

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.engappai.2014.06.003

http://hdl.handle.net/10251/40614

International Federation of Automatic Control (IFAC)

Heras Barberá, SM.; Botti Navarro, VJ.; Julian Inglada, VJ. (2014). Modelling dialogues in
agent societies. Engineering Applications of Artificial Intelligence. 34:208-226.
doi:10.1016/j.engappai.2014.06.003.

Modelling Dialogues in Agent Societies

Stella Heras, Vicente Botti, Vicente Julián

Departamento de Sistemas Informaticos y Computacion
Universitat Politecnica de Valencia

Camino de Vera s/n 46022 Valencia (Spain)

Abstract

Besides the simpler ability to interact, open multi-agent systems must include mechanisms for their agents to
reach agreements by taking into account their social context. Argumentation provides multi-agent systems with
a framework that assures a rational communication, which allows agents to reach agreements when conflicts of
opinion arise. In this paper, we present the dialogue protocol that agents of a case-based argumentation framework
can use to interact when they engage in argumentation dialogues. The syntax and semantics of the argumentation
protocol are formalised and discussed. To illustrate our proposal, we have applied the protocol in the context of a
water market. By using our dialogue protocol, agents represent water users that are able to explore different water
allocations and justify their views about what is the best water distribution in a certain environment.

Keywords: Agreement Technologies, Argumentation, Multi-Agent Systems

1. Introduction1

Large scale computer systems can be viewed in terms of the entities that participate in them, offering and2

consuming services (Luck and McBurney, 2008). Open Multi-Agent Systems (MAS), whose software agents are3

able to interact with each other to solve complex tasks and reach agreements as the outcome of their interactions,4

has proven to be a very appropriate paradigm to implement these type of systems (Huhns et al., 2005)(Ossowski,5

2013)(del Val et al., 2014). Furthermore, argumentation theory provides MAS with a framework that assures6

rational communication and allows agents to reach agreements when conflicts of opinion arise. However, agents7

that use an argumentation framework to argue also need a protocol to communicate, to interchange their arguments,8

and to be able to reach agreements.9

Considerable research has been performed on the design of artificial agent communication languages, such as the10

Knowledge Query and Manipulation Language (KQML)1 from DARPA, and the Agent Communications Language11

(FIPA ACL)2 from the IEEE Foundation for Intelligent Physical Agents. These languages provide agents with high12

flexibility of expression. However, in a dialogue, agents can have too many choices of what to utter in each step13

of the conversation. Therefore, this flexibility can also be an important downside if it gives rise to a state-space14

explosion and leads agents to engage in never-ending dialogues (McBurney and Parsons, 2009, Chapter 13).15

A possible solution for this problem consists of limiting the allowed set of utterances for each step of the dialogue16

by defining the agent communication protocol by means of a dialogue game (Hamblin, 1970)(MacKenzie, 1979).17

Dialogue games are a concept from argumentation theory and game theory that has been applied in MAS to18

structure the dialogue between agents with different points of view. Formal dialogue games are interactions among19

several players (agents in our case) where each player moves by making utterances in accordance with a defined20

set of rules. A wide range of approaches that formalise interaction protocols by using different dialogue games21

have been published (McBurney and Parsons, 2002a).22

However, to our knowledge no research has been done to propose a dialogue game that is based on case-based23

knowledge resources that agents can use to manage agreement processes in agent societies. Reasoning with cases24

is especially suitable where there is a weak (or even unknown) domain theory, but acquiring examples encountered25

Email address: sheras@dsic.upv.es (Stella Heras, Vicente Botti, Vicente Julián)
1www.cs.umbc.edu/research/kqml/
2www.fipa.org/repository/aclspecs.html

Preprint submitted to Engineering Applications of Artificial Intelligence March 28, 2014

http://www.cs.umbc.edu/research/kqml/
http://www.fipa.org/repository/aclspecs.html

in practice is easy. Many argumentation models for MAS produce arguments by applying a set of inference26

rules (Amgoud et al., 2000)(Augusto and Simari, 2001)(Verheij, 2009). Rule-based systems require eliciting an27

explicit model of the domain (Prakken, 2010). In open MAS, the domain is highly dynamic and the set of rules that28

model it is difficult to specify in advance, even if these rules are domain-specific inference rules that are intended to29

represent domain knowledge. However, tracking the arguments that agents put forward in argumentation processes30

can be relatively simple. Therefore, these arguments can be stored as cases that are codified in a specific case31

representation language that different agents are able to understand (e.g., an ontological language (Jurisica et al.,32

2004)). This approach makes possible to develop case-bases reducing the knowledge-acquisition bottleneck. With33

case-bases, agents are able to perform lazy learning processes on argumentation information. For complex and34

highly dynamic systems, this is easier than using a rule-based system.35

Another important problem with rule-based systems arises when the knowledge-base must be updated (e.g.,36

adding new knowledge that can invalidate the validity of a rule). Updates involve checking the knowledge-base37

for conflicting or redundant rules. Case-based systems are easier to maintain than rule-based systems since, in the38

worst case, the addition of new cases can give rise to updates in some previous cases, but it does not affect the39

correct operation of the system, even though it can have an impact on its performance.40

Therefore, in this paper, we present a dialogue game protocol that agents can use in a case-based argumentation41

framework to interact with each other when they engage in dialogues. This protocol includes a syntax as the set42

of defined locutions that agents can use to engage in argumentation processes, the combinatorial properties of43

locutions, and the rules that govern the dialogue. We also provide the operational semantics of the locutions. This44

semantics views each locution as a transition in an abstract state-machine that represents the possible stages that45

can be reached during the dialogue.46

The structure of this paper is as follows: Section 2 introduces a running example that clarifies the type of47

problems that we want to solve with our argumentation approach; Section 3 briefly introduces our case-based48

argumentation framework for agent societies; Section 4 shows the syntax and operational semantics of the protocol49

and provides a discussion on its properties; Section 5 develops the running example in a dialogue among several50

agents in a water market that is controlled by our protocol; Section 6 analyses related work and compares it with51

our proposal; and Section 7 summarises the contents of this paper.52

2. The Water Market Scenario53

As in human societies, agents in agent societies have a social context that can impose on them a set of norms54

to obey, a preference order regarding a set of values that agents can promote with their actions, and a set of55

dependency relations that link them. By the mere fact of belonging to a group, an agent may have to comply with56

the norms of the group or to act in a way that promotes the values that the group prefers. Similarly, an agent57

that is under contract with another agent to provide it with a service is committed to accepting requests from the58

contracting party that it might never accept otherwise. To clarify this point, let us assume a real scenario where the59

social context of agents has a decisive influence on the agents’ behaviour.60

The example scenario consists of a water market where a society S of agents that represent different users must61

reach an agreement over a water-right transfer. This scenario was introduced in the mWater prototype (Botti et al.,62

2009b)(Botti et al., 2009a)(Botti et al., 2010)(Garrido et al., 2009). Fresh water will be the ”gold” of the 21st63

century (Honey-Roses, 2007). Only 3% of the Earth’s water is salt free. Of that 3%, approximately 2.7% is frozen64

in polar ice caps or deep underground. This leaves only 0.3% of all the water on the planet available for human65

use (Schneider, 1996). Water scarcity is especially problematic in dry climates such as the Mediterranean. Spain66

already suffers from severe water shortages (Honey-Roses, 2007)(Panayotou, 2007). During the last few years, a67

dramatic change in the Spanish Water Law has given rise to many water problems. Spain needs to improve its water68

management in order to meet the needs of different types of users (e.g., farmers, cities, and private companies) and69

to deal with its severe water scarcity problems.70

In this scenario, agents are users of a river basin that can buy or sell their water rights to other agents. A water71

right is a contract with the basin administration authority that specifies the rights that a user has over the water of72

the basin (e.g., the maximum volume that the user can use, the price that the user must pay for the water, or the73

district where the water right is located3). For instance, a particular water right could allow its holder to pump up74

to 10 m3 of water per day during the next cotton season. It is possible to consider both the seller and the buyer as75

3Following the Spanish Water Law, a water right is always associated to a district.
2

grouped entities (instead of having only one member playing the role of seller/buyer, a set of members may join76

together to participate in the market on a larger scale). For instance, a given seller has a water right of 2 m3 per day,77

which is clearly insufficient for a buyer that needs 10 m3 of water. If more sellers are grouped together it would78

be possible to have water rights to fit the requirement of the buyer, which analogously can be grouped in a larger79

buyer entity. Now, the stakeholders of this scenario will need to take into consideration the seller/buyer entity and80

model the interactions among the particular members of each entity.81

Our domain scenario assumes that several users are arguing to reach an agreement over a water-right transfer. In82

this scenario, agents can play the following roles (Giret et al., 2010):83

• Water User: a water-right holder of the basin, for instance, a farmer.84

• Buyer: a Water User that wants to transfer its right and or buy a transportation resource.85

• Seller: a Water User that wants to purchase rights and or sell a transportation resource.86

• Third party: a Water User that can be affected by a water-right transfer agreement.87

• Basin regulating authority (Basin Administrator): the Basin Administration representative that can authorize88

a water-right transfer agreement.89

• Jury: the referee entity for problems among the contracting parties and (possibly) third parties of a water-right90

transfer agreement.91

Let us propose a concrete example for this scenario, where two agents that play the role of buyers and represent92

farmers (F1 and F2) in a group (the river basin RB) are arguing to decide over a water-right transfer agreement93

that will grant an offered water right of a farmer F3 playing the role of seller to another farmer. Figure 1 shows a94

graphical representation of this scenario.95

BA

F1 F2

RIVER BASIN RB

ValPref = SO < EC < J

Farmer <Ch Farmer
Farmer <Pow BasinAdministrator

BasinAdministrator
BA

ValPref = SO < EC < J

Farmer F1
ValPref = SO < J < EC

Farmer F2
ValPref = EC < J < SO

F3

F4

Figure 1: Water Market Scenario

Here, a basin administrator (BA) controls the process and makes a final decision. The behaviour of the basin is96

controlled by a certain set of norms NRB. The society commands a charity (Ch) dependency relation between two97

water users (farmers) (Farmer <Ch Farmer) and a power (Pow) dependency relation between an administrator98

(basin administrator), and a buyer (farmer) (Farmer <Pow BasinAdministrator). A power relation of an agent over99

3

another agent establishes a hierarchy for them, committing the second agent to accept the orders and requests of100

the first agent. A charity relation establishes a relationship of equality between two agents. Farmers usually prefer101

to reach an agreement before taking legal action in order to avoid the intervention of a jury (J). Also, F1 prefers102

to improve its economy (EC) over the intervention of a jury and this intervention over promoting the solidarity103

between users (SO) (S O < J < EC). F2 prefers solidarity over the intervention of a jury and this over economy104

(EC < J < S O). By default, BA adopts the value preference order of the basin (which promotes saving money in105

each transfer over being supportive of the personal needs of the basin users) and tries to avoid the intervention of106

a jury in any case (S O < EC < J).107

This is a complex scenario that requires an argumentation framework and an underlying dialogue protocol that is108

able to take into account the social context of agents to be able to properly manage the argumentation process. For109

instance, at a certain point of the argumentation dialogue, the BA could put forward an argument that attacks the110

argument that a farmer has brought up to justify that it should be the beneficiary of the water-right transfer. If the111

social context of these agents is not considered, obviously the farmer would try to rebut the attack. However, this112

would violate the norms of the basin, that commits the farmers to accept the arguments of the administrator, even113

if these arguments do not promote the farmers’ preferences. Furthermore, the agent that acts as basin administrator114

could personally prefer the intervention of a jury in spite of taking the responsibility to make a final decision115

about who should be the beneficiary of the transfer. However, as the basin representative, it has to adopt the value116

preference order of the basin and put forward as many arguments as possible to avoid the intervention of a jury in117

the agreement process, which might increase the financial costs of the process. Therefore, agents need to be able118

to engage in an argumentation process in order to reach an agreement on the final beneficiary of the transfer.119

3. Case-based Argumentation Framework120

In the PhD work developed in (Heras, 2011), a case-based argumentation framework that takes into account121

the social context of agents was proposed. Our framework has been implemented as an argumentation API in122

the Magentix2 agent platform, which provides new services and tools that allow for the secure and optimised123

management of open MAS (which is publicly available at http://www.gti-ia.upv.es/sma/tools/magentix2/). In this124

section, we briefly introduce the elements of this framework. Specifically, our framework consists of several125

knowledge resources that the agents can use to generate, select, and evaluate arguments following a reasoning126

process to perform these tasks as well as a dialogue protocol that allow agents to reach agreements by performing127

this argumentative reasoning, which is the focus of this paper. The knowledge resources proposed in the framework128

are:129

A database of argumentation schemes with a set of argumentation schemes (Walton et al., 2008), which rep-130

resent stereotyped patterns of common reasoning in the application domain where the framework is imple-131

mented. An argumentation scheme consists of a set of premises and a conclusion that is presumed to follow132

from them. Also, each argumentation scheme has an associated set of critical questions that represent po-133

tential attacks to the conclusion supported by the scheme. The concrete argumentation schemes to be used134

depend on the application domain. For instance, the water-right transfer domain could include a scheme that135

represents a common pattern of reasoning in the agent society S t that the basin administrator follows and that136

changes the value preference order of the basin in case of drought (inspired in Waltons’s argument for an137

exceptional case (Walton et al., 2008)):138

Major Premise: If the case of x is an exception, then the value preference order of the basin can139

be waived and changed by EC <S t
RB J <S t

RB S O in the case of x.140

Minor Premise: The case of drought is an exception.141

Conclusion: Therefore, the value preference order of the basin can be waived and changed by142

EC <S t
RB J <S t

RB S O in the case of drought.143

A case-base with domain-cases that represent previous problems and their solutions. Agents can use this knowl-144

edge resource to generate their positions in a dialogue and arguments to support them. Also, the acquisition145

of new domain-cases increases the knowledge of agents about the domain under discussion. The domain146

case-base of the farmers in our example will store information about previous water-right transfer processes147

and their outcome (who the beneficiary was and under what terms). For instance, let us assume that a farmer148

agent F2 is granted a water-right transfer from its original owner F3 to promote solidarity, since it needs an149

4

Table 1: Domain-Case C2

PROBLEM

Owner F3
Volume 225000
Price 0.12
District DF3
Area 18
Drought Yes

SOLUTION
Beneficiary F2
Transferred District DF2
Value Promoted SO

JUSTIFICATION Emergency Drought

urgent irrigation of its land during a drought. The volume of water transferred is of 225.000 liters at a price of150

0.12 Euros per liter and DF3 has an area of 18 acres. Therefore, F2 will store in its case-base the domain-case151

C2 (shown in Table 1) to represent the knowledge gained from this interaction4.152

A case-base with argument-cases that store previous argumentation experiences and their final outcome.153

Argument-cases have three main objectives: they can be used by agents 1) to generate new arguments; 2)154

to strategically select the best position to put forward in view of past argumentation experiences; and 3) to155

store the new argumentation knowledge gained in each agreement process, improving the agents’ argumen-156

tation skills. The case-base of argument-cases of the farmers of the water-right transfer scenario will store157

information about the arguments that these farmers put forward to be selected as beneficiaries of the transfer158

in previous agreement processes. For instance, let us assume that in a new dialogue with the basin admin-159

istrator of a group G, the argument of F2 supporting its candidacy as beneficiary of the transfer F2tr was160

rejected (for instance, since in this river basin economic values prevail over solidarity and the administrator161

prefers to authorize the transfer to another irrigator). Thus, the farmer agent F2 would store in its case-base162

an argument-case representing the knowledge that it has gained about this transaction (see Table 2 for an163

example).164

We use ontologies as the representation language for the knowledge resources of our framework. Specifically, we165

assume that domain-cases are instances of a domain-dependent ontology. Argumentation schemes are represented166

by using the Argument Interchange Format (AIF) ontology, as proposed in (Rahwan et al., 2011). Also, to represent167

argument-cases, we have created a case-based argumentation ontology, called ArgCBROnto5.168

The structure of domain-cases and the specific set of argumentation schemes that an argumentation system that169

implements our framework has depends on the application domain. Argument-cases are the main structure that we170

use to computationally represent arguments in agent societies. In addition, their structure is generic and domain-171

independent. Therefore, in this section, we focus on explaining the argument-case structure. Argument-cases have172

the same three possible types of components that usual cases of CBR systems have: the description of the state of173

the world when the case was stored (Problem); the solution of the case (Conclusion); and the explanation of the174

process that gave rise to this conclusion (Justification). Figure 2 shows the generic structure of an argument-case.175

The problem description has a domain context that consists of the premises that characterise the argument. In176

addition, if we want to store an argument and use it to generate a persuasive argument in the future, the features177

that characterise its social context must also be kept. The social context of the argument-case includes informa-178

tion about the proponent and the opponent of the argument and about their group. Moreover, we also store the179

preferences (ValPref) of each agent or group over the set of values that are pre-defined in the system. Finally,180

the dependency relation between the proponent’s and the opponent’s roles is also stored. In our framework, we181

consider three types of dependency relations as defined in (Dignum and Weigand, 1995): Power, when an agent182

has to accept a request from another agent because of some pre-defined domination relationship between them;183

Authorisation, when an agent has signed a contract with another agent to provide it with a service and hence, the184

contractor agent is able to impose its authority over the contracted agent, and Charity, when an agent is willing185

4This is based on the example developed in section 5
5The complete specification of the ArgCBROnto ontology can be found at:

http://gti-ia.dsic.upv.es/∼vinglada/docs/Sitio web/ArgCBROnto.html.
5

Table 2: Argument-case example

PROBLEM

Domain Context Premises = {owner=F3, volume=225000, drought=yes}

Social Context

Proponent

ID = BA
Role = Basin Administrator
Norms = NBA

ValPref = S O <S t
BA EC <S t

BA J

Opponent

ID = F2
Role = Farmer
Norms = NF1

ValPref = EC <S t
F1 J <S t

F1 S O

Group

ID = G
Role = River Basin
Norms = NG

ValPref = S O <S t
BA EC <S t

BA J
Dependency Relation = Power

SOLUTION

Argument Type = Inductive
Conclusion = F2tr
Value = SO
Acceptability State = Unaccepted

Received Attacks
Critical Questions = ∅

Distinguishing Premises = ∅

Counter Examples = ∅

JUSTIFICATION
Cases = {C2}
Argumentation Schemes = ∅

Associated Dialogue Graphs

to answer a request from another agent without being obliged to do so. For instance, as pointed out above, in the186

water-rights transfer scenario, the basin administrator has a power dependency relation over the farmers, while187

they have a charity relation with each other.188

The conclusion of the case, the value promoted, and the acceptability status of the argument at the end of the189

dialogue are stored in the solution part. The acceptability status shows if the argument was deemed acceptable,190

unacceptable, or undecided in view of the other arguments that were put forward in the agreement process. In191

addition, the conclusion part includes information about the possible attacks that the argument received during192

the process. These attacks could represent the justification for an argument to be deemed unacceptable or else193

reinforce the persuasive power of an argument that, despite being attacked, was finally accepted. Specifically,194

arguments in our framework can be attacked by putting forward distinguishing premises or counter-examples to195

them, as proposed in (Bench-Capon and Sartor, 2003), and also by questioning the validity of the conclusion drawn196

from an argumentation scheme by instantiating a critical question.197

Let us assume that we have a set of cases denoted as C, a set of premises denoted as F, a problem to solve198

denoted as P (characterised by a subset of the premises of F), and a function valuec(x) that returns the value of a199

premise x ∈ F in a case c ∈ C.200

Definition 3.1 (Distinguishing Premise). A distinguishing premise x with respect to a problem P between two201

cases c1, c2 ∈ C is defined as: ∃x ∈ c1 ∧ @x ∈ P | ∃x ∈ c2 ∧ valuec1 (x) , valuec2 (x) or else, ∃x ∈ c1 ∧ ∃x ∈202

Pmidvaluec1 (x) = valueP(x) ∧ @x ∈ c2, where P ⊆ F, x ∈ F and c1, c2 ∈ C.203

Otherwise stated: a premise that does not appear in the description of the problem to solve and has different204

values for two cases or a premise that appears in the problem description and does not appear in one of the cases.205

For instance, in our example, if the problem specification does not include a premise that indicates that there is206

drought in the river basin, the premise Drought of C2 can be used by another agent to attack an argument of F2207

that includes C2 as piece of evidence to support F2 position.208

Definition 3.2 (Counter-Example). A counter-example for a case c1 ∈ C with respect to a problem P is another209

case c2 ∈ C such that: acceptable(c2)∧∀xi ∈ c2∩P | valuec2 (xi) = valueP(xi)∧∀xi ∈ c1 | (∃xi ∈ c2∧valuexi (c2) =210

valuexi (c1)) ∧ conclusion(c2) , conclusion(c1)211

6

ARGUMENT-CASE

Conclusion
Value
Acceptability Status

SOLUTION
PROBLEM JUSTIFICATION

Dependency Relation
SOCIAL-CONTEXT

Premises
DOMAIN-CONTEXT

ID
Role
ValPref

OPPONENT
ID
Role
ValPref

PROPONENT
ID
Role
ValPref

GROUP

RECEIVED ATTACKS

DISTINGUISHING
PREMISES

COUNTER
EXAMPLES

DIALOGUE
GRAPHSCASES

CRITICAL
QUESTIONS

ARGUMENTATION
SCHEMES

Figure 2: Structure of an Argument-Case

Otherwise stated: a counter-example for a case is a previous case (i.e., domain-case or an argument-case that212

was deemed acceptable), where the problem description of the counter-example matches the current problem to213

solve and also subsumes the problem description of the case, but proposing a different solution. In our example,214

a counter-example for C2 would be another domain-case that represents the situation where a similar transfer (in215

terms of quantity of water, price, land extension, area, etc.) was assigned to another beneficiary.216

Definition 3.3. A critical question is a question associated with an argumentation scheme that represents a poten-217

tial way in which the conclusion drawn from the scheme can be attacked.218

Critical questions can be classified as presumptions that the proponent of the argumentation scheme has made219

or exceptions to the general inference rule that the scheme represents (Prakken et al., 2005). In the case of pre-220

sumptions, the proponent has the burden of proof if the critical question is asked, whereas in the case of the221

exceptions the burden of proof falls on the opponent that has questioned the conclusion of the scheme. Therefore,222

if the opponent asks a critical question, the argument that supports this argumentation scheme remains temporally223

rebutted until the question is conveniently answered. This characteristic of argumentation schemes makes them224

very suitable to devise ways to attack the conclusions drawn from other agents. For instance, in our example the225

argument-scheme presented in this section could include an exception to capture the fact that for a specific river226

basin, the case of drought is not considered as an exception. Therefore, if an agent can provide pieces of evidence227

to rise and justify this exception, the conclusion of the argument-case would be invalidated and the value preference228

order of the associated basin would remain unchanged.229

Finally, the justification part of an argument-case stores the information about the knowledge resources that230

were used to generate the argument represented by the argument-case (the set of domain-cases, argument-cases,231

and argumentation schemes). In addition, the justification of each argument-case has an associated dialogue-232

graph (or several), which represents the dialogue where the argument was proposed. In this way, the sequence of233

arguments that were put forward in a dialogue is represented (storing the complete conversation as a directed graph234

that links argument-cases). This graph can be used later to improve the efficiency in an argumentation dialogue in235

view of a similar dialogue that was held in the past.236

As pointed out above, in our framework, agents can generate arguments from previous cases (domain-cases and237

argument-cases) and from argumentation schemes. However, note that the fact that a proponent agent uses one or238

several knowledge resources to generate an argument does not imply that it has to show all this information to its239

opponent. The argument-cases of the agents’ argumentation systems and the structure of the actual arguments that240

are interchanged among agents is not the same. Thus, arguments that agents interchange are defined as tuples of241

the form:242

7

Definition 3.4 (Argument). Arg = {φ, v, {S }}, where φ is the conclusion of the argument, v is the value that the243

agent wants to promote with it, and S is a set of elements that support the argument (support set).244

This support set can consist of different elements, depending on the purpose of the argument. On one hand, if the245

argument provides a potential solution for a problem, the support set is the set of features (premises) that represent246

the context of the domain where the argument has been proposed (those premises that match the problem to solve247

and other extra premises that do not appear in the description of this problem but that have also been considered to248

draw the conclusion of the argument) and, optionally, any knowledge resource used by the proponent to generate249

the argument (domain-cases, argument-cases, or argumentation schemes). Also, a supporting argument promotes250

the value promoted by the position that it justifies. On the other hand, if the argument attacks the argument of251

an opponent, the support set can also include any of the allowed attacks in our framework (critical questions,252

distinguishing premises, or counter-examples). In our framework, we assume that an attack argument promotes the253

value promoted by the position that it tries to defend (if an agent has generated it to rebut an attack on its supporting254

argument) or otherwise, an attack argument promotes the agent’s most preferred value over the set of values that is255

pre-defined in the system (if an agent has generated it to attack the position of other agent).256

For instance, in the water-right transfer domain, Arg = {F2tr, S O, {C2}}, would represent the argument that257

farmer F2 has generated by using its domain-case C2 to justify that it should be the beneficiary of the transfer258

(F2tr) to save his crop in a drought emergency (promoting solidarity (SO)).259

4. Dialogue Game Protocol260

To formalise the protocol that agents use to engage in argumentation processes by using our framework, we261

follow a dialogue game approach. Dialogue games are interactions between two or more players, where each262

player ’moves’ by making statements that follow a pre-defined set of rules (McBurney and Parsons, 2002a). Dia-263

logue games are a specific type of games from game theory that are different from the classical games studied in264

Economics, in the sense that the profits or losses for the victory or defeat are not considered. Another important265

difference is that, in dialogue games, the participants are not able to model the potential moves of other partici-266

pants by using an uncertainty measure, for instance, a probabilistic measure. These characteristics make dialogue267

games a methodology that is suitable for modeling the interactions among heterogeneous agents in a dynamic268

environment.269

Specifically, we follow the dialogue game approach proposed in (McBurney and Parsons, 2002b) and extended270

in (McBurney and Parsons, 2009). This approach is prospective (intended to model systems in order to represent271

reality and that do not exist yet), which fits the objective of most open MAS. Other approaches for formalising272

dialogue systems have been reviewed in (Prakken, 2006) (specifically, formal systems for persuasion dialogue).273

However, most of these proposals are retrospective (intended to reconstruct/explain what happened in a dialogue,274

using a legal dispute as typical example). Furthermore, they assume a consistent and presupposed context that275

represents fixed and indisputable knowledge that cannot be changed during the dialogue. This assumption cannot276

be made in open MAS where heterogeneous agents with partial knowledge about the context of the dispute can277

enter or leave the system (and hence the dialogue) at any time.278

Throughout this paper, we assume that a set of agents with different positions (points of view) are arguing to279

reach an agreement to solve a complex problem. Thus, our basic notion of agreement consists of a solution for a280

generic problem that several agents must solve. At this level of abstraction, we assume that this is a generic problem281

of any type (e.g., resource allocation, classification, prediction, etc.) that could be described with a set of features.282

However, different notions of agreement can be found in the literature of agreement technologies (Carrascosa and283

Rebollo, 2009). First, we introduce the notation that we use in defining the protocol. Subsequently, the protocol284

syntax and semantics are presented. Finally, we provide a discussion on the protocol properties.285

4.1. Notation286

In our dialogue protocol we follow the standard that views utterances as composed by two layers: an internal287

layer that represents the topics of the dialogue and an external layer that consists of the locutions or performatives288

that define the allowed speech acts. On one hand, we assume that the topics of the inner layer can be represented289

with well-formed formulae of the Description Logic (DL) SHOIN(D) (Horrocks and Patel-Schneider, 2004),290

which forms the basis of the Web Ontology Language OWL-DL. As pointed out above, we have designed an291

ontology called ArgCBROnto to define the representation language of arguments and argumentation concepts.292

Ontologies provide a common vocabulary to understand the structure of information among different software293

8

agents. In addition, ontologies allow assumptions about the domain to be made explicit, which facilitates to change294

these assumptions as new knowledge about the domain is acquired. The high dynamism of the domains where open295

MAS operate gives rise to many changes in the domain knowledge that agents have available. Therefore, they must296

be able to efficiently handle the consequences of these changes. On the other hand, we use the standard operators297

and axioms of modal logics of knowledge and belief (Shoham and Leyton-Brown, 2009, Chapter 13) to define the298

semantics of locutions.299

In DLs, the important notions of the domain are described by concept descriptions, which are expressions that300

are built from atomic concepts (unary predicates) and atomic roles (binary predicates relating concepts) using the301

concept and role constructors provided by the specific DL. The semantics of DLs is given in terms of interpretations302

(Baader et al., 2007). Table 3 shows the syntax and semantics of the constructors of SHOIN(D), using Roman303

upper-case letters to represent concepts, datatypes, and roles and Roman lower-case letters to represent individuals304

and data values.305

Table 3: Syntax and Semantics of SHOIN(D) (Horrocks and Patel-Schneider, 2004).
Constructor Name Syntax Semantics
atomic concept A A AI ⊆ ∆I

datatypes D D DD ⊆ ∆ID
abstrac role RA R RI ⊆ ∆I × ∆I

datatype role RD U UI ⊆ ∆I × ∆ID
individuals I o oI ∈ ∆I

data values v vI = vD

inverse role R− (R−)I = (RI)−

conjunction C1 uC2 (C1 uC2)I = CI1 ∩CI2
disjunction C1 tC2 (C1 tC2)I = CI1 ∪CI2
negation ¬C1 (¬C1)I = ∆I \CI1
oneOf {o1, ...} {o1, ...}

I = {oI1 , ...}
exists restriction ∃R.C (∃R.C)I = {x|∃y. 〈x, y〉 ∈ RI and y ∈ CI}
value restriction ∀R.C (∀R.C)I = {x|∀y. 〈x, y〉 ∈ RI → y ∈ CI}
atleast restriction ≥ nR (≥ nR)I = {x|#({y. 〈x, y〉 ∈ RI}) ≥ n}
atmost restriction ≤ nR (≤ nR)I = {x|#({y. 〈x, y〉 ∈ RI}) ≤ n}
datatype exists ∃U.D (∃U.D)I = {x|∃y. 〈x, y〉 ∈ UI and y ∈ DD}

datatype value ∀U.D (∀U.D)I = {x|∀y. 〈x, y〉 ∈ UI → y ∈ DD}

datatype atleast ≥ nU (≥ nU)I = {x|#({y. 〈x, y〉 ∈ UI}) ≥ n}
datatype atmost ≤ nU (≤ nU)I = {x|#({y. 〈x, y〉 ∈ UI}) ≤ n}
datatype oneOf {v1, ...} {v1, ...}

I = {vI1 , ...}
Axiom Name Syntax Semantics
concept inclusion C1 v C2 CI1 ⊆ CI2
object role inclusion R1 v R2 RI1 ⊆ RI2
object role transitivity Trans(R) RI = (RI)+

datatype role inclusion U1 v U2 UI1 ⊆ UI2
individual inclusion7 a : C aI ∈ CI

individual equality a = b aI = bI

individual inequality a , b aI , bI

concept existence ∃C #(CI) ≥ 1

Like description logic, SHOIN(D) uses concept descriptions to build statements in a DL knowledge baseK (the306

analogue of an ontology in OWL-DL), which typically comes in two parts: terminological (TBox), and assertional307

(ABox). In the TBox, we can describe the relevant notions of an application domain by stating properties of308

concepts and roles and relationships between them. For instance, the notions of agents and arguments are defined309

in our argumentation framework with the concepts of Agent and Argument of the ArgCBROnto and the following310

axioms:311

S ocialEntity v Thing312

9

Agent v S ocialEntity313

Argument v Thing314

The properties of an argument are defined with the roles hasConclusion, promotesValue, and hasS upportS et315

and the following axioms and value restrictions:316

Argument v ∀hasConclusion.Conclusion317

Argument v ∀promotesValue.Value318

Argument v ∀hasS upportS et.S upportS et319

which state that arguments can have three properties that relate them to objects of the class Conclusion, Value,320

and S upportS et. Correspondingly, the ABox represents the concrete data of the database K , with the individuals321

of concepts (instances) and their properties. For instance, the ABox of the ArgCBROnto ontology can include an322

argument arg that promotes a value solidarity:323

Argument(arg)324

promotesValue(arg, solidarity)325

On the other hand, the syntax of the external layer of utterances (locutions) is the same syntax as proposed in326

(McBurney and Parsons, 2004):327

locution(as, φ) or locution(as, ar, φ)328

where Agent(as) (the sender) and Agent(ar) (the receiver) are individuals of the Agent concept and φ is the329

content of the utterance. The first locution is addressed to all participants in the dialogue, whereas the second is330

specifically sent to Agent(ar). We denote the set of well-formed formulae in SHOIN(D) as D. Then, φ ∈ D can331

represent statements about problems to solve, evidence about the world, or different types of arguments. Also,332

we denote the set of individuals members of the concept Argument as A such that ∀arg ∈ A, Argument(arg).333

Therefore, Φ is said to be an argument in support of φ if Φ ∈ A/Φ `+ φ. Correspondingly, Φ is said to be an334

argument against φ if Φ ∈ A/Φ `− φ.335

Also, agents make propositional commitments (also known as dialogical commitments) with each locution that336

they put forward. Therefore, if an agent asserts a locution and another agent challenges it, the first agent has the337

commitment to provide reasons (or arguments) to justify the validity of that assertion or else, it has to retract it.338

All commitments made by an agent during the dialogue are commonly stored in an individual database called339

commitment store (CS) (Hamblin, 1970) (there is one commitment store per agent), which is accessible by other340

agents that are engaged in a dialogue with the agent.341

As pointed out above, we follow the standard notation of modal logics of knowledge and belief described in342

(Shoham and Leyton-Brown, 2009, paper 13). Thus, we use the modal operators343

Kiφ: “Agent ai knows φ”344

Biφ: “Agent ai believes that φ is true”345

Cgφ: “φ is common knowledge for any agent in the group g if any agent of the group knows it and knows that it346

is common knowledge”347

and the modal connective348

♦φ is satisfied now if φ is satisfied either now or at some future moment.349

Note that here we make a distinction between what agents know (which is considered to be true) and what agents350

believe (which forms part of the mental state of an agent and may be true or not). For instance, all farmers351

that belong to the river basin society of our example know that the basin administrator believes that avoiding the352

intervention of a jury will save costs in the water-right transfer process. The farmers know what the administrator353

believes. However, this doesn’t necessarily mean that the basin administrator’s opinion is appropriate and, in354

fact, any farmer can believe that promoting other values may be more appropriate. Therefore, the opinion of the355

10

administrator is subjective and depends on its knowledge; however due to the administrator’s power dependency356

relation over farmers, the farmers have to accept the administrator’s point of view.357

In addition, as proposed in (McBurney and Parsons, 2004), we use the following simplified elements of FIPA’s358

communicative act library specification8:359

Done[locution(as, φ), preconditions]360

which indicates that locution(as, φ) (or correspondingly locution(as, ar, φ)) has been put forward by agent as (ad-361

dressed to agent(s) ar) with content φ and that the specified preconditions hold before this utterance and362

Feasible[condition, locution(as, φ)]363

which means that if condition can take place, locution(as, φ) (or correspondingly locution(as, ar, φ)) will be put364

forward by agent as (addressed to agent(s) ar) with content φ.365

Further notation that we use throughout this paper includes the following:366

as: the Agent(as) sender of the locution.367

ar: the Agent(ar) receiver of the locution.368

argi: an Argument(argi) of an Agent(ai).369

S S i: the S upportS et(S S i) of the Argument(argi) that has put forward an Agent(ai).370

CS i: the commitment store of an Agent(ai).371

q: the Problem(q) under discussion.372

pi: the S olution(pi) (or position) proposed by an Agent(ai) to solve the Problem(q).373

4.2. Protocol Syntax374

In this section, we provide the syntax of the communication protocol that the agents of our argumentation frame-375

work follow. Therefore, we present the elements of the dialogue: the set of allowed locutions, the commencement376

rules, the combination rules that govern the course of the dialogue, the commitment rules that define the commit-377

ments that each agent makes when it utters each locution and how these commitments can be combined, the rules378

for speaker order, and the termination rules. The dialogue game presented in this section is aimed at providing a379

communication protocol for agents that engage in an agreement process. This process can be viewed from several380

perspectives: as a collaborative deliberation, where all agents select the best solution for a problem at hand and381

do not perceive any reinforcement or reward if their position is selected as the final solution to be applied; as a ne-382

gotiation, where agents try to convince other agents to apply their solution as the best one for solving the problem383

(with individual utility functions that increase their perceived utility); or as a persuasion, where each agent tries384

to persuade the rest of the agents to change their opinions and support its solution as the best option to solve the385

problem.386

Locutions387

The set of allowed locutions of our dialogue game are the following:388

• L1: open dialogue(as, φ), where φ is a problem q to solve in the system application domain. With this389

locution, an agent as opens the argumentation dialogue, asking other agents to collaborate or negotiate to390

solve a problem that the agent has been presented with.391

• L2: enter dialogue(as, φ), where φ is a problem q to solve in the system application domain. With this392

locution, an agent as engages in the argumentation dialogue to solve the problem.393

• L3: withdraw dialogue(as, φ), where φ is a problem q to solve in the system application domain. With this394

locution, an agent as leaves the argumentation dialogue to solve the problem.395

8http://www.fipa.org/specs/fipa00037/SC00037J.html
11

www.fipa.org/specs/fipa00037/SC00037J.html

• L4: propose(as, φ), where φ is a position p. With this locution, an agent as puts forward the position p as its396

proposed solution to solve the problem under discussion in the argumentation dialogue.397

• L5: why(as, ar, φ), where φ can be a position p or an argument arg ∈ A. With this locution, an agent as398

challenges the position p or the argument arg of an agent ar, asking it for a supporting argument.399

• L6: noCommit(as, φ), where φ is a position p. With this locution, an agent as withdraws its position p as a400

solution for the problem under discussion in the argumentation dialogue.401

• L7: assert(as, ar, φ), where φ can be an argument arg ∈ A that supports a position, another argument, or an402

objectively verifiable evidence about the system application domain. With this locution, an agent as sends403

to an agent ar an argument or an evidence that supports its position or a previous argument that ar has put404

forward.405

• L8: accept(as, ar, φ), where φ can be an argument arg ∈ A or a position p to solve a problem. With this406

locution, an agent as accepts the argument arg or the position p of an agent ar. Also, this locution can be407

used at the end of the dialogue to inform all agents about the final position agreed upon as the best position408

to solve the problem. In that case, ar denotes all individuals that belong to the concept Agent, except for the409

sender as (all : ∀ai, ai , as/Agent(ai)).410

• L9: attack(as, ar, φ), where φ is an argument arg ∈ A of an agent as. With this locution, an agent as411

challenges an argument of an agent ar with its argument arg.412

• L10: retract(as, ar, φ), where φ is an argument arg ∈ A. With this locution, an agent as informs an agent ar413

that it withdraws the argument arg that it put forward in a previous step of the argumentation dialogue.414

Commencement Rules415

The dialogue starts when an agent as is presented with a new problem q to solve. First, the agent tries to solve416

it by using its own knowledge resources. Then, it opens a dialogue with other agents by sending them the locution417

open dialogue(as, ar, q), where ar can be any agent ai that as knows. After that, ai enters in the dialogue by posing418

the locution enter dialogue(as, q) (where as = ai). After that, if ai has been able to find a solution for q, it proposes419

this initial position p to solve the problem q with the locution propose(as, p) (where as = ai) and waits for the420

challenges of other agents or for other position proposals. Otherwise, ai can challenge the positions of other agents421

engaged in the dialogue with the locution why(as, ar, p) (where as = ai).422

Rules for the Combination of Locutions423

The rules for the combination of locutions define which locution can be put forward at each step of the dialogue424

game. Figure 3 represents a state machine with the possible stages of our dialogue game protocol. As shown in425

the figure, the protocol has three main stages: the opening stage, where the agent that initiates the dialogue opens426

the argumentation process to solve a problem; the argumentation stage, where agents argue to reach an agreement427

about the best solution to apply to solve the problem; and the closing stage, where the final decision about the428

position selected to solve the problem is reported to all agents that have participated in the dialogue. The stages of429

our dialogue game and the rules for the combination of locutions in each stage are presented below.430

open_dialogue(as, q) accept(as, all, p)
OPENING
STAGE

ARGUMENTATION
STAGE

CLOSING
STAGE

Figure 3: State Machine of the Dialogue Game

Opening Stage:431

The opening stage commences when an agent as wants to establish an agreement process with other agents432

to solve a problem q that it has been faced with. Then, it uses the locution open dialogue(as, q) to start the dialogue.433

434

Argumentation Stage:435

12

R1 R2 R3 R4 R5 R6

R7

withdraw_dialogue(as, q)

propose(as, p)

withdraw_dialogue(aj, q)

why(as,ar, p)

noCommit(as, p)

assert(as, ar, arg)

accept(as, ar, arg)

attack(as, ar, arg)

retract(as, ar, arg)

assert(as, ar, arg)/
[arg = CQ ∧

CQ.type = presumption]

why(as,ar, arg)/
[arg = CQ ∧

CQ.type = exception]

retract(as, ar, arg)

R8
assert(as, ar, arg)

retract(as, ar, arg)

attack(as, ar, arg) /
 [arg = DP ∨ CE]

enter_dialogue(as, q)

attack(as, ar, arg)

accept(as, ar, p)

noCommit(as, p)

retract(as, ar, arg)

retract(as, ar, arg)

why(as,ar, p)

Figure 4: State Machine of the Argumentation Stage

The argumentation stage follows the opening stage. Here, agents argue to reach an agreement about the solution436

to apply to the problem q. As shown in Figure 4, this stage is divided into a set of substages whose activation is437

defined by the following rules (for reasons of clarity, substages are labelled with the name of the rule that applies438

in each case):439

• R1: Once the dialogue has been opened, any agent that has been informed about it can enter in by using the440

locution enter dialogue(as, q).441

• R2: After entering the dialogue, an agent can propose its position p to solve the problem q by putting forward442

the locution propose(as, p). Alternatively, the agent can challenge the positions of other agents engaged in443

the dialogue (without its own position being proposed) with the locution why(as, ar, p). Also, in this substage,444

the agent can withdraw from the dialogue by using the locution withdraw dialogue(as, q).445

• R3: In this substage, an agent that has proposed its position p to solve the problem q can be asked by another446

agent for an argument to support this position with the locution why(as, ar, p). Also, p can be accepted by an447

agent engaged in the dialogue, who reports to the proponent agent with the locution accept(as, ar, p). Fur-448

thermore, the proponent agent can withdraw its position p with the locution noCommit(as, p). Alternatively,449

it can leave the dialogue with the locution withdraw dialogue(as, q).450

• R4: After being asked for an argument to support its position p, an agent can use its knowledge resources to451

provide the requester agent with this argument arg by means of the locution assert(as, ar, arg). Alternatively,452

it can withdraw its position p by using the locution noCommit(as, p).453

• R5: An agent that has received a support or an attack argument from another agent can use its knowledge454

resources to create an attack argument arg and send it to the other agent with the locution attack(as, ar, arg).455

Also, the agent can accept the supporting argument and report to the other agent with the locution456

accept(as, ar, arg), where arg is the supporting argument received. In its turn, an agent that has asserted457

the argument arg can withdraw it with the locution retract(as, ar, arg).458

• R6: When an agent receives an attack argument from another agent, it analyses the type of the attack and459

can use its knowledge resources to try to rebut the attack. Therefore, if the attacking argument arg was a460

distinguishing premise or a counter-example (arg = (DP ∨ CE)), the agent can distinguish the argument461

of the other agent with other distinguishing premise or else counter-attack with another counter-example by462

using the locution attack(as, ar, arg). If the attacking argument was a critical question of the type presumption463

(arg = CQ∧CQ.type = presumption), the agent can use its knowledge resources to create and show the other464

agent an argument arg with evidence that supports that presumption by using the locution assert(as, ar, arg).465

Finally, if the attacking argument was a critical question of the type exception (arg = CQ ∧ CQ.type =466

13

exception), the agent can ask the other agent for an argument to support this critical question by stating the467

locution why(as, ar, arg). Alternatively, if the agent cannot rebut the attack, it can retract its argument with468

the locution retract(as, ar, arg). In its turn, any agent that has asserted the argument arg can withdraw it with469

the locution retract(as, ar, arg).470

• R7: If an agent is asked by another agent to provide a supporting argument for its critical question of the type471

exception, this agent must use the locution assert(as, ar, arg) to assert an argument arg with evidence to sup-472

port this critical question attack or else retract the attack by putting forward the locution retract(as, ar, arg).473

• R8: Once an agent has been provided by another agent with evidence that supports the other agent’s critical474

question of the type exception, the fist agent can retract its argument arg and report to the other agent with the475

locution retract(as, ar, arg) or else can try to generate an attack argument arg for the other agent’s argument476

and send it the locution attack(as, ar, arg).477

Also, note that any agent can withdraw its position at any stage of the dialogue. It implies that there is a transaction478

labelled with the locution noCommit(as, p) from substages R5...R8 to substage R2. However, these substages do479

not appear in Figure 4 for reasons of clarity.480

481

Closing Stage:482

The closing stage can be activated at any time in the dialogue by the agent ai that opened it. This stage is reached483

by putting forward the locution accept(as, all, p) (where as = ai), which informs all the participating agents about484

the final position p agreed upon as the solution for the problem q. Here, the commitment store of all agents is485

deleted.486

Commitment Rules487

As pointed out above, agents make dialogical commitments with each locution that they put forward. These488

commitments are stored in an individual commitment database called commitment store (CS). Also, the inclu-489

sion of a new commitment in the commitment store can make previous commitments be inconsistent or invalid.490

The commitment rules that define the commitments associated with each locution and how their inclusion in the491

commitment store affects previous commitments are presented below.492

• CR1: The locution enter dialogue(as, q) gives rise to the creation of the commitment store CS s of the sender493

agent.494

• CR2: The locution propose(as, p) inserts the position p into the commitment store CS s of the sender agent.495

If there is a previous position in CS s, this position is replaced with the new position p. Thus, only one position496

can prevail in any commitment store.497

• CR3: The locution withdraw dialogue(as, q) deletes the commitment store CS s of the sender agent. This498

implies that the final agreement is only taken among the agents that remain listening in the substages R2 or499

R3. Also, agents cannot withdraw the dialogue before withdrawing any position that they have proposed with500

the locution noCommit(as, p).501

• CR4: The locution accept(as, ar, p) inserts the position p into the commitment store CS s of the sender. If502

there is a previous position in CS s, this position is replaced with the new position p.503

• CR5: The locution noCommit(as, p) deletes p from the commitment store CS s of the sender.504

• CR6: The locution why(as, ar, p) commits the receiver to provide the sender with a supporting argument arg505

for p or else to withdraw p with the locution noCommit(as, p).506

• CR7: The locution assert(as, ar, arg) inserts the argument arg in the commitment store CS s of the sender.507

Also, commitment stores cannot have inconsistent arguments. Therefore, if the conclusion of arg con-508

tradicts the conclusion of a previous argument stored in CS s, the sender cannot put forward the locution509

assert(as, ar, arg) before deleting the inconsistent argument from CS s with the locution retract(as, ar, arg) ad-510

dressed to any agent that is maintaining a dialogue with the sender. Furthermore, if arg includes in its support511

set an argumentation scheme with a critical question of the type presumption, the locution assert(as, ar, arg)512

commits the sender to provide evidence to support this argument if another agent attacks it with the locution513

attack(as, ar, arg), where arg includes such critical question, or else to retract the argument.514

14

• CR8: The locution accept(as, ar, arg) inserts the argument arg into the commitment store CS s of the sender.515

Again, commitment stores cannot have inconsistent arguments. Therefore, if the conclusion of arg contradicts516

the conclusion of a previous argument stored in CS s, the sender cannot put forward the locution assert(as, ar,517

arg) before deleting the inconsistent argument from CS s with the locution retract(as, ar, arg) addressed to518

any agent that is maintaining a dialogue with the sender.519

• CR9: The locution retract(a j, ak, arg) deletes the argument arg from the commitment store CS j of a j.520

• CR10: The locution attack(as, ar, arg) inserts the argument arg in the commitment store CS s of the sender.521

As pointed out above, commitment stores cannot have inconsistent arguments. Therefore, if the conclu-522

sion of arg contradicts the conclusion of a previous argument stored in CS s, the sender cannot put for-523

ward the locution attack(as, ar, arg) before deleting the inconsistent argument from CS s with the locution524

retract(as, ar, arg) addressed to any agent that is maintaining a dialogue with the sender. Also, if arg includes525

an argumentation scheme with a critical question of the type exception, the locution attack(as, ar, arg) com-526

mits the sender to provide an evidence to support this attack if another agent challenges this exception with527

the locution why(as, ar, arg), or else to retract it.528

• CR11: The locution accept(as, all, p) (all : ∀ai, ai , as | Agent(ai)) deletes the commitment stores of all529

agents that are still participating in the dialogue (including the initiator). This is a special case of commitment530

rule that grants the initiator to manage the commitment stores of other agents and ensures an ordered termi-531

nation of the dialogue. Thus, we assume the existence of a normative level that all participants agree upon532

before they are able to enter in the dialogue.533

Rules for Speaker Order534

During the dialogue, agents take turns putting forward locutions. Each time an agent as sends a locution to535

another agent ar, it waits for an answer from ar. However, any agent can hold parallel argumentation dialogues536

with several agents. Thus, in each of these dialogues, the argumentation succeeds as a two-party dialogue between537

two agents, one agent sending a locution to the other agent and waiting for a response. Nevertheless, the locution538

open dialogue(as, q) is received by all agents of the society S t. The locutions accept(as, all, p), propose(as, p),539

noCommit(as, p) and withdraw dialogue(as, p) are received by all of the agents that are engaged in the dialogue.540

With these locutions, the sender agent does not expect any response.541

In this dialogue game protocol, we assume that all participating agents can always see the positions of the other542

agents by looking at their commitment stores. Also, when two agents are engaged in a dialogue, each agent has full543

view to the commitment store of the other agent. In this way, these agents can see the commitments associated to544

the arguments of their partners, but other agents can only see to the positions proposed by each agent in the dialogue545

(which are also stored in the commitment stores). This preserves the privacy of the arguments that an agent puts546

forward in its argumentation dialogue with another agent. Note that if an agent wants to ask other agents for an547

opinion about an argument that it has received, it simply has to send those agents the argument, as if the argument548

was its own. This simple rule allows us to use the same dialogue game to govern collaborative deliberations,549

persuasion dialogues, and negotiations. In the collaborative deliberations, all agents follow the common objective550

of proposing the best solution for a problem at hand. Therefore, there are no agents interested in trying to take551

advantage of the information interchanged between other agents to obtain a greater benefit with the final agreement552

reached. However, this could be the case in a persuasion or a negotiation, where each agent tries to persuade other553

agents to change their point of view or tries to increase its perceived utility value with the final agreement, thereby554

using any extra information about other agents’ knowledge and preferences in order to achieve that.555

Termination Rules556

The normal termination of the dialogue occurs when the argumentation process ends with all participating agents557

having proposed a prevailing position or having accepted the position of another agent. Then, agents may reach558

a decision about the final solution for the problem under discussion. In the ideal case, only the position of one559

participating agent prevails, while the other agents have withdrawn theirs and accepted this position by using560

the locution accept(as, ar, p). However, if at the end of the dialogue more than one position is still undefeated,561

agents can use a voting mechanism (selecting the position most accepted) or a random selection to decide the final562

outcome of the agreement process.563

In any case, the agent ai that opened the dialogue is responsible for reporting to all participating agents the final564

position p that has been selected as solution for the problem q at hand, by using the locution accept(as, all, p)565

15

(where as = ai). To avoid infinite dialogues, agents cannot put forward the same argument twice during a dia-566

logue with another agent, unless new pieces of evidence are available. Furthermore, a maximum time to reach an567

agreement can be established and agents must accept a position among those available at that moment to solve the568

problem.569

Note that agents can maintain several parallel dialogues with other agents. Thus, once an agent has entered in the570

argumentation process with the locution enter dialogue(as, q), it remains waiting to propose a position in substage571

R2 or listening to incoming locutions of other agents in substage R3. Then, the specific dialogue with an agent that572

has asked another agent for a supporting argument for its position p continues the subsequent substages, but the573

agent still remains in R3 listening to other requests. Finally, the locution noCommit(as, p) commits the sender to574

terminate any dialogue that it has started to defend p.575

4.3. Semantics576

In this section, we provide the formal semantics for the locutions of our dialogue game protocol. This semantics577

provides a common understanding about the properties of the communication language between agents. There578

are different methods for providing a communication language with a semantics (Tennent, 1991), for instance, the579

operational approach followed in this paper.580

Operational semantics views the dialogue game protocol as an abstract state machine and precisely defines the581

transitions between states. These transitions are triggered by the utterance of each locution. However, from some582

stages, an agent can utter different locutions following different agent decision mechanisms, which are reasoning583

mechanisms that agents can use to choose the locution to utter in the next step of the dialogue among a set of584

candidates. These mechanisms depend on the knowledge that agents can infer from their knowledge resources or585

even on the specific design of agents. For instance, agents that are designed to be more competitive and, if possible,586

always put forward attack arguments or agents that are designed to remain listening and only engage in a dialogue587

if their positions or arguments are attacked. Figure 5 shows the decision mechanisms that agents can use in each588

substage of the argumentation stage of our protocol. For purposes of clarity , the arrows labelled with the decision589

mechanism D8 (presented below) from substages R5, R6, R7, and R8 to substage R2 are omitted in the figure.590

R1 R2 R3 R4 R5 R6

R7

D3: withdraw_dialogue(as, q)

D4: propose(as, p)

D3: withdraw_dialogue(aj, q)

D5: why(as,ar, p)

D6: noCommit(as, p)

D6: assert(as, ar, arg)

D9: accept(as, ar, arg)

D9: attack(as, ar, arg)

D13: retract(as, ar, arg)

D11: assert(as, ar, arg)/
[arg = CQ ∧

CQ.type = presumption]

D11: why(as,ar, arg)/
[arg = CQ ∧

CQ.type = exception]

D11: retract(as, ar, arg)

R8
D12: assert(as, ar, arg)

D12: retract(as, ar, arg)

D11: attack(as, ar, arg) /
 [arg = DP ∨ CE]

D2: enter_dialogue(as, q)

D13: attack(as, ar, arg)

D5: accept(as, ar, p)

D8: noCommit(as, p)

D7: retract(as, ar, arg)

D10: retract(as, ar, arg)

D4: why(as,ar, p)

D1: open_dialogue(as, q)

D12: close_dialogue(as, all, p)

Figure 5: Decision Mechanisms of the Dialogue Game

To define the transition rules of our protocol we follow the notation of (McBurney and Parsons, 2004):591

〈ai,K, o〉592

where ai is an agent, K is a decision mechanism (or the terminal state T), and o is the output of the mechanism K593

(send a locution or remain listening to incoming locutions). Some transitions are labelled with the locutions that594

trigger them while others (which occur between the mechanisms of a single agent) remain unlabeled. Also, if no595

specific output is invoked, we denote this by a period in the third parameter of the triple (〈ai,K, .〉).596

Specifically, we have identified the following decision mechanisms:597

16

• D1 Open Dialogue: A mechanism that allows an agent to open a dialogue with other agents of the society598

S t that the agent belongs to, by uttering or not uttering the locution open dialogue(as, q). The output of this599

mechanism is: send(open dialogue(as, φ)).600

• D2 Enter or Close Dialogue: A mechanism that allows an agent to decide to engage in a dialogue and utter601

or not utter the locution enter dialogue(as, q). By this mechanism, the agent makes a query to its knowledge602

resources, trying to find a solution for the problem to solve. If the agent can provide a solution for the problem,603

the agent uses the mechanism to decide whether or not it enters in the dialogue. Alternatively, the agent that604

started the dialogue can also close it with the locution accept(as, all, p). The outputs of this mechanism are:605

send(enter dialogue(as, φ)), listen(), or send(close dialogue(as, all, φ)).606

• D3 Withdraw from Dialogue: A mechanism that allows an agent to withdraw from the dialogue and put607

forward the locution withdraw dialogue(as, q). The mechanism first checks that the agent does not have any608

active position to solve the problem (agents cannot withdraw from the dialogue before withdrawing their609

positions). Possible outputs are: send(withdraw dialogue(as, φ)).610

• D4 Propose or Challenge: A mechanism that allows an agent to make a proposal to solve the problem under611

discussion and utter the locution propose(as, p) or to challenge the positions of other agents by uttering the612

locution why(as, ar, p). By this mechanism the agent uses its knowledge resources to generate and select613

the position to propose. If the agent has been able to generate a position to solve the problem, it uses the614

mechanism to decide whether to put forward that position. In any case, the agent can challenge other positions615

or remain listening to the utterances of other agents. The outcomes for this mechanism are: send(propose(as,616

φ)), send(why(as, ar, φ)), or listen().617

• D5 Accept or Challenge: A mechanism that allows an agent to query its knowledge resources and decide618

to accept or challenge the position of another agent. If the agent is able to generate the same position as its619

candidate to solve the problem, it can utter the locution accept(as, ar, p) to accept the other’s position. Else, if620

the position cannot be generated or is generated but not ranked as the most suitable solution for the problem,621

the agent can use this mechanism and decide to accept the other agent’s position or to challenge it with the622

locution why(as, ar, p). Thus, possible outcomes are: send(accept(as, φ)) or send(why(as, ar, φ)).623

• D6 Defend Position: A mechanism that allows an agent to defend its position from a challenge or else, to624

withdraw it. By this mechanism the agent decides if it is able to use its knowledge resources to provide the625

challenger with an argument that supports its position. In that case, it can utter the locution assert(as, ar, arg).626

Otherwise, the agent has to withdraw the position by using the locution noCommit(as, p). Also, the agent that627

put forward the challenge can use this mechanism to listen for the answer to its challenge. The outcomes of628

this mechanism are: send(assert(as, ar, φ)), send(noCommit(as, φ)) or listen().629

• D7 Withdraw Argument: This mechanism allows an agent to decide whether to withdraw an argument that630

it has put forward, using the locution retract(as, ar, φ). Possible outcomes are: send(retract(as, ar, φ)).631

• D8 Withdraw Position: A mechanism that allows an agent to decide whether to withdraw its proposed632

position with the locution noCommit(as, p). The output of this mechanism is: send(noCommit(as, φ)).633

• D9 Accept or Attack: A mechanism that allows an agent to query its knowledge resources and decide to634

accept or attack the argument of other agent. If the argument is consistent with the information inferred635

from the knowledge resources of the agent, it can utter the locution accept(as, ar, arg) to accept the other’s636

argument. Otherwise, if the argument is inconsistent and an attack argument can be generated from the637

knowledge resources, the agent can use this mechanism to decide to attack the argument by uttering the638

locution attack(as, ar, arg). Otherwise, if the argument cannot be decided (there is not enough information in639

the knowledge resources to support or rebut the argument), the agent also accepts it. Thus, possible outcomes640

are: send(accept(as, φ)) or send(attack(as, ar, φ)).641

• D10 Withdraw Attack: This mechanism allows an agent to decide whether to withdraw an attack that it has642

put forward, using the locution retract(as, ar, φ). Possible outcomes are: send(retract(as, ar, φ)) or listen().643

• D11 Rebut Attack: A mechanism that allows an agent to rebut an attack to its argument. By this mech-644

anism, the agent evaluates the attack argument received and queries its knowledge resources to search for645

17

information that supports or rebuts the attack. If the attack argument poses a critical question of the type646

presumption, the agent can rebut the attack by showing information that supports its argument with the lo-647

cution assert(as, ar, φ). If the attack argument poses a critical question of the type exception, the agent can648

rebut the attack by challenging it with the locution why(as, ar, φ). Otherwise, if the attack argument poses a649

distinguishing-premise or a counter-example to the agent’s argument, it can use the locution attack(as, ar, arg)650

to rebut the attack by counter-attacking with another distinguishing-premise or counter-example. In any case,651

if the agent is not able to rebut the attack with the information inferred from its knowledge resources, it can652

retract its argument by uttering the locution retract(as, ar, φ). Therefore, the outcomes of this mechanism are:653

send(assert(as, ar, φ)), send(why(as, ar, φ)), send(attack(as, ar, φ)), or send(retract(as, ar, φ)).654

• D12 Defend Argument: This mechanism allows an agent to rebut a challenge to its argument, which poses655

a critical question of the type exception. With this mechanism, the agent queries its knowledge resources656

and tries to find information that supports its attack argument. In that case, the agent can rebut the attack by657

showing this information uttering the locution assert(as, ar, arg). Otherwise, the agent has to withdraw the658

attack by uttering retract(as, ar, arg). Also, the agent that put forward the challenge can use this mechanism659

to listen for the answer to its challenge. Possible outcomes are: send(assert(as, ar, φ)), send(retract(as, ar,660

φ)), or listen().661

• D13 Retract or Attack: This mechanism allows an agent to counter-attack a critical question attack of the662

type exception posed to its argument. With this mechanism, the agent queries its knowledge resources to663

search for information that rebuts the attack. Then, if the agent finds this information, it can counter-attack by664

uttering the locution attack(as, ar, φ). Otherwise, the agent has to withdraw its argument by uttering the lo-665

cution retract(as, ar, φ). Thus, the outcomes of the mechanism are: send(attack(as, ar, φ)) or send(retract(as,666

ar, φ)).667

Table 4 shows the transition rules of the operational semantics of our protocol.668

TR1: 〈as,D1, send(opendialogue(as, φ))〉
L1
−−→ 〈as,D2, .〉

TR2: 〈as,D2, send(enterdialogue(as, φ))〉
L2
−−→ 〈as,D3, .〉

TR3: 〈as,D2, send(enterdialogue(as, φ))〉
L2
−−→ 〈as,D4, .〉

TR4: 〈as,D2, listen()〉 −→ 〈as,D2, .〉

TR5: 〈as,D2, send(closedialogue(as, all, φ))〉
L8
−−→ 〈all,T, .〉

TR6: 〈as,D3, send(withdrawdialogue(as, φ))〉
L3
−−→ 〈as,D2, listen()〉

TR7: 〈as,D4, send(propose(as, p))〉
L4
−−→ 〈as,D8, .〉

TR8: 〈as,D4, send(propose(as, p))〉
L4
−−→ 〈as,D5, .〉

TR9: 〈as,D4, send(propose(as, p))〉
L4
−−→ 〈ar,D5, .〉

TR10: 〈as,D4, send(why(as, ar, φ))〉
L5
−−→ 〈as,D4, listen()〉

TR11: 〈as,D4, send(why(as, ar, φ))〉
L5
−−→ 〈ar,D6, .〉

TR12: 〈as,D4, listen()〉 −→ 〈as,D4, .〉

TR13: 〈as,D8, send(noCommit(as, φ))〉
L6
−−→ 〈as,D4, listen()〉

TR14: 〈as,D8, send(noCommit(as, φ))〉
L6
−−→ 〈as,D3, .〉

TR15: 〈as,D5, send(accept(as, ar, φ))〉
L8
−−→ 〈as,D5, .〉

TR16: 〈as,D5, send(accept(as, ar, φ))〉
L8
−−→ 〈ar,D5, .〉

TR17: 〈as,D5, send(why(as, ar, φ))〉
L5
−−→ 〈as,D6, listen()〉

TR18: 〈as,D5, send(why(as, ar, φ))〉
L5
−−→ 〈ar,D6, .〉

TR19: 〈as,D6, listen()〉 −→ 〈as,D6, .〉

TR20: 〈as,D6, send(assert(as, ar, φ))〉
L7
−−→ 〈as,D7, .〉

TR21: 〈as,D6, send(assert(as, ar, φ))〉
L7
−−→ 〈as,D8, .〉

Continues on the next page

18

TR22: 〈as,D6, send(assert(as, ar, φ))〉
L7
−−→ 〈ar,D9, .〉

TR23: 〈as,D6, send(noCommit(as, φ))〉
L6
−−→ 〈as,D3, .〉

TR24: 〈as,D6, send(noCommit(as, φ))〉
L6
−−→ 〈as,D4, listen()〉

TR25: 〈as,D7, send(retract(as, ar, φ))〉
L10
−−−→ 〈as,D6, .〉

TR26: 〈as,D9, send(accept(as, ar, φ))〉
L8
−−→ 〈as,D3, .〉

TR27: 〈as,D9, send(accept(as, ar, φ))〉
L8
−−→ 〈as,D5, .〉

TR28: 〈as,D9, send(accept(as, ar, φ))〉
L8
−−→ 〈ar,D8, .〉

TR29: 〈as,D9, send(attack(as, ar, φ))〉
L9
−−→ 〈as,D10, .〉

TR30: 〈as,D9, send(attack(as, ar, φ))〉
L9
−−→ 〈ar,D8, .〉

TR31: 〈as,D9, send(attack(as, ar, φ))〉
L9
−−→ 〈ar,D11, .〉

TR32: 〈as,D10, listen()〉 −→ 〈as,D10, .〉

TR33: 〈as,D10, send(retract(as, ar, φ))〉
L10
−−−→ 〈as,D9, .〉

TR34: 〈as,D10, send(retract(as, ar, φ))〉
L10
−−−→ 〈ar,D7, .〉

TR35: 〈as,D10, send(retract(as, ar, φ))〉
L10
−−−→ 〈ar,D8, .〉

TR36: 〈as,D11, send(assert(as, ar, φ))〉
L7
−−→ 〈as,D7, .〉

TR37: 〈as,D11, send(assert(as, ar, φ))〉
L7
−−→ 〈as,D8, .〉

TR38: 〈as,D11, send(assert(as, ar, φ))〉
L7
−−→ 〈ar,D9, .〉

TR39: 〈as,D11, send(why(as, ar, φ))〉
L5
−−→ 〈as,D12, listen()〉

TR40: 〈as,D11, send(why(as, ar, φ))〉
L5
−−→ 〈ar,D8, .〉

TR41: 〈as,D11, send(why(as, ar, φ))〉
L5
−−→ 〈ar,D12, .〉

TR42: 〈as,D11, send(attack(as, ar, φ))〉
L9
−−→ 〈as,D7, .〉

TR43: 〈as,D11, send(attack(as, ar, φ))〉
L9
−−→ 〈as,D8, .〉

TR44: 〈as,D11, send(attack(as, ar, φ))〉
L9
−−→ 〈ar,D9, .〉

TR45: 〈as,D11, send(retract(as, ar, φ))〉
L10
−−−→ 〈as,D6, .〉

TR46: 〈as,D11, send(retract(as, ar, φ))〉
L10
−−−→ 〈ar,D6, listen()〉

TR47: 〈as,D12, listen()〉 −→ 〈as,D12, .〉

TR48: 〈as,D12, send(assert(as, ar, φ))〉
L7
−−→ 〈as,D8, .〉

TR49: 〈as,D12, send(assert(as, ar, φ))〉
L7
−−→ 〈ar,D13, .〉

TR50: 〈as,D12, send(retract(as, ar, φ))〉
L10
−−−→ 〈as,D7, .〉

TR51: 〈as,D12, send(retract(as, ar, φ))〉
L10
−−−→ 〈as,D8, .〉

TR52: 〈as,D12, send(retract(as, ar, φ))〉
L10
−−−→ 〈ar,D9, .〉

TR53: 〈as,D13, send(attack(as, ar, φ))〉
L9
−−→ 〈as,D7, .〉

TR54: 〈as,D13, send(attack(as, ar, φ))〉
L9
−−→ 〈as,D8, .〉

TR55: 〈as,D13, send(attack(as, ar, φ))〉
L9
−−→ 〈ar,D9, .〉

TR56: 〈as,D13, send(retract(as, ar, φ))〉
L10
−−−→ 〈as,D6, .〉

TR57: 〈as,D13, send(retract(as, ar, φ))〉
L10
−−−→ 〈ar,D6, listen()〉

Table 4: Transition Rules of the Dialogue Game Protocol.

These transition rules provide the operational semantics of the dialogue, defining the range of potential decisions669

that agents can make in each stage of the dialogue. In section 5, an example of the water-right transfer scenario is670

provided to illustrate the performance of the dialogue game protocol proposed in this section.671

19

4.4. Protocol Evaluation672

There are several ways to evaluate a dialogue game protocol, although there are no standard methods agreed673

by the argumentation in artificial intelligence research community (McBurney and Parsons, 2009). In (Heras674

et al., 2013), we run several experiments to evaluate our argumentation framework by simulating an agreement675

process in a real domain. All experiments were implemented by using our protocol and by using protocols without676

argumentation. This permitted to identify the circumstances under which the use of our argumentation system (and677

implicitly, our dialogue game protocol) produces an improvement on the percentage of times that an agreement is678

reached and the number of agents that is persuaded. In (McBurney et al., 2002) McBurney et al. provided a criteria679

to assess a dialogue game protocol for agent interactions, proposing a set of desiderata that protocols of this type680

should satisfy. These desiderata draw on research in agent interaction, on criteria for assessment of automated681

auction mechanisms, and on elements of argumentation theory and political theory. In this section, we discuss682

that our dialogue game protocol satisfies the desiderata following this approach. Also, by conforming with these683

desiderata, our dialogue game protocol produces outcomes that are Pareto optimal, i.e., that any other outcome684

leaves at least one participant worse off (demonstration available at McBurney02c).685

• Stated Dialogue Purpose: the purpose of the dialogue is to reach an agreement to provide the best solution for686

a problem. All participants are aware of this purpose before they enter in the dialogue. The syntax requires687

the agent that opens the argumentation dialogue to use the locution opendialogue to inform other agents of688

the problem to solve and to ask them to collaborate.689

• Diversity of individual purposes: all agents entering the dialogue can have a different position about the best690

solution for the problem at hand. The protocol also permits agents to enter in the dialogue to express their691

view about other agents’ positions, even if they are not able to provide their own solution. Then, the syntax692

and semantics of the protocol allow agents to defend their individual positions and reach an agreement about693

the best solution to apply.694

• Inclusiveness: agents participating in the agreement process must agree on a set of norms that control the695

behaviour of the society that agents belong. Assuming that agents observe these norms, the protocol allows696

any potential agent that is qualified and willing to participate to engage in the dialogue.697

• Transparency: protocol syntax and semantics are public and available to all participants, so they know the698

rules and structure of the dialectical system prior to commencement of the dialogue.699

• Fairness: locutions, rules and semantics of the protocol are the same for all participants except for the ini-700

tiator of the dialogue, which has the extra responsibilities of starting the dialogue process and conveying the701

information about the final outcome. This is known by the other participants, does not affect its performance702

as dialogue participant, and does not grant this agent any privileges over their partners.703

• Clarity of Argumentation Theory: protocol syntax and semantics conforms to the argumentation theory704

formed by our case-based argumentation framework, the knowledge resources of our framework, and the705

argument ordering established by our defeat relation over arguments (Heras, 2011, Definition 3.5.5). The706

commitment rules of our protocol explicitly establish the commitments associated with each locution and707

how their inclusion in the commitment store affects previous commitments. The rules for the combination708

of locutions define which locution can be put forward at each step of the dialogue game, allowing agents to709

agree on rules of inference and procedure, and have reasonable expectations of the responses of others.710

• Separation of Syntax and Semantics: syntax and semantics are defined separatedly and are publicly available711

to all participants.712

• Rule-Consistency: all protocol rules are consistent with the syntax and semantics.713

• Encouragement of Resolution: the rules for the combination of locutions guide the dialogue to reach an714

agreement over a specific position. Termination rules ensure an outcome of the dialogue and avoid infinite715

loops. However, if the process ends on a disagreement (when agents do no have more positions and arguments716

to put forward, more than one position is still undefeated), agents can use a voting mechanism (selecting the717

position most accepted) or a random selection to decide the final outcome of the dialogue. In addition,718

although a maximum time to reach an agreement can be established, the rules of the protocol ensure that719

prevailing positions at each time are those in which more agents agree upon.720

20

• Discouragement of Disruption: termination rules preclude disruptive behaviour, such as uttering the same721

locution to put forward the same argument twice during a dialogue with the same agent (if no new evidences722

have emerged). Also, the rules for the combination of locutions allow agents to withdraw their positions and723

arguments, and to leave the dialogue in an orderly manner.724

• Enablement of Self-Transformation: the locutions of the protocol and the rules for their combination allow725

agents to change their positions and arguments during the dialogue. Agents are able to withdraw positions726

and arguments, retracting from their associated commitments by means of the commitment rules.727

• System Simplicity: the protocol is quite simple, including only 10 locutions and 8 rules for their combination.728

In each stage of the dialogue, only a set of locutions are permitted. Agents take turns to make locutions in729

two-party dialogues, but each agent can hold parallel argumentation dialogues with several participants.730

• Computational Simplicity: the simulation experiments of our argumentation framework presented in (Heras731

et al., 2013) implicitly show that our dialogue game protocol allow agents to reach agreements with a reason-732

able amount of locutions interchanged between them (a total average of less than 40 locutions interchanged733

in a dialogue among 9 agents with more than 30 cases in each agent case-base).734

5. Water-Right Transfer Example735

This section illustrates the dialogue game protocol presented in this paper by means of an example in the water-736

right transfer domain (as introduced in Section 2). In this example, the premises of the domain context would store737

data about the water-right transfer offer and other domain-dependent data about the current problem. For instance,738

as shown in Figure 6 the premises of the original problem could represent the identifier of the water-right owner739

(owner), the offered volume in liters of water (volume), the price in Euros per liter of water (price), the district740

where the water right is settled (district) and the area of this district in acres (area).741

DC1

DC2

F1

F2

POS
F1

POS
F2

Figure 6: Generation of Positions

21

After the opening of the trading table by the market facilitator, in the first step of the argumentation process, the742

basin administrator BA opens the dialogue to solve the water-right transfer problem. Thus, it sends the locution743

open dialogue(BA, q) (where q contains the premises of the problem) to all agents of the group, which is the river744

basin RB. Then, the BA enters in the dialogue by putting forward the locution enter dialogue(BA, q). Figure 7745

shows the sequence of locutions interchanged by the agents during the dialogue.746

F1 BA F2

open_dialogue(BA, q)open_dialogue(BA, q)

enter_dialogue(BA, q)enter_dialogue(BA, q)

enter_dialogue(F1, q)

enter_dialogue(F1, q)

enter_dialogue(F2, q)

enter_dialogue(F2, q)

propose(F1, posF1)

propose(F1, posF1)

propose(F2, posF2)

propose(F2, posF2)

why(BA, F1, posF1) why(BA, F2, posF2)

assert(F1, BA, SAF1)

assert(F2, BA, SAF2)

attack(BA, F1, AA1)

noCommit(F1, posF1)

accept(BA, all, posF2)accept(BA, all, posF2)

Figure 7: Sequence of Locutions

Assuming that both farmers F1 and F2 are interested in entering in the dialogue and arguing to win the transfer,747

they will assert the locutions enter dialogue(F1, q) and enter dialogue(F2, q), respectively. After that, they will748

search for domain-cases in their case-bases (DC1 and DC2, respectively) to generate their potential positions. To749

query the case-bases, the problem is formatted as a target case without solution and justification, as shown on750

the left side of Figure 6. In this case, the solution consists of the identifier of the water-right transfer beneficiary751

(beneficiary) and the district of the land where the water has to be transferred (tr district). Figure 6 also shows752

how F1 has found a similar domain-case C1 that represents a similar water-right transfer that was granted to F1753

to promote economy since its land DF1 was adjacent (closer than 100 meters) to the land where the water right754

was offered. Therefore, F1 can generate position posF1 which is on the side of F19 and report this to the other755

participants of the dialogue with the locution propose(F1, posF1).756

In the case of F2, the figure shows that it has also retrieved a similar domain-case C2, which shows how the same757

water-right transfer was granted to F2 to promote solidarity and irrigate the dry land during a drought. Therefore,758

F2 can generate a position that is on its favour, posF2, and it will communicate this by putting forward the locution759

propose(F2, posF2).760

9In this example, we assume that agents only propose the positions that are on their favour.
22

Once the agents have proposed their positions, the basin administrator BA has to decide between them. There-761

fore, it asks F1 and F2 to provide an argument to support their positions by using the locutions why(BA, F1,762

posF1) and why(BA, F2, posF2). Assuming that F1 and F2 are willing to collaborate, they can answer the BA with763

the locutions to put forward the following arguments (in accordance with the structure proposed in (Heras, 2011,764

Chapter 4)):765

Supporting argument of F1 (with the locution assert(F1, BA, SAF1)):766

S AF1 == {F1tr, EC, {Premises, {C1}, ∅, ∅, ∅, ∅, ∅}}767

Supporting argument of F2 (with the locution assert(F2, BA, SAF2)):768

S AF2 = {F2tr, S O, {Premises, {C2}, ∅, ∅, ∅, ∅, ∅}}769

where the support set includes the premises of the problem description and the domain-cases used by F1 (C1) and770

F2 (C2) to generate their positions. F1tr and F2tr mean that the transfer is granted to F1 and F2, respectively. In771

accordance with the values of the agents, we assume that the closer the lands are the cheaper the transfers between772

them are and then S AF1 would promote economy. We also assume that crops on dry lands are lost and that helping773

people to avoid losing crops promotes solidarity. Thus, S AF2 would promote solidarity.774

Now, the BA has to evaluate the arguments of F1 and F2, attack them if possible, and decide the beneficiary of775

the water-right transfer. Also, let us assume that, as basin administrator, BA knows an extra premise that states that776

there is a drought in the basin. First, this new premise matches an argumentation scheme of its ontology, S 1, which777

changes the value preference order of the basin in case of drought (such as the argumentation scheme shown in778

section 3). Thus, this scheme will change the social context of the attack argument that the BA is going to create.779

Since the support set of S AF1 and S AF2 contains a domain-case, the BA will try to propose a counter-example or780

a distinguishing premise for these cases.781

BA

Domain-cases

DC

AA1

AA2

Figure 8: Counter-examples for C1 and C2

23

Thus, the BA will check its case-base of domain-cases (DC) to find counter-examples for C1 and C2. As shown782

in Figure 8, suppose that the BA finds one counter-example for each case (C3 for C1 and C4 for C2). Thus, it783

could generate the following attack arguments by using the locutions:784

attack(BA, F1, AA1), where AA1 = {∼C1, SO, {Premises ∪ {Drought}, ∅, ∅, S1, ∅, ∅, ∅, {C3}}}785

Here, AA1 undercuts S AF1 by attacking its support element C1 with the counter-example C3. We assume that by786

attacking the argument of F1, the BA supports the argument of F2 and then promotes solidarity (SO):787

attack(BA, F2, AA2), where AA2 = {∼C2, EC, {Premises ∪ {Drought}, ∅, ∅, S1, ∅, ∅, ∅, {C4}}}788

AA2 undercuts S AF2 by attacking its support element C2 with the counter-example C4. Here we assume that by789

attacking the argument of F2, the BA supports the argument of F1 and then promotes economy (EC).790

Then, the BA will try to find distinguishing premises and will check that the problem description of domain-791

cases C1 and C2 matches the extended description of the problem (the original description plus the new premise792

drought). Then, the BA realises that C1 does not match the extended description and generates an attack argument793

to F1:794

attack(BA, F1, AA3), where AA3 = {∼C1, SO, {Premises ∪ {Drought}, ∅, ∅, S1, ∅, {Drought}, ∅, ∅}}795

In this case, AA3 undercuts S AF1 by attacking its supporting element C1 with the distinguishing premise drought.796

Again, we assume that by attacking the argument of F1, the BA supports the argument of F2 and then promotes797

solidarity (SO).798

Now, the BA has to select the argument that it will pose to attack the positions of the farmers. Note that, if we799

assume that agents always observe their value preference orders to put forward arguments, the BA would prefer800

to pose AA1 and AA3 first than AA2 (since the BA has the value preference order of the basin, which has been801

changed to EC <S t
RB J <S t

RB S O). However, the BA still has to decide which argument (AA1 or AA3) it would802

select to attack S AF1. To do that, BA generates an argument-case for each argument and checks its case-base803

of argument-cases to decide which one is the best argument to pose in view of previous experience. Now, let us804

suppose that the BA finds a similar argument-case for AA3 that was unaccepted at the end of the dialogue (such as805

the one shown in Table 2 of section 3). However, the information of the group that the agents belong to does not806

match the current information. Therefore, the BA can infer that, in the argument represented by this argument-case,807

the agents belonged to a different river basin where solidarity is not promoted in case of drought. Finally, the BA808

finds a similar argument-case for AA1 that was accepted in the past. In this case, the social context and the value809

promoted match the current one. Thus, the BA will pose AA1 to attack the position of F1 and put forward the810

locution attack(BA, F1, AA1). Note that if the social context of the argument-case retrieved for AA3 had matched811

the current social context, the basin administrator would have a powerful reason to propose AA1 to attack S AF1.812

Also, the BA would never propose AA3 as an alternative candidate if AA1 were rejected.813

When F1 receives the attack, it has to evaluate the attack argument in view of its preferences and knowl-814

edge resources and the dependency relations of the society. Then, it will realise that S AF1 does not defeat815

AA1 from its point of view, since the BA has a power dependency relation with every farmer (Farmer <S t
Power816

Basin Administrator). Then, it would try to generate more support for its position. If F1 cannot find such support,817

it would have to withdraw posF1 with the locution noCommit(F1, posF1). If no more positions and arguments818

are provided, the BA will close the dialogue and send the locution accept(BA, all, posF2), which grants F2 the819

water-right transfer agreement.820

Although the example in this section presents a simple dialogue between agents, it clearly demonstrates how821

agents’ arguments can be managed and interchanged by using our dialogue game protocol. The following section822

discusses related work.823

6. Related Work824

Dialogue games have been used for multiple purposes in computational linguistics, AI (Bench-Capon, 1998),825

and philosophy (specifically in argumentation theory (Hamblin, 1970)(MacKenzie, 1979)). In CBR systems, they826

have been applied to model human reasoning about legal precedents (Prakken and Sartor, 1998). In MAS, their827

more successful application consists of using them as a tool for the specification of communication protocols828

between agents. Thus, we can find abundant bibliography that formalises agent interaction protocols by using829

different dialogue games (Amgoud et al., 2000)(Maudet and Chaib-draa, 2002). Some other examples of dialogue830

24

game protocols about specific types of dialogues are: information seeking (Hulstijn, 2000), persuasion (Prakken831

and Sartor, 1998)(Atkinson, 2005)(Wardeh et al., 2008), negotiation (Sadri et al., 2001)(Karunatillake et al., 2009),832

inquiry (McBurney and Parsons, 2001), and deliberation (McBurney et al., 2007). In contrast, in the protocol833

presented this work we do not focus on a specific type of dialogue; instead, we have proposed a generic dialogue834

game that can be used in deliberative, persuasive, or negotiation dialogues where a group of agents must reach an835

agreement about the solution to apply to a generic problem of any type (e.g., resource allocation, classification,836

prediction, etc.) that could be described with a set of features. Furthermore, to our knowledge no research has been837

done to propose a dialogue game that is based on case-based knowledge resources that agents can use to manage838

agreement processes in agent societies. All of these works rely on rule-based frameworks, with limitted application839

in open MAS for real domains due to the need of eliciting a previous model of the domain, as explained in section840

1.841

A particular element of dialogue games, commitment stores, has been widely used in the area of MAS. The842

fact that an agent utters a certain proposition during the dialogue means that this agent incurs a certain level843

of commitment to this proposition and its implications or, at least, that the agent has certain support to justify844

this utterance. The concept of commitment stores comes from the study of fallacies (poor reasoning patterns845

that in some way imitate valid reasoning patterns) developed by Hamblin in (Hamblin, 1970). According to this846

work, formal reasoning systems have public commitment stores for each participant, whose commitments can be847

withdrawn under certain circumstances. The inclusion of a new commitment gives rise to a previous verification848

that guarantees the coherence of the information of the store. Following Hamblin’s approach, commitments have849

a purely dialogical processing (he calls them propositional commitments) and are associated to beliefs that do not850

necessary correspond with the actual beliefs of the participant. Furthermore, commitments may not hold outside851

of the dialogue context. In this work, we use the concept of dialogue games to model the interaction between852

the agents that belong to a society. In doing so, we assume that the commitments that the agents make during the853

dialogue are stored in commitment stores that are fully accessible to their owner and partially accessible to the other854

participants of the dialogue. In this sense, on the contrary to Hamblin’s approach, our commitment stores are not855

completely public in order to preserve the privacy of the arguments interchanged in two-party dialogues between856

a pair of agents. However, we also endorse the view of Hamblin on the notion of commitments as propositional857

commitments that agents incur during the dialogue, with no effect once the dialogue is terminated.858

Another approach for the concept of commitment was provided by Walton and Krabbe in (Walton and Krabbe,859

1995). In this work, commitments are understood as obligations of participants to incur, maintain, or execute a860

certain course of action (they are action commitments). In this case, the commitments made during the dialogue can861

force the participants to perform certain actions outside of the dialogue context. For these authors, commitments862

can also represent the fact of uttering statements in the dialogue. Therefore, propositional commitments are viewed863

as a specific type of action commitments. In our work, we do not consider commitments once the dialogue finishes864

and the contents of commitment stores are deleted at the end of each dialogue.865

Finally, a different approach for commitments was presented by Singh in (Singh, 2000), who proposes a social866

semantics for agent communication languages. According to Singh, the participants of the dialogue have to express867

their social commitments. These commitments represent public expressions of their mental states, for example868

their beliefs about certain propositions and their intentions to execute actions in the future, which are relevant to869

the dialogue. Therefore, by observing these expressions, locutions in the dialogue can be linked to the mental870

states of agents. In this work, agents have a partial view of the information and locutions conveyed in the dialogue.871

As pointed out in section 4 each agent has a full view of the commitment store of the other agent engaged with it872

in a two-party dialogue, but the rest of agents can only see the positions proposed by these agents in the dialogue,873

but not the arguments that they interchange. This preserves the privacy of the arguments that an agent puts forward874

in its argumentation dialogue with another agent. In addition, Singh’s work assumes that agents are cooperative875

and honest and do not make expressions to falsely represent its mental states willfully. In our work, we cannot876

make such assumptions, since they are unrealistic to model open MAS. Our agents are able to make proposals at877

their convenience and they have to justify them only if requested. In that case, we acknowledge that we do not878

preclude agents to show false pieces of evidence to support their positions and arguments. Then, we assume that879

the normative level of the system includes norms to punish such violations of the global good of the society.880

Despite the prolific applications of dialogue games in MAS, as discussed by Maudet in (Maudet and Evrard,881

1998), a commonly accepted theory of dialogue games that is generic and suitable for any type of dialogue does not882

yet exist. However, there is a common set of requirements among the models based on dialogue games that defines883

their syntax. In the literature, we can find two main approaches for the syntactic definition of dialogue games. On884

25

the one hand, the work in (McBurney and Parsons, 2002a), which is based on Maudet’s requirements, proposes885

a definition for the components that a dialogue game should have. On the other hand, a different view of the886

elements of dialogue games is presented in (Prakken and Sartor, 1998). The approach of McBurney and Parsons is887

prospective (looking forward to model systems that do not yet exist). Opposite to this proposal, Prakken’s approach888

is retrospective (looking back to reconstruct or explain what happened in a dialogue). Therefore, McBurney and889

Parson’s approach can be considered as more suitable for modelling the dialogue between a set of heterogeneous890

agents whose interactions will determine the dynamics and operation of the system. Therefore, we have followed891

this approach in our work. By contrast, Prakken’s approach assumes a presupposed knowledge about the domain892

that remains inalterable throughout the dialogue. However, in open MAS, the context can also be changed as new893

agents enter in the system and new common knowledge is available.894

Together with the definition of the syntax, a definition of semantics must be specified to provide a formal895

definition of the dialogue game. This semantics is concerned with the truth on falsity of utterances. There are896

different types of semantics for agent communication protocols and dialogue games (van Eijk, 2002). One type of897

semantics, the axiomatic semantics, defines each locution of the protocol in terms of the pre-conditions that must898

exist before the locution can be uttered and the post-conditions that apply after its utterance. Axiomatic semantics899

can be public or private (McBurney, 2002). In the public one, the pre-conditions and post-conditions describe900

states or conditions of the dialogue that are publicly observable by all its participants, whereas in the private one901

some pre-conditions or post-conditions describe states or conditions of the dialogue that are only observable by902

some participants. Another type of semantics is called operational semantics. This semantics views the dialogue903

game protocol as an abstract state machine and precisely defines the transitions between states. The transitions904

are triggered by the utterance of each locution. The dialogue game proposed in this paper has been formalised by905

specifying its operational semantics, which provides an intuitive view of the protocol dynamics. Nevertheless, the906

axiomatic semantics of the protocol has also been defined and can be consulted in (Heras, 2011, Chapter 4).907

In a third type of semantics, denotational semantics, each element of the language syntax is assigned a rela-908

tionship to an abstract mathematical entity (its denotation). The possible worlds of Kripke (Kripke, 1959) is an909

example of such a semantics. Finally, there is a specific type of denotational semantics, the game-theoretic se-910

mantics, where each well-formed statement of the language is associated with a conceptual game between two911

players, a protagonist and an antagonist. A statement is considered to be true if there is a winning strategy for the912

protagonist in the associated game (a rule that gives that player moves such that executing them guarantees the913

player can win the game, no matter what moves are made by the antagonist).914

Game-theoretical semantics are usually applied to abstract argumentation frameworks where the strategies of915

agents determine which argument(s) they will reveal in each argumentation step. However, they assume the ex-916

istence of a pre-defined utility function about the payoff that an agent obtains for winning the dialogue or having917

accepted more or fewer arguments. Game theory assumes complete knowledge of the space of arguments proposed918

in the argumentation framework. There is a large body of literature on mechanism design and game-theoretical919

models of argumentation (mainly negotiation) in MAS (Rahwan and Reed, 2009). These approaches are typically920

concerned with the problem of designing mechanisms that provide rewards to individual agents to adopt a cer-921

tain negotiation strategy. However, opposite to our work, these approaches do not analyse how agents take into922

account their preferences over values and their dependency relations to manage argumentation dialogues. In ad-923

dition, game-theoretical assumptions are unrealistic in an argumentation dialogue between heterogeneous agents924

that have individual and private knowledge resources to generate arguments, which is our case.925

7. Conclusions926

This paper has presented a dialogue game protocol that agents of a case-based argumentation framework can927

use to interact and engage in argumentation dialogues. The protocol advances research in the investigation of928

dialectical systems for MAS in the sense that it provides agents with a formalised and structured way of arguing929

taking into account their social context. The syntax of the protocol has been detailed by defining its locutions,930

commencement rules, rules for the combination of locutions, commitment rules, rules for the speaker order, and931

termination rules. The operational semantics of the locutions are defined. This semantics views each locution as a932

transition in an abstract state-machine that represents the possible stages that can be reached during the dialogue.933

This work has introduced a running example that motivates the need for a dialogue protocol that controls agree-934

ment processes in agent societies and takes into account the social context of agents. A specific dialogue in this935

scenario has also been presented. This water-right transfer domain is complex enough to be used to illustrate the936

26

performance of the protocol. However, many water-right transfers are usually agreed upon by the water users,937

without any recording of the terms and outcome of the agreement. Therefore, due to this fact and due to restric-938

tive privacy laws to access this type of data, the actual implementation of the system in this domain still remains939

to be done in future work. Nevertheless, during this project we have elicited the knowledge of experts from the940

water market domain to design the protocol. In addition, our framework has been implemented as an argumenta-941

tion API in the Magentix2 agent platform and in (Heras et al., 2013), we run several experiments to evaluate our942

argumentation framework by simulating an agreement process in a real domain.943

In this work we have assumed that a proponent agent addresses its arguments to an opponent of its same group,944

having complete knowledge of the opponents’ social context. However, in real systems, some features of argument-945

cases could be unknown. For instance, the proponent of an argument obviously knows its value preferences and946

probably knows the preferences of its group, however, in a real open MAS, it is unlikely that the opponent’s value947

preferences are known. Nevertheless, the proponent might know the value preferences of the opponent’s group or948

have some previous knowledge about the value preferences of similar agents playing the same role as the opponent.949

If agents belong to different groups, the group features may be unknown, but the proponent could use its experience950

with other agents of the opponent’s group and infer them. Therefore, many interesting questions on how to infer951

the opponents’ social context remain to be studied as future work. A battery of tests to evaluate the influence of952

the knowledge that an agent has about the social context of its opponents on the performance of the system was953

developed and analysed in (Heras, 2011, Chapter 6). Even though the framework is flexible enough to cope with954

this lack of knowledge, the reliability of the conclusions drawn from previous experience would not be as good.955

Furthermore, the features of the proponent or the opponent could represent information about agents that act956

as representatives of a group and any agent can belong to different groups at the same time. In addition, the957

argumentation dialogue is centralised by the basin administrator and agents do not speak to each other directly;958

however the basin administrator could use the information provided by an agent to attack the arguments of another959

agent. Nevertheless, our protocol is conceived to serve for both mediated and face-to-face argumentation dialogues.960

Also for simplicity, the example does not show how agents can use the dialogue graphs associated to argument-961

cases to take strategic decisions about which arguments are more suitable in a specific situation or about whether962

continuing with a current argumentation dialogue is worth. Tackling doing strategies in argumentation dialogues is963

a complex problem that we are dealing with in current research. For instance, to improve efficiency in a negotiation964

an argumentation dialogue could be terminated if it were similar to a previous one that didn’t reach an agreement.965

Otherwise, opponent moves in a dialogue could be inferred by looking at a similar previous dialogue with the same966

opponent.967

Acknowledgements968

This work is supported by the Spanish government grants CONSOLIDER INGENIO 2010 CSD2007-00022,969

MINECO/FEDER TIN2012-36586-C03-01, and TIN2011-27652-C03-01.970

References971

Amgoud, L., Maudet, N., Parsons, S., 2000. Modelling dialogues using argumentation, in: 4th International Conference on MultiAgent972

Systems, ICMAS-00, IEEE Press.973

Atkinson, K., 2005. What Should We Do?: Computational Representation of Persuasive Argument in Practical Reasoning. Ph.D. thesis.974

Liverpool University.975

Augusto, J., Simari, G., 2001. Temporal Defeasible Reasoning. Knowledge and Information Systems 3, 287–318.976

Baader, F., Horrocks, I., Sattler, U., 2007. Handbook of Knowledge Representation. Elsevier. chapter Description Logics. pp. 135–179.977

Bench-Capon, T., Sartor, G., 2003. A Model of Legal Reasoning with Cases Incorporating Theories and Values. Artificial Intelligence 150,978

97–143.979

Bench-Capon, T.J., 1998. Specification and Implementation of Toulmin Dialogue Game, in: International Conferences on Legal Knowledge980

and Information Systems, JURIX-98, IOS Press. pp. 5–20.981

Botti, V., Garrido, A., Gimeno, J.A., Giret, A., Igual, F., Noriega, P., 2010. An Electronic Institution for Simulating Water-Right Markets, in:982

3rd Workshop on Agreement Technologies, WAT-10, pp. 3–18.983

Botti, V., Garrido, A., Giret, A., Igual, F., Noriega, P., 2009a. On the design of mWater: a case study for Agreement Technologies, in: 7th984

European Workshop on Multi-Agent Systems - EUMAS-09.985

Botti, V., Garrido, A., Giret, A., Noriega, P., 2009b. Managing water demand as a regulated open MAS, in: Workshop on Coordination,986

Organization, Institutions and Norms in agent systems in on-line communities, COIN-09, Springer. pp. 1–10.987

Carrascosa, C., Rebollo, M., 2009. Agreement Spaces for Counselor Agents, in: 8th International Conference on Autonomous Agents and988

Multiagent Systems, AAMAS-09, ACM Press. pp. 1205–1206.989

Dignum, F., Weigand, H., 1995. Communication and Deontic Logic, in: Wieringa, R., Feenstra, R. (Eds.), Information Systems - Correctness990

and Reusability. Selected papers from the IS-CORE Workshop, World Scientific Publishing Co.. pp. 242–260.991

27

van Eijk, R.M., 2002. Semantics of Agent Communication: An Introduction, in: Foundations and Applications of Multi-Agent Systems,992

UKMAS 1996-2000, Selected Papers, Springer-Verlag. pp. 152–168.993

Garrido, A., Giret, A., Noriega, P., 2009. mWater: a Sandbox for Agreement Technologies, in: 12th International Congress of the Catalan994

Association of Artificial Intelligence - CCIA-09, IOS Press. pp. 252–261.995

Giret, A., Garrido, A., Botti, V., 2010. D8.2.1 Report. mWater. Technical Report AT/2008/D8.2.1/v0.1. Universidad Politecnica de Valencia.996

Hamblin, C.L., 1970. Fallacies. Methuen and Co. Ltd.997

Heras, S., 2011. Case-Based Argumentation Framework for Agent Societies. Ph.D. thesis. Departamento de Sistemas Informáticos y Com-998

putación. Universitat Politècnica de València. http://hdl.handle.net/10251/12497.999

Heras, S., Jordán, J., Botti, V., Julián, V., 2013. Argue to Agree: a Case-Based Argumentation Approach. International Journal of Approximate1000

Reasoning 54, 82–108.1001

Honey-Roses, J., 2007. Assessing the potential of water trading in Spain. ENR 319 Advanced International Environmental Economics. Prof.1002

T. Panayotou at Harvard’s John F. Kennedy School of Government.1003

Horrocks, I., Patel-Schneider, P., 2004. Reducing OWL entailment to description logic satisfiability. Journal of Web Semantics 1, 345–357.1004

Huhns, M.N., Singh, M.P., Burstein, M., Decker, K., Durfee, E., Finin, T., Gasser, L., Goradia, H., Jennings, N., Lakkaraju, K., Nakashima,1005

H., Parunak, H.V.D., Rosenschein, J.S., Ruvinsky, A., Sukthankar, G., Swarup, S., Sycara, K., Tambe, M., Wagner, T., Zavala, L., 2005.1006

Research Directions for Service-Oriented Multiagent Systems. IEEE Internet Computing 9, 65–70.1007

Hulstijn, J., 2000. Dialogue Models for Inquiry and Transaction. Ph.D. thesis. University of Twente.1008

Jurisica, I., Mylopoulos, J., Yu, E., 2004. Ontologies for Knowledge Management: An Information Systems Perspective. Knowledge and1009

Information Systems 6, 380–401.1010

Karunatillake, N.C., Jennings, N.R., Rahwan, I., McBurney, P., 2009. Dialogue Games that Agents Play within a Society. Artificial Intelligence1011

173, 935–981.1012

Kripke, S., 1959. A completeness proof in modal logic. Journal of Symbolic Logic 24, 1–14.1013

Luck, M., McBurney, P., 2008. Computing as interaction: agent and agreement technologies, in: IEEE International Conference on Distributed1014

Human-Machine Systems, IEEE Press.1015

MacKenzie, J.D., 1979. Question-begging in non-cumulative systems. Philosophical Logic 8, 117–133.1016

Maudet, N., Chaib-draa, B., 2002. Commitment-based and Dialogue-game based Protocols-News Trends in Agent Communication Language.1017

Knowledge Engineering Review 17, 157–179.1018

Maudet, N., Evrard, F., 1998. A generic framework for dialogue game implementation, in: 2nd Workshop on Formal Semantics and Pragmatics1019

of Dialogue, University of Twente. pp. 185–198.1020

McBurney, P., 2002. Rational Interaction. Ph.D. thesis. Department of Computer Science, University of Liverpool, Liverpool, UK.1021

McBurney, P., Hitchcock, D., Parsons, S., 2007. The eightfold way of deliberation dialogue. International Journal of Intelligent Systems 22,1022

95–132.1023

McBurney, P., Parsons, S., 2001. Representing epistemic uncertainty by means of dialectical argumentation. Annals of Mathematics and1024

Artificial Intelligence, Special Issue on Representations of Uncertainty 32, 125–169.1025

McBurney, P., Parsons, S., 2002a. Dialogue Games in Multi-Agent Systems. Informal Logic. Special Issue on Applications of Argumentation1026

in Computer Science 22, 257–274.1027

McBurney, P., Parsons, S., 2002b. Games that agents play: A formal framework for dialogues between autonomous agents. Journal of Logic,1028

Language and Information 11, 315–334.1029

McBurney, P., Parsons, S., 2004. Locutions for argumentation in agent interaction protocols, in: Revised Proceedings of the International1030

Workshop on Agent Communication, AC-04, Springer. pp. 209–225.1031

McBurney, P., Parsons, S., 2009. Argumentation in Artificial Intelligence. Springer. chapter Dialogue games for agent argumentation. pp.1032

261–280.1033

McBurney, P., Parsons, S., Wooldridge, M., 2002. Desiderata for agent argumentation protocols, in: Proceedings of the First International Joint1034

Conference on Autonomous Agents and Multi-Agent Systems, AAMAS-02, ACM Press. pp. 402–409.1035

Ossowski, S. (Ed.), 2013. Agreement Technologies. volume 8. Springer.1036

Panayotou, T., 2007. Environment and Natural Resources 319. Advanced International Environmental Economics. Lecture 21: Issues in the1037

Economics and Management of Water Resources. Kennedy School of Government, Harvard University.1038

Prakken, H., 2006. Formal systems for persuasion dialogue. The Knowledge Engineering Review 21, 163–188.1039

Prakken, H., 2010. An abstract framework for argumentation with structured arguments. Argument and Computation 1, 93–124.1040

Prakken, H., Reed, C., Walton, D., 2005. Dialogues about the burden of proof, in: Proceedings of the 10th International Conference on Artificial1041

Intelligence and Law, ICAIL-05, ACM Press. pp. 115–124.1042

Prakken, H., Sartor, G., 1998. Modelling reasoning with precedents in a formal dialogue game. Artificial Intelligence and Law 6, 231–287.1043

Rahwan, I., Banihashemi, B., Reed, C., Walton, D., Abdallah, S., 2011. Representing and Classifying Arguments on the Semantic Web. The1044

Knowledge Engineering Review 26, 487–511.1045

Rahwan, I., Reed, C., 2009. Argumentation in Artificial Intelligence. Springer. chapter The Argument Interchange Format. pp. 383–402.1046

Sadri, F., Toni, F., Torroni, P., 2001. Dialogues for Negotiation: Agent Varieties and Dialogue Sequences, in: Revised Papers from the 8th1047

International Workshop on Intelligent Agents VIII, ATAL-01, Springer. pp. 405–421.1048

Schneider, S. (Ed.), 1996. Encyclopedia of Climate and Weather. Oxford University Press.1049

Shoham, Y., Leyton-Brown, K., 2009. Multiagent Systems: Algorithmic, Game Theoretic and Logical Foundations. Cambridge University1050

Press.1051

Singh, M., 2000. A social semantics for agent communication languages, Springer. pp. 31–45.1052

Tennent, R.D., 1991. Semantics of Programming Languages. Prentice Hall.1053

del Val, E., Rebollo, M., Botti, V., 2014. Enhancing decentralized service discovery in open service-oriented multi-agent systems. Autonomous1054

Agents and Multi-Agent Systems 28, 1–30.1055

Verheij, B., 2009. Argumentation in Artificial Intelligence. Springer. chapter The Toulmin Argument Model in Artificial Intelligence. pp.1056

219–238.1057

Walton, D., Krabbe, E.C.W., 1995. Commitment in Dialogue: Basic Concepts of Interpersonal Reasoning. State University of New York Press.1058

Walton, D., Reed, C., Macagno, F., 2008. Argumentation Schemes. Cambridge University Press.1059

Wardeh, M., Bench-Capon, T., Coenen, F.P., 2008. PISA - Pooling Information from Several Agents: Multiplayer Argumentation From1060

28

Experience, in: Proceedings of the 28th SGAI International Conference on Artificial Intelligence, AI-2008, Springer. pp. 133–146.1061

29

