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Abstract 8 

In this study we evaluated under laboratory conditions the efficacy of two petroleum-derived 9 

spray oils (PDSO) (Laincoil®, Oil A, and Sunspray Ultrafine®, Oil B) applied at 1.5% 10 

concentration at five water volumes (0.5, 1, 2, 3 and 4 ml)  against different stages of Aonidiella 11 

aurantii Maskell (Homoptera: Diaspididae). In parallel, we characterized the deposition pattern 12 

of treatments resulting of these five volumes and two PDSO. The objective was to model the 13 

characteristics of deposition and the efficacy as a function of the deposited volume in order to 14 

determine the optimum volume that should be applied in PDSO treatments against this pest. 15 

Different models that relate the efficacy as a function of the deposited volume have been 16 

obtained for both two PDSO and for the tested stages of A.aurantii. Results reflected the 17 

optimum deposited volume for each oil and each stage, showing showed that Sunspray 18 

Ultrafine® Oil B had higher efficacy and produced more but smaller impacts that Laincoil® Oil 19 

A, which may indicate the influence of formulation on the efficacy of PDSO. We propose a 20 

methodology to evaluate the effect of PDSO on the spray deposition pattern and efficacy against 21 

various California red scale stages, thus providing a scientific basis for product comparison. 22 

Key words: PDSO, coverage, spray volume, formulation23 
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1. Introduction 24 

Petroleum-derived spray oils (PDSO) have been used as crop protection products for over a 25 

hundred years; they were first applied in the 1920s (Ackerman, 1923; De Ong, 1926). Indeed, 26 

they have a good ecotoxicological profile and pests do not develop resistance. Furthermore, 27 

populations of beneficial arthropods are not severely affected because of the short-term residual 28 

activity of PDSO (Childers, 2002; Davidson, 1991; Nguyen et al., 2002; Riehl, 1981; Urbaneja et 29 

al., 2008).  30 

California red scale Aonidiella aurantii (Maskell) (Homoptera: Diaspididae) (CRS), one of the 31 

pests with greater economic impact in worldwide citrus growing, has traditionally been 32 

controlled by organophosphate insecticides. However, the extensive and continuous use of these 33 

pesticides has caused environmental impact as well as resistance development in this pest 34 

(Bedford, 1998a, b; Grafton-Cardwell and Vehrs, 1995; Levitin and Cohen, 1988; Smith et al., 35 

1997) as well as environmental impact. PDSO show good efficacy against CRS and they are 36 

currently registered worldwide to control CRS in citrus and are commonly used in integrated pest 37 

management programs. In Spain, recommendations for PDSO application are based on a 38 

prescribed concentration, specifically 1.0 to 1.5% (MARM, 2010). However, information about 39 

volumes of water required depending on the quantity of plant canopy is not provided and is not 40 

regulated. This fact may lead to waste through overuse or ineffective control as a result of 41 

inadequate application.  42 

The primary cause of mortality produced by PDSO is anoxia, i.e. suffocation by directly 43 

blocking the spiracles of scales (Kallianpur et al., 2002; Taverner, 2002). For this reason, high 44 

water volumes are presumed to be very important in order to completely cover the target insect 45 

(Gaskin et al., 2002).  46 

Mineral oils are characterized by some parameters that might affect their efficacy such as 47 
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viscosity, gravity, unsulfonated residue, pour point, distillation temperature and n-paraffin 48 

carbon number (nC) (Agnello, 2002). PDSO normally contain a specific mineral oil as active 49 

ingredient (a.i.) mixed with a wide range of emulsifiers and surfactants. Although these 50 

coadjuvants probably do not directly affect the inherent oil toxicity, they have a great influence 51 

on the physico-chemical properties of the solution. It is widely known that these properties affect 52 

their droplet size spectrum (Bouse et al., 1990; Fraser and Eisenklam, 1956; Haq et al., 1983; 53 

Yates et al., 1983) and their deposition pattern (Salyani, 1988; Spillman, 1984; Zabkiewicz, 54 

2007), affecting thereafter the PDSO wetting capacity, and consequently the plant-pest 55 

interaction and the efficacy (Agnello, 2002; Zabkiewicz, 2002). 56 

Several researchers have attempted to determine how much volume should be applied in PDSO 57 

treatments against CRS, but the results were not conclusive and sometimes they were 58 

contradictory. Jeppson and Carman (1974) stated that a low volume field treatment (935 l/ha) did 59 

not successfully control CRS, probably due to a bad deposition in the canopy center. Riehl 60 

(1981) improved the efficacy of low volume treatments by adjusting the application equipment 61 

to reach this area in the tree center of the tree, even decreasing concentration. This research also 62 

stated that efficacy depends on the pest stage of the pest, in such a way that to control adult 63 

females, higher deposits (µg oil/cm2) than those needed for young stages were necessary. Other 64 

authors also found differences in efficacy under field conditions related to oil deposit, depending 65 

more on volume than on concentration (Beattie et al., 2002; Grout and Stephen, 1993). In 66 

contrast, Grafton-Cardwell and Reagan (2005, 2006) found no difference in efficacy in several 67 

field trials conducted made with very high volumes (8000 and 15000 l/ha) varying 68 

simultaneously the concentration of oil. The lack of conclusive results is probably due to the 69 

existence of many factors under field conditions that can affect the efficacy of mineral oils 70 

treatments against CRS. These factors  which are difficult to take into account altogether: the oil 71 
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formulation, the population level, the stage of scales, the size and shape of trees, the density of 72 

canopy, the type of sprayer used and its setup parameters, etc. Furthermore, each of these studies 73 

had different goals and authors provide data of different nature, depending on the factor of 74 

interest, and therefore results cannot be compared.  75 

The objectives of this study were: (i) to characterize the deposition pattern of two PDSO applied 76 

in different volumes with constant concentration, (ii) to study the efficacy of these treatments on 77 

the different stages of CRS under laboratory conditions, and (iii) to model the efficacy as a 78 

function of the deposited volume. Moreover, We investigated if the two PSDO produced the 79 

same deposition and efficacy or if they followed different models, which would highlight the 80 

importance of the commercial product formulation on the pesticide distribution and pest control. 81 

Material and Methods 82 

Two experiments were carried out under laboratory conditions to test the effect of volume on (i) 83 

1) deposition characteristics, and (ii) 2) efficacy of mineral oils-based treatments against 84 

different stages of CRS. In both experiments two of the most common PDSO in Spain were 85 

used: Laincoil®, an nC21 oil with a content of 83% w/v (Lainco, S.A., Barcelona, Spain), 86 

hereafter Oil A, and Sunspray Ultrafine®, an nC21 with a content of 85% w/v (Sun Oil Co., 87 

Antwerp, Belgium), hereafter Oil B. Both PDSO have an unsulfonated residue of 92%. They 88 

were used at the most common concentration in Spanish field applications against CRS, which is 89 

the maximum prescribed concentration of 1.5%. The spray volumes used for both experiments 90 

were 0.5, 1, 2, 3 and 4 ml. The maximum spray volume tested was 4 ml because the droplets 91 

coalesced at higher volumes, producing a surface of liquid that run-off from the target surface. 92 

Applications were carried out made with a Potter Spray Tower fitted with its finest nozzle 93 

(internal diameter: 0.762 mm) (Burkard Scientific, Uxbridge, United Kingdom) (Potter, 1952). 94 

Pressure was fixed at 0.1 MPa.  95 
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The Potter Spray Tower was calibrated before each experiment. The volume of solution 96 

deposited per unit area (μl/cm2) on the tower base of the tower for each spray volume was 97 

estimated by a series of tests. Different volumes of water were sprayed over Petri dishes of 98 

known area (63 cm2). Petri dishes were weighed before and after the application using an 99 

analytical balance (XR 205 SM-DR, Precisa Instruments Ltd., Dietikon, Switzerland). Five 100 

replicates were used per volume tested. The average increase of weight produced by the 101 

deposition of droplets per unit area was measured. From these data, the amount of a.i. per unit 102 

area was estimated for each PDSO (Table 1). 103 

Deposition Pattern 104 

In order to study the deposition pattern, the five volumes were tested with two PDSO solutions 105 

(Oil A and Oil B), with 3 replicates per treatment. 106 

White PVC-sheet 4.5 x 4.5 cm pieces were used as artificial collectors of the spray solution. 107 

PVC drop retention behavior is similar to that of citrus leaves (Mercader et al., 1995). Collectors 108 

were sprayed with the corresponding solution (water + PDSO), plus 2% of chelated iron 109 

(Sequestrene 138 Fe G-100, Syngenta Agro S.A., Madrid, Spain) as a dye to produce sufficient 110 

drop/background contrast for subsequent image analysis.  111 

Collectors were then photographed and the images analyzed using the methodology described by 112 

Chueca et al., (2010). Three parameters were measured from each collector to describe the 113 

deposition: (i) coverage, expressed as percentage of area occupied by impinging droplets 114 

(henceforth impacts) against the total area (%); (ii) area of impacts, estimated by the mean of the 115 

sizes of all the impacts on the collector (mm2); and (iii) number of impacts per unit area (No. of 116 

impacts/cm2). 117 

Efficacy Against CRS Stages. 118 
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Five volumes of both solutions (Oil A and Oil B) were tested as well as a control with just water. 119 

Experimental trials were conducted on lemons infested with CRS populations in different stages. 120 

CRS-infested lemons were obtained from the rearing colonies of our institution (Centro de 121 

Agroingeniería, Instituto Valenciano de Investigaciones Agrarias). Rearing takes place in 122 

chambers with a temperature of 26 ± 3 ºC, 50 ± 5% relative humidity (RH) and continuous light, 123 

following the protocol developed by Pina (2006).  124 

The insect's life cycle was divided into four groups of stages, in a way that each group comprised 125 

various stages of development. These groups of stages were labelled as follows (each one 126 

included the growth stages shown in brackets): N1 (nipple stage and first molt), N2 (second 127 

instar and second molt), N3 (third instar and gravid females) and PP (prepupal and pupa males). 128 

To infest the target lemons, clean lemons were partially covered by wax, leaving a clean surface 129 

(arena) of about 16 cm2 where CRS developed. Lemons were big enough relative to the size of 130 

these arenas so that the arenas could be considered flat. These arenas were kept horizontal during 131 

and after spraying. In the base of a box A series of lemons infested with crawler-producing 132 

females from the colony was put in the base of a box with the area upward. Over the arena of 133 

each lemon A black paperboard tube tubes (10 cm high and 3 cm base diameter) was were put 134 

over the arena of each lemon. On the top of black paperboard tubes the waxed clean lemons were 135 

put with the areas upward. Fluorescent lights were placed over this set up to attract crawlers from 136 

the infested lemons to the clean lemons for 24 hours. After crawlers reached the “whitecap” 137 

stage, lemons with more than 50 fixed scales were removed and placed in a tray during a period 138 

long enough to allow the majority of individuals to reach one of the desired stages in which CRS 139 

life cycle had been divided for the trial. This period was of about 5 days for N1, 9 days for N2 140 

and 15 days for N3 and PP, checking before the applications whether they had really reached the 141 

required stage. 142 
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Before the PDSO treatment, about 50 living individuals per lemon were circled with a permanent 143 

marker (Staedtler permanent Lumocolor, Staedtler, Germany). Ten days after treatment the 144 

circled individuals were turned over and the number of dead scales was recorded. N1, N2 and PP 145 

scales that had not matured to the next stage were considered as dead. N3 scales were considered 146 

dead when the body under the shield had a dry, thin and flat appearance. Percentage of mortality 147 

was calculated from these data.  148 

The experimental design consisted of 48 treatments: six volumes x four stages x two PDSO. 149 

Each treatment was replicated 5 times, and one lemon was used for each replicate. Hence, 240 150 

lemons were used. In each replicate, treatments were applied in a random order. 151 

Data Analysis. 152 

Multiple linear regression (MLR) was used to model the relationship between the volume 153 

deposited on the target, which will be referred to hereafter as variable D (deposited volume, µl 154 

solution/cm2), and the parameters that characterize the deposition pattern (coverage, mean 155 

impact area and number of impacts per unit area). One MLR model was obtained for each 156 

parameter. Quadratic and cubic terms of the independent variable D were also taken into 157 

account. In order to study if both tested PDSO differ in their deposition pattern, an indicator 158 

variable called IOIL_A was also considered. It takes the value one for the experimental data 159 

corresponding to Oil A and zero otherwise. Residues of the model were calculated and then 160 

Analysis of Variance (ANOVA) was performed on them using PDSO as the factor, in order to 161 

study the inclusion of the indicator variable in the regression model. 162 

Regarding the mortality data obtained with infested lemons, Dunnett’s test (Dunnett, 1985) was 163 

used to compare for each CRS stage and each spray volume the percentage of mortality in the 164 

control treatment (only water) versus the mortality of PDSO treatments. When significant 165 
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differences were found, efficacies were calculated using the Schneider-Orelli formula (Püntener, 166 

1981). MLR was also applied to study the effect of D, PDSO and stage on efficacy. The above 167 

explained methodology was followed to study the inclusion of the quadratic term D2 as well as 168 

the interaction between IOIL_A, D and D2. In order to assess whether there was a different 169 

response exhibited by any stage, the inclusion of three additional indicator variables were 170 

studied: IPP, IN3 and IN2, as well as their interactions with the rest of variables. Given that the 171 

number of variables was quite high in this case, stepwise MLR was used to identify those with a 172 

statistically significant effect on the efficacy. When the indicator variables were found 173 

significant, the model could be expressed as a set of equations that depended on the PDSO and 174 

the stage.  175 

In all fitted models it was checked by means of a normal probability plot and a Shapiro-Wilks 176 

test (Shapiro-Wilk, 1965) that residuals followed approximately a normal distribution, and no 177 

outliers were identified. All MLR models were carried out with the software Statgraphics® Plus 178 

version 5.1 (StatPoint Technologies Inc., Warrenton, Virginia, USA). 179 

Results 180 

Deposition Pattern. 181 

Equation 1 describes the effect of D on coverage. The coefficients of both independent variables, 182 

D or D2, in the model were statistically significant (Table 2). The coefficient of the indicator 183 

variable IOIL_A was not statistically significant (p=0.082) and it was not included in Equation 1.  184 

 When the inclusion of the dummy variable, IOIL_A, was studied, factor “oil” did not significantly 185 

affect the residues of the model (F = 3.25; d.f.= 1, 29; p-value = 0.0822), so it was not included. 186 

These results indicated that equation 1 was valid for both PDSO assessed, with a coefficient of 187 

determination R2 = 0.864. 188 
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 ( ) 22.712 - 22.722 + 0.410- = %Coverage DD ⋅⋅  (1) 189 

The fitted equation is depicted in Figure 1A. It shows that in the tested range of volumes, the 190 

increase of coverage is very low for D > 3.5 µl/cm2, reaching a maximum value of 191 

approximately 50%. 192 

Although there was no evidence of difference in the coverage produced by the two PDSO, they 193 

differed in the way that this coverage was achieved because the indicator variable IOIL_A was 194 

statistically significant in the models obtained for the mean impact area and number of impacts 195 

per unit area (Tables 3 and 4). The coefficients of determination for these models were 0.823 and 196 

0.750, respectively.  197 

In the mean impact area model it was found that the relationship between deposited volume and 198 

mean impact area was linear, and that residues differed significantly between PDSO, so the 199 

inclusion of the dummy variable in the model was studied. The regression coefficient of the 200 

variable D·IOIL_A was statistically significant (Table 3), which means that these responses could 201 

be described by two equations (2 and 3), one for each PDSO. 202 

 ( ) D⋅0.026 + 0.0046 = mmareamean 2
OIL_A  (2) 203 

 ( ) D⋅0.016 + 0.0046 = mmareamean 2
OIL_B  (3) 204 

These models are depicted in Fig. 1B, showing that the slope for Oil A was significantly higher 205 

than for Oil B. This result suggests that increases of D resulted in a greater size of impacts for the 206 

Oil A applications. 207 

Regarding the number of impacts per unit area, both PDSO showed an increasing trend between 208 

D = 0.46 and D = 1 µl/cm2. However, the number of impacts decreased between D = 2 and D = 209 

3.4 µl/cm2. This was probably due to coalescence of droplets since the nozzle is static with 210 

respect to the target. In this case, the variable IOIL_A was also statistically significant (Table 4), 211 
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which implies differences between the two PDSO. As a result, the fitted model can be described 212 

by a different equation (4 and 5) for each PDSO. Oil B produced a higher number of impacts for 213 

all volumes assessed. Taking together the results of both impact size and number, Oil B 214 

generated smaller impacts but more numerous. 215 

 ( ) 32
OIL_A

2 34.654 302.665 -647.683 + 310.633 = cmimpacts DDD ⋅+⋅⋅  (4) 216 

 ( ) 32
OIL_B

2 34.654 302.665 - 647.683 + 570.102 = cmimpacts DDD ⋅+⋅⋅  (5) 217 

Efficacy Against CRS Stages. 218 

N1, N2, N3 and PP mortalities resulting from both PDSO were significantly different from the 219 

water control (Dunnett test, P<0.05), except in the lowest treatment with 0.46 µl solution/cm2 of 220 

Oil A. This resulted in negative values of efficacy (%) for this treatment when using the 221 

Schneider-Orelli formula, as reflected in Fig. 2. The mortality percentages for water controls 222 

were 12.00% (SE=2.00%) for N1, 11.33% (SE=2.40%) for N2, 7.42% (SE=2.63%) for N3 and 223 

19.09% (SE=1.57%) for PP. 224 

By means of stepwise MLR and after checking different alternative models, the best goodness-225 

of-fit was achieved with the model reflected in Table 5, resulting R2 = 0.826. The quadratic term 226 

D2 was statistically significant as well as its interaction with several indicator variables 227 

(P<0.011). This model can be expressed as five different equations (6-10), depending on the 228 

PDSO and the stage (fitted curves in Fig. 2). When the same model is used for different stages, 229 

it’s because no differences in the residues were found. 230 

a) OIL A 231 

 2
N1/N2 4.349- 41.613 +10.099- =Efficacy % DD ⋅⋅  (6) 232 

 2
N3 5.288- 41.613 + 10.099- = Efficacy % DD ⋅⋅  (7) 233 
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 2
PP 0.634- 17.047 +11.886 = Efficacy % DD ⋅⋅  (8) 234 

b) OIL B 235 

 2
N1/N2/N3 6.087- 49.816 +10.099- = Efficacy % DD ⋅⋅  (9) 236 

 2
PP 2.373- 25.250 +11.886 = Efficacy % DD ⋅⋅  (10) 237 

 The efficacy of both PDSO against N1 and N2 was close to 90% for the highest tested volumes, 238 

and no significant differences were observed between those stages. The difference between the 239 

two PDSO depended on the amount of deposited volume required to reach the maximum 240 

efficacy. Oil A required a deposit close to 4 µl solution/cm2 to reach 90% efficacy while Oil B 241 

needed a lower one, close to 3.5 µl solution/cm2, and consequently, a lower coverage, to reach 242 

92% efficacy.  243 

In the case of stage N3, it followed the same regression model as N1 and N2 in the experiments 244 

with Oil B. However, Oil A reached a lower efficacy against N3 for the higher volumes, with a 245 

maximum efficacy close to 70%. This result suggests that Oil B was more effective than Oil A 246 

against stage N3, since it reached a similar efficacy to that obtained for younger stages. 247 

For both PDSO, efficacy against stage PP followed a different model and no relative maximum 248 

was reached. Thus, higher deposited volumes would become more effective against this stage. 249 

Generally, the efficacy on PP was lower than for the other stages at higher deposit levels.  250 

Discussion 251 

Various authors (Herron et al., 1995; Riehl and LaDue, 1952; Riehl et al., 1958; Riehl, 1981;) 252 

established that LD 95 for mineral oils ranges from 55 to 115 µg oil/cm2 for CRS. The lowest 253 

value is similar to that obtained with the maximum deposited volume of 4.9 µl/cm2 at 254 

concentration of 1.5% in our experiments (Table 1). Taking into account that collectors used in 255 
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this experiment behave similar to citrus leaves (Mercader et al., 1995) and higher volume 256 

applications will produce run-off, we would expect that the highest value of 115 µg oil/cm2 257 

reported in the literature would could only be attained in the field, under Spanish conditions, by 258 

increasing the oil concentration to more than 2.8 % which could potentially cause phytotoxicity, 259 

thus rendering it an unrealistic application. Because this work describes both the total deposition 260 

volume and the distribution of deposits, it also opens the possibility to relate the results obtained 261 

in laboratory to other reported studies, even with those conducted in field conditions. 262 

Consequently, one of the outcomes of our experiments is a more precise recommendation to 263 

Spanish citrus growers that is based on scientific evidence and has practical applications. 264 

This study shows that younger stages of CRS were more susceptible than adult stages, which is 265 

consistent according with the literature (Riehl, 1981), however it proposes a new method to 266 

model the relationships between efficacy, developmental stage and deposited spray volume. 267 

Hence, this methodology could be used to determine the coverage necessary to be reached in 268 

field conditions to obtain the maximum efficacy. The maximum efficacy obtained under field 269 

conditions may differ from the maximum efficacy obtained under laboratory conditions because 270 

in laboratory it has not been taken into account the influence of uncontrolled out-of-control 271 

factors in real applications such as meteorological conditions, the resistance of the pest to the 272 

applied product, the lack of coverage uniformity on the tree canopy, etc.  273 

Significant differences were found in deposition parameters and efficacy depending on the two 274 

particular PDSO employed in these experiments. The methodology proposed here can be useful 275 

to compare the efficacy of several commercial PDSO under laboratory conditions. This 276 

information, as well as their price could be of interest for citrus growers in order to choose the 277 

most convenient PDSO as well as for the manufacturers to improve product quality. 278 

In our experiments, Oil A was somewhat less effective than Oil B in controlling CRS. However, 279 
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it is important to remark that mineral oils which are the base of both PDSO have similar 280 

unsulfonated residue and n-paraffin carbon number (nC), so the results may suggest that 281 

differences in deposition and efficacy could be due to other factors. We speculate that 282 

coadjuvants might play a significant role in these differences, since although total coverage was 283 

not significantly different, the resulting distribution of impacts was not the same: Oil B produced 284 

smaller but more numerous impacts than Oil A. Thus, more studies of commercial PDSO are 285 

needed because both spray distribution and efficacy are dependent on the commercial 286 

formulations, not only on the mineral oil on which they are based. 287 
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Table 1. Estimated amount of active material deposited per unit area (µg/cm2) (Mean and 404 

SEM*) for the five volumes of solution and for each PDSO sprayed with the Potter tower 405 

onto Petri dishes. 406 

 407 

Table 2. Regression coefficients of the MLR equation for coverage as a function of D 408 

(deposited volume, µl solution/cm2) 409 

 410 

Table 3. Regression coefficients of the MLR equation for mean impact area as a function of 411 

D (deposited volume, µl solution/cm2) 412 

 413 

Table 4. Regression coefficients of the MLR equation for number of impacts per unit area 414 

as a function of D (deposited volume, µl solution/cm2) 415 

 416 

Table 5. Regression coefficients of the MLR equation for efficacy as a function of D 417 

(deposited volume, µl solution/cm2) 418 

 419 

Fig. 1. Experimental data and regression curves for coverage (A), mean impact area (B) 420 

and number of impacts per unit area (C) as a function of D (µl solution/cm2) for each 421 

PDSO 422 

 423 

Fig. 2. Experimental data and regression curves for efficacy (%) as a function of D (µl 424 

solution/cm2) for Oil A (A) and Oil B (B) 425 


