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Abstract 

 

This paper presents a three step methodology based on the use of chemical oriented models 

(MCR and CLS) for extracting out the chemical distribution maps (CDM’s) from hyperspectral 

images, afterwards performing multivariate image analysis (MIA) on the CDM’s, and finally 

extracting “channel” and textural features from the score images related to quality characteristics 

These features show complementary properties to those directly obtained from the CDM’s, since 

they take advantage of their internal correlation structure. The approach has been successfully 

applied to the evaluation of homogeneity and cluster presence of API in a novel formulation 

developed to improve the dissolution of poorly soluble drugs. 

 

INTRODUCTION 

 

Pharmaceutical regulations, such as The Current Good Manufacturing Practices (CGMPs) as 

described in 21CFR211.10 require sampling and testing of in-process materials and drug 

products to evaluate the adequacy of mixing to assure uniformity and homogeneity. The optimal 

determination of the distribution of the drug and excipients affects blend homogeneity, content 

uniformity, and may also affect dissolution [1]. These issues are related, not only to the 

manufacturing process, but also to the solubility of the Active Pharmaceutical Ingredient (API).  

 

It is estimated that over 40% of all possible new active drug candidates have very low solubility 

[2]. One possible approach for improving the solubility, and hence dissolution, of these drugs is 

to disperse them in a polymeric film, reducing surface tension, and thus, preventing them from 

aggregating again [3]. Therefore, the ability to visualize and assess the compositional 

heterogeneity and structure of the end products is extremely important for the design, 
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development and manufacture of polymeric films. Add to this, process understanding and 

product design are of main importance from the process analytical technology (PAT) and quality 

by design (QbD) points of view. 

 

Before the advent of chemical imaging methods, the evaluation of the adequacy of mixing was 

limited to an inter-unit definition determined through the standard deviation and average in drug 

concentration between different unit doses of the formulation. Spectroscopic chemical imaging 

methods, such as Near Infrared Chemical Imaging (NIR-CI) now permit an intra-unit definition 

of drug distribution by providing reliable chemical and spatial information on the distribution of 

drug and excipients. Chemical imaging methods provide knowledge on how the drug and 

excipients are mixed together, providing an understanding of the microstructure of the 

formulation.  

 

A number of approaches have been developed to extract information from the hyperspectral 

images obtained [1, 4]. In some cases, simple univariate approaches have been used [5]. 

However, it is preferable to work with the entire data array linked to the hyperspectral image to 

study the distribution of the compounds in the mixture, and determine the abundance of each 

chemical compound at each pixel location. This task has been mainly performed by Multivariate 

Curve Resolution (MCR) [6, 7], or by Classical Least Squares (CLS) [8, 9] if the constituents in 

a mixture are known a priori.  

 

These methods create chemical distribution maps (CDM’s) [10] by taking into account the 

natural spectral correlation in the hyperspectral data cube. Nevertheless, CDM´s are afterwards 

analyzed in a univariate way. Thus, the correlation structure between and within the CDM’s 

segregated chemical compounds, both in terms of chemical and spatial (textural and 

physicochemical mixture properties) information is not used. 

 

When using MCR or CLS, what we do is to segregate the information linked to each of the 

chemical compounds in the mixture, by using the (hyper)spectral correlation, in a chemical 

sense. This way, we obtain full chemical interpretable images, where the chemical compounds of 



3 

the mixture appear in each separated “chemical channel (or band)” and distributed according to 

their corresponding chemical concentration, converted into a grey level intensity. 

 

However, this information might not be sufficient for process monitoring or final quality 

prediction purposes, since it is not only the different distribution and concentration of the 

chemical compounds in the image what counts, but also the way they combine. 

 

In order to analyze these correlation structures of the mixtures, multivariate image analysis 

(MIA) [10, 11] may be useful, taking advantage of the use of multivariate statistical modeling on 

the CDM’s, and unraveling the different behaviors in separate PC’s. Properties may depend on 

the correlation structure of the distribution of the different chemical compounds. Performing this 

way, we can assess the importance of each type of information, and link it to the final quality 

properties (i.e. maybe for some final property we have the separation zones gathered by one PC 

in its score image as being the most important one; whereas for another property it is the mixing 

information what matters). Thus, the former commented PAT and QbD goals (process 

understanding, process and product design and final quality) can be better achieved, hence 

obtaining better monitoring and predictive models. 

 

The present work reports a three-step methodology to analyze the chemical composition and the 

spatial relationships between API and different excipients. The first step consists of the 

application of resolution models [12] (Classical Least Squares (CLS) [9] or Multivariate Curve 

Resolution (MCR) [6]) in order to properly separate the chemical information in the 

hyperspectral images. The second step applies MIA to obtain meaningful and complementary 

improved information from the images related to each chemical compound in the mixtures, i.e. to 

explore the spectral and spatial relationship between the API and different excipients. Finally, a 

third step uses these score images obtained from MIA to extract out features able to characterize 

quality properties of the images. These features will be compared to those provided by features 

directly extracted from the CDM’s in a univariate way. 
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Section 2, devoted to materials and methods, presents the type of formulation used, as well as the 

procedure employed for their preparation. Afterwards, the NIR spectral acquisition system and 

the data pretreatment applied to the spectra are commented. In Section 3, the chemometrics 

models used: CLS and MCR, and the MIA methodology are briefly explained. Section 4 presents 

the results obtained. Finally, Section 5 provides the conclusions. 

 

 

2. MATERIALS AND METHODS 

 

Materials 

HPMC (Hydroxypropylmethylcellulose), 2% viscosity in aqueous solution (20
ο
C), and 

griseofulvin ((2S,6'R)- 7-chloro- 2',4,6-trimethoxy- 6'-methyl- 3H,4'H-spiro [1-benzofuran- 2,1'-

cyclohex[2]ene]- 3,4'-dione )were obtained from Aldrich Chemical (Milwaukee, WI). 

 

Procedure 

 

The films were prepared using two different procedures. The first procedure was followed to 

obtain large drug agglomerates; the diameter of these agglomerates is approximately 0.3mm. A 

total of 100 mL of distilled water were heated to 70
o
C, and then 4 g of HPMC and 4 g of 

griseofulvin were added. The dispersion was mixed with a spatula and was poured on a smooth 

plastic surface and left at room temperature until all the solvent evaporated. These films with 

large agglomerates were prepared to facilitate method development and to better understand the 

spectral changes of the HPMC-griseofulvin film. 

The method of preparation of the second set is described in [5]. Micronized drug was dispersed 

in HPMC at 80
◦
C with constant agitation for 12 h. This set consisted of four polymeric thin films 

that ranged from 36.4% - 57% (w/w) drug concentration.  
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NIR Chemical Imaging 

Hyperspectral images are images where a full spectrum per pixel is obtained. Near infrared 

hyperspectral images were acquired using the Malvern SyNIRgi Near Infrared Chemical 

Imaging System (Olney, MD). The images were obtained in diffuse reflectance mode by placing 

the polymeric thin films over a white ceramic disk with a diameter of 28 mm. This disk was used 

as a reference for the acquisition system. The spectra of the HPMC and Griseofulvin were 

obtained as pure powders also in the diffuse reflectance mode. Spectra were collected with the 

system’s focal plane array detector that has 256×320 pixel elements, with a total collection time 

of about 2 minutes, if we do not consider the acquisition of dark and reference measurements. 

Images were acquired using a 10 µm per pixel objective, providing images of an area of 

approximately 3.2×2.6 mm. Spectra were obtained with 1 scan using a spectral range of 1200-

2400 nm. The Pixis ® CI software from Malvern Instrument was used for data acquisition. 

 

Data treatment for NIR spectra 

The logarithm, log10 (1/R), was first applied to the data cube to convert the spectra to 

absorbance units. Bad pixels [13] were removed and replaced by the average value of the 

intensities of the surrounding pixels and a low-pass Fourier filter was applied; these 

pretreatments were made using ISys 5.0 software package version 1.0.4. The spectra were then 

normalized using the Standard Normal Variate method and Savitzky-Golay second derivative 

(filter order 3, filter width 9). These pretreatment were applied with the purpose to eliminate 

multiplicative and additive effects, and baseline differences between the spectra. Finally, a Db4 

discrete wavelet transform function was applied as a compression tool in the spectrum domain, 

for efficiently reducing the size of the third dimension, maintaining the useful information and at 

the same time producing some more de-noising of the signal (although this was not the goal). 

The reason was the need for memory space in the computer. For this purpose, we used 

MATLAB 7.5 (The MathWorks, Natick, MA). This way, the original 10 nm resolution was 

reduced to 20nm, remaining the 1200-2400 nm range the same.  

 

These pretreatments were applied carefully, trying to deal at each point with the problem at hand. 
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3. MIA & NIR CHEMICAL IMAGING 

 

In this section, the proposed three-step methodology is introduced. It is summarized in Fig. 1.  

 

 

3.1 First step: Resolution methods 

 

The first step of the methodology searches for the distribution of chemical compounds in a 

mixture. It is based on the use of chemometric resolution models that incorporate the Beer-

Lambert law (e.q. 1) 

 

X = CS
T
 + E          (1)  

 

Where X relates to the unfolded image data matrix, S
T
 is the matrix of pure spectra and C are the 

stretched concentration profiles. This law states that the spectrum of any sample (pixel in this 

case) can be represented by the concentration-weighted sum of the contributions of the pure 

spectra present in the mixture. In this work, Multivariate Curve Resolution (MCR) [6, 14] and 

Classical Least Squares (CLS) [8, 9] have been used. 
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These models are briefly presented, and the reader is directed to the references for further details. 

Moreover, it must be pointed out that, in the case of a hyperspectral image, prior to applying 

these models it is necessary to unfold it in a multivariate image analysis fashion [10], hence 

obtaining an X matrix where the rows gather the pixels spectra and the columns their intensities 

at each wavelength. 

 

Classical Least Squares (CLS) 

 

When the original constituents of the mixture and their spectra are a priori known, application of 

CLS models [8, 9] is an option in this case. CLS regression consists of projecting each sample 

spectrum forming an X matrix on the pure spectra, hence obtaining the concentration directly 

related to the chemical compounds in it, by using eq (2) 

 

C= X(S
T
)
+
 + R          (2) 

 

Where (S
T
)
+
 is the pseudoinverse of the S

T
 matrix related to the NIR pure spectra. By refolding 

matrix C into the original spatial dimensions on the images, the chemical distribution maps 

(CDM’s) are obtained, then being able to go to the second step of the methodology. 

 

Multivariate Curve Resolution (MCR) 

 

MCR methods [6, 14] allow for the resolution of individual contributions when the spectra of pure 

components are not available, under certain specific constraints that can be introduced in the 

model. Different algorithms can be used for obtaining C and S. In this work, the MCR-ALS has 

been used [6, 7]. The MCR results are, regarding these image applications, the concentration 

matrix C and the pure spectra of the image constituents gathered in matrix S
T
 in eq 1. The basic 

steps of MCR-ALS are: 

 

1. Determination of the rank of the data matrix X (in this case, a priori known). 

2. Generation of initial estimates (C-type or S
T
-type). 
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3. Given X and C, constrained least squares calculation of S
T
. 

4. Given X and S
T
, constrained least squares calculation of C. 

5. Reproduction of X from calculated CS
T
. If reproduction is satisfactory, end of the 

process. If not, go back to 3. 

 

As for CLS, by refolding into the original spatial dimensions on the images, the CDM’s are 

obtained. 

 

It is important to stress that resolution [12] can be applied to one or more images together (see 

Figure 2). Multiimage analysis is the option to be used when a multilayer image from a single 

sample or a series of images with related chemical composition, e.g. groups of samples 

(polymeric films in this case) imaged as a function of time, temperature or any other variable, are 

encountered [10, 15]. This way, by stacking different sample groups (pixels) related to different 

images formed by the same chemical compounds, one below the other, one single S matrix is 

forced to be obtained. Thus, all the concentration profiles are then related to the same spectra; 

since MCR-ALS is performed on the new X multiimage data set (Fig. 2). 
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In this study, only non-negativity constraints in the concentrations were considered, due to the 

pre-treatment applied to the spectra. In order to give all the pixels the same a priori weight, equal 

length scaling was also applied. 

 

Applications of additional methods for the analysis of chemical images have been published by 

A. de Juan et al. for improving these methods, in order to provide local rank information 

(presence or absence of compounds in pixels) that can be later on used as an additional constraint 

[15, 16]. 

 

3.2 Second step: Multivariate Image Analysis 

 

Once the chemical information has been resolved, it is appropriate to arrange the CDM’s into a 

single multivariate image, formed by the components determined in the analysis. This is 

fundamental since the final spatial distribution of the concentrations is not only determined by 

each chemical compound itself, but also by the internal correlation structure between and within 

the different chemical compounds in the mixture.  

 

Thus, a methodology able to gather all this chemical information, providing new meaningful 

chemical information is needed. This methodology comes from the application of MIA [10], 

which creates new images called score images, combination of the original ones, and vectors of 

loadings that provide the type of information provided in these score images (i.e. the internal 

correlation structure). This is achieved by applying principal component analysis (PCA) [17] on 

to the unfolded images [10, 11]. 

 

PCA models compress the image information into a reduced number of uncorrelated 

(orthogonal) variables, called principal components (PCs). PCs are linear combinations of the 

original variables and describe the most important information of the image (data set variance) in 

decreasing order. The general PCA model can be written as: X̂  = TP
T
. The pixel coordinates in 

the space of principal components (scores) are in the score matrix T. The relevance of the 

original variables in the principal component space and their internal correlation structure is 

retained by the loadings matrix P, which provides information on how the channel bands 
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combine in order to form the new score images with uncorrelated information, obtained by 

refolding the score vectors t into the original 2D image spatial structure. Finally, the difference 

between the original data structure and the predicted by the PCA model, computed as TP
T
, is 

stored in the residual matrix [10]. 

 

In MIA, the X matrix is formed by unfolding each channel band of the image into one single 

column, and juxtaposing each unfolded channel, i.e. each column, one beside the other. This 

way, the X matrix has as many rows as pixels has the image, and as many columns as channel 

bands. During this unfolding stage, the textural (spatial) information is lost because each row is 

linked to each pixel of the image. To avoid this limitation, the Bharati and MacGregor approach 

[18] can be applied for each chemical channel concentrations following [19] to preserve the 

textural (spatial) information into the model. Thus, the X matrix is sized (nr. pixels × (nr. of 

compounds × nr. of pixel neighbors)). Each row of X contains now the concentration values of 

the different chemical compounds for a given pixel and for all the neighboring pixels. 

 

As commented before, the final spatial distribution of the concentrations depends on the internal 

correlation structure between and within the different chemical compounds in the mixture. And 

this fact, i.e. the way how the chemical compounds interact (depending on the proportion of the 

mixture, process conditions, etc.), will of course have an influence on the final quality properties 

of the pharmaceutical product. This also means that process conditions can be determined by 

inspecting these latent variables (score images), related to specific behaviors shown up by the 

loadings, in a QbD framework. 

 

Furthermore, one could be able to understand how process conditions influence the segregation 

or mixture between some chemical compounds, taking a look at the loadings and their 

percentage of variance in the model. Thus, it would also be possible to design processes that 

favor one or some other desired property. 

 

3.3 Third step: feature extraction 

 



11 

Therefore, a further third step is to use PCA or some multivariate regression model, e.g. Partial 

Least Squares, PLS [20], to relate the extracted features with final quality properties and/or with 

process conditions. This third step consists of characterizing the score images by different types 

of features, in order to take advantage of the meaningful information provided by them when 

looking at the loading plots. Thus, we can characterize chemical separation and mixing 

behaviors, spatial characteristics related to some specific compound (e.g. API if this adds some 

value to the final quality), etc.  

 

The characterization of these score images can be done as for any type of image. One common 

way to do this is by texture feature extraction, which tries to analyze and summarize the spatial 

distribution of the intensities in one gray level image (as is the case for the score values in a 

score image). This way, each set of score images related to one image is converted into a row of 

features of each of the score images analyzed, hence forming a feature vector. We have to do this 

because we are analyzing the spatial distribution characteristics of different kind of phenomena 

explained by the PCA loadings. In this study, the spatial distribution of the chemical segregation 

zones, and the spatial distribution of the chemical mixing zones.  
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Many texture analysis techniques exist in the literature, such as co-occurrence matrices, 

structural models, wavelets, etc. The reader is referred to [10], where several texture analysis 

techniques are presented and referenced. 

Table 1 

Percentage of variation explained by PCs. 

PC 1       PC 2     PC 3     PC 4     PC 5     PC 6 

39.5%    28.2%   10.0%   9.25%   6.92%   6.17% 

 

4. RESULTS 

 

In this section, the results of applying this methodology are shown, first on a large agglomerates 

image, in order to properly illustrate the procedure; afterwards on real process conditions 

formulations, introducing the difficulties that may arise when dealing with many images, maybe 

different suppliers or variability in the illumination conditions. 

 

4.1 Analysis of large agglomerates  

 

Figure 3 shows the large drug clusters that characterize the first data set commented in Section 2. 

The system’s microscope easily provided an image of these clusters (Fig. 3a), and the clusters 
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were then confirmed by SEM (Fig. 3b). The images shown in Fig. 3 are from the same sample, 

although the sample areas observed with the two microscopes are not identical. The large 

clusters in these films facilitated method development. The NIR spectral data was then used to 

obtain CDM’s for the two components of the film, using both CLS and MCR-ALS. 

 

 

As commented before, the use of CLS algorithms requires the spectra of the pure compounds, or 

an approximation if performing MCR-ALS. In this case spectrum of each the pure compound 

was obtained from the first principal component of a PCA model fitted from spectra of the pure 

compounds. The obtained pure spectra for API and HPMC are shown in Figure 4, after applying 

SNV and second derivative transforms. This was also used as an initial approximation of the 

final solution for the MCR-ALS, which in fact rapidly rotated to the same CLS solution. 

 

In this case, the selection of CLS was based on spectral similarity, which, even though different 

experimental conditions between the reference spectrum and the ones registered in the images 

exist, is an objective indicator of the quality of the final results. However, as shown later on, this 

criterion may change depending on the images analyzed and the problem at hand.  
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MIA was performed on the CDM’s provided by the CLS model following [19]. This procedure 

was applied for each chemical channel (griseofulvin and HPMC) concentrations. The reason for 

applying this approach is that spatial information specific to each chemical compound might 

exist and have an influence in the model close to that provided by the chemical correlation 

structure gathered by other PC’s. In these cases, it should be included as another color 

(concentration profile) band. 

 

It may be useful to apply MIA on CDMs (without textural augmentation) when many 

compounds are present and a simple overlapped RGB map would not reflect all possible mixing 

phenomena, or it does not provide clear enough information, as will be shown later. Enlarging 

the X matrix by neighboring pixel channels needs to be done only when textural information can 

be potentially relevant, regardless of the number of chemical compounds in the image. This can 

be the case when changes in process conditions may affect these physical spatial phenomena, 

giving them more importance in the model, and hence becoming worthy to be included in further 

analyses, as the one proposed as a third step in section 3. 

 

A window size of 3×3 was used, which means that, for each pixel in the image, we consider not 

only its own CDM intensity, but also the intensities of the eight neighboring pixels. This size was 

used because the sizes of the agglomerates are supposed to be small, so the window size to use 

should also be small. This is done for each of the CDM’s considered. Thus, the first nine 

columns of the X matrix refer to one chemical compound (HPMC in this case), whereas the last 

nine columns relate to API. A PCA model with six PC’s (Principal Components) was fitted on to 

the resulting X matrix. The first two principal components explain 67.66% of the variation in the 

data. Table 1 presents the percentages of variation explained by each PC. Figure 5 presents the 

corresponding score images, which show the value of the corresponding PC at each pixel 

location. The loading plot further explains the information conveyed by the score images as 

shown in Fig. 6. In this case, the first PC is providing the concentration difference map between 

the API and the excipient (HPMC). Pixels with high levels of API and low levels of HPMC will 

have high positive values for PC 1 (red color in score image 1). Pixels with high levels of HPMC 
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and low levels of API will have high negative values for PC 1 (blue color in score image 1). On 

the other hand, the second PC shows an average of the concentrations of any of the two chemical 

compounds (API or excipient). PC 2 is providing very interesting information, since the average 

value seems to correspond to those areas where API and excipient are mixed. This is explained 

by the positive values observed in score image 2. Thus, the first two principal components are 

providing information related to the mixing of the HPMC and API. The rest of the PC’s provide 

spatial information of each chemical compound separately, which is also very interesting, since it 

means that the textural information of each chemical compound evolves independently of the 

other one. PC’s 3 and 4 are gathering the textural aspects of the HPMC, whereas PC’s 5 and 6 

are mainly related to textural aspects of the API. 
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The most important conclusion from this first study is the benefit of using both types of models: 

the chemically oriented ones (CLS or MCR) for compressing, transforming the spectral 

information into separated chemical distribution maps; and MIA for improving the interpretation 

when separating the joint variability into orthogonal information maps (the score images) with a 

clear physical interpretation (chemical compounds blend and separation zones).  

Thus, this two-step methodology analyzes the chemical and spatial relationships between API 

and different excipients simultaneously; and takes advantage over other approaches by reporting 

which type information is gathered individually for each component, i.e. improving the process 

understanding task. 

 

It would be also possible, in this case, to form a false RG(B) image from the HPMC and API 

CDM’s, in order to assess these blending and separation zones, as shown in Figure 7, bottom left. 

However, when inspecting the false RG(B) composition, the blending areas (in yellow) do not 

appear as well defined and graded as in score image 2 (Fig. 7b, middle right). These blending 

areas are mainly related to the surroundings of the clusters, which in the false RG(B) are not so 

well detected. Even more, when inspecting score image 1, the well defined separation areas 

related to API (in red color) do not show up so clearly in the false RG(B) image. Summarizing, 

the information provided by the score images seems to be richer than that provided by the false 

RG(B) image. 

Finally, since only one image prepared in these conditions was provided, the third step could not 

be applied. Moreover, the purpose of this preparation was not to reproduce real conditions, but to 

form clear agglomerates for validating the methodology. 

Table 2 

Correlations between pure spectra and optimized. 

1.0000    0.2511    0.9495    0.3537 

0.2511    1.0000    0.3421    0.9183 

0.9495    0.3421    1.0000    0.3725 

0.3537    0.9183    0.3725    1.0000 

 

4.2. Analysis of real process conditions agglomerates 
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The next set of images was formulated as explained in section 2, using real process conditions. 

Eight images related to two locations (a and b) of four different thin films were analyzed by the 

proposed methodology. The films API concentrations were 36.4%, 44%, 50% and 57% (w/w). In 

this case, the question was to investigate if is it possible to extract out valid features to be related 

to final quality characteristics. 

 

CLS and MCR were applied on each of the eight provided images. However, residuals from CLS 

showed higher values than for the first formulation. This could be due to the fact that pure 

reference spectra were obtained in powder form for HPMC, so there was probably much more 

scattering with them, or because the pure spectra were not coming from the exact same batch as 

the one used for creating the formulations. 

 

Using MCR for each image provided poor results too, because correlations between the pure and 

optimized API spectra ranged from 57.84% for the 34.6% API to 80.14% for the 57% (w/w) 

API; i.e. an increasing correlation between the API pure and optimized spectra with its 

concentration in the mixture. This is according to previous studies where, the more concentration 

of any chemical compound was in the image the better the related spectra were predicted. 

 

When having several images with common chemical compounds, a possible approach is to apply 

MCR on a multiimage data set [10, 12, 15], i.e. to use all them in the MCR model, hence forcing 

a unique optimized spectra data set. This is really applicable in this case, since we have the same 



18 

chemical compounds in the formulations. Moreover, this is one way to eliminate different 

illumination variations from image to image, and at the same time permits to use different 

providers, since the pure spectra are introduced just as an approximation. 

 

In our case, for computational restrictions, it was necessary to take subsets of pixels from the 

images, instead of the whole images. Nevertheless, the results obtained, in terms of correlation 

between the pure spectra and the optimized ones (Table 2 and Figure 8) show that this 

approximation is valid. The CDM’s obtained are shown in Fig. 9. 

 

However, still some illumination effects could be observed in the images. In order to improve 

these images for MIA analysis, it was decided to apply some background elimination image 

analysis procedure, such as morphological opening [21-23]. The improved images show better 

aspect, as shown in Fig. 10 for 44% (w/w) formulation, loc. a). 

 

 

Once images have been enhanced, they were stacked in a 2 chemical bands image, so MIA could 

be applied, following again [19]. PC’s 1 and 2 information, associated to the chemical 

correlation structure between HPMC and Griseofulvin, are shown in Fig 11. Inspecting the 

loadings, it can be stated again that PC1 reflects the blend distribution map (score image 1), 

whereas PC2 is related to the difference distribution map (score image 2). The same results were 

obtained for the rest of images. 

     

The fact of using just two score images (PC’s) for this example (real conditions images) is to 

make the paper simpler and provide a fair comparison between the information extracted from 

the two CDM’s available and the information derived from the score images.  
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Note that the number of PC’s to use depends on the final goal (e.g. process understanding, 

monitoring, prediction, missing data recovery, …) searched. In this study, since few samples 

were available and films were prepared under similar process conditions, information on possible 

changes in process conditions or quality properties was not available, and a sound study on the 

appropriate number of PC’s was not possible. 

 

Until this point, the proposed methodology has shown how to gain in process understanding by 

inspecting the main sources of variation in the hyperspectral images. However, there is still much 

to know, as for instance relating these internal structures to quality parameters, and even how to 

create, produce these by process manufacturing conditions determination/design. One reasonable 

way to do this is by converting these images that inform about the final spatial distribution of 

each chemical compound (coming from many possible causes, chemical and not chemical, as 

commented before), into textural and color (concentration profiles) characteristics and analyze 

them by PCA [17] or, when DOE (Design of Experiments) parameters or quality variables are 

available, by PLS [20]. 

 

4.3 Score images based feature extraction 

 

In this case, no DOE or quality variables were available. Even though, it was still possible to 

extract different characteristics from the score images, afterwards applying PCA as an 

unsupervised method, and see how the different locations and concentrations images relate.  
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In order to do this, different color-texture descriptors may be applied. In this study, the texture 

techniques applied have been: 

 Soft-Color Texture Descriptors (SCTD) 

 Covariances extracted from 4 scales from a DWT decomposition 

 MR-MIA I (because texture can be important within each score image) 

 Log SVD values 

 

Descriptions of these methods can be found in [24]. The best results were found for MR-MIA I 

(Figs. 12 and 13). It must be stressed that all methods provide very similar score values for the 

first PC. The score values show a clear evolution of the images with the concentration, even for 

an unsupervised method such as PCA. But even more, when inspecting score plot 1vs2 (Fig. 13), 

the different locations of each concentration cluster very well. This means that underlying 

phenomena not only related to the concentration is being caught by the characteristics extracted 

from the score images. So, promising results when quality variables are available, such a drug 

delivery, are expected. 

   

 

 

4.4 Comparison with the characteristics extracted from the CDM’s 

 

In order to validate the benefits of the methodology, the same PCA models on the four types of 

features presented, but directly extracted from the CDM’s were built. In this case, no evolution 

with the concentration could be observed. When repeating all these analyses on Multiplicative 

Scatter Correction [25] pre-processed data (instead of SNV and Savitzky-Golay), better results 
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were found for CDM’s in relation with the API concentration. This could be due to the fact this 

way non negativity constraints could be applied on the MCR modeling stage. However, the 

clustering ability of the score images was not reached by the CDM’s. Results are shown in Fig. 

14 for the best results obtained by the CDM’s on MSC preprocessed data, which still show some 

overlapping in both PC’s 1 and 2. 

 

 

Summarizing, the concentration prediction ability for the score images is better using SNV-SG 

preprocessing, while for the CDM’s results are better when applying the MSC preprocessing. 

Anyway, the rest of the remaining relevant information in the images, which can be of main 

importance for the desired goals, is only gathered by the score images. 

 

5. CONCLUSIONS 

 

The present work introduces a methodology for efficiently analyzing hyperspectral images from 

pharmaceutical formulations by means of chemometrics resolution models and multivariate 

image analysis, in a three-step approach.  
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The methodology not only provides information on the relative concentration and spatial 

distribution of API and excipient in the formulation, but also on the internal correlation structure 

of the mixture, allowing the extraction of features related to quality characteristics of the 

formulation. This has clear benefits for process understanding and real time release, critical 

issues for PAT and QbD. 

 

This methodology has been successfully applied on a novel pharmaceutical formulation, 

designed to disperse poorly soluble drug particles in polymeric thin films and keep the API 

particles from agglomerating.  
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