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Abstract

The paper considers the influence of Sylow normalizers, i.e., normaliz-
ers of Sylow subgroups, on the structure of finite groups. In the universe
of finite soluble groups it is known that classes of groups with nilpotent
Hall subgroups for given sets of primes are exactly the subgroup-closed
saturated formations satisfying the following property: a group belong to
the class if and only if its Sylow normalizers do so. The paper analyzes
the extension of this research to the universe of all finite groups.
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1 Introduction and Preliminaries

This paper arises from the interest in the influence of the normalizers of Sylow
subgroups on the structure of finite groups. We will call those subgroups Sylow
normalizers to abbreviate and will consider only finite groups. This is a classical
topic in the theory of groups with a good number of results in the literature. The
present paper takes further a previous research in [9] and [17]. A starting point
for this approach could be a classical Glauberman’s result [12] which states that
a group is a p-group for a prime p if and only if its Sylow subgroups are self-
normalizing. Bianchi, Gillio Berta Mauri and Hauck [5] proved that a group is
nilpotent if and only if its Sylow normalizers are nilpotent. Other related results
and extensions can be also found in the bibliography (see for instance [4], [6],
[7], [8], [11], [14, §3], [15], [18], [19], [20]). The mentioned results of Glauberman
and of Bianchi et al. were partially extended in the universe of finite soluble
groups by D’Aniello, De Vivo, Giordano and the third author [9], who proved
that a soluble group possesses nilpotent Hall subgroups for given sets of primes
if and only if its Sylow normalizers satisfy the same property. We show an easy
way to construct groups with nilpotent Hall subgroups:

We denote by E the class of all finite groups and by Eσ, for any set of primes
σ, the class of all finite σ-groups.

Let π be a set of primes and consider {πi | i ∈ I} a partition of π. Set

×i∈IEπi := (G ∈ Eπ | G = ×i∈IGπi , Gπi ∈ Eπi).

We notice that whenever σ ⊆ π satisfies the following condition:

“ if p, q ∈ σ, p 6= q, with p ∈ πi, q ∈ πj , then i 6= j ”

it holds that groups in the class ×i∈IEπi
have nilpotent Hall σ-subgroups for

such set of primes σ, that is,

×i∈IEπi ⊆ En
σ ∩ Eπ

where En
σ denotes the class of all groups with nilpotent Hall σ-subgroups.

We emphasize that the classes ×i∈IEπi
can be seen as extensions of the class

of nilpotent groups, by considering direct products of Hall subgroups corre-
sponding to pairwise disjoint sets of primes instead of Sylow subgroups. More-
over, also for such a class ×i∈IEπi , a group belongs to the class if and only if
its Sylow normalizers do so. This is a relevant result among others of a similar
nature in [17], which extend the above mentioned results to the universe of all
finite groups, in particular the one for nilpotent groups in [5].

Our approach is based on a graph theoretical result in [17] which states the
connectivity of the so-called Sylow graph in almost simple groups.
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We introduce next a general construction involving the above mentioned
classes ×i∈IEπi

as well as other examples in [17]. For notation and results
about classes of groups and closure operations we refer to Doerk and Hawkes
book [10]. In particular, we denote by Sylp(G) and by Hallσ(G), respectively,
the set of Sylow p-subgroups and the set of Hall σ-subgroups of a group G, p
a prime and σ a set of primes. For i = 1, 2, Pi denotes the class of primitive
groups of type i ∈ {1, 2}.

Let π be a set of primes. For each prime p ∈ π, let π(p) be a set of primes
satisfying the following conditions:

(i) p ∈ π(p) ⊆ π,

(ii) for any q ∈ π(p), then p ∈ π(q).

If q ∈ π(p), we write p ↔ q. (This defines a reflexive and symmetric relation
on π.)

Associated to such sets of primes, we construct the following class of groups:

F = LF (f) is the saturated formation locally defined by a formation function
f given by:

f(p) = Eπ(p) if p ∈ π, f(q) = ∅ if q 6∈ π.

In particular, π = Char(F) is the characteristic of F .

Such formations F appear in [9] where are called covering-formations.

(As mentioned in [9, Remark 1(b)] the condition π(p) ⊆ π is no loss of
generality in order to construct the associated saturated formation F .)

The following description of F will be frequently used:

F = Eπ ∩ (∩p∈πEp′Epf(p)) = Eπ ∩ (∩p∈πEp′Eπ(p)).

Let S denote the class of all finite soluble groups. The saturated formation
F ∩ S = LF (g), being

g(p) = Sπ(p) if p ∈ π, g(p) = ∅ if p 6∈ π,

where Sπ(p) is the class of all finite soluble π(p)-groups, is called covering-
formation of soluble groups ([9]).

When π(p) = {p} for every prime p, we notice that F = N is the class of
all finite nilpotent groups. Other relevant examples for our study can be seen
in [17]. In particular, if the sets of primes π(p) form a partition {πi | i ∈ I}
of π, then the groups in F are characterized by being direct products of Hall
subgroups corresponding to the sets of primes in the partition, that is,

F = ×i∈IEπi := (G ∈ Eπ | G = ×i∈IGπi , Gπi ∈ Eπi).

For the general case, we define in addition another set as follows:

Σ := {σ ⊆ π | |σ| ≥ 2 , (p, q ∈ σ, p 6= q ⇒ p 6↔ q)},
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and we will also consider the following classes of groups:

U :=
⋂
σ∈Σ

En
σ ∩ Eπ , V :=

⋂
σ∈Σ

Sn
σ ∩ Eπ ,

where, for any set of primes τ , Sn
τ denotes the class of all finite groups whose τ -

subgroups are nilpotent. (In case Σ = ∅, it is understood
⋂
σ∈Σ En

σ =
⋂
σ∈Σ Sn

σ =
E.)

We show in Proposition 2.1 below that F ⊆ U ⊆ V.

When restricting to the soluble universe, it was obtained in [9] that

F ∩ S = U ∩ S = V ∩ S

and these classes of groups, i.e. covering formations of soluble groups, are
characterized as the subgroup-closed saturated formations X ⊆ S satisfying
that a soluble group belongs to X if and only if its Sylow normalizers do also
so.

To be more precise we gather the following notation and results from [9]:

For a group G and a prime p, let Gp denote a Sylow p-subgroup of G. We
set π(G) for the set of all prime numbers dividing the order of G. Then, for a
class X of groups, the class map n is defined as follows:

nX = (G | NG(Gp) ∈ X , for every prime p ∈ π(G)).

Proposition 1.1. [9, Proposition 2] Let G = F ∩ S be a covering-formation of
soluble groups defined as above. Then:

1. sG := (H ≤ G | G ∈ G) = G and nG ∩ S = G;

2. G =
⋂
σ∈Σ,|σ|=2 E

n
σ ∩ S =

⋂
σ∈Σ En

σ ∩ S.

Theorem 1.1. [9, Theorem] Let H be a subgroup-closed saturated formation of
soluble groups. Then the following statements are equivalent:

(i) For any soluble group, its Sylow normalizers belong to H if and only if the
group belongs to H, i.e. nH ∩ S = H;

(ii) H is a covering-formation of soluble groups.

This nice picture in the soluble universe S breaks up completely when ex-
tending to the universe of all finite groups E . We exhibit in the paper examples
for any kind of failure regarding the coincidence of the classes of groups under
consideration and their characterizations. Then we are interested in under-
standing the reasons for the failures, which allows us to provide positive results.

We keep the above introduced notation throughout the paper. Particularly,
we consider prefixed sets of primes π, π(p) for each p ∈ π, as given above
and associated to them, F will always denote a covering-formation defined as
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previously, and the same for the classes U and V. When convenient to avoid
confusions we will write ΣF := Σ for the associated set as defined before.

In Section 2 we analyze the classes F , U and V, their properties and interre-
lationships. The classes U and V happen to be formations, also V is subgroup-
closed, like F , but the key point is that they are not saturated in general as
it is the case for F . For instance, Examples 2.1 shows that Enσ and Snσ are
never saturated if σ is a finite set of odd primes with |σ| ≥ 2, and illustrates
the kind of difficulties in this study. In the case when U and V are saturated
formations, which depend on the choice of the sets of primes considered for their
constructions, then it holds that F = U = V.

In Section 3, for a subgroup-closed saturated formation H we study the
interrelation between the following properties:

(C) H is a covering-formation;

(n) nH = H

In general none of these properties implies the other, contrary to what happens
in the universe of soluble groups ([9, Remark 1(c)], [8], [17, Remark, p. 270]).
Theorem 3.1 provides a condition in terms of the canonical local definition of H
in order to assure that (n) ⇒ (C). On the other hand, in [17, Examples 1,2,3]
we showed some particular constructions of covering-formations F satisfying
that nF = F and noticed that for them F = U . We prove in Theorem 3.2 that
this is not casual but the property F = U = V is a consequence of satisfying
nF = F . However Examples 3.1 show that the converse does not hold, as
one might hope, even for covering-formations of soluble groups or assuming full
characteristic. But the property F = U = V takes to an interesting relation
between covering-formations and critical groups. More precisely, following [3]
we say that a saturated formation H has the Shemetkov property if every H-
critical group is either a Schmidt group or a cyclic group of prime order. We
recall that a group G is calledH-critical if G is not inH but all proper subgroups
of G are in H; the class of all H-critical groups is denoted as Crits(H). Also
the boundary of a class H is the class b(H) = (G ∈ E | G /∈ H but G/N ∈
H whenever 1 6= N �G).

The following characterizations of the subgroup-closed saturated formations
with the Shemetkov property from [2] and [3] will be of interest in the paper.

Theorem 1.2. Let H = LF (H) be a subgroup-closed saturated formation with
H its canonical local definition. Denote π = Char(H). The following statements
are pairwise equivalent:

1. H has the Shemetkov property.

2. ([2, Theorem 2]) H satisfies the following two conditions:

(i) For each prime p ∈ π there exists a set of primes π(p) with p ∈ π(p)
such that H is locally defined by a formation function h given by
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h(p) = Eπ(p) if p ∈ π, and h(q) = ∅ if q 6∈ π; moreover this formation
function h satisfies the following property:

(*) If G ∈ Crits(H) ∩ b(H) and G is an almost simple group such
that G 6∈ h(p) for some prime p ∈ π(Soc(G)), then G 6∈ h(q) for each
prime q ∈ π(Soc(G)).

(ii) Crits(H) ∩ b(H) does not contain non-abelian simple groups.

3. ([3, Theorem 1]) A π-group G belongs to H if and only if NG(Q)/CG(Q)
belongs to Eπ(p) for each p-subgroup Q of G and each prime p ∈ π, where
π(p) := Char(H(p)).

4. ([3, Theorem 1]) A π-group G belongs to H if and only if NG(Q) belongs
to Eπ\{p}Eπ(p) for each p-subgroup Q of G and each prime p ∈ π, where
π(p) := Char(H(p)).

As pointed out in [3], the equivalences (1) ⇔ (3) ⇔ (4) in the previous
theorem provide a characterization of the subgroup-closed saturated formations
with the Shemetkov property as the subgroup-closed saturated formations for
which an extension of the well known Frobenius p-nilpotence criterion holds.

Theorem 3.3 below proves that for a covering-formation F it holds that
F = U = V if and only if F has the Shemetkov property.

As a particular construction in the paper, it is obtained for instance that the
class of groups whose {2, 3}-subgroups are nilpotent coincides with the class of
groups with nilpotent Hall {2, 3}-subgroups, and this class is a covering forma-
tion which satisfies Theorem 3.3, i.e., it has also the Shemetkov property (see
Examples 3.1(1) below).

2 The Classes F , U and V. When do they are
saturated as Formations.

We study in this section the classes F , U and V, their properties and interrela-
tionships.

In the universe of all finite groups we have still the following result regarding
nilpotent Hall subgroups.

Proposition 2.1. For the covering-formation F we have

F ⊆ U ⊆ V.

Proof. We prove first that F ⊆ U . Assume that this is not true and let G ∈ F\U
of minimal order. Let τ ∈ Σ. We argue by induction on |τ | to prove that
Hallτ (G) ∩N 6= ∅.

Since |τ | ≥ 2, let τ = τ1 ∪ {p}, p /∈ τ1. By inductive hypothesis assume that
there exists Gτ1 ∈ Hallτ1(G) ∩N . (We notice that this is true if |τ | = 2.)

For any q ∈ τ1, Gf(q) ∈ Eq′ . Since p 6∈ π(q), we have that Gp ∈ Oq′(G).
Consequently, Gp ≤ ∩q∈τ1Oq′(G).

6



On the other hand, Gf(p) ∈ Ep′ . If q ∈ τ1, then q 6∈ π(p), which implies
again that Gq ≤ Op′(G). Therefore, Gτ1 ≤ Op′(G).

Now [Gp, Gτ1 ] ≤ Op′(G) ∩ (∩q∈τ1Oq′(G)). If this intersection is trivial, then
GpGτ1 ∈ Hallτ (G)∩N and we are done. Otherwise there exists 1 6= N �G such
that N ≤ ∩r∈τOr′(G) = Oτ ′(G).

Since G/N ∈ F , by the choice of G we have that there exists S/N ∈
Hallτ (G/N)∩N . But (|N |, |S/N |) = 1, which implies by the Schur-Zassenhaus
theorem that S = TN for some T ≤ S, T ∈ Eτ and T ∩ N = 1. Moreover,
T ∼= TN/N = S/N ∈ N and T ∈ Hallτ (G) because T ∈ Hallτ (S); that is,
T ∈ Hallτ (G) ∩N , which concludes the proof.

The inclusion U ⊆ V follows by a well-known result of Wielandt ([21]; [16,
Satz III.5.8]).

Lemma 2.1. If N �H and H/N is a σ-subgroup for a set of primes σ, then
H = LN for some σ-subgroup L of H.

Proof. Let L be a minimal supplement of N in H; then N ∩L ≤ Φ(L). We may
assume that L 6= 1. If L is a σ-group we are done. Otherwise there exists a prime
p ∈ π(L)\σ. Consequently, for Lp ∈ Sylp(L) it follows that Lp ≤ N ∩L ≤ Φ(L),
a contradiction.

Proposition 2.2. Let σ be a set of primes. The classes of groups En
σ and Sn

σ

are formations; Sn
σ is also subgroup-closed but this is not in general the case for

En
σ.

Consequently, the classes U and V are formations and V is also subgroup-
closed though this is not in general the case for U .

Proof. We prove first that En
σ is a formation. It is easily proved that En

σ is
closed under taking factor groups. Let now N,M � G with G/N,G/M ∈ En

σ

and N ∩M = 1. We argue by induction on the order of G to prove that G ∈ En
σ.

By the hypothesis G/N and G/M have nilpotent Hall σ-subgroups, say H/N
and L/M , respectively. Then HM/(NM) and LN/(NM) are Hall σ-subgroups
of G/(NM). By Wielandt’s result ([21]; [16, Satz III.5.8]) it follows that HM
and LN are conjugate and there is no loss of generality to assume that HM =
LN . We notice that a Hall σ-subgroup of HM would be a Hall σ-subgroup of G,
so that by the inductive argument we may assume that G = HM = LN . Since
L/M = (H ∩ L)M/M is a nilpotent Hall σ-subgroup of G/M we deduce that
H∩L/H∩M is a nilpotent Hall σ-subgroup of H/H∩M . If H < G, we have by
inductive hypothesis that H ∈ En

σ. But again notice that Hallσ(H) ⊆ Hallσ(G)
and we are done. Hence we may assume that G = H and analogously that
G = L. But this implies that G is nilpotent, which concludes the proof of this
part.

For an example showing that En
σ is not subgroup-closed, we consider σ =

{3, 5} and Alt(5) ∼= L2(22) ≤ L2(24). Then L2(24) ∈ En
σ but Alt(5) 6∈ En

σ.

On the other hand it is clear that Sn
σ is subgroup-closed. We prove next

that it is closed under taking factor groups. We consider N � G ∈ Sn
σ and

a σ-subgroup H/N of G/N . By Lemma 2.1 we have that H = LN for some
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σ-subgroup L of H. Since G ∈ Sn
σ we have that L is nilpotent. Then H/N is

nilpotent and G/N ∈ Sn
σ. To complete the proof that Sn

σ is a formation, since
it is subgroup-closed, it is enough to prove that A,B ∈ Sn

σ implies A×B ∈ Sn
σ.

Hence we consider H a σ-subgroup of A×B. By the hypothesis on A and B we
have that HB/B and HA/A are nilpotent, as they are isomorphic to subgroups
of A and B, respectively. Then H is nilpotent and we are done.

The rest of the proof follows easily.

Examples 2.1. The classes U and V are not saturated in general.

For instance, if σ is a finite set of odd primes, |σ| ≥ 2, we may consider
m ≥ 1 such that

∏
p∈σ p | 2m − 1. Then G = L2(2m) ∈ Enσ ⊆ Snσ. Let

us consider a prime r ∈ σ and Er(G) the universal Frattini r-elementary G-
extension, and let Ar(G) be the r-Frattini module of G. So Er(G)/Ar(G) ∼= G
and Ar(G) ≤ Φ(Er(G)). Moreover we have that

Ker(G on Ar(G)) ≤ Ker(G on Soc(Ar(G))) = Or′r(G) = 1

by a Griess-Schmid result ([13]; see [10, Appendix β]). Whence Er(G) 6∈ Enσ
and also Er(G) 6∈ Snσ, which proves that Enσ and Snσ are not saturated. (Here
U = Enσ and V = Snσ by defining π = P the set of all prime numbers and
π(p) = (P \ σ) ∪ {p} if p ∈ σ, π(q) = P if q /∈ σ.)

We will see next that for any of the classes U and V, it is saturated if and
only if it coincides with F .

Lemma 2.2 (Zsigmondy). Let q and n be integers, q, n ≥ 2. A prime number
r is called primitive prime divisor with respect to the pair (q, n) if r divides
qn − 1 but r does not divide qi − 1 for i < n. Then:

1. There exists a primitive prime divisor with respect to the pair (q, n) unless
n = 2 and q is a Mersenne prime or (q, n) = (2, 6).

2. If r is a primitive prime divisor with respect to the pair (q, n), then r−1 ≡ 0 (
mod n).

Examples 2.2.
1. In general F 6= U 6= V in Proposition 2.1.

Take for instance π = {2, 3, 5, 17} and

f(2) = f(17) = Eπ, f(3) = E{2,3,17}, f(5) = E{2,5,17}, f(r) = ∅ ∀r 6∈ π.

In this case, U = En
{3,5} ∩ Eπ and V = Sn

{3,5} ∩ Eπ.

For G = L2(24), |G| = 24 · 3 · 5 · 17 and G ∈ U but G 6∈ F .

On the other hand, Alt(5) ∈ V \ U .

2. The following example shows that the case F = U 6= V is possible.
Moreover, in this example F = U ⊆ S.
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Take π = {2, 3, 5} and

f(2) = Eπ, f(3) = E{2,3}, f(5) = E{2,5}, f(r) = ∅ ∀r 6∈ π.

As in the previous example we have that Alt(5) ∈ V \ U .
But we claim that here F = U . (We notice that F ⊆ Eπ ∩ (E3′E3f(3)) =

E{2,5}E{2,3} ⊆ S.) Since F ⊆ U , by Proposition 1.1 we will be done if we prove
that U ⊆ S. But if G ∈ U , then π(G) ⊆ {2, 3, 5} and G has a nilpotent Hall
{3, 5}-subgroup, say G{3,5}. Consequently, if G2 is a Sylow 2-subgroup of G,
then G = G{3,5}G2 is the product of two nilpotent groups, which implies that
G is soluble by the well-known Kegel-Wielandt theorem.

3. The previous argument may be easily extended to prove that F = U ⊆ S
in the following more general situation:

Let π and σ be sets of primes such that π = σ ∪ {q}, q /∈ σ, and define
π(q) = π and π(p) = {p, q} ∀p ∈ σ. In this case, U = Enσ ∩ Eπ and F = U ⊆ S.

4. We construct next an example showing that also the case F 6= U = V is
possible.

The construction is based on properties of the Suzuki group Sz(27). It might
be helpful to notice the following:

|Sz(27)| = 214(27 − 1)(214 + 1) = 214 · 127 · (5 · 29) · 113.

Let π = {2, 5, 29, 127, 113} and consider the covering-formation F of character-
istic π defined by the following sets of primes:

π(2) = π(127) = π(113) = π,

π(5) = {2, 5, 127, 113}, π(29) = {2, 29, 127, 113},
π(p) = ∅, if p /∈ π.

In this case, we have:

Σ = {σ ⊆ π | |σ| ≥ 2 , (p, q ∈ σ, p 6= q ⇒ p 6↔ q)} = {σ} with σ = {5, 29}

U = En
{5,29} ∩ Eπ ; V = Sn

{5,29} ∩ Eπ

We prove next that F 6= U = V by the following steps:

Step 1. If X is a non-abelian simple group and π(X) ⊆ π, then X ∼= Sz(27).

Since 3 /∈ π(X), then X ∼= Sz(q), q = 22m+1,m ≥ 1, and |Sz(q)| = q2(q −
1)(q2 + 1). We apply now Lemma 2.2. Since (24(2m+1) − 1) = q4 − 1 = (q2 −
1)(q2 + 1) = (22(2m+1) − 1)(22(2m+1) + 1), if r is a primitive prime divisor with
respect to the pair (2, 4(2m + 1)), then r divides 22(2m+1) + 1; in particular,
r ∈ {2, 5, 29, 127, 113}. Moreover, r = 1 + k4(2m+ 1) with k ≥ 1.

It is easily checked that the case r = 1 + 4(2m + 1), for k = 1, is not
possible unless m = 3 and r = 29; in this case X ∼= Sz(27). Assume that
r = 1 + k4(2m + 1) with k ≥ 2. Then 1 + 8(2m + 1) ≤ r ≤ 127, which implies
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m ≤ 7. But again only the case m = 3 satisfies that π(q− 1) = π(22m+1 − 1) ⊆
{2, 5, 29, 127, 113}. Consequently, X ∼= Sz(27) and we are done.

Step 2. Sz(27) ∈ U . Consequently, Sz(27) satisfies the D{5,29}-property,
that is, Sz(27) has a unique conjugacy class of Hall {5, 29}-subgroups and any
{5, 29}-subgroup is contained in some Hall {5, 29}-subgroup.

It follows by known properties of Suzuki groups and a well-known Wielandt’s
result.

Step 3. U = V.

Assume that this is not true and let G ∈ V \U of minimal order. Notice that
G ∈ V ⊆ Eπ with π = {2, 5, 29, 127, 113}. Since V and U are formations, G has
a unique minimal normal subgroup N , and G/N ∈ U . Then, by Lemma 2.1,
there exists a {5, 29}-subgroup H of G such that HN/N ∈ Hall{5,29}(G/N)∩N .

If N were a p-group, for some prime p, it would follow that either H or
HN would be a nilpotent Hall {5, 29}-subgroup of G, depending on the cases
that either p /∈ {5, 29} or p ∈ {5, 29}, and so G ∈ U , a contradiction. Con-
sequently, and using Steps 1 and 2, we deduce that N is a direct product of
copies of Sz(27) and N < G. In particular, it follows that N satisfies the
D{5,29}-property, whence G = NNG(N{5,29}), for N{5,29} ∈ Hall{5,29}(N), by
the Frattini Argument. Moreover, NG(N{5,29}) < G ∈ V. Since V is subgroup-
closed, the choice of G implies that NG(N{5,29}) ∈ U . Now we notice that
Hall{5,29}(NG(N{5,29})) ⊆ Hall{5,29}(G). Hence G ∈ U , a contradiction which
proves that U = V.

Step 4. Sz(27) 6∈ F . Hence F 6= U = V.

This is clear by the definition of F and Steps 2 and 3.

Remark 2.1. Constructions in Examples 2.2(2),(4) show that it is not enough
that U is subgroup-closed in order to guarantee that F = U = V. (Notice that
both F and V are subgroup-closed.)

We characterize next when U and V are saturated.

Proposition 2.3. Let X ∈ {U ,V}. Structure of G ∈ X \ F of minimal order:
If G is such a group then either

(i) G is non-abelian simple; or

(ii) G = [N ]〈x〉 ∈ P2 where N is a non-abelian simple group, N ∈ F and
〈x〉 ∼= Cq for some prime q such that q 6∈ π(N).

Proof. Since X is closed under taking factor groups and F is a saturated for-
mation, G has a unique minimal normal subgroup, say N , G/N ∈ F and
G ∈ P1 ∪P2.

Assume first that G ∈ P1. In this case, N = CG(N) is a p-group for some
prime p. If G/N ∈ f(p) = Eπ(p), then G ∈ F , a contradiction. This means that
there exists q ∈ π(G/N) such that q 6∈ π(p). Let Gq ∈ Sylq(G). Since G ∈ X ,
NGq ∈ N . Consequently Gq ≤ CG(N) = N and Gq = 1, a contradiction.
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Consider the case G ∈ P2. If G = N , we are in the case (i). Otherwise

we may assume that N = A× n)
. . . ×A, A a non-abelian simple group and

N < G ≤ Aut(A) onat Sym(n) = [Aut(A)× n)
. . . ×Aut(A)] Sym(n), n ≥ 1. Let

us denote B := Aut(A)× n)
. . . ×Aut(A). Since X is closed under taking normal

subgroups, the choice of G implies that A ∈ F . We notice that this is equivalent
to the fact that t↔ s for all t, s ∈ π(A).

Since G/N ∈ F , if we suppose that G/CG(N) ∈ Eπ(p) for all p ∈ π(N),
then G ∈ F , which is not the case. Consequently there exist p ∈ π(N) and
q ∈ π(G) \ π(N) such that p 6↔ q.

By the Frattini argument G = NNG(Np) for Np ∈ Sylp(N) and so there
exists Gq ∈ Sylq(NG(Np)) ⊆ Sylq(G).

The fact G ∈ X implies now that there exists NpGq ∈ N . In particular,

Gq ≤ CG(Np), Np = A
(1)
p × . . . × A

(n)
p ∈ Sylp(N), A

(i)
p ∈ Sylp(A) for every

i = 1, . . . , n.
We claim that Gq ≤ G∩B. Let x = aσ ∈ Gq, where a ∈ B and σ ∈ Sym(n).

We have that x centralizes Np. On the other hand, the element a ∈ B normalizes

each component A of N = A× n)
. . . ×A and the element σ ∈ Sym(n) permutes

the components of N = A× n)
. . . ×A. It follows that σ = 1 and x = a ∈ B.

Take x ∈ Gq such that o(x) = q and consider L := N〈x〉. We claim that
L ∈ X .

In case X = V, the claim is clear because V is subgroup-closed.
Assume that X = U . Let r ∈ π(N) and Nr ∈ Sylr(N). Arguing as before

L = NNL(Nr) and Sylq(NL(Nr)) ⊆ Sylq(L). Consequently there exists Lr,q ∈
Hall{r,q}(L). If q 6↔ r, then G ∈ U ⊆ En{q,r} ⊆ Sn{q,r}. Whence Lr,q ∈ N , which
proves that L ∈ U as claimed.

If L < G, the choice of G implies that L ∈ F ⊆ Ep′EpEπ(p). Consequently
L ∈ Eπ(p) and q ∈ π(p), a contradiction.

Therefore G = L = N〈x〉. Since x ∈ B, it follows that n = 1 and N = A is
a non-abelian simple group. Now G has the structure described in (ii) and we
are done.

Remark 2.2. 1. Cases in Proposition 2.3(i) may happen.

For instance, consider Examples 2.2(1), where G = L2(24) ∈ U ⊆ V but
G /∈ F ; also Alt(5) ∈ V \ F .

2. Cases in Proposition 2.3(ii) may happen.

Let us consider for instance G = L2(25); |G| = 25 · 31 · 11 · 3. Let σ be a
field automorphism of G of order 5 and take H = [G]〈σ〉 the natural semidirect
product of G with 〈σ〉. We notice that H ∈ En

{3,5}.

Set π = {2, 31, 11, 3, 5} = π(2) = π(11) = π(31), π(3) = {2, 31, 11, 3},
π(5) = {2, 31, 11, 5}.

Let F = LF (f) be locally defined by:

f(p) = Eπ(p) if p ∈ π, f(r) = ∅ if r /∈ π.

In this case, U = En
{3,5} ∩ Eπ.
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We notice that H ∈ U ⊆ V, H /∈ F , G ∈ F is a non-abelian simple group
and 5 /∈ π(G).

Theorem 2.1. The following statements are pairwise equivalent:

(i) V = EΦV := (G | ∃N �G with N ≤ Φ(G) and G/N ∈ V);

(ii) V ∩M = ∅ being

M := (X | either X is a non-abelian simple group

or X = [E]Cq ∈ P2, E a non-abelian simple group, q 6∈ π(E);

∃r, s ∈ π(X) ⊆ π such that r 6↔ s);

(iii) V = F ;

(iv) V is a saturated formation.

Proof. We notice first that if either X = E or X = [E]Cq ∈ P2, being E a non-
abelian simple group, then X ∈ F if and only if r ↔ s for all r, s ∈ π(X) ⊆ π.

(i)⇒(iii) Assume that V = EΦV but V 6= F and let X ∈ V \ F of minimal
order. Then either X = E or X = [E]Cq ∈ P2, q 6∈ π(E), E a non-abelian
simple group, by Proposition 2.3.

Since X 6∈ F , there exists r, s ∈ π(X) such that r 6↔ s. We may assume
r ∈ π(E) and s ∈ π(E) ∪ {q}. Let us consider Er(X) the universal Frattini
r-elementary X-extension and let Ar(X) be the r-Frattini module of X. So
Er(X)/Ar(X) ∼= X and Ar(X) ≤ Φ(Er(X)). Moreover, as mentioned before,
we have that

Ker(X on Ar(X)) ≤ Ker(X on Soc(Ar(X))) = Or′r(X) = 1

by a Griess-Schmid result ([13]; see [10, Appendix β]).
Since X ∈ V = EΦV by hypothesis, it follows that Er(X) ∈ V. Since

r 6↔ s and Ar(X)Ts is a {r, s}-subgroup of Er(X), for 1 6= Ts ∈ Syls(Er(X)),
we deduce that Ar(X)Ts is nilpotent and then [Ts, Ar(X)] = 1. This implies
that the Sylow s-subgroups of X are contained in Ker(X on Ar(X)) = 1, a
contradiction which proves that V = F .

It is clear the (iii)⇒(iv)⇒(i).

(ii)⇒(iii) Assume that V ∩M = ∅ but V 6= F and let G ∈ V \ F of minimal
order. By Proposition 2.3 and the hypothesis we deduce that p ↔ q for all
p, q ∈ π(G) which implies G ∈ F , a contradiction which proves V = F .

(iii)⇒(ii) We notice that X ∈ M implies X 6∈ F . Hence if V = F then
V ∩M = ∅.

Theorem 2.2. The following statements are pairwise equivalent:

(i) U = EΦU := (G | ∃N �G with N ≤ Φ(G) and G/N ∈ U);
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(ii) U ∩M = ∅ being

M := (X : either X is a non-abelian simple group

or X = [E]Cq ∈ P2, E a non-abelian simple group, q 6∈ π(E);

∃r, s ∈ π(X) ⊆ π such that r 6↔ s);

(iii) U = F ;

(iv) U is a saturated formation.

Proof. (i)⇒(iii) Assume that U = EΦU but U 6= F and let X ∈ U \F of minimal
order. Then either X = E or X = [E]Cq ∈ P2, q 6∈ π(E), E a non-abelian
simple group, by Proposition 2.3.

Since X 6∈ F , there exists r, s ∈ π(X) such that r 6↔ s. We may assume
r ∈ π(E) and s ∈ π(E) ∪ {q}. As in Theorem 2.1 we consider Er(X) the uni-
versal Frattini r-elementary X-extension and note that the hypothesis implies
that Er(X) ∈ U . But we know that U ⊆ V. Then we can argue as in the
proof of Theorem 2.1 to deduce that the Sylow s-subgroups of X are trivial, a
contradiction which proves that U = F .

The rest of the proof follows as in the proof of Theorem 2.1.

3 Sylow Normalizers

In the universe of finite soluble groups, for a subgroup-closed saturated forma-
tion H ⊆ S, the following equivalence holds (Theorem 1.1):

nH ∩ S = H ⇐⇒ H is a covering-formation of soluble groups.

In contrast, none of the implications in this equivalence remains valid when
extending to the universe of all finite groups. An example in [9, Remark 1(c)]
shows that a covering-formation does not need to be n-closed in general. Also,
there is an example in [8] of a subgroup-closed saturated formation X with the
property nX = X which is not a covering-formation. (See also [17, Remark, p.
270] for some additional information.)

We analyze in this section possible approaches for positive results in the finite
universe. First, Theorem 3.1 below provides additional conditions in terms of
the canonical local definition of a subgroup-closed saturated formation H to
guarantee that nH = H implies that H is a covering-formation. We will study
afterwards covering-formations F which satisfy nF = F .

Proposition 3.1. Let H be a subgroup-closed saturated formation and let H
denote its canonical local definition. Set π := Char(H) and π(p) := Char(H(p))
for each p ∈ π. Assume that nH = H. Then:

1. If p ∈ π, then nH(p) = H(p) if and only if Eπ(p) ∩H = H(p).

2. If 2 ∈ π, then Eπ(2) ∩ H = H(2). In particular, nH(2) = H(2) and H(2) is
a subgroup-closed saturated formation.
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Proof. Since H is subgroup closed, it follows that H(p) is also subgroup-closed
by [10, IV.3.16] and, consequently, H(p) ⊆ nH(p) and H(p) ⊆ Eπ(p) for all
p ∈ π.

We prove first that for p ∈ π, if Eπ(p) ∩H = H(p), then nH(p) = H(p).
Let p ∈ π, assume that Eπ(p) ∩ H = H(p) and consider G ∈ nH(p). We

need to prove that G ∈ H(p). But G ∈ nH(p) ⊆ nH = H because H(p) ⊆ H.
Moreover π(G) ⊆ π(p) because H(p) ⊆ Eπ(p). Whence G ∈ H ∩ Eπ(p) = H(p)
and we are done.

Now we consider p ∈ π. If p 6= 2, we assume in addition that nH(p) = H(p).
We prove next that Eπ(p) ∩H = H(p), which will conclude the proof.

Assume that this is not true; then H(p) is properly contained in Eπ(p) ∩ H.
We mimic the proof of [9, Theorem]. Then let X = (G ∈ (Eπ(p) ∩ H) \H(p) |
|(π(G)∪{p})\{p}| is minimal). Let us consider G ∈ X such that |G| is minimal.
By the choice of G, there exists a unique minimal normal subgroup N of G and
G/N ∈ H(p). If N were a p-group, then G ∈ SpH(p) = H(p), a contradiction.
Consequently, N is not a p-group.

Step 1. p /∈ π(G). We point out that in case p = 2, G is soluble by the
Feit-Thompson theorem.

Argue as in [9, Proof of Theorem, Step 1] with obvious changes.

Step 2. N is abelian; in particular, N is a q-group for some prime q 6= p.
Moreover, Φ(G) < F (G) = Oq(G).

If p = 2, then G is soluble by step 1 and the result is clear.
Assume now that p 6= 2. Then we have in addition that nH(p) = H(p).
If N were not abelian, then NG(Gr) < G for all r ∈ π(G) and Gr ∈ Sylr(G).
If N were a q-group but Φ(G) = F (G) = Oq(G), then q ∈ π(G/Oq(G)),

which implies that NG(Gq) < G for Gq ∈ Sylq(G). If r ∈ π(G), r 6= q, then
NG(Gr) < G for Gr ∈ Sylr(G).

Hence, in both considered cases, the choice of G would imply that NG(Gr) ∈
H(p) for all r ∈ π(G). Since nH(p) = H(p), it would follow that G ∈ H(p), a
contradiction which proves step 2.

The rest of the proof follows arguing as in [9, Proof of Theorem, Step 2 –
Step 5] with obvious changes.

Proposition 3.2. Let H be a subgroup-closed saturated formation and let H
denote its canonical local definition. Set π := Char(H) and π(p) := Char(H(p))
for each p ∈ π. Assume that nH = H. Then the following conditions are
equivalent:

1. Eπ(p) ∩H = H(p) for all p ∈ π,

2. H is a covering-formation (defined by the sets of primes π(p) for each prime
p ∈ π).

Proof. It is clear that condition 2 implies condition 1.
Assume now that condition 1 holds. We notice first that nH = H implies

that (p ∈ π(q) ⇔ q ∈ π(p)) for all p, q ∈ π, by [9, Proposition 1]. Then we
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need to prove that H = F for F the covering-formation of characteristic π and
defined by the sets of primes π(p) for each p ∈ π.

Since H is subgroup-closed, it is known that for any p ∈ π, H(p) is also
subgroup-closed, which implies that H(p) ⊆ Eπ(p). It follows that H ⊆ F .
Assume that H 6= F and let G ∈ F \H of minimal order. Then G has a unique
minimal normal subgroup N and G/N ∈ H.

If NG(Gp) < G for all p ∈ π(G) and Gp ∈ Sylp(G), then the choice of G
implies that G ∈ nH = H, a contradiction. Consequently, there exists p ∈ π(G)
such that NG(Gp) = G with Gp ∈ Sylp(G). Then N is a p-group, G ∈ Eπ(p) as
G ∈ F , and so G/N ∈ Eπ(p) ∩ H = H(p). Hence G ∈ SpH(p) = H(p) ⊆ H, the
final contradiction.

Remark 3.1. Let H be a (subgroup-closed) saturated formation, let H denote
its canonical local definition and set π := Char(H) and π(p) := Char(H(p))
for each p ∈ π. In contrast to the behaviour of saturated formations of soluble
groups (see [10, IV.3.8(b)]), the fact that Eπ(p) ∩ H = H(p) for all p ∈ π does
not imply in general that the saturated formation H is locally defined by the
formation function h given by h(p) = Eπ(p) if p ∈ π and h(q) = ∅ if q /∈ π.

To see this it is enough to consider π any non-empty set of primes and
H = Sπ.

This shows that in Proposition 3.2 the hypothesis nH = H can not be omited.

Theorem 3.1. Let H be a subgroup-closed saturated formation and let H denote
its canonical local definition. Set π := Char(H) and π(p) := Char(H(p)) for
each p ∈ π. Assume that nH = H. Then:

nH(p) = H(p) for all p ∈ π, p 6= 2 ⇐⇒ H is a covering formation.

Proof. It follows by Propositions 3.1 and 3.2.

Remark 3.2. From example in [8] giving a subgroup-closed saturated formation
which is n-closed but not a covering-formation and Theorem 3.1 we may deduce
that for a subgroup-closed saturated formation H, the fact that nH = H does
not imply in general that nH(p) = H(p) for its canonical local definition H and
p ∈ CharH (unless p = 2; see Proposition 3.1).

In [17, Examples 1,2,3] we showed some particular constructions of covering-
formations F satisfying that nF = F and noticed that for them F = U . We
prove next that this is not casual but the property F = U = V is a consequence
of satisfying nF = F . However we will show afterwards that the converse does
not hold.

Theorem 3.2. For the covering-formation F , if nF = F , then F = U = V.

Proof. We know by Proposition 2.1 that for the covering-formation F , F ⊆ U ⊆
V. We prove next that V ⊆ F if nF = F .

Assume that this is not true and let G ∈ V \ F of minimal order. Since
V is subgroup-closed, the choice of G implies that any proper subgroup of G
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belong to F . If NG(Gp) < G for all p ∈ π(G), we deduce that G ∈ nF = F by
hypothesis, a contradiction. Hence Gp �G for some p ∈ π(G).

Since, in addition, V is closed under taking factor groups and F is a saturated
formation, we deduce that G is a primitive group of type 1, with a unique
minimal normal subgroup N = Gp, CG(N) = N , a maximal subgroup M such
that G = NM with N ∩M = 1 and G/N ∈ F .

We claim that π(M) ⊆ π(p). Let q ∈ π(M). If q 6∈ π(p) then NMq is
nilpotent because G ∈ V and M ≤ CG(N) = N , a contradition which proves
the claim.

Hence G/N ∈ Eπ(p) = f(p) and G/N ∈ F , which implies that G ∈ F , a
contradiction which concludes the proof.

Examples 3.1.
1. For a covering-formation F , the fact that F = U = V is not enough to

guarantee that nF = F .

We construct the covering-formation F defined by the following sets of
primes:

π(2) = P \ {3}, π(3) = P \ {2}, π(p) = P if p 6= 2, 3,

P the set of all prime numbers. We notice that F has full characteristic, i.e.,
Char(F) = P. Moreover, for this covering-formation F , we have:

F = E2′Eπ(2) ∩ E3′Eπ(3) = E2′E3′ ∩ E3′E2′

ΣF = {σ ⊆ P | |σ| ≥ 2 , (p, q ∈ σ, p 6= q ⇒ p 6↔ q)} = {σ} with σ = {2, 3}

U = En
{2,3} ; V = Sn

{2,3}

We know that F ⊆ U ⊆ V. We claim that F = U = V.
We prove first that F = U . Assume that this is not true and let G ∈ U \ F

of minimal order. By Proposition 2.3, G is either non-abelian simple, or G =
[N ]〈x〉 ∈ P2 where N is a non-abelian simple group, N ∈ F and 〈x〉 ∼= Cp for
some prime p such that p 6∈ π(N).

Assume that G is simple. It is known that no simple group E possesses
nilpotent Hall ν-subgroups with ν a set of primes such that |ν ∩ π(E)| > 1 and
2 ∈ ν (see [18, Corollary] and [1, Proposition 1] ). Since G ∈ U it follows that
3 /∈ π(G); i.e., G ∈ E3′ ⊆ F , a contradiction.

Consider now the case G = [N ]〈x〉 as above. Since G /∈ F and N ∈ U ,
we deduce that 3 ∈ π(G) but 3 /∈ π(N), again by the same above-mentioned
result. Consequently, p = 3 and N = Sz(q). From G ∈ U it follows that x
centralizes a Sylow 2-subgroup of Sz(q), but this is a contradiction because no
outer-automorphism of Sz(q) satisfies these facts. This proves that F = U .

We notice that Suzuki groups Sz(q) satisfy Sz(q) ∈ E3′ ⊆ F ; consequently,
F = U 6⊆ S. (In fact, Suzuki groups Sz(q) are the only non-abelian simple
groups in F .)

We prove next that F = U = V. We know that F = U ⊆ V. Assume that
the result is not true and let G ∈ V \F = V \U of minimal order. As above, by
Proposition 2.3, either G is a non-abelian simple, or G = [N ]〈x〉 ∈ P2 where N
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is a non-abelian simple group, N ∈ F and 〈x〉 ∼= Cp for some prime p such that
p 6∈ π(N). Since G /∈ F , arguing as above, we deduce that 3 ∈ π(G).

Assume that G is simple. Then it follows that |G| ≡ 0 (mod 12) and G
contains non-nilpotent {2, 3}-subgroups, whence G /∈ V, a contradiction.

Consider now the case G = [N ]〈x〉 as above. Since N ∈ F = U we de-
duce again that N is a 3′-group, as N is simple, and p = 3. Moreover, by
the Frattini Argument, G = NNG(N2) with N2 ∈ Syl2(N). It is clear that
NG(N2) is a proper subgroup of G, whence 1 6= NG(N2) ∈ U . Consequently,
∅ 6= Hall{2,3}(NG(N2)) ∩ N ⊆ Hall{2,3}(G) ∩ N , which implies that G ∈ U , a
contradiction.

We have now proved that F = U = V 6⊆ S.
Finally we show that nF 6= F . Consider G = L2(3n) with n odd. It is easy

to check that G /∈ F . We claim that G ∈ nF .
Let p ∈ π(G), p 6= 2, 3. For any Sylow p-subgroup Gp of G we have that

NG(Gp) ∈ S3′ ⊆ F .
We notice that |G| = 1

23n(3n + 1)(3n − 1) and 3n−1
2 is odd, as n is odd.

Whence |G|2 = (3n + 1)2 and NG(G2) = G2 ∈ F for G2 ∈ Syl2(G).
Moreover, for G3 ∈ Syl3(G), it follows that NG(G3) ∈ E2′ ⊆ F , which proves

the claim and shows finally that G ∈ nF \ F .

2. We modify now the covering-formation F constructed above, in part 1,
by considering G := F ∩ E5′ . Then G is again a covering-formation defined by
the sets of primes:

π(2) = P \ {3, 5}, π(3) = P \ {2, 5}, π(p) = P \ {5} if p 6= 2, 3, 5, π(5) = ∅,

and Char(G) = P \ {5}. Corresponding to G, set

UG :=
⋂
σ∈ΣG

En
σ ∩ E5′ = En

{2,3} ∩ E5′

and
VG :=

⋂
σ∈ΣG

Sn
σ ∩ E5′ = Sn

{2,3} ∩ E5′ .

We show next that G = UG = VG ⊆ S and nG 6⊆ G, in contrast to known results
in the soluble universe (see Proposition 1.1).

It is clear from part 1 that G = UG = VG . We notice in addition that for
G = L2(33), it holds that 5 /∈ π(G). Then, again by part 1, we have that
G ∈ nG \ G. Moreover, if G were a non-abelian simple group in G = UG = VG ,
then 3, 5 /∈ π(G), which is not possible. Whence G = UG = VG ⊆ S.

3. There exists also a covering-formation satisfying the properties as in part
2, and which has in addition full characteristic.

Consider the covering-formation G defined in part 2 and construct

H := G × S5 := (G = A×B | A ∈ G, B ∈ S5).
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Then H is a covering-formation defined by the sets of primes:

π(2) = P \ {3, 5}, π(3) = P \ {2, 5}, π(p) = P \ {5} if p 6= 2, 3, 5, π(5) = {5},

and Char(H) = P. Corresponding to H, set

UH :=
⋂

σ∈ΣH

En
σ = En

{2,3} ∩En
{2,3,5} ∩ (

⋂
p∈P\{5}

En
{5,p})

and
VH :=

⋂
σ∈ΣH

Sn
σ = Sn

{2,3} ∩ Sn
{2,3,5} ∩ (

⋂
p∈P\{5}

Sn
{5,p}).

We claim that H = UH = VH ⊆ S, Char(H) = P and nH 6⊆ H.

It is clear that H ⊆ S and it is known that H ⊆ UH ⊆ VH. We prove
first that H = VH, which will imply H = UH = VH. Assume that the result
is not true and let G ∈ VH \ H of minimal order. We know that G is an
almost simple group by Proposition 2.3. We notice that 5 ∈ π(G) since, from
part 1, G ∈ VH ⊆ Sn

{2,3} = F and the only non-abelian simple groups in F
are Suzuki groups, which are 3′-groups. Moreover, for each prime p ∈ π(G),
p 6= 5, if Gp is a Sylow p-subgroup of G, then 5 /∈ π(NG(Gp)/CG(Gp)), and also
NG(G5)/CG(G5) ∈ S5. It follows that the Sylow graph of G defined in [17] is
not connected, which is a contradiction by [17, Main Theorem].

For G = L2(33) we know from part 2 that G /∈ G and then G /∈ H. Moreover,
G ∈ nG ⊆ nH as G ⊆ H, which proves finally the claim.

Theorem 3.3. For the covering-formation F the following statements are equiv-
alent:

(i) F has the Shemetkov property;

(ii) F = U = V.

Proof. We assume first that F verifies condition (ii) and we prove that F sat-
isfies condition 3 in Theorem 1.2, and then, equivalently, F has the Shemetkov
property.

We need then to prove that a π-group G belongs to F if and only if NG(P )/
CG(P ) belongs to Eπ(p) for each p-subgroup P of G and each prime p ∈ π.

Let G ∈ F and P be a p-subgroup of G for some p ∈ π. Let q ∈ π(NG(P ))
and Q ∈ Sylq(NG(P )). Since F is subgroup-closed, PQ ∈ F . Moreover F = V.
Hence if q 6∈ π(p), it follows that PQ is nilpotent and Q ≤ CG(P ). Consequently
NG(P )/CG(P ) ∈ Eπ(p).

Conversely assume now that NG(P )/CG(P ) ∈ Eπ(p) for each p-subgroup P
of G and each prime p ∈ π. We prove that G ∈ F = V.

Let τ ∈ Σ and let H be a τ -subgroup of G. We claim that H is p-nilpotent
for every p ∈ τ . Hence H will be nilpotent and we will be done.

Let p ∈ τ and P be a p-subgroup of H. Since NH(P ) ≤ NG(P ) it follows
that NH(P )/CH(P ) ∈ Eπ(p) ∩ Eτ = Ep. It follows that H is p-nilpotent, by the
Frobenious p-nilpotence criterion, as claimed.

18



Now assume that F has the Shemetkov property but condition (ii) does not
hold. Let X ∈ V \F of minimal order. Then, by Proposition 2.3, either X = E
or X = [E]Cq ∈ P2, being E a non-abelian simple group and q 6∈ π(E). In the
second case, E ∈ F .

Assume X = E. Since V is subgroup-closed, X ∈ Crits(F) ∩ b(F) but this
contradicts that F has the Shemetkov property by Theorem 1.2.

Assume X = [E]Cq. Since V is subgroup-closed, X ∈ Crits(F) ∩ b(F) and
X is an almost simple group.

Since X 6∈ F but E ∈ F , there exists p ∈ π(E), E = Soc(X), such that
q 6∈ π(p). In particular, X 6∈ f(p) = Eπ(p). By Theorem 1.2 we have now that
X 6∈ f(r) = Eπ(r) for all r ∈ π(E). Since E ∈ F , this means that q 6∈ π(r) for
all r ∈ π(E).

For each r ∈ π(E), there exists Er ∈ Sylr(E) such that Cq normalizes Er.
Since r 6↔ q and X ∈ V, we deduce that ErCq is nilpotent. Consequently,
Cq ≤ CX(E) = 1, a contradiction.

Remark 3.3. In Theorem 3.3 the hypothesis that F is a covering-formation
can not be avoid in order to prove that condition (i) implies condition (ii).

To see this consider the class H = Ep′Ep of all p-nilpotent groups for a
prime p. Then H is a subgroup-closed saturated formation with the Shemetkov
property by a result of Ito (c.f. [16, IV.5.4]; see also [2, Example 4]). But H
is not contained in any class of groups characterized by having nilpotent Hall
subgroups for some set of primes.
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