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MONTEL RESOLVENTS AND UNIFORMLY MEAN ERGODIC

SEMIGROUPS OF LINEAR OPERATORS

ANGELAA. ALBANESE, JOSÉ BONET* AND WERNERJ. RICKER

Abstract. For C0�semigroups of continuous linear operators acting in a Ba-
nach space criteria are available which are equivalent to uniform mean ergod-
icity of the semigroup, meaning the existence of the limit (in the operator
norm) of the Cesàro or Abel averages of the semigroup. Best known, perhaps,
are criteria due to Lin, in terms of the range of the in�nitesimal generator A
being a closed subspace or, whether 0 belongs to the resolvent set of A or is a
simple pole of the resolvent map λ 7→ (λ−A)−1. It is shown in the setting of
locally convex spaces (even in Fréchet spaces), that neither of these criteria
remain equivalent to uniform ergodicity of the semigroup (i.e., the averages
should now converge for the topology of uniform convergence on bounded
sets). Our aim is to exhibit new results dealing with uniform mean ergodic-
ity of C0�semigroups in more general spaces. A characterization of when a
complete, barrelled space with a basis is Montel, in terms of uniform mean
ergodicity of certain C0�semigroups acting in the space, is also presented.

1. Introduction

Let (T (t))t≥0 be a C0�semigroup of continuous linear operators in a locally
convex Hausdor� space X (brie�y, lcHs). Ergodic theorems have a long tradition
and are usually formulated for the Cesàro averages C(r)x = 1

r

∫ r
0 T (t)x dt or the

Abel averages λRλx = λ
∫∞

0 e−λtT (t)x dt, for x ∈ X, where r → ∞ and λ ↓ 0+,
respectively. In the former case one speaks of the mean ergodicity of (T (t))t≥0

and in the latter case of its Abel mean ergodicity. Particularly well developed is
the theory and its applications whenX is a Banach space (see, e.g., [8, Ch. 4], [13,
Ch. VIII], [15, Ch. V], [18, Ch. XVIII], [24] and the references therein), both for
the strong operator topology τs�convergence of limr→∞C(r), resp. limλ↓0+ λRλ,
and for their operator norm convergence. For certain aspects of the theory of
mean ergodic semigroups of operators in non�normable spaces X (mainly for
τs) we refer to [14], [24, Ch. 2], [31, Ch. III, �7] and the references therein.
Further results, involving {C(r)}r≥0, occur in [5], where geometric features of
the underlying space X also play an important role. But for a few exceptions,
there are not so many results available concerning the mean ergodicity of C0�
semigroups of operators in lcHs' when the averages are required to converge for
the topology τb of uniform convergence on the bounded subsets of X. The aim of
this paper is to develop this topic further.

Many criteria concerning the mean ergodicity of a τs�continuous C0�semigroup
(T (t))t≥0 acting in a lcHs X involve its in�nitesimal generator A. Under mild
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conditions this is a closed operator with a dense domain D(A) ⊆ X. For X
a Banach space the resolvent set ρ(A) of A is an open, non�empty subset of
C and so the well developed spectral theory of closed operators in such spaces
is available. In particular, the resolvent map λ 7→ R(λ,A) := (λ − A)−1 of A
is holomorphic in ρ(A) for the operator norm topology. For X non�normable,
the spectral theory of closed operators A is much less developed. Even if A is
the in�nitesimal generator of a τs�continuous C0�semigroup in a Fréchet space
X and D(A) = X, it can happen that ρ(A) fails to be open in C (see Remark
3.5(vii)) in which case the question of R(·, A) being holomorphic is not well�
posed. In Section 3 we investigate and develop those aspects of spectral theory
for closed operators (in spaces which may be non�normable) and, in particular,
for in�nitesimal generators, which are needed in later sections.

In Banach spaces there is a close connection between operator norm continuous,
mean ergodic C0�semigroups (T (t))t≥0 and compactness of the resolvent operators
R(λ,A) of the in�nitesimal generator A of (T (t))t≥0, [15, Ch. V, �4]. For X a
more general lcHs an appropriate analogue of R(λ,A) being compact ìs that it
maps bounded subsets ofX to relatively compact subsets ofX; such operators are
called Montel, [12]. Section 4 investigates the connections between the operators
R(λ,A) being Montel (assuming ρ(A) 6= ∅), the τb�continuity of the map t 7→ T (t)
in [0,∞) and of the individual operators T (t), for t ≥ 0, being Montel; this is
made precise in the main result (Theorem 4.7).

Sections 3 and 4 treat some continuity and spectral properties of general C0�
semigroups of operators and their in�nitesimal generators. These results are
needed in Section 5 where we turn our attention to mean ergodic features of C0�
semigroups (T (t))t≥0 ⊆ L(X), with X a sequentially complete lcHs and L(X)
the vector space of all continuous linear operators from X into itself. Under mild
conditions, the Cesàro averages {C(r)}r≥0 ⊆ L(X) exist as do the Abel averages
{λR(λ,A) : λ > 0} ⊆ L(X) where, for each real λ > 0, the resolvent operator
R(λ,A) coincides with the operator Rλx =:

∫∞
0 e−λtT (t)x dt, for x ∈ X, men-

tioned above and which is de�ned via X�valued Riemann integrals. The central
notions are the uniform mean ergodicity (resp. uniform Abel mean ergodicity) of
(T (t))t≥0, that is, τb-limr→∞C(r) (resp. τb-limλ↓0+ λR(λ,A)) exists. Here, con-

vergence of the net {λR(λ,A)} for λ ↓ 0+ in Lb(X) (or Ls(X)) is meant in the
sense that there exists λ0 > 0 such that (0, λ0] ⊆ ρ(A) and the interval (0, λ0] is
considered as a directed set for the order ≤ induced from R. A similar interpreta-
tion applies to convergence of the net {C(r)}r≥0 for r →∞ (relative to the other
order ≥ in R). As already mentioned, in Banach spaces many results are available
which imply or are equivalent to (T (t))t≥0 being uniformly mean ergodic. But,
for non�normable X, not so much is known. In Section 5 we present several new
results in this direction. Example 5.8 makes it clear that not all Banach space
results carry over automatically; new phenomena arise which are not present in
Banach spaces. For instance, there exists an equicontinuous C0�semigroup acting
in a Fréchet space X which is uniformly mean ergodic (equivalently, uniformly
Abel mean ergodic) but, unlike for Banach spaces, the range ImA of A fails to be
closed in X. It can also happen that 0 6∈ ρ(A) with 0 failing to be a simple pole
of R(·, A), which is impossible in Banach spaces. Theorem 5.1 (where Montel re-
solvents arise) and Theorem 5.13 provide the most extensive results for a general



MONTEL RESOLVENTS AND UNIFORMLY MEAN ERGODIC SEMIGROUPS 3

lcHs X. The �nal two results (i.e., Theorems 5.16 and 5.17) deal with certain
τb�continuous, mean ergodic C0�semigroups in complete, barrelled lcHs' with a
Schauder basis/decomposition.

2. Preliminaries

Let X be a lcHs with ΓX always denoting a system of continuous seminorms
determining the topology of X. The strong operator topology τs in L(X) (we
write L(X,Y ) for the space of all continuous linear operators from X into another
lcHs Y ) is determined by the family of seminorms qx(S) := q(Sx), for S ∈ L(X),
with x ∈ X and q ∈ ΓX . Denote by B(X) the collection of all bounded subsets of
X. The topology τb in L(X) is de�ned via the seminorms qB(S) := supx∈B q(Sx),
for S ∈ L(X), with B ∈ B(X) and q ∈ ΓX . The identity operator on X is denoted
by I.

By Xσ we denote X with its weak topology σ(X,X ′), where X ′ is the topolog-
ical dual space of X. The strong topology in X (resp. X ′) is denoted by β(X,X ′)
(resp. β(X ′, X)) and we write Xβ (resp. X ′β); see [22, �21.2] for the de�nition.

The strong dual (X ′β)′β of X ′β is denoted by X ′′. By X ′σ we denote X ′ with its

weak�star topology σ(X ′, X). Given T ∈ L(X), its dual operator T t : X ′ → X ′

is de�ned by 〈x, T tx′〉 = 〈Tx, x′〉 for x ∈ X, x′ ∈ X ′. Then T t ∈ L(X ′σ) and
T t ∈ L(X ′β), [23, p.134].

De�nition 2.1. Let X be a lcHs and (T (t))t≥0 ⊆ L(X) be a 1�parameter family
of operators. The map t 7→ T (t), for t ∈ [0,∞), is denoted by T : [0,∞)→ L(X).

We say that (T (t))t≥0 is a semigroup if it satis�es

(i) T (s)T (t) = T (s+ t) for all s, t ≥ 0, with T (0) = I.

A semigroup (T (t))t≥0 is locally equicontinuous if, for �xed K > 0, the set {T (t) :
0 ≤ t ≤ K} is equicontinuous, i.e., given p ∈ ΓX there exist q ∈ ΓX and M > 0
(depending on p and K) such that

p(T (t)x) ≤Mq(x) , x ∈ X, t ∈ [0,K]. (2.1)

A semigroup (T (t))t≥0 is said to be a C0�semigroup if it satis�es

(ii) limt→0+ T (t) = I in Ls(X).

If the C0�semigroup (T (t))t≥0 satis�es the additional condition that

(iii) limt→t0 T (t) = T (t0) in Ls(X), for each t0 ≥ 0,

then it is called a strongly continuous C0�semigroup.
A semigroup (T (t))t≥0 is said to be exponentially equicontinuous if there exists

a ≥ 0 such that (e−atT (t))t≥0 ⊆ L(X) is equicontinuous, i.e.,

∀p ∈ ΓX ∃q ∈ ΓX ,Mp > 0 with p(T (t)x) ≤Mpe
atq(x) ∀t ≥ 0, x ∈ X. (2.2)

If a = 0, then we simply say equicontinuous. Finally, a semigroup (T (t))t≥0 is
called uniformly continuous if T : [0,∞)→ Lb(X) is continuous, i.e.,

(iv) limt→t0 T (t) = T (t0) in Lb(X), for each t0 > 0 (with t→ 0+ if t0 = 0).

Given any locally equicontinuous C0�semigroup (T (t))t≥0 (resp. any locally
equicontinuous, uniformly continuous C0�semigroup) on a lcHs X, observe that
condition (iii) (resp. condition (iv)) in De�nition 2.1 is equivalent to T (t) → I
in Ls(X) (resp. in Lb(X)) as t→ 0+. This is a consequence of (i), namely, that
T (t0 +h)−T (t0) = T (t0)(T (h)−I) for each t0 > 0 and all h such that t0 +h ≥ 0.
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Remark 2.2. (i) Let X be a lcHs and (T (t))t≥0 be an equicontinuous C0�
semigroup on X. For p ∈ ΓX de�ne p̃(x) := supt≥0 p(T (t)x), for x ∈ X. By
De�nition 2.1(i)�(iii) p̃ is well-de�ned, is a seminorm and satis�es

p(x) ≤ p̃(x) ≤Mpq(x) ≤Mpq̃(x), x ∈ X. (2.3)

Hence, Γ̃X := {p̃ : p ∈ ΓX} also generates the given lc�topology of X. Moreover,

for p̃ ∈ Γ̃X , we have

p̃(T (t)x) = sup
s≥0

p(T (t)T (s)x) = sup
s≥0

p(T (t+ s)x) ≤ p̃(x), x ∈ X, t ≥ 0. (2.4)

(ii) In [21, Prop. 1.1] it is shown that in a barrelled lcHs X every strongly
continuous C0�semigroup (T (t))t≥0 is locally equicontinuous.

(iii) Every C0�semigroup of operators in a Banach space is necessarily expo-
nentially equicontinuous, [13, p.619]. For Fréchet spaces this need not be so.
Indeed, in the sequence space ω = CN (topology of coordinate convergence),
T (t)x := (entxn)∞n=1, for t ≥ 0 and x = (xn)∞n=1 ∈ ω, de�nes a C0�semigroup
which is not exponentially equicontinuous. As ω is a Montel space, (T (t))t≥0 is
also uniformly continuous.

If X is a sequentially complete lcHs and (T (t))t≥0 is a locally equicontinuous
C0�semigroup on X, then the linear operator A de�ned by

Ax := lim
t→0+

T (t)x− x
t

,

for x ∈ D(A) := {x ∈ X : limt→0+
T (t)x−x

t exists in X}, is closed with D(A) =
X, [21, Propositions 1.3 & 1.4]. The operator (A,D(A)) is called the in�nitesimal
generator of (T (t))t≥0. Moreover, A and (T (t))t≥0 commute, [21, Proposition
1.2(1)], i.e., for each t ≥ 0 we have {T (t)x : x ∈ D(A)} ⊆ D(A) and AT (t)x =
T (t)Ax, for all x ∈ D(A). Also known, [21, Proposition 1.2(2)], is that

T (t)x− x =

∫ t

0
T (s)Axds =

∫ t

0
AT (s)x ds, x ∈ D(A), (2.5)

and, [21, Corollary p.261], that

T (t)x− x = A

∫ t

0
T (s)x ds, x ∈ X. (2.6)

For each x ∈ D(A) (resp. x ∈ X), the integrals occuring in (2.5) (resp. (2.6)) are
Riemann integrals of anX�valued, continuous function on [0, t]; see [5, Appendix].
The closedness of A ensures that KerA := {x ∈ D(A) : Ax = 0} is a closed
subspace of X. The range of A is the subspace ImA := {Ax : x ∈ D(A)}.

Recall that a linear map S : X → X is called locally bounded if S(B) ∈ B(X)
for every B ∈ B(X). If S ∈ L(X), then S is necessarily locally bounded. In the
event that X is bornological, every locally bounded linear map from X into itself
is continuous.

Proposition 2.3. Let X be a sequentially complete lcHs and (T (t))t≥0 be a lo-
cally equicontinuous C0�semigroup on X whose in�nitesimal generator A satis�es
D(A) = X with A a locally bounded map. Then (T (t))t≥0 is uniformly continuous.
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Proof. Let p ∈ ΓX and B ∈ B(X). Then there exist K > 0 and q ∈ ΓX such that
p(T (t)x) ≤ Kq(x), for x ∈ X, t ∈ [0, 1]. This inequality and (2.5) imply that

pB(T (t)− I) ≤ sup
x∈B

∫ t

0
p(T (s)Ax) ds ≤ tK sup

x∈B
q(Ax), t ∈ [0, 1].

Since A is locally bounded, supx∈B q(Ax) < ∞ and so limt→0+ T (t) = I in
Lb(X). �

Remark 2.4. Since Banach spaces are bornological, Proposition 2.3 is well known
in this setting, [15, p.15].

Let X be a sequentially complete lcHs and A ∈ L(X) be power bounded,
i.e., {An}∞n=1 ⊆ L(X) is equicontinuous. It follows from Corollary 1 (and an

examination of its proof) in [34, p.245] that T (t) := etA =
∑∞

n=0
tnAn

n! , for t ≥
0, de�nes an exponentially equicontinuous C0�semigroup; actually (e−tT (t))t≥0

is equicontinuous. In particular, (T (t))t≥0 is also locally equicontinuous. So,
Proposition 2.3 implies that (T (t))t≥0 is necessarily uniformly continuous.

Concerning the converse of Proposition 2.3, it is known that the in�nitesimal
generator A of any uniformly continuous C0�semigroup in a Banach space X
satis�es A ∈ L(X), [13, Ch. VIII, Corollary 1.9]. For X a quojection (or, even
prequojection) Fréchet space and (T (t))t≥0 ⊆ L(X) an exponentially equicontin-
uous, uniformly continuous C0�semigroup, it is also the case that its in�nitesimal
generator A ∈ L(X), [4, Theorem 3.3 & Proposition 3.4]. However, this is not
the case for Fréchet spaces in general, [4, Example 3.1 & Proposition 3.2].

Let (T (t))t≥0 be a locally equicontinuous C0�semigroup on a sequentially com-
plete lcHs X. The operators

C(0) := I and C(r)x :=
1

r

∫ r

0
T (t)xdt, x ∈ X, r > 0, (2.7)

are called the Cesáro means of (T (t))t≥0. The integrals in (2.7) are X�valued
Riemann integrals with respect to the locally convex topology of X; see [5], [20],
[34], for example. The Cesáro means {C(r)}r≥0 are well de�ned and belong
to L(X), [5, Section 3]. If (T (t))t≥0 is equicontinuous, then {C(r)}r≥0 is also
equicontinuous, [5, Section 3]. In case X is barrelled the Cesáro means exist
in L(X) whenever the semigroup (T (t))t≥0 is strongly continuous (via Remark
2.2(ii)).

3. Spectra of closed linear operators

The spectral theory of closed linear operators in Banach spaces is well de-
veloped. A traditional area of application is the theory of semigroups of linear
operators, [8], [13], [15]. In particular, this applies to mean ergodic semigroups,
[8, Ch. 4] [15, Ch.5, �4]. The extension of several classical Banach space results
for strongly continuous, mean ergodic C0�semigroups to the setting of lcHs' occur
in [5], [14], [24, Ch.2], [31]. The spectral theory of continuous linear operators
acting in non�normable lcHs' is well developed, especially in Lb(X), [7], [30],
where the methods of lc�algebras are applicable. However, in an attempt to ad-
dress uniformly continuous, mean ergodic semigroups in the non�Banach space
setting one is confronted with the di�culty that the spectral theory of closed
linear operators (not necessarily everywhere de�ned) in such a space is not nearly
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as satisfactory as for Banach spaces. The aim of this section is to present certain
aspects of such a spectral theory (see also [32]) but, only to the extent needed in
later sections dealing with operator semigroups and uniform mean ergodicity.

Let A : D(A) ⊆ X → X be a linear operator on a lcHs X. Whenever λ ∈ C
is such that (λ − A) : D(A) → X is injective, the linear operator (λ − A)−1 is
understood to have domain Im(λ − A) := {(λ − A)x : x ∈ D(A)}. Of course,
Im(λ−A)−1 = D(A). The resolvent set of A is de�ned by

ρ(A) := {λ ∈ C : (λ−A) : D(A)→ X is bijective and (λ−A)−1 ∈ L(X)}

and the spectrum of A is de�ned by σ(A) := C \ ρ(A). For λ ∈ ρ(A) we also
write R(λ,A) := (λ − A)−1. Recall that A is called closed if the conditions
(xα)α ⊆ D(A) converges to x in X and (Axα)α converges to y in X imply that
x ∈ D(A) and y = Ax. We point out for A closed, that also λ − A is closed for
all λ ∈ C and that (λ−A)−1 is closed whenever λ−A is injective.

For �xed λ, µ ∈ ρ(A), it follows from the de�nition that

R(λ,A) = R(λ,A)(µ−A)R(µ,A) = R(λ,A)[(µ− λ)I + (λ−A)]R(µ,A)

= (µ− λ)R(λ,A)R(µ,A) +R(µ,A),

from which we obtain the resolvent equation

R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A). (3.1)

Remark 3.1. (i) Let A : D(A) ⊆ X → X be a linear operator on a lcHs X. If
ρ(A) 6= ∅, then A is a closed operator. Indeed, for any �xed net (xα)α ⊆ D(A)
satisfying xα → x and Axα → y in X we have that λxα − Axα → λx − y in X
for every λ ∈ C. In case λ ∈ ρ(A) we also have

R(λ,A)(λxα −Axα) = xα, ∀α. (3.2)

Via the continuity of R(λ,A) and passing to the limits in (3.2), we obtain

R(λ,A)(λx− y) = x. (3.3)

This implies x ∈ D(A) so that also R(λ,A)(λx − Ax) = x. Combining this
identity with (3.3) we get R(λ,A)(Ax − y) = 0. Hence, y = Ax as R(λ,A) is
injective.

(ii) If A : D(A) → X is a closed linear operator and λ ∈ C satis�es (λ −
A) : D(A) → X is bijective, then (λ − A)−1 : X → D(A) ⊆ X is closed. So, for
X a Fréchet space, the Closed Graph Theorem ensures (λ − A)−1 ∈ L(X). If
the Closed Graph Theorem is not available in a lcHs X, then it is necessary to
assume, as in the above de�nition of ρ(A), that (λ−A)−1 ∈ L(X).

Proposition 3.2. Let λ ∈ C and A : D(A)→ X be a closed linear operator in a
complete lcHs X. If (λ − A) : D(A) → X is injective with a continuous inverse
(λ−A)−1 : Im(λ−A)→ X, then Im(λ−A) is a closed subspace of X.

If, in addition, Im(λ−A) is dense in X, then λ ∈ ρ(A).

Proof. The continuity of (λ − A)−1 : Im(λ − A) → X implies, for each p ∈ ΓX ,
that there exist Mp > 0 and q ∈ ΓX satisfying p((λ − A)−1y) ≤ Mpq(y), for
y ∈ Im(λ−A), or equivalently, that

p(x) ≤Mpq((λ−A)x), x ∈ D(A). (3.4)
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Let y ∈ Im(λ−A). Then y = limα(λ − A)xα for some net (xα)α ⊆ D(A). It
follows from (3.4) that (xα)α ⊆ D(A) is Cauchy in X. By completeness there is
x ∈ X with x = limα xα. Since (λ−A) : D(A)→ X is closed, it follows x ∈ D(A)
and y = (λ−A)x, i.e., y ∈ Im(λ−A). So, Im(λ−A) is closed in X.

If, in addition, Im(λ − A) is dense in X, then actually Im(λ − A) = X, i.e.,
(λ−A)−1 ∈ L(X) and so λ ∈ ρ(A). �

Remark 3.3. (i) Proposition 3.2 ensures that, for a closed linear operatorA : D(A)→
X (with D(A) ⊆ X) in a complete lcHs X we have

ρ(A) =
{
λ ∈ C : (λ−A) : D(A)→ X is injective, Im(λ−A) = X

and (λ−A)−1 : Im(λ−A)→ X is continuous
}
.

(ii) In [34, Ch.VIII, p.209] the resolvent set of a linear operator A : D(A)→ X
is de�ned as the set of all λ ∈ C such that Im(λ−A) is dense in X and (λ−A)
has a continuous inverse belonging to L(Im(λ − A),D(A)). Let us denote this
resolvent set by ρY (A). Clearly, we always have ρ(A) ⊆ ρY (A). In case the
space X is complete and A is closed, it follows from Proposition 3.2 that, for each
λ ∈ ρY (A), we have Im(λ − A) = X and so λ ∈ ρ(A). That is, ρY (A) = ρ(A)
whenever A is closed and X is complete.

Proposition 3.4. Let A : D(A)→ X be a closed linear operator in a sequentially
complete lcHs X with ρ(A) 6= ∅. Let U ⊆ ρ(A) be non�empty.

(i) Assume that, for each λ ∈ U , there exists an open neighbourhood V (λ) ⊆ C
of λ with V (λ) ⊆ U such that the set R(V (λ)) := {R(µ,A) : µ ∈ V (λ)} is
equicontinuous in L(X). Then U is open in C, the resolvent map R : λ→
R(λ,A) is holomorphic from U into Lb(X), and

dn

dλn
R(λ,A) = (−1)nn!R(λ,A)n+1, n ∈ N, λ ∈ U . (3.5)

In particular, the resolvent map R is continuous from U into Lb(X).
(ii) In addition, let Lb(X) be sequentially complete. Then, under the assump-

tions of (i), for each µ ∈ U one has the series expansion

R(z,A) =
∞∑
n=0

(µ− z)nR(µ,A)n+1 (3.6)

in Lb(X), for all z in some open disc with centre µ and contained in U .
(iii) Assume, for each λ ∈ U , that there exists Mλ > 0 satisfying

p(R(λ,A)x) ≤Mλp(x), ∀p ∈ ΓX , x ∈ X. (3.7)

Then the assumptions of (i) are satis�ed and, for each µ ∈ U , an open
disc with centre µ for which (3.6) holds can be chosen with radius 1/Mµ.

Proof. (i) The assumptions clearly imply that U is open in C.
We �rst prove the continuity of R : U → Lb(X). So, �x λ ∈ U and a continuous

seminorm pB in Lb(X), i.e., p ∈ ΓX and B ∈ B(X). By assumption there exists
an open neighbourhood V (λ) ⊆ C of λ with V (λ) ⊆ U such that R(V (λ)) :=
{R(µ,A) : µ ∈ V (λ)} is equicontinuous in L(X). So, corresponding to p there
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exist Mp > 0 and q ∈ ΓX such that p(R(µ,A)x) ≤Mpq(x), for µ ∈ V (λ), x ∈ X.
Using the resolvent equation (3.1) it follows that

pB(R(λ,A)−R(µ,A)) = sup
x∈B

p(R(λ,A)x−R(µ,A)x)

= |µ− λ| sup
x∈B

p(R(µ,A)R(λ,A)x) ≤ αMp|µ− λ|, µ ∈ V (λ),

where α := supx∈B q(R(λ,A)x) <∞ as R(λ,A)(B) ∈ B(X) via the continuity of
R(λ,A). This inequality ensures that if µn → λ in U , then R(µn, A) → R(λ,A)
in Lb(X) as n→∞.

Using again the resolvent equation (3.1), we have that

R(µ,A)−R(λ,A)

µ− λ
= −R(µ,A)R(λ,A), λ, µ ∈ ρ(A), λ 6= µ. (3.8)

This formula together with the continuity of the resolvent map R : U → Lb(X)
imply that λ → R(λ,A) is holomorphic in U . In particular, (3.8) also implies
that dn

dλnR(λ,A) = (−1)nn!R(λ,A)n+1, for λ ∈ U , n ∈ N, where we need to use

the equicontinuity of {R(µ,A)k : µ ∈ V (λ)} ⊆ L(X), for each k ∈ N.
(ii) Let f : U → Lb(X) be holomorphic and µ ∈ U be �xed. Suppose that

D ⊆ U is an open disc centred at µ and that C0 is a circle centred at µ with
radius r0 such that C0 ⊆ D. Fix any z inside C0 and write r := |z − µ| < r0.
If s is any point on a circle C1 centred at µ with radius r1 ∈ (r, r0), then the
theory of integration for continuous vector�valued (in this case Lb(X)�valued)
functions de�ned on a compact interval in R (in this case [0, 2π], which is used
to parameterise the curve C1 in C via θ 7→ µ + r1e

iθ) yields, by an argument
analogous to the case when f is C�valued (see, e.g., [10, �52]) that

1

2πi

∫
C1

f(s)

(s− µ)n+1
ds =

f (n)(µ)

n!
, n = 0, 1, 2, . . . .

One can then argue as for C�valued functions (e.g. [10, pp.145�147]) to establish
that the power series expansion (in Lb(X)) of f is given by

f(z) =
∞∑
n=0

f (n)(µ)

n!
(z − µ)n, |z − µ| < r0, (3.9)

provided limn→∞RN (z) := limN→∞
(z−µ)N

2πi

∫
C1

f(s)
(s−z)(s−µ)N

ds = 0 in Lb(X). To

see that this is the case, recall that |z − µ| = r and |s − µ| = r1 and hence,
|s− z| ≥ |s− µ| − |z − µ| = r1 − r. So, if q ∈ ΓX and B ∈ B(X), then it follows
from [5, Proposition 11(vii)] applied in the sequentially complete lcHs Lb(X) that

qB(RN (z)) =
rN

2π
qB

(∫
C1

f(s)

(s− z)(s− µ)N
ds

)
≤ rN

2π
· 2πr1

(r1 − r)rN1
sup
s∈C1

qB(f(s))

=
r1

(r1 − r)
·
(
r

r1

)N
sup
s∈C1

qB(f(s)).

But, f(C1) is compact in Lb(X) and qB : Lb(X) → [0,∞) is continuous and so
sups∈C1

qB(f(s)) < ∞. Since r
r1
< 1, we can conclude that qB(RN (z)) → 0 as

N → ∞. That is, RN (z) → 0 in Lb(X) for each z in the interior of C0 and so
(3.9) is indeed valid.
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For the particular case when f is the resolvent function R : λ→ R(λ,A) of A,
the identities (3.5) and (3.9) yield (3.6) for all z satisfying |z − µ| < r0.

(iii) Fix µ ∈ U . Then, for any λ ∈ C, we can write

λ−A = µ−A+ λ− µ = (µ−A)− (µ− λ)R(µ,A)(µ−A)

= [I − (µ− λ)R(µ,A)](µ−A),

as an identity on D(A). This operator is bijective if and only if [I − (µ −
λ)R(µ,A)] : X → D(A) is bijective. Now, by (3.7) we have

p((µ− λ)nR(µ,A)nx) ≤ |λ− µ|nMµp(R(µ,A)n−1x)

≤ |λ− µ|nMn
µ p(x), x ∈ X, p ∈ ΓX . (3.10)

This inequality ensures that if λ ∈ C satis�es |λ − µ| < M−1
µ , then the series∑∞

n=0(µ − λ)nR(µ,A)nx converges absolutely for every x ∈ X and hence, con-
verges in X (by sequential completeness of X). In case |λ − µ| < M−1

µ the
inverse of λ − A is then the linear operator from X to X given by Rλ : x →∑∞

n=0(µ− λ)nR(µ,A)n+1x which, by (3.10), satis�es

p(Rλx) ≤ Mµ

1− |µ− λ|Mµ
p(x), x ∈ X, p ∈ ΓX , (3.11)

i.e., Rλ ∈ L(X). Hence,

Rλ = R(λ,A) = R(µ,A)[I − (µ− λ)R(µ,A)]−1 =
∞∑
n=0

(µ− λ)nR(µ,A)n+1.

In particular, (3.11) ensures that {R(λ,A) : λ ∈ V (µ)} ⊆ L(X) is equicontinuous,
where V (µ) := {λ ∈ C : |λ− µ| < 1/2Mµ} is contained in U . So, we have shown
that the assumptions of (i) are satis�ed.

Of course, for any �xed λ belonging to D(µ) := {λ ∈ C : |λ− µ| < 1/Mµ} we
see from (3.11) that R(λ,A) ∈ L(X), i.e., D(µ) ⊆ U . But, for equicontinuity of
R(V (λ)) ⊆ L(X) we require a smaller radius for V (λ), e.g., 1/2Mµ. �

Remark 3.5. (i) When Lb(X) has additional completeness properties, the ex-
pansion (3.6) in Lb(X) is well known; see, for example, [16, pp.493�503], [19,
�16.7].

(ii) If X is sequentially complete and barrelled, then both Ls(X) and Lb(X)
are sequentially complete, [11, Proposition 1.8 & Remark 1.9]. This is relevant
for Proposition 3.4(ii).

(iii) Let X be a Banach space and A : D(A)→ X be any closed operator such
that ρ(A) 6= ∅. Then, for each λ ∈ ρ(A), we see in (3.7) that Mλ := ‖R(λ,A)‖ <
∞ can be chosen, [15, p.240]. For an example where ρ(A) = ∅, see [15, p.241]
for instance. Such an operator A cannot be the in�nitesimal generator of a C0�
semigroup, [15, Ch.II, Theorem 1.10(ii)].

(iv) If (A,D(A)) is the in�nitesimal generator of any equicontinuous C0�semigroup
(T (t))t≥0 on a sequentially complete lcHs X, then (3.7) is always satis�ed at each
point λ ∈ C+ ⊆ ρ(A), for some Mλ > 0, where C+ := {µ ∈ C : Re(µ) > 0}.
Indeed, for such an operator A, we �rst claim that C+ ⊆ ρ(A) and

R(λ,A)x =

∫ ∞
0

e−λtT (t)x dt, Re(λ) > 0, x ∈ X. (3.12)
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To see this, by Remark 2.2(i), we may assume that each p ∈ ΓX satis�es

p(T (t)x) ≤ p(x), x ∈ X, t ≥ 0. (3.13)

For each x ∈ X, the integral
∫∞

0 e−λtT (t)x dt = limn→∞
∫ n

0 e−λtT (t)x dt exists

as an improper Riemann integral whenever Re(λ) > 0. Indeed, t 7→ e−λtT (t)x,
for t ∈ [0, n], is a continuous X�valued function and so, as noted above, the
sequential completeness of X ensures that the integral

∫ n
0 e−λtT (t)x dt ∈ X exists

as a limit of X�valued Riemann sums. The convergence of the improper integral
follows from the sequential completeness of X, the equicontinuity of (T (t))t≥0,

the inequalities (using (3.13)) p(e−λtT (t)x) ≤ e−Re(λ)tp(x), for t ≥ 0, and the
inequalities (again using (3.13))

p

(∫ n

m
e−λtT (t)x dt

)
≤
∫ n

m
p(e−λtT (t)x)dt ≤ e−Re(λ)m − e−Re(λ)n

Re(λ)
p(x), n > m,

for all p ∈ ΓX . Putting m = 0 and letting n→∞ gives

p

(∫ ∞
0

e−Re(λ)tT (t)x dt

)
≤ 1

Re(λ)
p(x), x ∈ X, p ∈ ΓX . (3.14)

In particular, (3.14) implies that the linear map Rλ : x →
∫∞

0 e−λtT (t)x dt, for
x ∈ X, satis�es Rλ ∈ L(X). It follows from Theorem 1 and Corollary 1 of [34,
pp. 240�241], that actually Rλ = (λ− A)−1 and so λ ∈ ρ(A) ⊆ ρY (A) whenever
λ ∈ C+ (cf. Remark 3.3(ii)). This establishes (3.12).

It follows from (3.14) that (3.7) holds with Mλ := 1/Re(λ), for each λ ∈ C+.
In particular, R(·, A) : C+ → Lb(X) is holomorphic; see Proposition 3.4(iii) with
U = C+. We point out that (3.7) may not hold for all λ ∈ ρ(A); see (vi) and (vii)
below.

(v) We note that (3.7) may fail to hold at every point λ ∈ ρ(A) for an exponen-
tially equicontinuous C0�semigroup, even if its in�nitesimal generator A ∈ L(X).
Consider X = ω = CN equipped with the seminorms pk(x) = max1≤j≤k |xj |,
for x = (x1, x2, . . .) ∈ X, for each k ∈ N; see Section 2. Then X is a Fréchet
space. The unit right shift A ∈ L(X) is given by A(x) := (0, x1, x2, . . .), for
x = (x1, x2, . . .) ∈ X. For λ = 0 we see that (λ − A) is not surjective, i.e.,
0 ∈ σ(A). If λ 6= 0, then (λ−A) is injective and a direct calculation shows that

R(λ,A)(y) =

(
1

λ
y1,

1

λ
y2 +

1

λ2
y1,

1

λ
y3 +

1

λ2
y2 +

1

λ3
y1, . . .

)
, y ∈ X, (3.15)

and hence, R(λ,A) ∈ L(X). Accordingly, σ(A) = {0} and ρ(A) = C \ {0}. Set
d

(n)
λ := max

{
1
|λ| ,

1
|λ|2 , . . . ,

1
|λ|n

}
for λ 6= 0, n ∈ N. It turns out that

pn(R(λ,A)y) ≤ nd(n)
λ pn(x), y ∈ X. (3.16)

Moreover, nd
(n)
λ is the smallest constant for which (3.16) holds; to see this consider

the vector y(n) ∈ X with y
(n)
j = 1 for 1 ≤ j ≤ n and, y

(n)
j = 0 for j > n. That is,

suppn(x)≤1 pn(R(λ,A)x) = nd
(n)
λ , for each n ∈ N. Since

nd
(n)
λ =

{
n
|λ| if |λ| ≥ 1
n
|λ|n if 0 < |λ| < 1,
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it follows that Mλ := supn∈N nd
(n)
λ = ∞, for every λ 6= 0. Thus, for no λ 6= 0

does there exist Mλ ∈ (0,∞) satisfying (3.7).
The claim is that the semigroup T (t) := etA, t ≥ 0, is exponentially equicon-

tinuous. Indeed, direct calculation gives (via the power series) that

etAx =

(
x1, x2 + tx1, x3 + tx2 +

t2

2!
x1, x4 + tx3 +

t2

2!
x2 +

t3

3!
x1, . . .

)
, x ∈ X,

for each t ≥ 0. From the de�nition of pn we deduce, for t ≥ 0 and n ∈ N, that

pn(etAx) ≤ n
(

1 + t+ . . .+
tn

n!

)
pn(x) ≤ netp(x), x ∈ X.

Accordingly, {etA}t≥0 is exponentially equicontinuous; see also Remark 2.4.
So, here the in�nitesimal generator A of the exponentially equicontinuous C0�

semigroup {etA}t≥0 satis�es ρ(A) 6= ∅ but, condition (3.7) fails to hold for every
λ ∈ ρ(A). Nevertheless, the set ρ(A) is still open, i.e., that (3.7) holds for every
λ ∈ ρ(A) is su�cient but not necesssary for ρ(A) to be open.

Such an example as just given in the Fréchet space ω cannot occur in a Ba-
nach space X. Indeed, every strongly continuous C0�semigroup (T (t))t≥0 in a
Banach space is exponentially equicontinuous, [15, Ch.I, Proposition 5.5], and its
in�nitesimal generator A is a closed operator, [15, Ch.II, Theorem 1.4]. So, we
see from part (iii) of this Remark that (3.7) is satis�ed for every λ ∈ ρ(A), where
it was also noted that ρ(A) 6= ∅, [15, Ch.II, Theorem 1.10(ii)].

Returning to the example in ω we observe that, for every λ ∈ ρ(A), i.e.,

|λ| > 0, the open neighbourhood V (λ) := {µ ∈ C : |µ − λ| < |λ|
2 } of λ does

have the property that R(V (λ)) ⊆ L(ω) is equicontinuous (i.e., the assumption
of Proposition 3.4(i) is satis�ed). Indeed, each µ ∈ V (λ) satis�es 1

|µ| ≤
2
|λ| . Fix

k ∈ N and x ∈ ω. Then it follows from (3.15) that

pk(R(µ,A)x) ≤ pk(x)
k∑
j=1

(
2

|λ|

)j
, µ ∈ V (λ).

Accordingly, {R(µ,A)x : µ ∈ V (λ)} is a bounded set in ω, for each x ∈ ω. Since
ω is barrelled, we can conclude that R(V (λ)) is equicontinuous, for each λ ∈ ρ(A).

(vi) The equicontinuity assumption in Proposition 3.4(i) is not always satis�ed,
even if ρ(A) 6= ∅ is open. Part of the following example (without details) is stated

in [27, Example 2]. Let X := {f ∈ C∞([0, 1]) : f (k)(0) = 0 ∀k ∈ N0} be the
Fréchet�Montel space equipped with the increasing sequence of norms

pn(f) := max
0≤k≤n

sup
t∈[0,1]

|f (k)(t)|, f ∈ X, n ∈ N0.

The di�erentiation operator Df := f ′, for f ∈ X, clearly belongs to L(X). De�ne

Vλf : x 7→ −eλx
∫ x

0
e−λtf(t) dt, x ∈ [0, 1], (3.17)

for each f ∈ X and λ ∈ C. Then Vλf ∈ X and the linear map Vλ : f 7→ Vλf , for
f ∈ X, belongs to L(X). Direct calculation veri�es that R(λ,D) = Vλ and so
ρ(D) = C. According to [16, p.512], the resolvent map R(·, D) is entire from C
into Lb(X).
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Consider now A := V0 so that A ∈ L(X). Direct calculation shows that
R(0, A) = (0−A)−1 = D and that

R(λ,A) = − 1

λ
V− 1

λ
D, λ 6= 0. (3.18)

So, also ρ(A) = C. To see that R(·, A) is not equicontinuous in any bounded open
disc about 0 it su�ces to exhibit g ∈ X satisfying sup−r<λ<0 p0(R(λ,A)g) = ∞
for every r > 0. To this e�ect, choose any g ∈ X \{0} satisfying g ≥ 0 and g′ ≥ 0.
Then, for r > 0 and λ ∈ (−r, 0) it follows from (3.17) and (3.18) that

p0(R(λ,A)g) =
1

|λ|
sup
x∈[0,1]

∫ x

0
e(t−x)/λg′(t) dt ≥ 1

|λ|
sup
x∈[0,1]

∫ x

0
g′(t) dt =

1

|λ|
p0(g)

with p0(g) > 0. So, R(·, A) indeed fails to be equicontinuous in {z ∈ C : |z| < r}
for every r > 0.

It should be noted that A generates a C0�semigroup. Indeed, for each f ∈ X
and m ∈ N0, direct calculation yields

(Amf)(j) = (−1)jAm−jf, 1 ≤ j ≤ m,
and also that

(Amf)(k) = (−1)kf (k−m), k ≥ m.
It follows that p0(Amf) ≤ p0(f), for f ∈ X and m ∈ N0, and also that

pk+1(Amf) ≤ pk(f), k ∈ N.

Accordingly, A is power bounded and so it is the in�nitesimal generator of the
exponentially equicontinuous, uniformly continuous C0�semigroup (eAt)t≥0 with
T (t) := e−teAt, for t ≥ 0, being an equicontinuous, uniformly continuous C0�
semigroup; see Remark 2.4. Recall that B := A− I is the in�nitesimal generator
of (T (t))t≥0. Moreover, R(λ,B) = R(λ+ 1, A) for all λ ∈ C = ρ(A) = ρ(B). Let
λ0 := −1 ∈ ρ(B) and Uλ0 be any open disc centred at λ0. Then W0 := {1 + µ :
µ ∈ Uλ0} is an open disc centred at 0 = 1 + λ0 and so {R(µ,A) : µ ∈W0} is not
equicontinuous. But, {R(µ,A) : µ ∈ W0} = {R(λ,B) : λ ∈ Uλ0} and so we can
conclude that {R(λ,B) : λ ∈ Uλ0} fails to be equicontinuous for every disc Uλ0
centred at λ0. According to Proposition 3.4(iii), (3.7) fails to hold for λ0.

(vii) The resolvent set ρ(A) is not always an open subset of C, even for the
in�nitesimal generator A of an equicontinuous C0�semigroup. Let X = ω be the
Fréchet space as in part (v) and Γ := {γn}n∈N be any (�xed) countable, dense
subset of {λ ∈ C : Re(λ) < 0}. Then the linear operator Ax := (γnxn)∞n=1, for
x = (xn)∞n=1 ∈ X, belongs to L(X). Direct calculation shows σ(A) = Γ and, for
λ 6∈ Γ, that

R(λ,A)x =

(
xn

(λ− γn)

)∞
n=1

, x ∈ X,

belongs to L(X). So, ρ(A) = C \ Γ surely fails to be open. Moreover, A is
the in�nitesimal generator of the equicontinuous, uniformly continuous (as X is
Montel) C0�semigroup (T (t))t≥0 given by T (t)x := (eγntxn)∞n=1, for x ∈ X, t ≥ 0.

The claim is that (3.7) fails to hold for every λ ∈ ρ(A) satisfying Re(λ) < 0.
This is equivalent to showing that

sup
k∈N

sup
pk(x)≤1

pk(R(λ,A)x) =∞. (3.19)
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To this e�ect, let x := (1, 1, . . .) so that pk(x) = 1 for all k ∈ N. Moreover,
pk(R(λ,A)x) = max1≤j≤k |λ− γj |−1, for k ∈ N. Choose a subsequence {γnr}∞r=1

with γnr → λ as r → ∞. Then, for each m ∈ N, there is nr(m) ∈ N such that

|λ− γnr(m)
|−1 ≥ m and hence, pnr(m)

(R(λ,A)x) ≥ m. This clearly implies (3.19).

Let (A,D(A)) be a linear operator in a lcHs X such that ρ(A) 6= ∅, in which
case A is closed by Remark 3.1(i). For each λ ∈ ρ(A) we have (λI−A)R(λ,A) = I
on X and so

λR(λ,A)x− x = AR(λ,A)x, x ∈ X. (3.20)

Lemma 3.6. Let (A,D(A)) be a linear operator in a lcHs X with ρ(A) 6= ∅.
(i) For each λ ∈ ρ(A) it is the case that

KerA = {x ∈ D(A) : λR(λ,A)x = x}. (3.21)

(ii) The subspace ImA, hence also ImA, is invariant for each operator in
{λR(λ,A) : λ ∈ ρ(A)}.

Proof. (i) If x belongs to the right�side of (3.21), then it follows from (3.20)
and the fact that x ∈ D(A) that R(λ,A)Ax = 0. By injectivity of R(λ,A) also
Ax = 0, i.e., x ∈ KerA. The reverse containment follows directly from (3.20).

(ii) Let u = Ax with x ∈ D(A). Then, for λ ∈ ρ(A),

λR(λ,A)u = A(λR(λ,A)x) ∈ ImA

and so ImA is λR(λ,A)�invariant. By continuity of λR(λ,A), the same is true of
ImA. �

Lemma 3.7. Let (A,D(A)) be a linear operator in a lcHs X such that, for some
λ0 > 0, we have (0, λ0] ⊆ ρ(A) with {λR(λ,A) : 0 < λ ≤ λ0} equicontinuous in
L(X). Then the resolvent map R(·, A) : (0, λ0] → Lb(X) is continuous. Hence,
also λ 7→ λR(λ,A) is continuous from (0, λ0] into Lb(X).

Proof. Fix µ ∈ (0, λ0]. By (3.1), for each λ ∈ (0, λ0], we have

R(λ,A)−R(µ,A) =
(µ− λ)

λ
R(µ,A)[λR(λ,A)]. (3.22)

For λ ∈ (µ2 , λ0] we have
∣∣∣µ−λλ ∣∣∣ ≤ 2|µ−λ|

µ . Given B ∈ B(X), it follows from

[23, (1) p.137] that C := ∪0<λ≤λ0λR(λ,A)(B) belongs to B(X) and hence, also
H := 2

µR(µ,A)(C) ∈ B(X). Fix p ∈ ΓX . Then (3.22) yields

pB(R(λ,A)−R(µ,A)) ≤ |µ− λ|pH(I), λ ∈ (
µ

2
, λ0],

from which it follows that τb − limλ→µR(λ,A) = R(µ,A). �

Lemma 3.8. Let X be a sequentially complete lcHs and (T (t))t≥0 ⊆ L(X) be a
locally equicontinuous C0�semigroup with in�nitesimal generator (A,D(A)). Sup-
pose there exists λ0 > 0 with (0, λ0] ⊆ ρ(A).

(i) If x ∈ X satis�es limλ↓0+ λR(λ,A)x = 0, then x ∈ ImA.
(ii) Suppose, in addition, that {λR(λ,A) : 0 < λ ≤ λ0} is equicontinuous.

Then

ImA = {x ∈ X : lim
λ↓0+

λR(λ,A)x = 0}. (3.23)



14 A.A. Albanese, J. Bonet and W. J. Ricker

Proof. (i) It follows from (3.20) that x = limλ↓0+ AR(λ,A)(−x), from which it is

clear that x ∈ ImA.
(ii) Fix x ∈ X and t ≥ 0. According to (2.6) we have y :=

∫ t
0 T (s)x ds ∈ D(A)

with T (t)x− x = Ay. It follows that

λR(λ,A)(T (t)x− x) = λR(λ,A)[(A− λI)y + λy] = −λy + λ2R(λ,A)y. (3.24)

But, {λR(λ,A)y : 0 < λ ≤ λ0} ∈ B(X) and so limλ↓0+ λR(λ,A)(T (t)x− x) = 0.
Moreover, by [5, Remark 5(iii)] we have (even without the hypothesis (0, λ0] ⊆
ρ(A)) that

ImA = span{T (t)x− x : t ≥ 0, x ∈ X}. (3.25)

So, the equicontinuous family {λR(λ,A) : 0 < λ ≤ λ0} converges to 0 at each
point of a dense subset of ImA, with ImA being λR(λ,A)�invariant for each
0 < λ ≤ λ0; see Lemma 3.6(ii). It follows from [23, (1) p.138] that {λR(λ,A) :
0 < λ ≤ λ0} converges to 0 at every point of ImA. Combined with part (i) this
yields (3.23). �

In conclusion, let (A,D(A)) be a closed linear operator in a lcHs X such that
ρ(A) 6= ∅. A point λ0 ∈ σ(A) is called a simple pole of R(·, A) if there exist a
punctured disc D(λ0, r) := {z ∈ C : 0 < |z − λ0| < r} ⊆ ρ(A), for some r > 0,
and P ∈ L(X) such that λ 7→ R(λ,A)− (λ− λ0)−1P has a holomorphic, Lb(X)�
valued extension fromD(λ0, r) to the open disc {λ0}∪D(λ0, r). Simple poles arise
in criteria for determining when an individual operator from L(X) is uniformly
ergodic in Lb(X); see [13, Ch. VIII, �8] for X a Banach space and [33, �4.1] for
X a lcHs. In Section 5 we will have occasion to use simple poles in the study
of uniformly mean ergodic C0�semigroups, where A will be the corresponding
in�nitesimal generator.

4. Montel resolvents and semigroups of operators

The in�nitesimal generator A of a C0�semigroup (T (t))t≥0 in a Banach space
X is said to have compact resolvent if R(λ,A) is compact for some (hence, all)
λ ∈ ρ(A), [15, Ch. II, De�nition 4.24]. The C0�semigroup (T (t))t≥0 is called
immediately compact if each operator T (t), for t > 0, is compact, [15, Ch. II,
De�nition 4.23]. The relationship between these two notions is well known, [15,
Ch. II, Theorem 4.29], and is closely connected to operator�norm continuity of
t 7→ T (t). In turn, such connections are crucial for the theory of operator�norm
continuous, mean ergodic C0�semigroups, [15, Ch. V, Sect. 4]. In attempting to
extend this theory to a non�normable lcHs X one is confronted with the ques-
tion: When should an operator S ∈ L(X) be called compact? According to
Grothendieck, [17, Ch. 5, Part 2], (see also [26, Ch. 3], [27]), this is de�ned
via the existence of some 0�neighbourhood U ⊆ X such that S(U) is a relatively
compact subset of X; for X a Banach space this reduces to the traditional def-
inition. Unfortunately, this notion of compactness is somewhat restrictive when
attempting to apply it to uniformly continuous, mean ergodic C0�semigroups in
non�normable spaces. An alternative notion could be that S maps bounded sub-
sets of X to relatively compact subsets of X (which, for X a Banach space, is
also equivalent to S being compact). Such operators S ∈ L(X), called Montel,
were introduced and studied in [12] (see also [9]) and are more suitable for the
treatment of uniformly continuous, mean ergodic C0�semigroups in non�normable
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lcHs'. In this section we develop the relevant results for uniformly continuous C0�
semigroups (of interest in their own right); their application to mean ergodicity
occurs in the following section.

Given lcHs' X, Y , an operator S ∈ L(X,Y ) is called Montel if S(B) ⊆ Y is
relatively compact for every B ∈ B(X). Every compact operator (in the sense
of Grothendieck) is Montel but, not conversely; consider the identity operator on
an in�nite�dimensional Montel lcHs. The Montel operators form a 2�sided ideal
within the class of all continuous operators between lcHs'.

A linear operator A : D(A) ⊆ X → X in a lcHs X with ρ(A) 6= ∅ is said to
have Montel resolvent if R(λ,A) is Montel for some λ ∈ ρ(A). It then follows
from the ideal property of Montel operators and (3.1) that R(µ,A) is Montel for
every µ ∈ ρ(A).

Lemma 4.1. Let A : D(A) ⊆ X → X be a linear operator on a lcHs X. De�ne
a system of seminorms {pA}p∈ΓX on D(A) by

pA(x) := p(x) + p(Ax), x ∈ D(A), (4.1)

for each p ∈ ΓX . Then X[A] := (D(A), {pA}p∈ΓX ) is a lcHs and the canonical
inclusion i : X[A] ↪→ X is continuous. Moreover, if ρ(A) 6= ∅, then for any �xed
λ ∈ ρ(A) the system of seminorms {pλ}p∈ΓX on D(A) de�ned by

pλ(x) := p((λ−A)x), x ∈ D(A), p ∈ ΓX , (4.2)

is equivalent to {pA}p∈ΓX , i.e., also generates the lc�topology of X[A].
If X is complete (resp. quasicomplete, sequentially complete) and A is closed,

then X[A] is also complete (resp. quasicomplete, sequentially complete).

Proof. It is routine to verify that X[A] is a lcHs. Clearly the inclusion i : X[A] ↪→
X is continuous as p ≤ pA, for each p ∈ ΓX .

Fix λ ∈ ρ(A), so that R(λ,A) ∈ L(X). Then, for any �xed p ∈ ΓX , there exist
M > 0 and q ∈ ΓX with q ≥ p such that p(R(λ,A)x) ≤Mq(x), for x ∈ X. Thus,
for each x ∈ D(A), we have

pA(x) = p(x) + p(Ax) = p(R(λ,A)(λ−A)x) + p((A− λ)x+ λx)

≤ Mq((λ−A)x) + p((λ−A)x) + p(λx)

≤ (M + 1)q((λ−A)x) + |λ|p(x)

= (M + 1)q((λ−A)x) + |λ|p(R(λ,A)(λ−A)x)

≤ (M + 1)q((λ−A)x) + |λ|Mq((λ−A)x)

= [(1 + |λ|)M + 1]q((λ−A)x) = [(1 + |λ|)M + 1]qλ(x).

On the other hand, for each x ∈ D(A), we always have that

pλ(x) = p((λ−A)x) ≤ |λ|p(x) + p(Ax) ≤ max{1, |λ|}pA(x).

Suppose X is complete. Let {xα} ⊆ X[A] = D(A) be a Cauchy net. It follows
from (4.1) that {xα} (resp. {Axα}) is Cauchy in X and so there exists x ∈ X
(resp. y ∈ X) with xα → x (resp. Axα → y) in X. By closedness of A we
conclude that x ∈ D(A) and Ax = y. Then (4.1) implies xα → x in X[A]. So,
X[A] is complete. The argument for X quasicomplete or sequentially complete is
analogous. �

For Banach spaces the following result occurs in [15, Ch. II, Proposition 4.25].
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Proposition 4.2. Let X be a lcHs and (A,D(A)) be a closed linear operator on
X with ρ(A) 6= ∅. The following assertions are equivalent.

(i) The operator A has Montel resolvent.
(ii) The canonical inclusion i : X[A] ↪→ X is Montel.

Proof. Fix any µ ∈ ρ(A). By Lemma 4.1 the system {pµ}p∈ΓX de�ned according
to (4.2) generates the lc�topology of X[A]. The operator R(µ,A) : X → X[A]
is then a topological isomorphism with continuous inverse (µ − A) : X[A] → X.
Indeed, pµ(R(µ,A)x) = p((µ−A)R(µ,A)x) = p(x), for x ∈ X, p ∈ ΓX , and also
p((µ−A)x) = pµ(x), for x ∈ D(A), p ∈ ΓX .

(i)⇒(ii). Suppose that R(λ,A) is Montel for some λ ∈ ρ(A). Then, for every
B ∈ B(X[A]) we have that (λ − A)(B) ∈ B(X) as (λ − A) ∈ L(X[A], X) and
hence, B = R(λ,A)(λ−A)(B) is relatively compact in X.

(ii)⇒(i). Fix any λ ∈ ρ(A). Let B ∈ B(X). Since R(λ,A) ∈ L(X,X[A]), we
have R(λ,A)(B) ∈ B(X[A]) and hence, R(λ,A)(B) is relatively compact in X
(as i ∈ L(X[A], X) is Montel). So, R(λ,A) is Montel. �

Lemma 4.3. Let X be a lcHs and let (T (t))t≥0 be a locally equicontinuous C0�
semigroup on X. If T (t0) is Montel for some t0 > 0, then T (t) is Montel for all
t ≥ t0 and the map t→ T (t) is continuous from [t0,∞) into Lb(X).

Proof. For every t > t0, the identity T (t) = T (t − t0)T (t0) together with the
operator ideal property for Montel operators implies that T (t) is Montel.

Fix s ≥ 0 and a compact set K ⊆ X. It follows from the strong continuity of
(T (t))t≥0 (cf. Section 2), the equicontinuity of {T (t) : t ∈ [0, s + 1]} ⊆ L(X)
and [23, (2) p.139], that limh→0 T (s + h)x = T (s)x in X (for h → 0+ if s = 0)
uniformly for x ∈ K. Let B ∈ B(X) and t ≥ t0. Since T (t0) is Montel, the set

L := T (t0)(B) ⊆ X is compact. For q ∈ ΓX we have (for s := t− t0) that
qB(T (t)− T (r)) = qB([T (t− t0)− T (r − t0)]T (t0))

≤ sup
x∈L

q([T (t− t0)− T (r − t0)]x) = sup
x∈L

q([T (s)− T (s+ (r − t))]x).

Since h := (r − t) → 0 as r → t (h → 0+ as r → t+0 , if t = t0) it follows that
limr→t T (r) = T (t) in Lb(X); for r → t+0 if t = t0. �

The following observation will be needed later.

Lemma 4.4. Let X be a sequentially complete lcHs and (T (t))t≥0 be an exponen-
tially equicontinuous C0�semigroup in X with in�nitesimal generator (A,D(A)).
Then

Ca+ := {λ ∈ C : Reλ > a} ⊆ ρ(A) (4.3)

for all a ≥ 0 such that (e−atT (t))t≥0 ⊆ L(X) is equicontinuous. In particular,
ρ(A) 6= ∅ and R(·, A) : Ca+ → Lb(X) is holomorphic.

Proof. Recall (cf. Section 2) that (T (t))t≥0 is strongly continuous. Fix any a ≥ 0
such that (e−atT (t))t≥0 ⊆ L(X) is equicontinuous. Then (A − aI,D(A)) is the
in�nitesimal generator of the equicontinuous C0�semigroup t 7→ S(t) := e−atT (t),
for t ≥ 0. The argument for equicontinuous C0�semigroups given in Remark
3.5(iv) can be adapted to show that (4.3) holds and R(λ,A) ∈ L(X) is given by

R(λ,A)x =

∫ ∞
0

e−λtT (t)x dt =

∫ ∞
0

e−(λ−a)tS(t)x dt, x ∈ X, Reλ > a, (4.4)
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where the integral exists as an improper, X�valued Riemann integral. For the
case when X is a Fréchet space, see [28, pp.165�166]; the general case follows the
same lines.

It follows from (4.4) that R(λ,A) = R(λ−a,A−a) for λ ∈ Ca+ . Then Remark
3.5(iv) implies that R(·, A) : Ca+ → Lb(X) is holomorphic. �

Remark 4.5. In Lemma 4.4 it is not possible to weaken the exponential equicon-
tinuity of (T (t))t≥0 to local equicontinuity. To see this, consider X := CC, i.e.,
the linear space of all functions f : C→ C, equipped with the topology of point-
wise convergence. The seminorms in ΓX can be chosen as f 7→ maxu∈F |f(u)|,
for f ∈ X, where F runs through the family of all �nite subsets of C. Then X
is a complete Montel lcHs. Let ψ(u) := u, for u ∈ C, and de�ne A ∈ L(X) by
Af := ψf , for f ∈ X. Given any λ ∈ C, the element fλ := χ{λ} ∈ X \ {0}
satis�es Afλ = λfλ. Hence, σ(A) = C and so ρ(A) = ∅. For each t ≥ 0, de�ne
T (t) ∈ L(X) by

T (t)f : u 7→ etψ(u)f(u) = etuf(u), u ∈ C,
for each f ∈ X. Then (T (t))t≥0 is a locally equicontinuous, uniformly continuous
(as X is a Montel space) C0�semigroup. Direct calculation (or an appeal to
Lemma 4.4) shows that (T (t))t≥0 is not exponentially equicontinuous.

For X a Banach space, the following result occurs in [15, p.119, Lemma 4.28].

Lemma 4.6. Let X be a quasicomplete lcHs and (T (t))t≥0 be an exponentially
equicontinuous C0�semigroup on X with in�nitesimal generator (A,D(A)). If, for
some t0 > 0, the map t → T (t) is continuous at t0 as an Lb(X)�valued function
and R(λ,A)T (t0) is Montel for some λ ∈ ρ(A), then the operator T (t) is Montel
for every t ≥ t0.

Proof. By exponential equicontinuity of (T (t))t≥0 there is a ≥ 0 such that {e−atT (t) :
t ≥ 0} ⊆ L(X) is equicontinuous. By Lemma 4.4 we see that µ := (a+ 1) ∈ ρ(A)
and so 0 ∈ ρ(B), where B := (A − µ). Moreover, D(B) = D(A) and B is the
in�nitesimal generator of S(t) := e−µtT (t) for t ≥ 0. Since S(t) = e−t(e−atT (t)),
for t ≥ 0, it follows that (S(t))t≥0 is an equicontinuous C0�semigroup. Clearly,
t 7→ S(t) is continuous at t0 as an Lb(X)�valued function and, via (3.1), we have
that

R(0, B)S(t0) = e−µt0R(µ,A)T (t0) = e−µt0 [R(λ,A)+(λ−µ)R(µ,A)R(λ,A)]T (t0)

which implies that R(0, B)S(t0) is Montel (as R(λ,A)T (t0) is Montel).

Consider the operators V (t) de�ned by V (t)x :=
∫ t

0 S(s)x ds for every x ∈ X
and t ≥ 0. Since V (t) = tC(t), for t ≥ 0, where (C(t))t≥0 are the Cesáro means
of (S(t))t≥0, it follows from Section 2 that V (t) ∈ L(X), for all t ≥ 0. Moreover,
by (2.6) we have BV (t) = S(t)x− x, for t ≥ 0, x ∈ X, and hence,

V (t) = R(0, B)(I − S(t)), t ≥ 0.

It follows that V (t0 +h)−V (t0) = R(0, B)S(t0)(I−S(h)), h ≥ 0, and hence, that
the operators V (t0 + h)− V (t0) are Montel as R(0, B)S(t0) is Montel. Observe,
for each h > 0, that

(V (t0 + h)− V (t0))x

h
− S(t0)x =

1

h

∫ t0+h

t0

(S(u)− S(t0))x du, x ∈ X.
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Given H ∈ B(X) and p ∈ ΓX , it follows from the previous formula that

pH

(
(V (t0 + h)− V (t0))

h
− S(t0)

)
≤ 1

h

∫ t0+h

t0

pH(S(u)− S(t0)) du (4.5)

for h > 0. Since t 7→ S(t) is continuous at t0 as an Lb(X)�valued function, given
ε > 0 there is δ > 0 such that pH(S(u) − S(t0)) < ε for all u ∈ [t0, t0 + δ].

It follows from (4.5) that pH

(
(V (t0+h)−V (t0))

h − S(t0)
)
< ε for all h ∈ (0, δ].

Accordingly, limh→0+
(V (t0+h)−V (t0))

h = S(t0) in Lb(X). The quasicompleteness
of X ensures that the precompact (=totally bounded) and the relatively compact
sets in X coincide, [22, pp.308�309]. Thus S(t0), being the limit in Lb(X) of
Montel operators, is also Montel; see (3) on p.201 of [23]. Hence, also T (t) =
T (t− t0)T (t0) = T (t− t0)eµt0S(t0) is Montel, for each t ≥ t0. �

Let X be a lcHs and (T (t))t≥0 ⊆ L(X) be a semigroup. Then (T (t))t≥0 is
called immediately Montel if T (t) is Montel for every t > 0 and (T (t))t≥0 is called
eventually Montel if there exists t0 > 0 such that T (t) is Montel for every t > t0.

For Banach spaces the following result occurs in [15, p.119, Theorem 4.29].

Theorem 4.7. Let X be a quasicomplete lcHs such that Lb(X) is sequentially
complete and (T (t))t≥0 be an exponentially equicontinuous C0�semigroup on X.
Then the following assertions are equivalent.

(i) (T (t))t≥0 is immediately Montel.
(ii) (T (t))t≥0 is continuous from [0,∞) into Lb(X) and its in�nitesimal gen-

erator has Montel resolvent.

Proof. (i)⇒(ii). Let (A,D(A)) be the in�nitesimal generator of (T (t))t≥0 and
choose any a ≥ 0 such that {e−atT (t) : t ≥ 0} ⊆ L(X) is equicontinuous.
Fix any λ ∈ C with Re (λ) > a. By Lemma 4.3 (with t0 := 0) the semigroup
(T (t))t≥0 is uniformly continuous, i.e., continuous from [0,∞) into Lb(X). Fix
n ∈ N. By continuity of t 7→ e−λtT (t) from [0, n] into the sequentially complete
lcHs Lb(X) the Riemann integral

∫ n
0 e−λtT (t)dt ∈ L(X) is the limit of a sequence

of Riemann sums of the form
∑k

j=1 e
−λξj (tj − tj−1)T (ξj), for some partition 0 =

t0 < t1 < . . . < tk = n of [0, n] and points ξj ∈ (tj−1, tj ] for 1 ≤ j ≤ k;
cf. proof of Theorem 10 in [5]. Since each such Riemann sum is Montel, also the
Lb(X)�limit

∫ n
0 e−λtT (t)dt is Montel, [23, (3), p.201]. Hence, also the Lb(X)�limit∫∞

0 e−λtT (t)dt = limn→∞
∫ n

0 e−λtT (t)dt is Montel. Since the limit also exists in
Ls(X), where it coincides with the resolvent operator R(λ,A) (cf. (4.4)), we can
conclude that R(λ,A) is Montel. Hence, A has Montel resolvent.

(ii)⇒(i). Since ρ(A) 6= ∅ (cf. Lemma 4.4), there is (by assumption) some
λ ∈ ρ(A) with R(λ,A) Montel. For any t0 > 0 the operator R(λ,A)T (t0) is also
Montel and hence, T (t) is Montel for all t ≥ t0 as (T (t))t≥0 is continuous from
[0,∞) into Lb(X) (cf. Lemma 4.6). As t0 is arbitrary, T (t) is Montel for every
t > 0, i.e., (T (t))t≥0 is immediately Montel. �

Our �nal result is well known for Banach spaces, [15, p.318, Corollary 2.15].

Lemma 4.8. Let X be a quasicomplete lcHs and (T (t))t≥0 be an equicontinuous
C0�semigroup on X with in�nitesimal generator (A,D(A)). Each of the following
properties implies {T (t)x : t ≥ 0} is relatively compact in X, for every x ∈ X.
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(i) A has Montel resolvent.
(ii) (T (t))t≥0 is eventually Montel.

Proof. According to Remark 2.2(i), the equicontinuity of (T (t))t≥0 ensures the
existence of a system ΓX such that, for each p ∈ ΓX , we have

p(T (t)x) ≤ p(x), x ∈ X, t ≥ 0. (4.6)

In case (i), �x any λ0 ∈ ρ(A). Then R(λ0, A)(B) is relatively compact in X
for all B ∈ B(X). Fix x ∈ D(A) = R(λ0, A)(X), in which case x = R(λ0, A)y for
some y ∈ X. It follows that

{T (t)x : t ≥ 0} = {R(λ0, A)T (t)y : t ≥ 0} = R(λ0, A)({T (t)y : t ≥ 0})

is relatively compact in X as {T (t)y : t ≥ 0} ∈ B(X) by (4.6). Since D(A) is
dense in X (cf. Section 2), for any z ∈ X \D(A) there exists a net (xα)α ⊆ D(A)
such that xα → z in X. Then, given p ∈ ΓX and ε > 0, there exists α0 such that
p(xα0 − z) < ε. Hence, by (4.6), supt≥0 p(T (t)(xα0 − z)) < ε. It follows that

{T (t)z : t ≥ 0} ⊆ εUp + {T (t)xα0 : t ≥ 0},

where Up := {y : p(y) < 1}. Since {T (t)xα0 : t ≥ 0} is relatively compact, X is
quasicomplete and p, ε are arbitrary, this inclusion implies that {T (t)x : t ≥ 0}
is also relatively compact.

In case (ii) there is t0 > 0 with T (t) Montel for t ≥ t0. Furthermore,

{T (t)x : t ≥ 0} = {T (t)x : t ∈ [0, t0]} ∪ T (t0)({T (s)x : s ≥ 0}), x ∈ X.

Continuity of t 7→ T (t)x on [0, t0] implies {T (t)x : t ∈ [0, t0]} is compact. Also,
{T (s)x : s ≥ 0} ∈ B(X) via equicontinuity of (T (t))t≥0. Hence, T (t0)({T (s)x :
s ≥ 0}) is relatively compact in X. So, {T (t)x : t ≥ 0} is relatively compact. �

5. Mean ergodicity and uniformly continuous C0�semigroups

In Banach spaces, various criteria for uniform mean ergodicity of a C0�semigroup
(T (t))t≥0 are known; see [8, Ch.4, �3], [15, Ch.V, �4], [24, Ch.2], [25], and the
references therein. Let (A,D(A)) be the in�nitesimal generator of (T (t))t≥0. Fun-
damental features involved in determining such criteria involve a combination of
the existence (in the operator norm) of limλ↓0+ λR(λ,A), closedness of the sub-
space ImA in X, and whether 0 ∈ ρ(A) or 0 is a simple pole of the resolvent
R(·, A) relative to the operator norm. In this section, several of these criteria are
extended to lcHs' but, not all. New phenomena arise which are not present in
the Banach space setting and these lead to certain inherent problems. In view of
the di�culties encountered in Section 3 with the spectral theory of closed linear
operators in non�normable spaces, this is not totally unexpected. Some of the
basic techniques for Banach spaces which are crucial for establishing various uni-
form mean ergodic theorems (eg., if ‖R(λ,A)‖ → 0 as λ→ 0, then ‖R(λ,A)‖ < 1
for λ small enough, or the inequality dist(λ, σ(A)) ≥ 1/‖R(λ,A)‖ for λ ∈ ρ(A),
or that ρ(A) is always open and is the natural domain in which R(·, A) is holo-
morphic) are simply not available in more general spaces. Nevertheless, many
positive results remain valid.

We recall the closed subspace of X, [24, p.77], given by

Fix(T (·)) := {x ∈ X : T (t)x = x, ∀t ≥ 0}.
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For Banach spaces, the following result occurs in [15, Ch. V, Corollary 4.8].

Theorem 5.1. Let X be a quasicomplete lcHs and (T (t))t≥0 be an equicontinuous
C0-semigroup on X whose in�nitesimal generator (A,D(A)) has Montel resolvent.
Then (T (t))t≥0 is uniformly mean ergodic.

Proof. Since (T (t))t≥0 is equicontinuous and A has Montel resolvent, Lemma 4.8
implies, for every x ∈ X, that B[x] := {T (t)x : t ≥ 0} is relatively compact in
X. Then B[x] is also relatively σ(X,X ′)�compact and so, relatively countably
σ(X,X ′)�compact, [5, Remark 6(i)]. By Remark 5(i) and Proposition 3 of [5]
the semigroup (T (t))t≥0 is mean ergodic, i.e., there exists a projection P ∈ L(X)
such that τs-limr→∞C(r) = P . To complete the proof we show that C(r) → P
in Lb(X) as r →∞.

Since A has Montel resolvent, it follows from Proposition 4.2 that the canonical
inclusion i : X[A] ↪→ X is Montel (recall X[A] = (D(A), {pA}p∈ΓX )). On the

other hand, the linear operator V : x 7→
∫ 1

0 T (t)x dt, for x ∈ X, is continuous
from X into X[A]. Indeed, choose ΓX to satisfy (4.6). Recalling the identity
(2.6), it follows from (4.1) and (4.6) that

pA(V x) = p

(∫ 1

0
T (t)x dt

)
+ p

(
A

∫ 1

0
T (t)x dt

)
≤ p(x) + p(T (1)x− x) ≤ 3p(x),

for all x ∈ X and p ∈ ΓX . As V = i ◦ V , we can conclude that V : X → X is
a Montel operator. Moreover, since P is a projection onto Fix(T (·)), [5, Remark

4(ii)], we have PV = P because of PV x =
∫ 1

0 T (t)Pxdt =
∫ 1

0 Pxdt = Px, for
x ∈ X. So, (C(r) − P )V = C(r)V − P for every r > 0. Using the facts that
V is Montel and that τs-limr→∞C(r) = P , we obtain that (C(r) − P )V → 0 in
Lb(X), [23, (2) p.139], i.e., that C(r)V − P → 0 in Lb(X) as r → ∞. On the
other hand, by applying [5, Proposition 11] we can adapt the formulae on p.341
of [15] to the lc�setting to yield, for r > 0 and x ∈ X, that

C(r)V x− C(r)x =
1

r

∫ 1

0

(∫ r+s

r
T (t)x dt−

∫ s

0
T (t)x dt

)
ds . (5.1)

Given B ∈ B(X) and p ∈ ΓX , it follows from (4.6) that, for each r > 0,

sup
x∈B

p

(
1

r

∫ 1

0

(∫ r+s

r
T (t)x dt−

∫ s

0
T (t)x dt

)
ds

)
≤ 1

r

∫ 1

0
2s sup

x∈B
p(x) ds =

pB(I)

r
.

It then follows from (5.1) that τb-limr→∞(C(r)V −C(r)) = 0. But, for r > 0, we
have C(r)−P = (C(r)−C(r)V ) + (C(r)V −P ) and so τb-limr→∞C(r) = P . �

In order to proceed further we require two preliminary results. The �rst one
follows the lines of [8, p.31, Proposition 1.4.5]; see also p.112 in [8]

Lemma 5.2. Let X be a sequentially complete lcHs and (T (t))t≥0 a locally
equicontinuous C0-semigroup on X with in�nitesimal generator (A,D(A)) such
that {

e−at
∫ t

0
T (s) ds : t ≥ 0

}
⊆ L(X) is equicontinuous, (5.2)

for some a ≥ 0. Then Ca+ ⊆ ρ(A) and

R(λ,A) =

∫ ∞
0

e−λtT (t) dt = λ

∫ ∞
0

se−λsC(s) ds, λ ∈ Ca+ . (5.3)
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Proof. Fix λ ∈ Ca+ and x ∈ X. We show that the improper Riemann integral∫∞
0 e−λtT (t)x dt exists in X. De�ne F : [0,∞)→ X by F (t) :=

∫ t
0 T (s)x ds. Let

p ∈ ΓX . Then for t, s ∈ [0,∞) we have

p(F (t)− F (s)) ≤
∣∣∣∣∫ t

s
p(T (u)x) du

∣∣∣∣ ≤ |t− s|Kx

for some Kx > 0, which exists via the local equicontinuity of (T (t))t≥0 on an
interval [0, N ] chosen large enough to contain, say t, and all s ∈ [0,∞) satisfying
|t− s| ≤ 1. It is then clear that F is continuous. Integrating by parts yields∫ t

0
e−λsT (s)x ds = [e−λsF (s)]s=ts=0 + λ

∫ t

0
e−λsF (s) ds

= e−λtF (t) + λ

∫ t

0
e−λsF (s) ds. (5.4)

For a �xed p ∈ ΓX , via (5.2) there exist Mp > 0 and q ∈ ΓX such that

p(e−λtF (t)) ≤Mpe
(a−Re(λ))tq(x), t ≥ 0. (5.5)

Since Re(a−λ) < 0 it follows from (5.5) that e−λtF (t)→ 0 in X as t→∞. Also,
the sequential completeness of X and the inequalities

p

(∫ n

m
e−λsF (s) ds

)
≤Mpq(x)

∫ n

m
eRe(a−λ)s ds, m < n in N,

show that the improper Riemann integral
∫∞

0 e−λsF (s) ds exists in X. It is then

immediate from (5.4) that also the improper Riemann integral
∫∞

0 e−λsT (s)x ds =

limn→∞
∫ n

0 e−λsT (s)x ds exists inX and equals λ
∫∞

0 e−λsF (s) ds = λ
∫∞

0 se−λsC(s)x ds.
Combining (5.4) and (5.5) we also obtain that

p

(∫ t

0
e−λsT (s)x ds

)
≤ p(e−λtF (t)) +Mp|λ|q(x)

∫ t

0
eRe(a−λ)s ds

= p(e−λtF (t)) +Mp|λ|q(x)
1− eRe(a−λ)t

Re(λ− a)
,

for t ≥ 0. Letting t → ∞ yields p
(∫∞

0 e−λsT (s)x ds
)
≤ Mp

|λ|
Re(λ−a)q(x). As the

previous inequality holds for every x ∈ X and p ∈ ΓX , the operator R(λ) : x 7→∫∞
0 e−λsT (s)x ds belongs to L(X) whenever λ ∈ Ca+ . According to Remark
3.5(iv) (see also the proof of Lemma 4.4) we also have R(λ) = R(λ,A). �

Remark 5.3. Suppose that (T (t))t≥0 is exponentially equicontinuous of some
positive order, i.e., satis�es (2.2) for some a > 0. Then, in the notation of (2.2)
we have, for each t ≥ 0, that

p

(∫ t

0
T (s)x ds

)
≤

∫ t

0
p(T (s)x) ds ≤Mpq(x)

∫ t

0
eas ds

= Mpq(x)

[
eas

a

]s=t
s=0

≤ 2Mp

a
eatq(x),

for each x ∈ X. So, (5.2) is necessarily satis�ed. If (T (t))t≥0 is equicontinuous,

then for β > 0 we have p
(∫ t

0 T (s)x ds
)
≤Mpq(x)

∫ t
0 ds ≤Mpe

βtq(x) and so (5.2)
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is satis�ed for every a > 0. In this case we recover Remark 3.5(iv) from Lemma
5.2.

Lemma 5.4. Let X be a lcHs such that Ls(X) is sequentially complete and
K : [0,∞)→ C be a continuous, Lebesgue integrable function with∫ ∞

0
K(y)y−iξdy 6= 0, ξ ∈ R. (5.6)

Suppose that Φ: [0,∞)→ Ls(X) is a bounded, continuous function and that there
exists P ∈ L(X) such that

τs − lim
λ→0+

λ

∫ ∞
0

K(λt)Φ(t) dt =

(∫ ∞
0

K(t) dt

)
P. (5.7)

Then the following limit exists in Ls(X):

lim
λ→0+

λ

∫ ∞
0

χ[0,1](λt)Φ(t) dt = P. (5.8)

If Lb(X) is sequentially complete, Φ: [0,∞)→ Lb(X) is bounded and continu-
ous, and the limit (5.7) exists in Lb(X) for some P ∈ L(X), then also the limit
(5.8) exists in Lb(X).

Proof. Since t 7→ K(λt)Φ(t) is a continuous Ls(X)�valued function on [0,∞), for
�xed λ > 0, the Riemann integral

∫ n
0 K(λt)Φ(t)dt ∈ L(X) is de�ned for each

n ∈ N. The existence of the improper Riemann integral
∫∞

0 K(λt)Φ(t)dt ∈ L(X)

follows as {
∫ n

0 K(λt)Φ(t)dt}∞n=1 is a Cauchy sequence in Ls(X). This can be seen
from the estimates

p

(∫ n

m
K(λt)Φ(t)x dt

)
≤
∫ n

m
|K(λt)|p(Φ(t)x) dt ≤ αx,p

∫ n

m
|K(λt)| dt,

for each n > m in N and all x ∈ X, p ∈ ΓX , where αx,p := supt≥0 p(Φ(t)x) <∞
as Φ has bounded range in Ls(X).

Fix α > 0 and de�ne Kα(t) := K(αt) for all t ≥ 0. Then, with µ = λα we
have, for each x ∈ X, that

p

(
λ

∫ ∞
0

Kα(λt)Φ(t)x dt−
(∫ ∞

0
Kα(t) dt

)
Px

)
=

1

α
p

(
µ

∫ ∞
0

K(µt)Φ(t)x dt−
(∫ ∞

0
K(s) ds

)
Px

)
.

Let λ→ 0+ (i.e., µ→ 0+) and apply (5.7) to conclude τs-limλ→0+ λ
∫∞

0 Kα(λt)Φ(t) dt =(∫∞
0 Kα(t) dt

)
P . It follows immediately that also

τs − lim
λ→0+

λ

∫ ∞
0

f(λt)Φ(t) dt =

(∫ ∞
0

f(t) dt

)
P, (5.9)

for every f ∈ span{Kα : α > 0}.
Observe that t 7→ χ[0,1](λt)Φ(t) = χ[0,λ−1](λt)Φ(t), for t ∈ [0,∞), is im-

proper Riemann integrable in Ls(X) with
∫∞

0 χ[0,1](λt)Φ(t)dt =
∫ 1/λ

0 Φ(t)dt.
By Wiener's Theorem, [6, Theorem 3.10], there exists a sequence {σn}∞n=1 ⊆
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span{Kα : α > 0} of Lebesgue integrable (continuous) functions such that
σn → χ[0,1] in L

1([0,∞)). For x ∈ X and p ∈ ΓX �xed, we have

p

(
λ

∫ ∞
0

χ[0,1](λt)Φ(t)x dt− Px
)

≤ p
(
λ

∫ ∞
0

[χ[0,1](λt)− σn(λt)]Φ(t)x dt

)
(5.10)

+p

(
λ

∫ ∞
0

σn(λt)Φ(t)x dt−
(∫ ∞

0
σn(t) dt

)
Px

)
(5.11)

+p

(∫ ∞
0

[σn(t)− χ[0,1](t)]Pxdt

)
. (5.12)

It follows via (5.9) that (5.11) tends to 0 as λ→ 0+, for n ∈ N. The estimate

p

(
λ

∫ ∞
0

[χ[0,1](λt)− σn(λt)]Φ(t)x dt

)
≤ αx,p

∫ ∞
0
|χ[0,1](λt)− σn(λt)| d(λt)

together with σn → χ[0,1] in L
1([0,∞)) imply the right�side of (5.10) tends to 0

as n→∞. Also the inequality

p

(∫ ∞
0

[σn(t)− χ[0,1](t)]Pxdt

)
≤ p(Px)

∫ ∞
0
|σn(t)− χ[0,1](t)| dt

implies that (5.12) tends to 0 as n → ∞. Accordingly, the left�side of the chain
of inequalities (5.10)�(5.12) tends to 0 as λ→ 0+.

Since the seminorms S 7→ p(Sx), for S ∈ L(X), generate τs as we vary x ∈ X
and p ∈ ΓX , the identity (5.8) follows.

For the case when Lb(X) is sequentially complete and Φ: [0,∞) → Lb(X) is
bounded and continuous a similar proof applies. �

The following result, connecting mean ergodicity of (T (t))t≥0 with its Abel�
mean ergodicity, is inspired by [8, p.265, Proposition 4.3.4].

Theorem 5.5. Let X be a sequentially complete lcHs and (T (t))t≥0 be a locally
equicontinuous C0-semigroup on X with in�nitesimal generator (A,D(A)).

(i) If (T (t))t≥0 is mean ergodic (resp. uniformly mean ergodic) and {C(r)}r≥0

is equicontinuous, then C0+ ⊆ ρ(A) and (T (t))t≥0 is Abel mean ergodic
(resp. uniformly Abel mean ergodic).

(ii) If Ls(X) is sequentially complete, (T (t))t≥0 is a bounded set in Ls(X)
and (T (t))t≥0 is Abel mean ergodic (resp. uniformly Abel mean ergodic
with Lb(X) sequentially complete), then (T (t))t≥0 is mean ergodic (resp.
uniformly mean ergodic).

Proof. (i) By hypothesis {C(r)}r≥0 converges in Ls(X) to some P ∈ L(X). By
equicontinuity of {C(r)}r≥0 we have

∀p ∈ ΓX ∃Mp > 0, q ∈ ΓX with p(C(r)x) ≤Mpq(x), ∀x ∈ X, r ≥ 0. (5.13)

Equivalently, via (2.7), we have

p

(∫ r

0
T (s)x ds

)
≤Mprq(x), ∀x ∈ X, r ≥ 0. (5.14)
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Given a > 0 we have r < ear

a for r ≥ 0. Then (5.14) yields p
(∫ r

0 T (s)x ds
)
≤

Mp

a e
arq(x), for x ∈ X, r ≥ 0, which is precisely (5.2) and so Lemma 5.2 implies

that Ca+ ⊆ ρ(A). Consequently, C0+ ⊆ ρ(A). If Re(λ) > 0, then a := Re(λ)/2 >
0 and we have (cf. (5.3)) that λR(λ,A)x = λ2

∫∞
0 se−λsC(s)x ds, for x ∈ X. Via

this identity and λ2
∫∞

0 se−λsds = 1 (for all λ ∈ (0,∞)) we have, for each p ∈ ΓX ,
that

p(λR(λ,A)x−Px) ≤
∫ ∞

0
λ2se−λsp(C(s)x−Px)ds ≤

∫ ∞
0

te−tp(C(t/λ)x−Px) dt,

(5.15)
for all x ∈ X and λ ∈ (0,∞). By the mean ergodicity of (T (t))t≥0, for every
x ∈ X we have p(C(t/λ)x − Px) → 0 pointwise for t in [0,∞) as λ ↓ 0+, with
supt≥0, λ>0 p(C(t/λ)x−Px) <∞ by (5.13). Hence, by the dominated convergence
theorem, (5.15) implies that limλ↓0+ p(λR(λ,A)x − Px) = 0. Accordingly, τs-
limλ↓0+ λR(λ,A) = P exists.

Suppose now that (T (t))t≥0 is uniformly mean ergodic. Fix B ∈ B(X). By
(5.15) we have pB(λR(λ,A) − P ) ≤

∫∞
0 te−tpB(C(t/λ) − P )dt, for λ ∈ (0,∞).

Since X is sequentially complete, Ls(X) and Lb(X) have the same bounded sets,
[23, (3), p.135] and so supt≥0, λ>0 pB(C(t/λ)−P ) <∞. As pB(C(t/λ)−P )→ 0

pointwise for t in [0,∞) with λ ↓ 0+ (by uniform mean ergodicity of (T (t))t≥0),
the dominated convergence theorem yields limλ↓0+ pB(λR(λ,A) − P ) = 0, i.e.,

λR(λ,A)→ P in Lb(X) as λ ↓ 0+.
(ii) By assumption there is P ∈ L(X) such that λR(λ,A)→ P in Ls(X) (resp.

in Lb(X)) as λ ↓ 0+. For r > 0 set λ := 1
r . Since the improper Riemann integral

x 7→ λ

∫ ∞
0

χ[0,1](λs)T (s)x ds = λ

∫ 1
λ

0
T (s)x ds = C(r)x, x ∈ X,

exists in Ls(X) (resp. in Lb(X)) it su�ces to show that

λ

∫ ∞
0

χ[0,1](λs)T (s) ds→ P in Ls(X) (resp. in Lb(X)) as λ ↓ 0+. (5.16)

To this e�ect, observe that the continuous function K(s) := e−s, for s ≥ 0, is
Lebesgue integrable and

∫∞
0 K(y)y−iξ dy =

∫∞
0 e−yy−iξ dy = Γ(1 − iξ) 6= 0, for

ξ ∈ R, where Γ is the Euler gamma function. Let Φ: [0,∞) → Ls(X) (resp.
Lb(X)) be the bounded, continuous function T (·). Then λ

∫∞
0 K(λt)Φ(t) dt =

λ
∫∞

0 e−λtT (t) dt = λR(λ,A), for λ ∈ (0,∞), converges to P in Ls(X) (resp. in
Lb(X)) as λ ↓ 0+. So, Lemma 5.4 yields that (5.16) does indeed hold. �

Remark 5.6. (i) Concerning part (i) of Theorem 5.5 we note that the equiconti-
nuity of {C(r)}r≥0 is automatic wheneverX is barrelled. For, in this case, the con-
vergence of {C(r)}r≥0 in Ls(X) as r →∞ ensures its boundedness in Ls(X). In-
deed, let P := τs-limr→∞C(r). Fix x ∈ X and p ∈ ΓX . Then there exists r0 > 0
such that p(Px−C(r)x) ≤ 1, for all r ≥ r0, and so supr≥r0 p(C(r)x) <∞. Since
r 7→ C(r)x is continuous on [0, r0], [5, Lemma 1], also sup0≤r≤r0 p(C(r)x) < ∞.
It then follows that supr≥0 p(C(r)x) <∞, i.e., {C(r)x}r≥0 ∈ B(X).

(ii) The boundedness of (T (t))t≥0 in Ls(X) cannot be omitted in part (ii) of

Theorem 5.5. Indeed, let X := C2 and T (t) := eit
(

1 t
0 t

)
, for t ≥ 0. Then
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limλ↓0+ λR(λ,A) exists in Lb(X) but, (T (t))t≥0 fails to be mean ergodic, [8,
p.266].

For Banach spaces the following result, [15, Ch. V, Theorem 4.10], [25], due
to M. Lin, is fundamental; see also [8, Proposition 4.3.15].

Theorem 5.7. Let X be a Banach space and (T (t))t≥0 be a uniformly bounded
(i.e., equicontinuous) C0-semigroup on X with in�nitesimal generator (A,D(A)).
Then the following assertions are equivalent.

(i) (T (t))t≥0 is uniformly mean ergodic.
(ii) (T (t))t≥0 is uniformly Abel mean ergodic.
(iii) ImA is a closed subspace of X.
(iv) 0 ∈ ρ(A) or 0 is a simple pole of the resolvent map R(·, A) of A.

If (T (t))t≥0 is equicontinuous, then also {C(r)}r≥0 is equicontinuous; see Sec-
tion 2. Consequently, Theorem 5.5 asserts that (i)⇔(ii) in Theorem 5.7 carries
over to the setting of X a lcHs (under mild restrictions). The same is not true of
conditions (iii) and (iv) in Theorem 5.7, even for Fréchet spaces.

Example 5.8. Let X := s be the nuclear Fréchet space of all rapidly decreasing
sequences x = (xi)

∞
i=1 ∈ CN, i.e., for which pn(x) := supj∈N j

n|xj |, for x =
(xj)

∞
j=1 ∈ s, is �nite for each n ∈ N. Then ΓX = {pn}∞n=1 is an increasing

sequence of seminorms determining the topology of s. Consider the operator
B ∈ L(s) given by Bx := ((1 − 2−j)xj)

∞
j=1, for x = (xj)

∞
j=1 ∈ s. It is shown

in [1, Example 2.17] that B is power bounded. According to Remark 2.4 the
C0�semigroup (etB)t≥0 is exponentially equicontinuous and T (t) := e−tetB, for
t ≥ 0, is an equicontinuous, uniformly continuous C0�semigroup with in�nitesimal
generator A := B − I (and D(A) = X). Since s is Montel, (T (t))t≥0 is uniformly
mean ergodic, [5, Corollary 2(ii)], i.e., condition (i) of Theorem 5.7 is satis�ed.

Observe that Ax = (−2−jxj)
∞
j=1, for x = (xj)

∞
j=1 ∈ s. By considering the

standard unit basis vectors {en}∞n=1 of s it is routine to check that each λj :=
−2−j , for j ∈ N, is an eigenvalue of A and hence, {λj}∞j=1 ⊆ σ(A). It is shown

in [1, Example 2.17] that A is not surjective and so also 0 ∈ σ(A). For each

λ 6∈ {0} ∪ {λj}∞j=1 it can be veri�ed that the linear map Rλ : x 7→
(

1
λ+2−j

xj

)∞
j=1

,

for x ∈ s, belongs to L(s) and satis�es Rλ(λ − A) = I = (λ − A)Rλ, i.e.,
R(λ,A) = Rλ. Hence, σ(A) = {0} ∪ {λj}∞j=1 and so ρ(A) is surely open in C.

Clearly, 0 6∈ ρ(A). Moreover, 0 ∈ σ(A) is not a simple pole of R(·, A) since
there is no punctured disc, centred in 0, which is contained in ρ(A). So, for the
assertions in Theorem 5.7, we see that (i) 6⇒(iv).

Since the basis {en}∞n=1 ⊆ ImA, we see that ImA is dense in s. But, A is not
surjective and so ImA is not closed in X (if so, it would be equal to X). So, for
the assertions of Theorem 5.7, we also have (i)6⇒(iii). �

In relation to Theorem 5.7, Example 5.8 shows that entirely new phenomena
arise in non�normable lcHs' which are simply not present for Banach spaces.
We proceed to formulate some analogues which do hold in lcHs'. In view of [5,
Corollary 2(ii)], the following result is mainly of interest in non�Montel spaces.

Proposition 5.9. Let X be a sequentially complete lcHs and (T (t))t≥0 ⊆ L(X)
be an equicontinuous C0�semigroup with ImA closed in X, where (A,D(A)) is its
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in�nitesimal generator. Then (T (t))t≥0 is mean ergodic i� it is uniformly mean
ergodic.

Proof. Suppose that (T (t))t≥0 is mean ergodic, i.e., there is P ∈ L(X) such that
τs-limr→∞C(r) = P . It is known that P is a projection and satis�es

ImP = Fix(T (·)) and kerP = span{x− T (t)x : t ≥ 0, x ∈ X},
[5, Remark 4(ii)]. It follows from these identities and Remark 5(iii) of [5] that
ImP = kerA and kerP = ImA. Since ImA is closed, we have the direct decom-
position

X = kerA⊕ ImA. (5.17)

Noting that T (t)x = x, for t ≥ 0, whenever x ∈ kerA = Fix(T (·)), we have

C(r)x =
1

r

∫ r

0
T (t)x dt = x, ∀x ∈ kerA. (5.18)

Observe that Y := ImA is invariant for {rC(r)}r≥0. Indeed, if y = Ax ∈ Y
(with x ∈ D(A)), then (2.5) and (2.6) imply that

rC(r)y =

∫ r

0
T (t)Axdt = A

∫ r

0
T (t)x dt ∈ Y. (5.19)

So, the restriction rCY (r) of rC(r) to Y , for each r ≥ 0, belongs to L(Y ). Let
ΓX satisfy (4.6). If y = Ax ∈ Y , then (2.5), (4.6) and (5.19) yield

p(rCY (r)y) = p(T (r)x− x) ≤ 2p(x), r ≥ 0, p ∈ ΓX .

Hence, {rCY (r)}r≥0 is bounded in Ls(Y ). But, Y is sequentially complete and
so {rCY (r)}r≥0 is also bounded in Lb(Y ), [23, (3), p.135]. Accordingly,

τb − lim
r→∞

CY (r) = τb − lim
r→∞

1

r
(rCY (r)) = 0. (5.20)

To complete this part of the proof we show that

τb − lim
r→∞

C(r) = P . (5.21)

Fix B ∈ B(X). If u ∈ B, then u = Pu ⊕ (I − P )u with Pu ∈ ImP = kerA and
so, by (5.18), we have C(r)Pu = Pu, for r ≥ 0. It follows that

(C(r)− P )u = (C(r)− P )(Pu⊕ (I − P )u) = C(r)(I − P )u.

Moreover, (I −P )u ∈ kerP = ImA = Y which shows that D := (I −P )(B) ⊆ Y ,
i.e., D ∈ B(Y ). Given p ∈ ΓX we have

p((C(r)− P )u) = p(C(r)(I − P )u) ≤ sup
y∈D

p(C(r)y) = pD(CY (r)),

for all r ≥ 0, i.e., pB(C(r)−P ) ≤ pD(CY (r)), for all r ≥ 0 with D ∈ B(Y ). Then
(5.21) follows from (5.20). Hence, (T (t))t≥0 is uniformly mean ergodic.

Conversely, if (T (t))t≥0 is uniformly mean ergodic, then it is surely mean er-
godic (even without ImA being closed). �

We proceed to extend Proposition 5.9 for which some preliminaries are needed.
A directed family {A(α)}α∈Λ ⊆ L(X), which we assume commutes with the
C0�semigroup (T (t))t≥0, is an ergodic net for (T (t))t≥0 if:

(E1) A(α)x ∈ co{T (t)x : t ≥ 0}, for all α ∈ Λ and x ∈ X.
(E2) {A(α)}α∈Λ is equicontinuous in L(X).
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(E3) For each t ≥ 0 we have τs − limαA(α)(T (t)− I) = 0.

This is a version of a more general de�nition due to W.F. Eberlein, [14], [24, Ch.
2]. Perhaps, the most familiar ergodic net is the directed family {C(r)}r≥0 of all
Cesàro operators (under suitable conditions on X and (T (t))t≥0), [5]. There is
an alternate ergodic net available.

Proposition 5.10. Let X be a sequentially complete lcHs and (T (t))t≥0 be an
equicontinuous C0�semigroup on X with in�nitesimal generator (A,D(A)). Then
the directed family {λR(λ,A) : 0 < λ ≤ 1} is an ergodic net for (T (t))t≥0.

Proof. According to Remark 3.5(iv) we have C+ ⊆ ρ(A) and, via (3.12), that
R(λ,A)x =

∫∞
0 e−λtT (t)x dt, for all real λ > 0 and x ∈ X.

To verify (E1) suppose that λR(λ,A)x 6∈ co{T (t)x : t ≥ 0} for some x ∈ X
and λ > 0. Let XR denote X considered as a vector space over R. Then there
exists u ∈ (XR)′ and β ∈ R such that 〈y, u〉 < β < 〈λR(λ,A)x, u〉, for all

y ∈ co{T (t)x : t ≥ 0} =: BT [x], [19, p.131 Theorem 7.3.4]. So,

sup
y∈BT [x]

〈y, u〉 ≤ β < 〈λR(λ,A)x, u〉.

Choose s > 0 with β + s < 〈λR(λ,A)x, u〉. Then (3.12) yields

β + s < 〈λR(λ,A)x, u〉 = λ

∫ ∞
0

e−λt〈T (t)x, u〉 dt ≤ λ
∫ ∞

0
e−λtβ dt = β;

contradiction. So, (E1) holds.
Concerning (E2), for each p ∈ ΓX we may assume that (3.13) holds (because

of the equicontinuity of (T (t))t≥0). Then (3.12) yields

p(λR(λ,A)x) ≤ λ
∫ ∞

0
e−λtp(T (t)x) dt ≤ λp(x)

∫ ∞
0

e−λt dt = p(x),

for each x ∈ X and λ > 0. So, {λR(λ,A) : 0 < λ ≤ 1} is equicontinuous.
To verify (E3), let x ∈ X and t ≥ 0. Then, with y :=

∫ t
0 T (s)x ds ∈ D(A), it

follows from (3.24) that λR(λ,A)(T (t) − I)x = −λy + λ2R(λ,A)y. Hence, (E2)
ensures that limλ↓0+ λR(λ,A)(T (t)− I)x = 0, i.e., (E3) holds. �

Combining Proposition 5.10 with Eberlein's Theorem, [14, Theorem 3.1], [24,
Ch. 2, Theorem 1.5, p.76], yields the following fact.

Corollary 5.11. Let X be a sequentially complete lcHs and (T (t))t≥0 ⊆ L(X)
be an equicontinuous C0�semigroup. For every x, y ∈ X the following assertions
are equivalent.

(i) y ∈ Fix(T (·)) and y ∈ co{T (t)x : t ≥ 0}.
(ii) y = limλ↓0+ λR(λ,A)x in X.
(iii) y = limλ↓0+ λR(λ,A)x in Xσ.
(iv) y is a σ(X,X ′) cluster point of the net {λR(λ,A)x : 0 < λ ≤ 1}.
We can now present a characterization of Abel mean ergodicity.

Proposition 5.12. Let X be a sequentially complete lcHs and (T (t))t≥0 ⊆ L(X)
be an equicontinuous C0�semigroup with in�nitesimal generator (A,D(A)). Then
(T (t))t≥0 is Abel mean ergodic if and only if

{λR(λ,A)x : 0 < λ ≤ 1} is relatively countably σ(X,X ′)-compact, ∀x ∈ X.
(5.22)
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Proof. Suppose (T (t))t≥0 is Abel mean ergodic. Then P = τs− limλ↓0+ λR(λ,A)
exists. According to Lemma 3.7, λ 7→ λR(λ,A) has a continuous, Ls(X)�valued
extension to [0, 1] if we de�ne its value at λ = 0 to be P . So, for each x ∈ X, the
set {λR(λ,A)x : 0 ≤ λ ≤ 1} is compact in X which implies that (5.22) is valid.

Now assume that (5.22) holds and �x x ∈ X. Choose any sequence λn ↓ 0+ in
(0, 1]. Then {λnR(λn, A)x}∞n=1 has a cluster point in Xσ, say y. Let U be any
neighbourhood of y inXσ and �x any µ ∈ (0, 1]. Choose N satisfying 0 < λN < µ.
Select n0 > N with λn0R(λn0 , A)x ∈ U . Then λn0 < µ and so y is also a cluster
point of {λR(λ,A)x : 0 < λ ≤ 1} in Xσ. By Corollary 5.11 if we set Px := y,
then Px = limλ↓0+ λR(λ,A)x. Equicontinuity of {λR(λ,A)x : 0 < λ ≤ 1}
guarantees that the linear map x 7→ Px, for x ∈ X, belongs to L(X), i.e.,
P = τs − limλ↓0+ λR(λ,A). So, (T (t))t≥0 is Abel mean ergodic. �

If X is a sequentially complete lcHs and (T (t))t≥0 ⊆ L(X) is an equicontinuous
C0�semigroup with in�nitesimal generator (A,D(A)), then it follows from [5,
Remark 5(iii)] and Lemma 3.6(i) above that

KerA = Fix(T (·)) = {x ∈ D(A) : λR(λ,A)x = x}, 0 < λ ≤ 1. (5.23)

Combining (5.23) with both (3.23) and (3.25) yields

KerA ∩ ImA = {0}. (5.24)

We can now formulate and establish one of the main results.

Theorem 5.13. Let X be a sequentially complete lcHs and (T (t))t≥0 ⊆ L(X)
be an equicontinuous C0�semigroup with in�nitesimal generator (A,D(A)). The
following assertions are equivalent.

(i) The condition (5.22) is satis�ed.
(ii) (T (t))t≥0 is Abel mean ergodic.
(iii) (T (t))t≥0 is mean ergodic.

Suppose, in addition, that ImA is closed in X. Then (i)�(iii) are also equivalent
to each of the following assertions.

(iv) (T (t))t≥0 is uniformly mean ergodic.
(v) (T (t))t≥0 is uniformly Abel mean ergodic.

Proof. The equivalence (i)⇔(ii) is Proposition 5.12. By the discussion prior to
Example 5.8 we see that (ii)⇔(iii) follows from Theorem 5.5.

So, suppose additionally that ImA is closed. Then (iii)⇔(iv) is Proposition
5.9. Since (v)⇒(ii), it remains to establish (ii)⇒(v).

By (ii), P := τs − limλ↓0+ λR(λ,A) exists and is a projection; see the proof of
Proposition 5.9. Clearly P commutes with λR(λ,A), for λ ∈ (0, 1]. Given x ∈ X,
Corollary 5.11 implies that Px ∈ Fix(T (·)), i.e., ImP ⊆ Fix(T (·)). On the other
hand, if x ∈ Fix(T (·)), then (5.23) implies that Px = x, i.e., x ∈ ImP . So (cf.
also (5.23)), we have

ImP = Fix(T (·)) = KerA. (5.25)

By Lemma 1.8 of [24, p.78], applied to the T (·)�ergodic net {λR(λ,A) : 0 < λ ≤
1}, we have (cf. also (3.25))

KerP = span{T (t)x− x : t ≥ 0, x ∈ X} = ImA. (5.26)
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It is immediate from (3.21) that

λR(λ,A)x = x, ∀x ∈ KerA, λ ∈ (0, 1]. (5.27)

By Lemma 3.6(ii), the restriction λRY (λ,A) of λR(λ,A) to the sequentially com-
plete lcHs Y := ImA = ImA belongs to L(Y ), for each λ ∈ (0, 1]. Given p ∈ ΓX ,
by equicontinuity of {λR(λ,A) : 0 < λ ≤ 1} there exist Mp > 0 and q ∈ ΓX such
that

p(λR(λ,A)x) ≤Mpq(x), ∀x ∈ X, λ ∈ (0, 1]. (5.28)

Fix y ∈ Y , so that y = Ax for some x ∈ D(A). For λ ∈ (0, 1] we have

RY (λ,A)y = R(λ,A)[(A− λI)x+ λx] = −x+ λR(λ,A)x

and so (5.28) implies p(RY (λ,A)y) ≤ p(x) +Mpq(x). So, {RY (λ,A) : 0 < λ ≤ 1}
is bounded in Ls(Y ) and hence, by sequential completeness of Y , also in Lb(Y ),
[23, (3), p.135]. Accordingly,

τb − lim
λ↓0+

λRY (λ,A) = 0. (5.29)

Fix B ∈ B(X). If u ∈ B, then u = Pu⊕ (I − P )u with Pu ∈ KerA (see (5.25))
and so, via (5.27), we have λR(λ,A)Pu = Pu for 0 < λ ≤ 1. It follows that
(λR(λ,A)−P )u = λR(λ,A)(I−P )u for 0 < λ ≤ 1. By (5.26), (I−P )u ∈ KerP =
Y which shows D := (I − P )(B) ⊆ Y , i.e., D ∈ B(Y ). Given p ∈ ΓX , for each
λ ∈ (0, 1] we have p([λR(λ,A)− P ]u) = p(λR(λ,A)(I − P )u) ≤ pD(λRY (λ,A)).
So, pB(λR(λ,A)− P ) ≤ pD(λRY (λ,A)) for λ ∈ (0, 1] and with D ∈ B(Y ). Then
(5.29) implies P = τb − limλ↓0+ λR(λ,A), i.e., (T (t))t≥0 is uniformly Abel mean
ergodic. �

For X a Banach space, the implication (ii)⇒(v) in Theorem 5.13 (assuming
ImA closed) occurs as part of [8, Proposition 4.3.15].

Recall that a lcHsX is semi�re�exive i� every bounded subset ofX is relatively
σ(X,X ′)�compact. Such spaces X are necessarily quasicomplete, [19, p.229],
and every equicontinuous C0�semigroup on X is automatically mean ergodic, [5,
Corollary 2(i)]. Combining this with Proposition 5.9 gives the following fact.

Corollary 5.14. Let X be a semi�re�exive lcHs. Then every equicontinuous
C0�semigroup on X whose in�nitesimal generator has closed range is necessarily
uniformly mean ergodic.

We now formulate a result dealing with condition (iv) of Theorem 5.7.

Proposition 5.15. Let X be a lcHs such that Lb(X) is sequentially complete,
(T (t))t≥0 be a locally equicontinuous C0�semigroup on X which is τb�bounded and
(A,D(A)) be the in�nitesimal generator of (T (t))t≥0. Either of the following two
conditions ensures that (T (t))t≥0 is uniformly mean ergodic.

(i) R(·, A) exists and is τb�bounded in some neighbourhood of 0.
(ii) 0 ∈ σ(A) and is a simple pole of R(·, A) : ρ(A)→ Lb(X).

Proof. (i) Choose r > 0 such that Dr := {µ ∈ C : |µ| < r} ⊆ ρ(A) and {R(λ,A) :
λ ∈ Dr} is bounded in Lb(X). Given B ∈ B(X) and p ∈ ΓX , there is M > 0
such that pB(R(λ,A)) ≤ M , for all |λ| < r, and hence, pB(λR(λ,A)) ≤ |λ|M ,
for all |λ| < r. It follows that τb-limλ↓0+ λR(λ,A) = 0 and the desired conclusion
follows from Theorem 5.5(ii).



30 A.A. Albanese, J. Bonet and W. J. Ricker

(ii) Choose r > 0, P ∈ L(X) and a holomorphic function H : Dr → Lb(X)
such that R(λ,A) = λ−1P + H(λ), for all 0 < |λ| < r. Fix any 0 < r1 < r, in
which case {H(λ) : |λ| ≤ r1} is τb�bounded (even τb�compact). Moreover,

λR(λ,A) = P + λH(λ), 0 < |λ| ≤ r1.

Since τb-limλ↓0+ λH(λ) = 0, it follows that τb-limλ↓0+ λR(λ,A) = P . Again
Theorem 5.5(ii) implies that (T (t))t≥0 is uniformly mean ergodic. �

Conditions (i)�(ii) in Proposition 5.15 are by no means necessary. The operator
A ∈ L(s) of Example 5.8 generates an equicontinuous C0�semigroup which is
uniformly mean ergodic but, satis�es neither of (i)�(ii) in Proposition 5.15. The
same is true for the operator A ∈ L(ω) in Remark 3.5(vii); its uniform mean
ergodicity is a consequence of ω being Montel, [5, Corollary 2(ii)].

A decomposition of a lcHs X is a sequence (Xn)n of closed, non�trivial sub-
spaces of X such that Xi ∩ Xj = {0}, for i 6= j, and each x ∈ X can be
expressed uniquely in the form x =

∑∞
j=1 yj with yj ∈ Xj , for j ∈ N. This in-

duces a sequence of projections (Qn)n de�ned by Qnx := yn where x =
∑∞

j=1 yj
with yj ∈ Xj for each j ∈ N. These projections are pairwise orthogonal (i.e.,
QnQm = 0 if n 6= m) and Qn(X) = Xn for n ∈ N. If, in addition, each
Qn ∈ L(X), for n ∈ N, then we speak of a Schauder decomposition of X. In
particular, if each space Xn = span{xn} of the Schauder decomposition is 1�
dimensional, for n ∈ N, then {xn}∞n=1 is called a Schauder basis of X, in which
case every x ∈ X has a unique expansion of the form x =

∑∞
j=1 αjxj . A Schauder

decomposition (of projections) (Qn)n ⊆ L(X) is said to have property (M) if τb-
limn→∞(

∑n
j=1Qj) = I.

Theorem 5.16. Let X be a complete barrelled lcHs which admits a Schauder
decomposition without property (M). Then there exists an equicontinuous, mean
ergodic, uniformly continuous C0�semigroup (T (t))t≥0 on X which is not uni-
formly mean ergodic.

Proof. Let {Qj}∞j=1 ⊆ L(X) denote a Schauder decomposition without property

(M) and de�ne the closed subspaces Xj := Qj(X) for all j ∈ N. By Lemma 3.2
in [3] there exist a bounded sequence (zj)j ⊆ X and p0 ∈ ΓX with zj ∈ Xj+1 and
p0(zj) > 1/2 for all j ∈ N.

Now, setting αk := 1 − 2−k for all k ∈ N, by the proof of Theorem 3.6 in [3]
the linear map T : X → X de�ned by Tx :=

∑∞
k=1 αkQkx, for x ∈ X, belongs to

L(X), is power bounded and mean ergodic with Ker(I − T ) = {0} and Ker(I −
T t) = {0} but, is not uniformly mean ergodic. Moreover, T also satis�es

Tmx =
∞∑
k=1

αmk Qkx, x ∈ X, m ∈ N. (5.30)

Since T is power bounded, the system of seminorms {p : p ∈ ΓX} de�ned by
p(x) := supn≥0 p(T

nx), for x ∈ X and p ∈ ΓX , also generates the lc�topology

of X and we have p(Tnx) = supm≥0 p(T
mTnx) = suph≥n p(T

hx) ≤ p(x), for

x ∈ X, p ∈ ΓX . It follows, for each t ≥ 0, that the operator T (t) :=
∑∞

m=0
tmTm

m!
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is well de�ned in L(X) and that

S(t) := e−tT (t) = e−t
∞∑
m=0

tmTm

m!
, t ≥ 0, (5.31)

is an equicontinuous, uniformly continuous C0�semigroup on X with in�nitesimal
generator (T − I,X); see Remark 2.4. Since {0} = Ker(T − I) = Fix(S(·)) and
{0} = Ker(T − I)t = Fix(St(·)) (cf. proof of Theorem 5 in [5]), the semigroup
(S(t))t≥0 is mean ergodic by [5, Remark 6(iv), Fact], i.e., there exists a projection
P ∈ L(X) such that C(r)→ P in Ls(X) as r →∞.

To see that (S(t))t≥0 is not uniformly mean ergodic, we proceed as follows. For
any r > 0, the formula (5.31) yields for (S(t))t≥0 that

C(r)x :=
1

r

∫ r

0
S(t)x dt =

∞∑
m=0

(
1

m!

1

r

∫ r

0
tme−t dt

)
Tmx, x ∈ X,

with
∫ r

0 t
me−tdt = m!−e−r(rm+mrm−1 + . . .+m(m−1) · · ·2r+m!). Therefore,

if x ∈ Xj for a �xed j ∈ N, we have by (5.30) that

C(r)x =

( ∞∑
m=0

[
1

r
− e−r

rm!
(rm +mrm−1 + . . .+m(m− 1) · · · 2r +m!)

]
αmj

)
x,

for all r > 0. Observing that
∑∞

m=0 α
m
j = 1

1−αj and (with Dk := dk

drk
) that

∞∑
m=0

(
rm +mrm−1 +m(m− 1)rm−2 + . . .+m(m− 1) · · · 2r +m!

) αmj
m!

=
∞∑
m=0

m∑
k=0

Dk(rm)
αmj
m!

=

∞∑
k=0

∞∑
m=k

Dk(rm)
αmj
m!

=

∞∑
k=0

Dk(

∞∑
m=0

rmαmj
m!

)

=
∞∑
k=0

Dk(erαj ) =
∞∑
k=0

αkj e
rαj =

erαj

1− αj
,

we obtain

C(r)x =

(
e(αj−1)r − 1

r(αj − 1)

)
x. (5.32)

Since αj − 1 = −2−j , it follows that C(r)x→ 0 in X as r →∞. So, Px = 0 for
all x ∈ Xj and j ∈ N. Since ∪∞j=1Xj is dense in X and P ∈ L(X), we obtain that

P = 0 on X, i.e., C(r)→ 0 in Ls(X) as r →∞.
Suppose that C(r) → 0 in Lb(X) as r → ∞. In particular, since (zj)j is a

bounded sequence in X, we have that

lim
r→∞

sup
j∈N

p0(C(r)zj) = 0. (5.33)

But p0 ≥ p0 and hence, for all j ∈ N, we obtain from (5.32) that

p0(C(2j)zj) = p0(zj)
e(αj−1)2j − 1

2j(αj − 1)
>

1

2

(
1− 1

e

)
.

Since 2j →∞ as j →∞, this contradicts (5.33). �
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For Banach spaces (which are Montel i� they are �nite�dimensional) our �nal
result occurs in [29, Theorem 2.6].

Theorem 5.17. Let X be a complete barrelled lcHs with a Schauder basis. Then
X is Montel if and only if every equicontinuous, uniformly continuous C0�semigroup
on X is uniformly mean ergodic.

Proof. Let X be Montel. Then [5, Corollary 2(ii)] implies that every equicontin-
uous, uniformly continuous C0�semigroup on X is uniformly mean ergodic.

Conversely, suppose that X is not Montel. Observe that the Schauder decom-
position {Qn}∞n=1 ⊆ L(X) induced by the basis of X has the property that each
space Xn := Qn(X), for n ∈ N, is Montel because dimXn = 1 for all n ∈ N.
By [2, Theorem 3.7(iii)] {Qn}∞n=1 does not satisfy property (M) and hence, The-
orem 5.16 ensures that there exists an equicontinuous, mean ergodic, uniformly
continuous C0�semigroup on X which is not uniformly mean ergodic. �
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