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Codimension-three bifurcations in a Bénard-Marangoni problem
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This Brief Report studies the linear stability of a thermoconvective problem in an annular domain for
relatively low (∼1) Prandtl (viscosity effects) and Biot (heat transfer) numbers. The four possible patterns
for the instabilities, namely, hydrothermal waves of first and second class, longitudinal rolls, and corotating rolls,
are present in a small region of the Biot-Prandtl plane. This region can be split in four zones, depending on the
sort of instability found. The boundary of these four zones is composed of codimension-two points. Authors
have also found two codimension-three points, where some of the former curves intersect. Results shown in this
Brief Report clarify some reported experiments, predict new instabilities, and, by giving a deeper insight into
how physical parameters affect bifurcations, open a gateway to control those instabilities.
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The problem of thermoconvective instabilities in fluid
layers driven by a temperature gradient has become a classical
subject in fluid mechanics [1,2]. In the case of Bénard-
Marangoni convection problems, the effects of both gravity
and capillary forces are taken into account. Classically, heat
is applied from below [1]. A more general setup may be
considered which includes thermoconvective instabilities by
imposing a basic dynamic flow through temperature gradients
with a horizontal component, either in rectangular geometries
[2–4] or in cylindrical and annular geometries [5–9].

In this sort of problem there are many nondimensional num-
bers controlling the shape and evolution of the instabilities.
Apart from the geometrical parameters, the classical numbers,
which are described below, are Rayleigh (thermal effects),
Marangoni (surface tension), Bond (their ratio), Prandtl (vis-
cous to thermal diffusivity ratio), and Biot (heat exchange)
numbers. Experimentally, for the same fluid, Rayleigh and
Marangoni are easy to change, just increasing the heat present
in the system. In contrast, Prandtl and Biot numbers are more
difficult to control and, as it is shown below, a great richness
of bifurcations appears depending only on them.

The physical domain is presented in Fig. 1. A horizontal
fluid layer of depth d (the z coordinate) is contained in the
space limited by two concentric cylinders of radii a and a + δ

(the r coordinate). For the numerical experiments shown here,
the aspect ratio � = δ/d is set to 4 and a = δ. The lateral
walls are both adiabatic, and the top is open to the atmosphere.
A decreasing linear temperature profile from the inner to the
outer cylinder was imposed on the bottom plate. The horizontal
temperature gradient at the bottom had a value of TG = 2.2 K
and remained constant throughout the computations.

The system evolves according to the momentum and mass
balance equations and to the energy conservation principle,
nondimensionalized as in [5,10]. As usual in this sort of prob-
lem, the Boussinesq approximation was used [10]. In the equa-
tions governing the system, ur,uθ , and uz are the components
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of the velocity field u, � is the temperature, and p is the
pressure. The nondimensionalized equations then become

∇ · u = 0, (1)

∂tu + (u · ∇) u = Pr(∇p + ∇2u + Ra�ez), (2)

∂t� + u · ∇� = ∇2�. (3)

In these equations the operators and fields are expressed
in cylindrical coordinates and ez is the unit vector in the
z direction.

Boundary conditions (BCs) are similar to those of [5,11].
They are summarized in Table I. Briefly, the velocity is zero
on the cylinders and the bottom plate. In the top surface, the
thermocapillarity forces are modeled through the Marangoni
condition [5]. The Biot condition has been used to model the
heat transfer to the atmosphere.

In Eqs. (1)–(3) and BCs given by Table I the nondi-
mensional numbers introduced previously are used. These
numbers depend on the thermal diffusivity κ , the kinematic
viscosity ν, the thermal expansion coefficient α, the heat
transfer coefficient h, and the gravitational acceleration g.
The Rayleigh number, Ra = gα
T d4/κν, is representative
of the buoyancy effect, and it is the control parameter used
in this work. The Marangoni number, which accounts for the
surface tension effects, is defined as Ma = γ
T d2/ρκν. The
ratio between these two numbers, the Bond number Bo, is
kept constant, so that Bo ∼ 70 and therefore buoyancy effects
are dominant. Two more numbers play an important role.
First, the Prandtl number, Pr = ν/κ , is the ratio of momentum
diffusivity (kinematic viscosity) to thermal diffusivity. In this
Brief Report Pr values are close to unity. The last one is the Biot
number, Bi = hd/κ , which accounts for heat transfer between
the fluid and the atmosphere. Values inside the range [0.8–1.4]
are explored here.

As soon as a temperature gradient is imposed, the fluid
evolves until an axisymmetric stationary convective motion
is reached, called the basic state. This solution is computed
similarly to [5,11]. First a Newton-like iterative method is used
to solve the problem as the limit of a sequence of linear partial
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FIG. 1. Sketch of the geometry. Lateral walls are considered
adiabatic. The fluid is heated from below and the top surface is open
to the atmosphere.

differential equations. The solution is obtained by means of
a collocation method [12]. The velocities, temperature, and
pressure are approximated by

X(r,z) =
N∑

n=0

M∑

m=0

cnmT n(r)T m(z), (4)

where T N (x) is the Chebyshev polynomial of the first kind
of degree N . The expansion (4) is substituted into (1), (2),
(3), and BC (I). The resultant equations are then evaluated
in the Gauss-Lobatto points, xj = cos(πj/N ), j = 0, . . . ,N .
Gauss-Lobatto points are not equispaced but concentrated
near the boundaries. This is of special interest when dealing
with boundary effects [13]. In order to obtain boundary
conditions for the pressure, the momentum equations are
projected by the normal of the boundaries and evaluated there.
As the pressure is determined up to an additive constant, an
arbitrary value for it is fixed in a boundary point.

This method was experimentally validated in [8] for
Pr = ∞ and has been recently modified [11] to include
Prandtl numbers close to unity. Keeping fixed Biot and Prandtl
numbers and increasing Ra (and thus Ma), the basic state
becomes unstable and several different bifurcations arise.

TABLE I. Boundary conditions.

z = 0 z = d r = a,a + δ

ur = 0 ∂zur + Ma∂r� = 0 ur = 0
uφ = 0 r∂zuφ + Ma∂φ� = 0 uφ = 0
uz = 0 uz = 0 uz = 0
� = 
T − (TG/δ)r ∂z� + Bi� = 0 ∂n� = 0

The linear stability analysis supplies information about the
threshold for Rayleigh numbers and the shape of growing
instabilities. Fluid magnitudes are expanded as a Fourier series:

X(r,φ,z,t) = Xb(r,z) + Xp(r,z)eikφ+λt , (5)

where k is the wave number.
The eigenvalues and eigenfunctions of this problem are

computed substituting the expansion given in Eq. (5) in
Eqs. (1)–(3) and BC (I). After linearizing the problem, a
generalized eigenvalue problem AX̄ = BλX̄ is obtained. A
convergence study of this method was carried on in [8,11]. Rel-
atively small meshes, 28 points in r and 14 in z, are needed to
obtain the critical Rayleigh number with eight digit precision.

Due to the presence of the boundary conditions, the matrix
B is singular. Thus, not all the eigenvalues have to be
finite, and Arnoldi-like methods cannot be used to compute
the largest eigenvalues. The best way of computing the
eigenvalues in fluid mechanics has been thoroughly studied
(see [14]). In the current work, a computational technique
specifically designed for thermoconvective problems is used.
This technique, developed by Navarro et al. [15], transforms
those infinite eigenvalues into a known finite value. The largest
eigenvalue obtained through this transformation corresponds
to the largest finite eigenvalue of the original problem.

Depending on the symmetries of the growing perturbation,
several bifurcations may appear. The shape and class of this
solution depend only on the Biot and the Prandtl numbers.
The four different competing solutions found are shown in
Fig. 2: a stationary roll, similar to the ones of the basic state,
region SR, wave number 0 [2]; a hydrothermal wave or oblique

FIG. 2. (Color online) Prandtl-Biot plane stability diagram showing regions I, II, III, and IV. Representative top r − φ plane isotherms
corresponding to aforementioned regions are shown.
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FIG. 3. (Color online) Marginal stability diagram of a
codimension-three bifurcation. Ra = 2258.40, Bi = 1.2082, Pr =
1.2245. Empty points mean a real eigenvalue, whereas bold ones stand
for complex eigenvalues. The value max |Re(λ0,λ9,λ12)| � 10−5. All
these curves intersect transversally.

traveling waves, region HWI, wave numbers from 9 to 13 [2];
longitudinal rolls, region LR, wave number 18 [8,16]; and
a standing hydrothermal wave of second class or flowerlike
wave [7,17], region HWII, wave number 12. The transition
between HWI and HWII was previously reported for Pr ∼ ∞,
both experimentally and numerically [8], but this is the first
time that a transition between SR and HWII can be clearly
seen, clarifying Fig. 10(a) of [8]. Moreover, in [8] the transition
between HWII and HWI depended only on the aspect ratio and
the horizontal temperature gradient, but not on the Biot number
as is the case of the current work.

The boundaries of these four regions are made up of
codimension-two points, which are the points where the flow
becomes unstable for the same critical Rayleigh number for
two different wave numbers. Curves separating regions SR,
HWI, and HWII intersect at the point marked by an arrow
in Fig. 2. Representative top r − φ plane isotherms have
also been plotted in this figure for each of the regions. It is
worth mentioning that in previous works we never found the
intersection points between these curves (codimension-three
points). The marginal stability diagram for this point of the
Prandtl-Biot plane is shown in Fig. 3. The points denoted by a
shaded circle correspond to complex eigenvalues. At k = 0 the
growing perturbation is a stationary roll (SR), and for k = 9
the growing perturbation is a hydrothermal wave (HWI). At
k = 12 HWII appears (diamonds). This curve has a very sharp
shape since, for k = 10, Re(λ) � −6. The last curve in this
figure corresponds to a solution in the LR region, and thus the
real part is always negative at the considered conditions. For
k > 20 the real part of the eigenvalues is below −2.

FIG. 4. (Color online) Temperature isotherms and velocity
diagram in the x–z plane. Temperature has been normalized dividing
it by its maximum.

There exists another codimension-three point at the
intersection of HWI, HWII, and LR of Fig. 2. Temperature
isotherms and velocity diagrams in the x–z plane of regions
SR, HWI, and LR are similar to those shown in [11]. However,
the HWII region, found in the current work, shows a very
interesting structure as presented in Fig. 4, where a strong roll
is present very close to the inner and hotter wall. This structure
is similar to the experimental one obtained by Garnier and
Chiffaudel [7].

This set of bifurcations could provide a justification of the
experimental control of hydrothermal waves reported in [18],
where to suppress the hydrothermal waves they use a laser
beam that modifies the heat exchange at the surface and thus
modifies the Biot number.

In conclusion, a great diversity of transitions has been found
in a thermoconvective problem with an imposed constant
temperature gradient at the bottom. All the bifurcations are
controlled by heat related parameters (Ra, Pr, and Bi), for
a constant Bond number. The domain geometry has been
kept constant through all the computations. The four possible
patterns for the instabilities have been found in a small region
of the Pr–Bi plane. All of them, including the transitions, have
been previously reported in experiments, and several features
have been recovered in the current results, such as the roll
appearing near the hotter side or the multicellular states.
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