation represented by M . Equation M is only an approximation of how67

the system behaves, therefore a model error w is added to the forecast, which is assumed to68

be Gaussian distributed, with zero mean and covariance σ.69

The second step is the analysis step (Burgers et al., 1998), whereby the observed state70

measurements are used to update the forecast state to come up with a better estimate of71

the forecasted state.72

sai (t) = sfi (t) + k(t)[do(t) + ei(t)−Hsfi (t)] (2)
73

k(t) = pf (t)HT [Hpf (t)HT +R]−1 (3)

where the forecasted state sfi (t) is updated as a function of the difference between the74

predicted state sfi (t) and the observations (do(t) + ei(t); matrix H is a measurement matrix75
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that serves to map the model predictions (generally over a fixed grid) onto the locations76

where the observations are taken. Note that the observations are composed of two terms the77

“real” state of the system do(t) plus a measurement error ei(t) of mean zero and covariance78

R. The amount by which the forecasted state should be modified is controlled by the79

Kalman gain k(t), which is a function of the state covariance pf (t). The ensemble Kalman80

filter was developed precisely to avoid the shortcomings in computing the state covariance81

by linearizing the state-transfer equation. For this purpose, an ensemble of realizations is82

generated, and their state is forecasted and updated sequentially in time as data are collected.83

At each time step, the covariance is numerically inferred from the ensemble of realizations,84

pf (t) =
1

Ne − 1

Ne∑
i=1

(sf (t)− ⟨sf (t)⟩)(sf (t)− ⟨sf (t)⟩)T (4)

⟨sf (t)⟩ = 1

Ne

Ne∑
i=1

sf (t) (5)

where Ne is the number of realizations of the ensemble, ⟨·⟩ denotes ensemble average, and85

p is a matrix of dimensions n × n, with n is the number of nodes at which the state of the86

system is predicted by the numerical forecast model.87

In inverse modeling applications, the state of the system is augmented so that it not88

only includes the properly-speaking state of the system but also the parameters defining89

the transfer function. In hydrogeology it is common to use such an augmented state, in90

our case we use piezometric heads and log-hydraulic conductivities as state and parameters,91

respectively. In our implementation we use an augmented vector, the state transfer function92

in Eq. (1) leaves unchanged the logconductivity values, and updates the piezometric heads93

according to the groundwater flow model; then, in the analysis step, we limit ourselves to94

update the logconductivity values as explained next. For the sake of demonstration, we will95

assume that observations are taken at groundwater model prediction locations; limiting the96
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component of the measurement matrix H to be 0’s and 1’s, and simplifying the expressions97

in Eqs. (2) and (3) as follows. We may partition the covariance matrix98

p =

 phh pY h

phY pY Y

 (6)

where phh, pY Y are the covariance between hydraulic heads at measurement locations and99

the covariance between log-conductivities at all model gridnodes, respectively, and pY hand100

phY are the cross-covariances between a log-conductivity and a hydraulic head. And Eqs.101

(2) and (3) become102

Y a
i (t) = Y f

i (t) + k(t)[do(t) + ei(t)− hf
i (t)] (7)

103

k(t) = pY h[phh +R]−1 (8)

where Y a
i (t) and Y f

i (t) are the elements of the augmented state vector corresponding to the104

logconductivities, and hf
i (t) is the predicted piezometric heads at measurement locations.105

The output of the EnKF is an ensemble of realizations of hydraulic conductivity all106

of which are “conditioned” to the observation data. From this ensemble we can obtain107

average estimates and uncertainty estimates about the hydraulic conductivity, or we can108

post-process these fields to obtain optimal estimates, with their associated uncertainty, of109

response functions based on the ensemble, such as optimal pumping rates for the dewatering110

of a construction site. As more observational data are assimilated, the ensemble of hydraulic111

conductivities become more alike, and therefore the uncertainty associated is smaller, since112

there are less alternative realizations capable of reproducing the observed entire transient113

state information.114

We end this introduction mentioned some of the main advantages and drawbacks of the115

EnKF. The main advantage of the EnKF is that is not an optimization approach but rather116

6



a filtering approach. Therefore, there is no need for recursive evaluations of expensive cost117

functions, just the need to compute the ensemble covariance and the mismatch between118

predictions and observations, which will be used to update the conductivity fields. This119

characteristic makes the EnKF very easy to implement and to apply in cases with many120

different sources of information. The main drawback, leaving apart the Monte-Carlo aspect121

of the method and the need to handle many realizations, is that the EnKF has been found122

to collapse underestimating the final uncertainty (that is, as the fields keep been updated,123

they tend to become more and more similar). There are two main reasons for this behavior,124

one is the appearance of spurious correlations between distant points due to the numerical125

nature of the covariance calculations, the other has to do with the number of realizations, if126

it is not large enough, the empirical covariance based on a reduced number of realizations127

tends to decrease as new updating steps are performed. The approaches to deal with these128

problems are covariance localization and covariance inflation.129

3. Parallelization approach130

There are mainly three kinds of parallel computer architectures, the first kind is based131

on shared memory, the second one is based on distributed memory, and the third one is a132

hybrid in between both of them. The first type corresponds to multi-core computers, the133

benefits are that the communication between the different ranks is very fast, and that it is134

very easy to share data among them. However, this type of architecture is limited by the135

total amount of memory available, and may be unable to address large models. The second136

type corresponds to sharing resources among a grid of computers, the grid could easily be137

enlarged attaching new computers to it, and therefore the limitation about the size of the138

model they can handle disappears, on the contrary, the communication between the different139

processors is much slower than in the shared-memory architecture. The best architecture140

is the third one that uses a grid of multi-core computers, balancing the advantages and141
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disadvantages of the first and second architecture kinds.142

In this paper, we employ a hybrid architecture. The cluster of computers, known as143

“Pleiades”, consists of three HP Proliant DL 580, each with six-core four processors AMD144

Opteron Model 8439 SE (six-core, 2.8GHz, 6MB L3, 105W), which amounts to a total of145

24 cores per computer. All cores are 64-bit, and each computer has 256 GB of RAM.146

The operating system is CentOS. Communication between processors is via message passing147

interface (MPI). The cluster is networked via Ethernet TCP/IP.148

As already explained previously, the EnKF consists of two steps: forecast and analysis149

(or updating). We have analyzed the potential for parallelization of both steps.150

Fig. 1 shows a flowchart of the proposed parallelization, which is explained next.151

3.1. Forecast step152

The most straightforward way to parallelize the forecast step in the EnKF is at the153

realization level (Chen and Zhang, 2006). See box 1 of Fig. 1, let s(n · Ne) be the state154

vector including all the ensemble members, where n represents state-vector size and Ne155

is the number of realizations of the ensemble; if there are k processors, then the metric156

can be decomposed into sub-metrics s(n · m0), s(n · m1),..., s(n · mk), where m0,m1,...mk157

(m0+m1+...+mk=Ne) denotes the number of ensemble members that must be processed158

by each processing element, PE0, PE1,...PEk respectively. Once the realizations are dis-159

tributed among the processors, the MODFLOW simulator is called to generate the forecast160

piezometric heads in all realizations. The distribution of the realizations to the processors161

must be so that the load on all processors is as similar as possible. If Ne is a multiple of k,162

then each processor will receive Ne/k realizations, otherwise there will be Ne%k processors163

receiving one extra realization.164

Since the processors operate asynchronously, and the analysis step cannot be performed165

until the forecast is performed in all realization, it is necessary to call the MPI Barrier166
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command before starting the update step, to block each processor until all processors reach167

the barrier point in the code (Dewaraja et al., 2002).168

3.2. Update step169

After the forecast step, the state vector sf , which contains all realizations, is distributed170

between the processors. Next, we have to compute the covariances pY h, and phh. This calcu-171

lation is distributed as follows, first accumulate the distributed state vector sf in each proces-172

sor,
∑

sf0,
∑

sf1, ...,
∑

sfk, (recall that each processor is in charge of the forecast of a subset173

of all realizations) send these accumulated values to one of the processors PE0 and compute174

the mean value of each component. Broadcast the mean values to all of the processors, and175

accumulate the products of the differences of the state vector with respect to their means in176

each one of the processors
∑

(sf0− < sf >)(sf0− < sf >)T ,...,
∑

(sfk− < sf >)(sfk− < sf >)T .177

Then, send the accumulated products of differences to PE0 and compute the covariances in178

this processor. Notice that the accumulated products of differences must be computed only179

for the individual entries in pY h, and phh, not for all possible entries of pf in Eq. (6). With180

the covariances computed, the Kalman gain is obtained and broadcasted back to all proces-181

sors so that the updating Eq. (7) is applied to each member of the state vector distributed182

between the processors.183

4. Application184

The 3-D transient groundwater flow equation is:185

Ss
∂h

∂t
−∇ · (k∇h) = W (9)

where Ss is specific storage coefficient [L−1]; h is the hydraulic head [L]; k is the hydraulic186

conductivity [LT−1]; t is the time [T ]; W denotes sinks and sources per unit volume [T−1].187
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We use four test cases corresponding to two different model sizes. Cases 1, 2 and 3 use188

a synthetic model with 50 by 50 by 5 cells, and the difference between them is the number189

of realizations in the ensemble, which are 1200, 720 and 240. Case 4 uses a synthetic model190

with 50 by 50 by 1 cell and 1200 realizations in the ensemble. All cells are 5 m by 5m by 2191

m.192

For the small model of size 50 by 50 by 1 cells, there are 75 observation wells in the193

domain located as shown in Fig. 2. The left boundary has a specified head boundary equal194

to 8 m, the right boundary has a specified flow of -0.0008 d−1 and the top and bottom195

boundaries are no flow.196

For the large model of size of 50 by 50 by 5 cells, there are 25 observation wells in the197

domain, as shown in Fig. 3, that monitor the piezometric heads at the first, third and fifth198

layers, for a total of 75 measurements. A verification well, located at row 30, column 20 and199

layer 3 (see Fig. 3) is used to test the evolution of the piezometric head at an unsampled200

location. The first layer of the left boundary is given a specified head of 8 m, the fifth layer201

of the right boundary is given a prescribed flow of -0.008 d−1. The rest of the boundary are202

no flow boundaries.203

For both models, the initial head is set 8 m throughout the domain. Specific storage Ss204

is set as 0.0008 m−1. The total simulation time is 500 days, discretized into 100 time steps205

according to the following progression206

△tk = δ△tk−1 (10)

where δ is 1.05.207

Log-conductivity ln(k) is assumed to be second-order stationary following a multi-Gaussian208

distribution of zero ln m/d mean, standard deviation σ=1.5 ln m/d, and an exponential co-209

variance function.210
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r(h) = σ2[1− exp(−|hx|
λx

− |hy|
λy

− |hz|
λz

)] (11)

where the integral scales in the x, y, z directions are respectively λx = 90 m,λy = 30 m,λz = 5211

m.212

The sequential Gaussian simulation module of the GSLIB software (Deutsch and Journel,213

1998) is used to generate the log-conductivity realizations. One of the realizations is chosen214

as the reference field.215

4.1. Analysis216

Fig. 4 shows the reference log-conductivity field, and Fig. 5a,5b,5c,5d,5e,5f shows the217

ensemble mean field for the tests 1, 2 and 3, at the beginning of the simulation (when no218

piezometric head data has been assimilated yet) and at the 50th time step. While comparing219

Fig.5b,5d,5f and Fig. 4, we find that the main features of the reference field are captured by220

the EnKF after the 50th data assimilation step. The larger the ensemble size, the smoother221

is the ensemble mean.222

Fig. 6a, 6c and 6e shows the piezometric heads in the control well (not used for con-223

ditioning) computed on the initial ensemble of logconductivity realizations. They display a224

very large variability indicative of large prediction uncertainty. This variability is reduced225

when the piezometric heads are computed on the updated realizations, as seen in Fig. 6b,226

6d and 6f.227

We can evaluate the goodness of the estimated field using the average deviation between228

the average of the ensemble members and the reference field using the root mean square229

error (RMSE).230

RMSE =

√√√√ 1

N

N∑
i=1

(sref − ⟨sa⟩)2 (12)
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Where N is the number of model gridblocks; sref is the value of the reference field; ⟨sa⟩231

denotes the mean estimation of the ensemble fields.232

Fig. 7 shows that the RMSE of test 3 has some fluctuations at early assimilation steps,233

yet after the 31st assimilation step, it begins to increase, becoming even larger than the234

starting value, which implies that for a small ensemble size the estimation of the covariance235

is poor (Hendricks Franssen and Kinzelbach, 2008). In the comparison of the RMSE between236

tests 1 and 2, the RMSE of test 1 is lower, plus, it is gradually smoother after the 27th237

assimilation step. So it can be concluded that the larger the ensemble, the better the238

estimation.239

Similar results and conclusions can be reached for fourth test case, for which the model240

size is smaller while retaining the same number of measurements.241

4.2. Parallelization analysis242

Speedup and efficiency are usually used to evaluate the performance of parallel algorithms243

Speedup:SP =
Ts

TP

(13)

244

Efficiency:EP =
SP

P
(14)

P is the number of the processors, Ts is the CPU time consumed under a serial implementa-245

tion of the algorithm, TP is the CPU time consumed under a parallel implementation with246

P processors.247

There is an obvious trade-off between the ensemble size and the CPU time, and also248

between the size of the numerical model and the CPU time. Table 1 and Fig. 8 show the249

performance of the parallel algorithm for test cases 1 (three-dimensional domain and 1200250

realizations), 3 (three-dimensional domain and 240 realizations) and 4 (two-dimensional251

domain and 1200 realizations ).252
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From the table and figure we can see that the speedup is far from the ideal line for which253

the improvement in CPU should follow the same proportion as the number of processors.254

This is not a surprising result, there are two causes for this departure from the ideal per-255

formance: there is a need for all processors to wait until they have finished certain tasks256

for them to proceed on to the next task, and there is extra time needed for communication257

between processors.258

We notice some differences between the tests. Comparing tests 1 and 3, we notice that259

the speedup is better for the case with the larger number of realizations, this is because for260

test 3, each processor receives a smaller number of realizations and thus, proportionally, the261

time spent in communication is larger for test 3 than for test 1. Apparently, for both tests,262

the speedup could keep increasing if more processor were available. For test 4, however, the263

speedup is similar to that of test 1 up to eight processors, then it appears to worsen, again,264

the cause is found in the increase in the communication time among processors. It does not265

seem that increasing the number of processors past 8 will increase the speedup (although266

the overall CPU time will be still reduced) for test 4.267

The efficiency curves have a similar behavior as the speedup curves. Efficiency worsens268

past 8 processors for test 4, and for tests 1 and 3 we can conclude that the parallel algorithm269

is more efficient the larger the ensemble size.270

We can conclude that the parallel implementation of the EnKF runs with higher efficiency271

for large size models and large ensembles than for small ones. In all cases, the final CPU272

time is smaller than for the serial implementation, although the speedup is still far from273

ideal.274

In this parallel algorithm there are two inherent barriers to its processing capabilities, one275

is data asynchrony, and the other is data-dependency. Data asynchrony makes all processors276

be as slow as the slowest one, since they have to wait for all processors to finish a certain277

task before they can proceed to the next one. Data dependency refers to the fact that the278
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distribution of realizations to the processors does not necessarily leaves all processors with279

the same number of realizations. Data asynchrony mainly affects the forecast step, while280

data dependency affects all steps and it is less noticed for large number of realizations.281

5. Summary and suggestion282

A parallel algorithm for the forecast and analysis steps of the EnKF has been presented283

that reduces significantly the time to run the EnKF for large ensemble sizes. The efficiency284

remains over 0.40 when using up to 12 processors for the two tests using 1200 realizations.285

There are many measures that could be taken to reduce the communication time and286

increase the efficiency such as decreasing the communication traffic, boosting communication287

granularity or using a high-speed internet protocol to reduce the information transfer delay.288

In addition, we must attempt to keep the load as balanced as possible among the processors,289

that is, all processors should work on the same (or very similar) number or realizations.290

Furthermore, the algorithm could be improved using a parallelized version of the ground-291

water flow simulator, such as one employing domain decomposition, especially for large size292

models.293
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Figure 1: The parallel EnKF flow chart: box 1 is for the forecast step; box 2 is for the367

updating step.368

Figure 2: Flow domain and location of the 75 observation wells in the small model.369

Figure 3: Flow domain and location of the 25 observation wells in the large model. The370

filled triangles are observation wells measuring the piezometric heads at the first, third and371

fifth layers, and the filled circle is a verification well.372

Figure 4: Reference realization of ln(k).373

Figure 5: initial and updated ensemble means facies fields.(a), (b) show the ensemble374

mean facies fields of the initial realizations and the 50th updated realizations of test 1; (c),375

(d) show the ensemble mean facies fields of the initial realizations and the 50th updated376

realizations for test 2; (e), (f) show the ensemble mean facies fields of the initial realizations377

and the 50th updated realizations for test 3.378

Figure 6: Piezometric head time evolution at the control well. The red curve is for the379

reference field, the gray curves for each realization of the ensemble, and the green curve is380

the ensemble mean. (a) and (b) show piezometric heads of the the initial realizations and381

the 50th updated realizations for test 1; (c) and (d) show piezometric heads of the initial382

realizations and the 50th updated realizations for test 2; (e) and (f) show piezometric heads383

of the initial realizations and the 50th updated realizations for test 3. (For interpretation of384

the references to color in this figure caption, the reader is referred to the web version of this385

article.)386

Figure 7: The root mean square error for three test.387

Figure 8: Parallel speed-up and efficiency. (a) Speed up (b) efficiency.388

Table 1: Parallel performance of three of the tests.389
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Table 1
Processors Test1CPUs Speedup Efficieny Test3CPUs Speedup Efficieny

1 20539.92 1.00 1.00 4866.50 1.00 1.00
2 14284.37 1.44 0.72 3316.35 1.47 0.73
4 8125.83 2.53 0.63 2607.83 1.87 0.47
6 5846.27 3.51 0.59 1723.75 2.82 0.47
8 4640.38 4.43 0.55 1307.34 3.72 0.47
10 4005.09 5.13 0.51 1250.23 3.89 0.39
12 3508.46 5.85 0.49 1036.38 4.70 0.39

Processors Test4CPUs Speedup Efficieny
1 10087.23 1.00 1.00
2 6595.59 1.53 0.76
4 4426.79 2.28 0.57
6 2790.85 3.61 0.60
8 2077.76 4.85 0.61
10 1961.45 5.14 0.51
12 2109.46 4.78 0.40
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