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1 Introduction and Notation

The purpose of this note is to study superposition operators f → φ ◦ f defined between weighted
Banach spaces H∞

v = H∞
v (D) of holomorphic functions on the disc by means of an entire function

φ. If X and Y are linear spaces of holomorphic functions on the unit disc D of the complex plane
and φ is an entire function, the superposition operator Sφ : X → Y with symbol φ is defined
by Sφ(f) := φ ◦ f . Since X and Y are assumed to be linear spaces, the operator Sφ is linear if
and only if φ(z) = c z for some complex constant c and all z. The central question concerning
superposition operators is to characterize those symbols φ such that the superposition operator
maps X into Y . In case X and Y are Banach spaces, it is also important to determine when Sφ is
bounded, in the sense that it maps bounded subsets of X into bounded subsets of Y , when Sφ is
continuous or when it is compact, in the sense that it maps bounded sets into relatively compact
sets.

Similar problems of action between spaces have a long history in the context of real valued
functions [2, 3], where this operator is also known as the Nemytskij operator, and in the theory
of uniform algebras. However, these questions in the context of complex functions have only been
addressed during the last two decades or so. Superposition operators mapping a Bergman space
or a Hardy space into another such space were characterized by Cámera and Giménez in [12] and
Cámera [13]. A whole set of new techniques was used in obtaining a complete description of the
superposition operators acting between various spaces of Dirichlet type in a paper by Buckley,
Fernández and Vukotić [10]. Álvarez, Márquez, and Vukotić [1] described the superpositions
between a Bergman space and the Bloch space in both directions in terms of the order and
type of the entire function φ. More recently, Buckley and Vukotić [11] characterized superposition
operators from an analytic Besov space into a Bergman space and Girela and Márquez [17] obtained
analogous results for the superpositions between Qp and Hardy spaces. We also refer the reader
to [16], [28], [29], or to the survey [27].

The results in these papers are typically formulated in terms of a condition limiting the order
and type of entire functions. In view of the first results of this type obtained in [10], the following
question arose naturally around 2000: Can one find two natural scales of spaces Xα and Yβ
(depending of some exponents or indices α, β) so that the characterization of all superposition
operators Sφ : Xα → Yβ would yield an alternative description of all entire functions of exponential
type (covering the whole possible range of orders and types)? It is one of our aims in this article to
give a partial answer to this question. See Proposition 3.2 and Theorem 3.4 for exact formulations.

In this paper a weight v on D is a strictly positive continuous function on D which is radial,
i.e. v(z) = v(|z|), z ∈ D, v(r) is strictly decreasing on [0, 1[ and satisfies limr→1 v(r) = 0. For such
a weight, the weighted Banach space of holomorphic functions H∞

v is defined by

H∞
v := {f ∈ H(D) | ||f ||v = supz∈D v(z)|f(z)| < +∞},

endowed with the norm ∥f∥v := supz∈D v(z)|f(z)|. Spaces of this type appear in the study of
growth conditions of analytic functions and have been investigated in various articles since the
work of Shields andWilliams, see e.g. [4],[5], [22], [23], [26] and the references therein. Composition
operators on these type of spaces have been also thoroughly studied [6], [7]. Harutyunyan and
Lusky [19] investigated the continuity of the differentiation operator Dh = h′ between spaces of
type H∞

v .
Here are examples of weights v(z) on D satisfying our assumptions:

(1) The polynomial weights v(z) = (1− |z|)α, α > 0, which describe polynomial growth.

(2) The exponential weights v(z) = exp(− 1
(1−|z|)α ), α > 0.

(3) The logarithmic weights v(z) = (log e
1−|z| )

−α, α > 0.

A few words about the notation. The greatest integer part of a real number γ will be denoted by
[γ]. For a given entire function φ, we will write M(φ, r) := sup|z|=r |φ(z)|, r ≥ 0. We refer the
reader to Levin [21] for the definition of type and order of an entire function. The Bloch space is
denoted by B. Among the many references on the Bloch functions, we mention [24] and [30].
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2 Some general results about boundedness and compact-
ness

Lemma 2.1 is a consequence of a more general result due to Boyd and Rueda [8, Theorem 1]. We
present a short proof of the lemma in order to make the paper self-contained.

Lemma 2.1 Let u and v be weights. If the entire function φ satisfies that the superposition
operator Sφ maps H∞

u into H∞
v and is bounded, then Sφ : H∞

u → H∞
v is continuous.

Proof. Since Sφ : H∞
u → H∞

v is bounded, it is locally bounded in the sense that it is bounded
on a neighbourhood of each point (cf. Dineen [14, p. 10]). By [14, Lemma 2.8], to show that
Sφ : H∞

u → H∞
v is continuous, it is enough to show that, for each f, g ∈ H∞

u , the map Φ : λ ∈
C → Sφ(g + λf) is holomorphic. As Φ is also locally bounded and the linear span of the Dirac
functionals δζ , ζ ∈ D, is weak-* dense in (H∞

v )∗, by a result of Grosse-Erdmann [18, Theorem 1],
Φ is holomorphic if we show that, for each ζ ∈ D, the map

λ ∈ C 7→ (δζ ◦ Φ)(λ) = φ(g(ζ) + λf(ζ))

is holomorphic. However, this is trivial because φ is an entire function. 2

We are now ready for a general result.

Theorem 2.2 (a) Let u and v be weights. If the entire function φ satisfies the following condition:

∀ε ∈]0, 1[ ∃C > 0 ∃R0 > 0 ∀R ≥ R0 :

v(u−1(
1

εR
)) max

|w|=R
|φ(w)| ≤ C,

then the superposition operator Sφ maps H∞
u into H∞

v and is bounded.
(b) Let u and v be weights. If the entire function φ satisfies the following condition:

lim
R→∞

v(u−1(
k

R
))M(φ,R) = 0

for each k ∈ N, then Sφ : H∞
u → H∞

v is compact.

Proof. (a) Fix f ∈ H∞
u with ||f ||u ≤M , M > 1. Put ε := 1/M , find C,R0 as in the assumption

and set
A := max(R0,M/u(0)), B := max

|w|≤A
|φ(w)|.

If |f(z)| ≤ A, then v(z)|φ(f(z))| ≤ v(0)B. If |f(z)| > A, since u and u−1 are strictly decreasing,
we have that u−1(1/(ε|f(z)|) is defined and |z| ≥ u−1(1/(ε|f(z)|). Applying the fact that v is
decreasing, we get v(z) ≤ v(u−1(1/(ε|f(z)|))). This implies v(z)|φ(f(z))| ≤ C. Consequently

||φ ◦ f ||v ≤ max(v(0)B,C),

and Sφ(H
∞
u ) ⊂ H∞

v and Sφ is bounded.

(b) For each k ∈ N and 0 ≤ r < 1, define ψk(r) := M(φ, k/u(r)). Clearly ψk is strictly
increasing, ψk(r) → ∞ as r → 1, ψk(0) = M(φ, k/u(0)), and ψk ≤ ψk+1 on [0, 1[ for each k ∈ N.
We show that ψk(r) = o(1/v(r)) as r → 1 for all k ∈ N. Indeed, fix k ∈ N and δ > 0. Apply the
hypothesis to find R0 > 0 such that v(u−1( k

R ))M(φ,R) < δ if R ≥ R0. We assume that R0 is
selected so that k/R0 < u(0), so that u−1(k/R) is defined if R ≥ R0. Now, if u−1(k/R0) < r < 1,
then k/u(r) > R0. Therefore

v(u−1(
k

k/u(r)
))M(φ, k/u(r)) = v(r)M(φ, k/u(r)) = v(r)ψk(r) < δ.
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Now we construct ψ : [0, 1[→]o,∞[, strictly increasing, continuous such that ψk(r) = o(ψ(r)) as
r → 1 for each k ∈ N and ψ(r) = o(1/v(r)) as r → 1. Clearly w(z) := 1/ψ(z), z ∈ D, is a
weight and limr→1 v(r)/w(r) = 0. This implies that the inclusion H∞

w ⊂ H∞
v is compact as a

consequence of Montel’s theorem. See also [7] for more general results. The proof is complete if we
show that Sφ : H∞

u → H∞
w is continuous. To see this we apply part (a) and Lemma 2.1. Fix ε > 0

and select k ∈ N with k > 1/ε. Since ψk(r) = o(1/w(r)) as r → 1, there is r0 ∈]0, 1[ such that
M(φ, k/u(r)) ≤ 1/w(r). Set R0 := k/u(r0). For R ≥ R0 we have 0 < k/R ≤ k/R0 = u(r0) < u(0),
hence u−1(k/R) is defined and u−1(k/R) ≥ r0, since u is strictly decreasing. Thus

M(φ,R)w(u−1(1/εR)) ≤M(φ,R)w(u−1(k/R)) =M(φ, k/u(u−1(k/R)))w(u−1(k/R)) ≤ 1,

which proves the sufficient condition in part (a). 2

3 Results for some concrete weights

3.1 The domain space is defined by a polynomial weight

Below we will use the notation [γ], as is customary, to denote the greatest integer part of a real
number γ.

Proposition 3.1 Let u(z) = (1− |z|)α, α > 0, v(z) = (1− |z|)β, β > 0.
(1) The following conditions are equivalent for an entire function φ:

(i) φ is a polynomial of degree at most [β/α].

(ii) The superposition operator Sφ maps H∞
u into H∞

v .

(iii) The superposition operator Sφ maps H∞
u into H∞

v and is bounded.

(2) The following conditions are equivalent for an entire function φ:

(i) φ is a polynomial of degree s < β/α.

(ii) The superposition operator Sφ maps H∞
u into H∞

v and it is compact, i.e. maps bounded sets
into relatively compact sets.

Proof. We first prove the equivalences in part (1).
Condition (i) implies condition (iii) by Theorem 2.2 (a) since v(u−1(w)) = |w|β/α. Clearly

condition (iii) implies condition (ii).
Now assume that (ii) holds and set m := [β/α]. To conclude (i), by the standard Cauchy

estimates, it is enough to prove limr→∞M(φ, r)/rm+1 = 0. Assuming that this does not hold, we
select a sequence (wn)n of complex numbers such that |wn| > 1 for each n ∈ N, limn→∞ |wn| = ∞
and |φ(wn)| > δ|wn|m+1 for each n ∈ N and some δ > 0. By passing to a subsequence, we may
assume without loss of generality that all the elements in the sequence (wn)n also satisfy | argwn| <
1
4πα. This can be assumed safely after applying symmetries and rotations if necessary, since the

entire functions ψ(z) := φ(z) and φt(z) := φ(eitz) behave like φ with respect to condition (i).
The function g(z) = (1− z)−α belongs to H∞

u . The preimages of wn under g:

zn = 1− 1

w
1/α
n

, (1− zn)
−1 = w1/α

n ,

satisfy |1 − zn| < 1 and | arg(1 − zn)| < π/4; i.e. they belong to a Stolz domain, hence there is
c > 0 such that |1− zn| ≤ c(1− |zn|) for each n ∈ N.

Suppose that Sφg = φ ◦ g belongs to H∞
v . There is M > 0 such that |φ(g(z))| ≤M(1− |z|)−β

for all z ∈ D. This implies

δ|wn|m+1 < |φ(wn)| = |φ(g(zn))| ≤M(1− |zn|)−β ≤Mcβ |1− zn|−β =Mcβ |wn|β/α.
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Consequently |wn|m+1−β/α ≤Mcβδ−1 for each n ∈ N, which is a contradiction, since m+1−β/α
is strictly positive.

Now we prove (2). Assume first that (i) holds and denote by s the degree of the polynomial
φ. By assumption sα < β. For each k ∈ N, we have

v(u−1(k/R))M(φ,R) = (k/R)β/αM(φ,R) = kβ/α
M(φ,R)

Rβ/α
,

which tends to 0 as R → ∞. We can apply Theorem 2.2 (b) to conclude that Sφ maps H∞
u into

H∞
v and is compact. Conversely, if Sφ maps H∞

u into H∞
v and it is compact, then we conclude

from part (1) that s ≤ β/α.
It remains to show that if β = sα, then Sφ : H∞

u → H∞
us is not compact, us(z) = u(z)s =

(1− |z|)β . We show this for φ(w) = ws, which is enough. Consider a strictly increasing sequence
of positive numbers (rn)n tending to 1 and define gn(z) := (1− rn)

α/(1− rnz)
2α, z ∈ D. Clearly

gn ∈ H∞
u , ||gn||u ≤ 1 for each n ∈ N and the sequence (gn)n tends to 0 uniformly on compact

sets. As β = sα, Sφ(gn)(z) = (1− rn)
β/(1− rnz)

2β , z ∈ D, and Sφ(gn) converges to 0 uniformly
on compact sets. If Sφ : H∞

u → H∞
us were compact, the sequence Sφ(gn) would converge to 0 in

H∞
us . This is a contradiction since (1− rn)βSφ(gn)(rn) = 1/(1+ rn)

2β converges to 1/4β as n goes
to infinity. 2

Observe that every entire function φ defines a bounded superposition operator Sφ from the
space H∞ of bounded analytic functions on D into an arbitrary weighted Banach space of type
H∞

v , since φ ◦ f ∈ H∞ ⊂ H∞
v for each f ∈ H∞. The space H∞ corresponds to the “weight”

v(z) = 1, z ∈ D, which is not a weight in the sense of this paper. On the other hand, the only
superposition operators Sφ mapping H∞

u into H∞
v for u(z) = (1− |z|)2, v(z) = 1− |z|, z ∈ D, are

those with φ constant.
Proposition 3.2 (1) was obtained independently by Boyd and Rueda [9, Theorem 3].

Proposition 3.2 Let u(z) = (1 − |z|)α, z ∈ D and v(z) = exp(− 1
(1−|z|)β ), α, β > 0. Let φ be an

entire function.
(1) If the function φ is of order less than β/α or of order β/α and type zero, or equivalently, if
for all 0 < ε < 1 there are C ≥ 1, R0 > 0 such that |φ(z)| ≤ C exp(ε|z|β/α) for all z ∈ C with
|z| ≥ R0, then the superposition operator Sφ maps H∞

u into H∞
v and is bounded.

(2) If the superposition operator Sφ maps H∞
u into H∞

v , then for each D > 1 we can find C ≥
1, R0 > 0 such that |φ(z)| ≤ C exp(D|z|β/α) for all z ∈ C with |z| ≥ R0.

Proof. Part (1) follows from Theorem 2.2 (a), since v(u−1(s)) = exp(−1/sβ/α). To prove (2), we
proceed by reduction to absurd. If the desired conclusion does not hold, we can find D > 1 such
that for all n ∈ N there is wn ∈ C, |wn| > n, such that |φ(wn)| ≥ n exp(D|wn|β/α). Given D,
select d > 1 with 1 < dβ < D and find 0 < θ < πα

4 such that, if z belongs to the Stolz angle

Sθ := {z ∈ D | |1− z| < 1, | arg(1− z)| < θ},

then |1− z| ≤ d(1−|z|). Passing to a subsequence, using rotations and symmetries as in the proof
of Proposition 3.1, we may assume that all wn belong to the first quadrant, the sequence (argwn)n
converges to 0 and argwn ≤ βθ. This is possible because the entire functions ψ(z) := φ(z)) and
φt(z) := φ(eitz) behave like φ with respect to condition (i). The function g(z) = (1−z)−α belongs
to H∞

u . By condition (ii), φ ◦ g ∈ H∞
v . The preimages of wn under g

zn = 1− 1

w
1/α
n

, (1− zn)
−β = wβ/α

n ,

belong to the Stolz domain Sθ. In particular |1 − zn| ≤ d(1 − |zn|) for each n ∈ N. We have, for
each n ∈ N,

|φ(g(zn))| = |φ(wn)| > n exp(D|wn|β/α) =
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= n exp(
D

|1− zn|β
) ≥ n exp(

D

dβ(1− |zn|)β
) ≥ n exp(

1

(1− |zn|)β
).

This contradicts φ ◦ g ∈ H∞
v and completes the proof. 2

3.2 The domain space is defined by a logarithmic weight

The key result to treat the case of logarithmic weights in the domain is the following Lemma.
It is based on a geometric construction of a simply connected domain that can be imagined as
a “highway from a point near the origin to infinity” of constant width. It is a variant of the
construction to be found e.g. in [1, Lemma 2], [11, Lemma 7].

Lemma 3.3 For each positive number δ and for every sequence {wn}∞n=0 of complex numbers
such that |w0| < δ, |w1| ≥ 3 δ, 0 < argw1 < π/4, argwn ↘ 0, and

|wn| ≥ max

{
3|wn−1|, 2

n−1∑
k=1

|wk − wk−1|

}
for all n ≥ 2 , (3.1)

there exists a domain Ω with the following properties:

(i) Ω is simply connected;

(ii) Ω contains the infinite polygonal line L = ∪∞
n=1[wn−1, wn], where [wn−1, wn] denotes the line

segment from wn−1 to wn;

(iii) any Riemann map f of D onto Ω belongs to the Bloch space B;

(iv) dist(w, ∂Ω) = δ for each point w on the broken line L.

Proof. It is clear from (3.1) that |wn| ↗ ∞ as n → ∞. We construct the domain Ω as follows.
First connect the points wn by a polygonal line L as indicated in the statement. Let D(z, δ) =
{w : |z − w| < δ} and define

Ω =
∪

{D(z, δ) : z ∈ L} ,

i.e. let Ω be a δ-thickening of the polygonal line L. In other words, Ω is the union of simply
connected cigar-shaped domains

Cn =
∪

{D(z, δ) : z ∈ [wn−1, wn]} .

By our choice of wn, it is easy to check inductively that |wn − wk| ≥ 5 δ whenever n > k. Since
our construction implies that

Cn ⊂ {w : |wn−1| − δ < |w| < |wn|+ δ} ,

wee see immediately that

(a) for all m, n, Cm ∩ Cn ̸= ∅ if and only if |m− n| ≤ 1;

(b) for all n, Cn ∩ Cn+1 is either D(wn, δ) or the interior of the convex hull of D(wn, δ) ∪ {an}
for some point an outside of D(wn, δ).

Thus, each ΩN = ∪N
n=1Cn is also simply connected. Since

Ω = ∪∞
N=1ΩN and ΩN ⊂ ΩN+1 for all N,

we conclude that Ω is also simply connected by the Cauchy integral theorem and a simple com-
pactness argument (open coverings). By construction, dist(w, ∂Ω) ≤ δ for all w in Ω, hence any
Riemann map onto Ω will belong to B. It is also clear that (iv) holds. 2
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Recall that the hyperbolic distance between two points z and w in the disk is defined as

ρ(z, w) = inf
γ

∫
γ

|dζ|
1− |ζ|2

=
1

2
log

1 +
∣∣∣ z−w
1−zw

∣∣∣
1−

∣∣∣ z−w
1−zw

∣∣∣ ,
where the infimum is taken over all rectifiable curves γ in D that join z with w.

The hyperbolic metric ρΩ on an arbitrary simply connected domain Ω (not the entire plane)
is defined via the corresponding pullback to the disk: if f is a Riemann map of D onto Ω then

ρΩ(f(z), f(w)) = ρ(z, w) = inf
Γ

∫
f−1(Γ)

|dζ|
1− |ζ|2

,

where the infimum is taken over all rectifiable curves Γ in Ω from f(z) to f(w). The metric ρΩ
does not depend on the choice of the Riemann map f . For more details, we refer the reader to
§ 1.2 and § 4.6 of [24].

From the definition of hyperbolic metric we notice the following important feature of Riemann
maps:

ρΩ(f(0), f(z)) = ρ(0, z) ≥ 1

2
log

1

1− |z|
, z ∈ D . (3.2)

Another fundamental property is the comparison between the hyperbolic and the so-called quasi-
hyperbolic metric:

ρΩ(w1, w2) ≤ inf
Γ

∫
Γ

|dw|
dist (w, ∂Ω)

, (3.3)

where the infimum is taken over all rectifiable curves Γ in Ω from w1 to w2.

Theorem 3.4 Let u(r) = (log e
1−r )

−α and v(r) = (1−r)β with α, β > 0. The following statements
are equivalent for an entire function φ:

(i) The function φ is of order less than 1/α or of order 1/α and type zero.

(ii) For all 0 < ε < 1 there are C > 0, R0 > 0 such that |φ(z)| ≤ C exp(ε|z|1/α) whenever
|z| ≥ R0.

(iii) The superposition operator Sφ maps H∞
u into H∞

v .

(iv) Sφ is a bounded operator from H∞
u into H∞

v .

(v) Sφ is a compact operator from H∞
u into H∞

v .

Proof. Conditions (i) and (ii) are equivalent by the definition of type and order. We show
that (ii)⇒(v). A direct calculation shows that v(u−1(s)) = eβ exp(−β/s1/α). In order to apply
Theorem 2.2 (b) to conclude that Sφ : H∞

u → H∞
v is compact, we fix k ∈ N and select ε > 0 such

that ε < β/k1/α. We apply condition (ii) to find C > 0 and R0 > 0. If R ≥ R0, we have

v(u−1(k/R))M(φ,R) = eβ exp(−βR
1/α

k1/α
)M(φ,R) ≤ Ceβ exp((− β

k1/α
+ ε)R1/α),

that tends to 0 as R→ ∞.
For the proof of (iii)⇒(ii), let us assume that Sφ(H

∞
u ) ⊂ H∞

v holds but (ii) is false. Then we
can find ε > 0 and a sequence (wn)

∞
n such that

|φ(wn)| ≥ neε|wn|1/α , for all n . (3.4)

Select a positive constant δ > β/ε. By passing on to a subsequence, denoted again (wn)n,
we may assume that the sequence (argwn)n in [0, 2π] is convergent and all points wn lie in an
angular sector of opening {w : | argw| < π

4 }. We can further assume that they are all located in
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the first quadrant and the arguments argwn decrease to 0, by applying symmetries or rotations if
necessary. There is no loss of generality in doing this because the entire functions ψ, φt, defined
by ψ(z) = φ(z), φt(z) = φ(eitz) respectively, behave like φ with respect to condition (ii).

Select inductively a further subsequence, labelled again (wn)n, so that |w1| ≥ 3 δ, and inequality
(3.1) holds. Next, add to the sequence a point w0 ̸= 0 with |w0| < δ and use Lemma 3.3 to
construct a domain Ω with the properties (i)–(iv) indicated there, contained in the angular sector
{w : | argw| < π

4 }. Let f be a Riemann map of D onto Ω such that f(0) = w0.
Now let zn be the pre-images in D of the points wn, n ≥ 1. Since |wn| → ∞ as n → ∞, it

follows that |zn| → 1. By applying estimate (3.2) for hyperbolic metric, the triangle inequality,
inequality (3.3) and property (iv) from Lemma 3.3, as well as the property (3.1) of the points wn

respectively, we obtain the following chain of inequalities:

1

2
log

1

1− |zn|
≤ ρΩ(f(0), f(zn)) ≤

n∑
k=1

ρΩ(wk−1, wk) ≤
n∑

k=1

∫
[wk−1,wk]

|dw|
dist (w, ∂Ω)

=
n∑

k=1

∫
[wk−1,wk]

|dw|
δ

=
1

δ

n∑
k=1

|wk − wk−1| ≤
1

2δ
|wn| .

This shows that

|wn| ≥ δ log
1

1− |zn|
, n ≥ 1 . (3.5)

Since Ω is a simply connected domain that does not contain the origin and the function f does not
vanish in the disk, we can define the analytic function F = fα. As observed, the function f ∈ B,
so by the basic logarithmic estimate for Bloch functions, the function F enjoys the estimate

|F (z)| ≤ K(log
1

1− |z|
)α , z ∈ D ,

hence F ∈ H∞
u .

On the other hand, by (3.5), we also know that

|F (zn)| = |wn|α ≥ δα(log
1

1− |zn|
)α , z ∈ D .

From here and our assumption on φ and wn we deduce that

|φ(F (zn))| ≥ neε|F (zn)|1/α ≥ neεδ log 1
1−|zn| ≥ n

(1− |zn|)β
,

which means that φ◦F ̸∈ H∞
v . This contradicts our assumption Sφ : H∞

u → H∞
v , which completes

the proof. 2

By proceeding similarly as in the proof of Proposition 3.1, and using Lemma 3.3, we can prove
the following result.

Proposition 3.5 Let u(r) = (log e
1−r )

α, α > 0, v(r) = (log e
1−r )

β, β > 0.
(1) The superposition operator Sφ maps H∞

u into H∞
v and is bounded if and only if φ is a

polynomial of degree at most [β/α].
(2) The superposition operator Sφ maps H∞

u into H∞
v and is compact if and only if φ is a

polynomial of degree less than β/α.

As a closing remark, we would like to stress that if one is concerned only with the boundedness
of superposition operators, most of the statements of this section can be proved in a different way.
For example, proving that the statements (i), (ii), and (iv) in Theorem 3.4 are equivalent no longer
requires an involved geometric constructions. Relatively general results of this type were obtained
most recently by Ramos Fernández [25] for some known classes of weights such as the so-called
essential weights [7].
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3.3 Superpositions from a space defined by an exponential weight

Proposition 3.6 Let u(r) = exp(−(1− |z|)−α), α > 0 and let φ be an entire function.

(1) If there exist C > 0 and R0 > 0 such that |φ(w)| ≤ C exp((log |w|)γ) for |w| ≥ R0, then
for each c > 1 the superposition operator Sφ maps H∞

u boundedly into the space H∞
vc
, where

vc(r) = exp(− c
(1−|z|)αγ ).

(2) If the superposition operator Sφ maps H∞
u into H∞

v , v(r) = exp(− 1
(1−|z|)β ), β > 0, then

for every c > 1 there exist C > 0 and R0 > 0 such that |φ(w)| ≤ C exp(c(log |w|)β/α) for |w| ≥ R0.

Proof. We first prove (1). Fix c > 1. Given f ∈ H∞
u , there is a constant M > 0 such that

log |f(z)| ≤ logM + (1− |z|)−α.

Select r0 ∈]0, 1[ so that logM ≤ (c1/γ − 1)/(1 − |z|)α for r0 ≤ |z| < 1. If |f(z)| ≥ R0 and
r0 ≤ |z| < 1 we have

|φ(f(z))| ≤ C exp((log |f(z)|)γ) ≤ C exp((logM + 1/(1− |z|)α)γ) ≤ C exp(
c

(1− |z|)αγ
).

On the other hand, there is S0 ≥ R0 such that |f(z)| ≤ S0 if |z| ≤ r0. Hence |φ(f(z))| ≤M(φ, S0)
if |f(z)| ≤ R0 or |z| ≥ r0. These two last inequalities together imply that φ ◦ f ∈ H∞

vc
.

To prove (2) we assume that Sφ maps H∞
u into H∞

v , v(z) = exp(− 1
(1−|z|)β ), β > 0, but that

there is c > 1 such that the conclusion does not hold. The function f(z) = exp((1− z)−α) belongs
to H∞

u and ||f ||u ≤ 1. By assumption φ ◦ f ∈ H∞
v , hence there is M > 0 such that

log |φ(f(z))| ≤ logM + 1/(1− |z|)β , z ∈ D.

Select d > 1 so that d2β < c. Since we have assumed that the conclusion of (2) does not hold for
c, we can find a sequence {wn}n of complex numbers wn of large modulus on which the conclusion
fails. Proceeding as before, we may assume that all of these points are contained in the region

Ω = {w : |w| > ρ ,−π/4 < Argw < π/4} ,

for some fixed positive ρ. By taking a small enough positive value of γ, by considering the mapping
properties of the function z 7→ (1 − z)−α, it is easy to see that every w ∈ Ω has a preimage in
the Stolz angle of aperture γ and vertex at z = 1. This means that we can find a sequence of
points {zn}n in this angle such that wn = f(zn), n ∈ N. Moreover, by passing to a subsequence if
necessary, we can pick the points zn that satisfy the inequalities

|1− zn| ≤ d(1− |zn|) , Re(1/(1− zn)
α) ≥ 1/(d|1− zn|)α

(which simply means requiring that the points zn belong to the smaller of these two Stolz angles),
as well as the condition log |φ(wn)| ≥ log n+ c(log |wn|)β/α for all n ∈ N. Now,

|wn| = exp(Re(1/(1− zn)
α) ≥ exp(1/(d|1− zn|)α) ≥ exp(1/(d2(1− |zn|))α),

for each n ∈ N. This implies, for all n ∈ N,

logM +
1

(1− |zn|)β
≥ log |φ(wn)| ≥ log n+ c(log |wn|)β/α ≥ log n+

c

d2α
1

(1− |zn|)β
.

This contradictions the fact that c/d2α > 1. 2

Of course, if γ > 1, there exist entire transcendental functions φ satisfying the assumptions
of Proposition 3.6. Since these constructions are not the main subject of this article, we refer an
interested reader to Corollary 1.4, Lemma 1.3 and Definition 1.1 in Langenbruch [20] or to [21].
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[6] J. Bonet, P. Domański, M. Lindström, Essential norm and weak compactness of composition
operators on weighted Banach spaces of analytic functions, Canad. Math. Bull. 42, no. 2,
(1999), 139-148.
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