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Abstract 

In X-ray computed tomography (CT) iterative methods are more suitable for the reconstruction of images with high contrast 

and precision in noisy conditions and from a small number of projections. However, in practice, these methods are not 

widely used due to the high computational cost of their implementation.  Nowadays technology provides the possibility to 

reduce effectively this drawback.  It is the goal of this work to develop a fast GPU-based algorithm to reconstruct high 

quality images from under sampled and noisy projection data. 
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1. Introduction 

In medicine, the diagnosis based on computed tomography (CT) is fundamental for the detection of 

abnormal tissues by different attenuation on X-ray energy, which frequently is not clearly distinguished for 

radiologists. In CT imaging, a set of projections taken with a scanner is used to reconstruct the internal 

structure of an object. The intensity of a beam of X-ray that passes through some object is observed to 

decrease.  By moving the source and detector, it is possible to obtain a set of projections. A single k-th 

projection at angle r can be defined as an integral of image intensities f(x,y) along a line l  and is given by the 

formula:  


l

rk dlyxfP ),(,        (1) 

The reconstruction problem consists of determining the values of the function f(x,y) from the set of the 

experimental projection data. Presently, the reconstruction process in clinical scanners is based on analytical 

 

 
* Corresponding author. Tel.: +34-645045360 

E-mail address: liuflo@posgrado.upv.es 



Author name / Procedia Computer Science 00 (2013) 000–000 

algorithms which use the inverse Fourier transform. Filtered Back Projection algorithm (FBP) is one of the 

widely used algorithms and is well described in literature [1]. However, in CT it is common to find under 

sampled set of no equally spaced projections. In these cases, images reconstructed with conventional FBP 

algorithm are highly degraded due to insufficient and noisy projections.  On the other hand, algebraic methods 

do not require complete data collection and do provide the optimal reconstruction in noisy conditions in the 

image [2]. These methods allow reconstructing images with higher contrast and precision in noisy conditions 

from a small number of projections than the methods based on the Fourier transform [3-5]. 

Nevertheless, the major drawback of the algebraic methods is given by their high computational cost. In our 

previous work we have reported some results on using Extensive Toolkit for Scientific computation (PETSc) 

and binary format of input data to facilitate the programming task and accelerate the whole process of 

reconstruction [6-7]. In this research, our aim is to take advantage of the massive computing power of graphics 

processing unit (GPU) to improve the efficiency of the reconstruction process. In this paper, we will present a 

description and validation of our algorithm. The rest of the paper is organized as follows: in part 2 we describe 

mathematical aspects of the problem, the reconstruction algorithm, and the GPU implementation of this 

algorithm. In part 3 we present the results obtained in the experiment and, finally, we summarize the 

conclusions in part 4.   

2. Methodology 

2.1. Mathematical aspects 

Fundamentally, the algebraic methods of image reconstruction from projections are schemes for solving a 

linear system: 

                                  ,PAx           (2) 

where the system matrix A simulates computer tomography functioning and its elements (Wij)depend on the 

projection number  and the angle and may not be square,  x is a column matrix whose values represent intensities 

of the image , and the column matrix  P represents projections collected by a scanner.  

For a given angle, we assume that the number of projections ranges from 1 to m.  If there are k different angles, 

then in (2) P is a column matrix with mxk elements,   x is a column matrix with n
2
 elements and   A is a mkxn

2
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Many properties of the reconstructed image depend on the approximations when calculating the system matrix. 

In this work we use Siddon algorithm to calculate elements of the matrix in a rectangular grid [8].  It has been 

found that Siddon algorithm gives a good approximation of the system matrix [9]. The main characteristics of 

the matrices used in the experiment are summarized in Table 1 and Figure 1 shows the structure of such 

matrices. 

In practice, A is a rectangular no symmetrical sparse matrix and therefore it is recommendable to store only 

nonzero elements. The appropriate storage format for such matrices is Compact Sparse Row (CSR) o Compact 

Sparse Column (CSC) format. The system (2) may be over determined or undetermined. Over determined 

systems contain more information on the image and, consequently, the reconstructed image is less noisy. The  
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Table 1. The main characteristics of the system matrix 

 

Matrix Size (pixels) 

Generation 

Time (sec) 

Matrix Size (MB) 

ASCII format Binary format 

(256x100) x (256x256) 11.3 236 91 

(256x200) x (256x256) 22.4 475 181 

(256x400) x (256x256) 45.4 954 361 

(512x100) x (512x512) 72.5 973 361 

(512x200) x (512x512) 203.2 2047 721 

(512x400) x (512x512) 446.4 2148 755 

 

 

 

Fig. 1. The system matrix data structure 

dimensions of A grow proportionally to the resolution of the image to be reconstructed and the number of 

projections, increasing therefore the computational cost. In the experiment, the input matrix A and the right 

hand side vector P have been generated previously, they can be stored in two formats: as a plain text (ASCII 

format) or in a binary format.  We use the input data in binary format, which allows reducing the memory 

storage and the computing time.  

2.2. Algorithm 

We implemented the Least Square QR method (LSQR) [10] to solve the system (2) by 

minimizing
2

min PAx  . The matrix A is normally large and sparse and is used only to compute products 

of the form Av and A
T
u for various vectors v and u. The input data is stored in binary format. Figure 2 

illustrates the following main steps of the reconstruction process:  

 CT projections are collected by a scanner 
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 The system matrix, that simulates the scanning process, is generated previously by Siddon algorithm 

 In binary format these data are used by LSQR solver to find the solution of the system (2) that represents 

the reconstructed image. 

 LSQR solver is implemented in CUDA parallel programming model. 

                  

Fig. 2.  LSQR solver uses input data in binary format to reconstruct                              Fig. 3.  Libraries used for the implementation                                                                                                                                 

an image               of the algorithm 

The efficiency of the LSQR solver in parallel image reconstruction on CPU we have analyzed in our 

previous work [6]. The speed up of 1.8 has been achieved to reconstruct images of 512x512 pixels.   In this 

paper we attempt to develop an algorithm suitable for GPU parallelization in order to take advantage of the 

massive computing power of GPUs.   

2.3. GPU implementation 

Computer graphic cards, such as the NVIDIA GeForce series and the GTX series, are conventionally used 

for display purpose on desktop computers.  Special GPUs card dedicated for scientific computing, like the 

NVIDIA Tesla M2050 card is used in this paper to carry out the experiment. Such a GPU card has a total 

number of 448 cuda cores with 3GB ECC memory, shared by all processor cores. Utilizing such a GPU card 

with tremendous parallel computing ability can considerably elevate the computation efficiency of our 

algorithm. 

NVIDIA also introduced CUDA
TM

, a general purpose parallel computing architecture – with a new parallel 

programming model and instruction set architecture – that leverages the parallel compute engine in NVIDIA 

GPUs to solve many complex computational problems in a more efficient way than on a CPU. CUDA comes 
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with a software environment that allows developers to use C or C++ as high-level programming languages and 

overcome the challenge to develop application software that transparently scales its parallelism to leverage the 

increasing number of processor cores.  

We also use CUBLAS and CUSPARSE libraries that allow the user to access the computational resources of 

NVIDIA Graphical Processing Unit (GPU). The CUBLAS library is an implementation of BLAS (Basic Linear 

Algebra Subprograms) on top of the NVIDIA
®

CUDA
TM

 runtime. To use the CUBLAS library, the application 

must allocate the required matrices and vectors in the GPU memory space, fill them with data, call the 

sequence of desired CUBLAS functions, and then upload the results from the GPU memory space back to the 

host. The CUBLAS library also provides helper functions for writing and retrieving data from the GPU. 

The NVIDIA
®
 CUDA

TM 
CUSPARSE library contains a set of basic linear algebra subroutines used for 

handling sparse matrices and is designed to be called from C or C++. These subroutines include operations 

between vector and matrices in sparse and dense format, as well as conversion routines that allow conversion 

between different matrix formats. Fig. 3 shows the libraries used for the implementation of the algorithm and 

their relationship. 

The following piece of the code represents the usage of the library functions used to compute norm of a 

vector:  

01:  cublasCreate ( &handle_b ); 

02: cublasSetVector ( nrow, sizeof(float), h_U, 1, d_U, 1 ); 

03: cublasSnrm2 ( handle_b, nrow, d_U, 1, &beta ); 

04: cublasScal ( handle_b, nrow, &beta1, d_U, 1 ); 

05: cublasGetVector ( nrow, sizeof(float), d_U, 1, h_U, 1 ); 

and   matrix  - vector product: 

06: cusparseCreate (&handle_s); 

07: cusparseCreateMatDescr(&descra); 

08: cusparseSetMatType(descra, CUSPARSE_MATRIX_TYPE_GENERAL); 

09: cusparseSetMatIndexBase(descra,CUSPARSE_INDEX_BASE_ZERO); 

10:  cusparseScsrmv ( handle_s, CUSPARSE_OPERATION_NON_TRANSPOSE, ncol, nrow, 

  1.0, descra, csc_values,  cscColPtr, cscRowInd, d_U, 0.0, d_V ); 

11: cublasGetVector ( ncol, sizeof(float), d_V, 1, h_V, 1 ); 

CUBLAS and CUSPARSE are written using the CUDA parallel programming model and take advantage of the 

computational resources of the NVIDIA graphics processor (GPU). 

3. Results And Discussions 

For experimental purposes we used real projections and original images acquired from the Hospital Clinico 

Universitario in Valencia. We worked with fan-beam projections collected by the scanner with 512 sensors in 

the range 0 - 180 with 0.9 degree spacing. To be able to reconstruct the image with the iterative method we 

complete the given set up to 360 degrees using the symmetry of the system matrix. We wanted to analyze the 

capacity of iterative algorithms in parallel reconstruction of images from less number of projections. With this 

purpose, from the initial set, three sets of equally spaced (with the angle steps 0.9, 1.8, and 3.6 degrees) 

projections have been derived. 

The results have been measured on a GPU node of the cluster system Euler that belongs to the Alicante 

University in Spain.  The GPU computing node consists of 2 x CPU Intel Xeon X5660, each with 6 cores of 2,80 

GHz and  3 x GPU NVIDIA TESLA M2050 with 448 cores  and 3GB memory each of them. In Euler, it is used 

Grid Engine function, general purpose Distributed Resource Management (DRM) tool. The scheduler 
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component in Grid Engine supports a wide range of different compute scenarios. Jobs are queued and executed 

remotely according to defined policies. 

Table 2. The   reconstruction time of images on CPU and GPU on Euler cluster 

System Matrix (rows x columns) 
CPU (one core) 

(seconds) 
GPU (seconds) 

M1 = (256x100) x (256x256) 2.7 4.4 

M2 = (256x200) x (256x256)     5.3 4.6 

M3 = (256x400) x (256x256)   10.5 4.7 

M4 = (512x100) x (512x512)   12.3 5.1 

M5 = (512x200) x (512x512) 24.4 5.3 

 

 

Fig. 4.  Reconstruction time on CPU (one core) and GPU from different number of projections; the matrices  corresponds to: 

M1=[(256x100)x(256x256)], M2=[(256x200)x(256x256)], M3=[(256x400)x(256x256)], M4=[(512x100)x(512x512)], 

M5=[(512x200)x(512x512)] where the  rows represent the number of the projections and the columns - the size (256x256 or 512x512 

pixels) of the reconstructed image 

For the images of 256x256 and 512x512 pixels the solving time of the system (2)   on   CPU with 1 core and 

GPU is given in Table 2 and shown in Figure 4. In the system matrix, the number of rows is obtained by 

multiplying the number of used sensors and angles and corresponds to the number of the projections used to 
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reconstruct the image; the number of columns corresponds to the size of the reconstructed image (256x256 and 

512x512 pixels). 

The results show the efficiency of the algorithm based on a GPU parallel computing ability. It can be seen that 

the usage of GPUs becomes more efficient for large scale problems.  

Finally, Figure 5 shows the images reconstructed in parallel from different number of equally spaced projections. 
It is needed to be mentioned that usually post processing procedure (as filtering) is applied to the reconstructed 
image in order to improve the quality. In this work we present the images right after the reconstruction stage 
without any filtering. 

 

Fig.  5.  Reconstructed images (512x512 pixels): a) original images; b), c), d) iterative reconstruction from 400, 200 and 100 angles at the 

iteration 12 when the given tolerance is achieved  

4. Conclusions 

The GPU-based iterative algorithm of image reconstruction presented in this paper shows that the algebraic 

methods are capable to reconstruct images with low computational cost. 

CUDA parallel programming model with CUBLAS and CUSPARSE libraries allow overcoming the challenge 

to solve complex computational problems and take advantage of the computational resources of the NVIDIA 

graphics processor (GPU). We expect more significant results in undergoing work of 3D image reconstruction 

when a huge amount of computing is involved.   
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